1
|
Gibisch M, Müller M, Tauer C, Albrecht B, Hahn R, Cserjan-Puschmann M, Striedner G. A production platform for disulfide-bonded peptides in the periplasm of Escherichia coli. Microb Cell Fact 2024; 23:166. [PMID: 38840157 PMCID: PMC11155123 DOI: 10.1186/s12934-024-02446-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Recombinant peptide production in Escherichia coli provides a sustainable alternative to environmentally harmful and size-limited chemical synthesis. However, in-vivo production of disulfide-bonded peptides at high yields remains challenging, due to degradation by host proteases/peptidases and the necessity of translocation into the periplasmic space for disulfide bond formation. RESULTS In this study, we established an expression system for efficient and soluble production of disulfide-bonded peptides in the periplasm of E. coli. We chose model peptides with varying complexity (size, structure, number of disulfide bonds), namely parathyroid hormone 1-84, somatostatin 1-28, plectasin, and bovine pancreatic trypsin inhibitor (aprotinin). All peptides were expressed without and with the N-terminal, low molecular weight CASPON™ tag (4.1 kDa), with the expression cassette being integrated into the host genome. During BioLector™ cultivations at microliter scale, we found that most of our model peptides can only be sufficiently expressed in combination with the CASPON™ tag, otherwise expression was only weak or undetectable on SDS-PAGE. Undesired degradation by host proteases/peptidases was evident even with the CASPON™ tag. Therefore, we investigated whether degradation happened before or after translocation by expressing the peptides in combination with either a co- or post-translational signal sequence. Our results suggest that degradation predominantly happened after the translocation, as degradation fragments appeared to be identical independent of the signal sequence, and expression was not enhanced with the co-translational signal sequence. Lastly, we expressed all CASPON™-tagged peptides in two industry-relevant host strains during C-limited fed-batch cultivations in bioreactors. We found that the process performance was highly dependent on the peptide-host-combination. The titers that were reached varied between 0.6-2.6 g L-1, and exceeded previously published data in E. coli. Moreover, all peptides were shown by mass spectrometry to be expressed to completion, including full formation of disulfide bonds. CONCLUSION In this work, we demonstrated the potential of the CASPON™ technology as a highly efficient platform for the production of soluble peptides in the periplasm of E. coli. The titers we show here are unprecedented whenever parathyroid hormone, somatostatin, plectasin or bovine pancreatic trypsin inhibitor were produced in E. coli, thus making our proposed upstream platform favorable over previously published approaches and chemical synthesis.
Collapse
Affiliation(s)
- Martin Gibisch
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Matthias Müller
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Christopher Tauer
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Bernd Albrecht
- Boehringer-Ingelheim RCV GmbH & Co KG, Dr.-Boehringer-Gasse 5-11, Vienna, Austria
| | - Rainer Hahn
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Monika Cserjan-Puschmann
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria.
| | - Gerald Striedner
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| |
Collapse
|
2
|
Cronan GE, Kuzminov A. Degron-Controlled Protein Degradation in Escherichia coli: New Approaches and Parameters. ACS Synth Biol 2024; 13:669-682. [PMID: 38317378 DOI: 10.1021/acssynbio.3c00768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Protein degron tags have proven to be uniquely useful for the characterization of gene function. Degrons can mediate quick depletion, usually within minutes, of a protein of interest, allowing researchers to characterize cellular responses to the loss of function. To develop a general-purpose degron tool in Escherichia coli, we sought to build upon a previously characterized system of SspB-dependent inducible protein degradation. For this, we created a family of expression vectors containing a destabilized allele of SspB, capable of a rapid and nearly perfect "off-to-on" induction response. Using this system, we demonstrated excellent control over several DNA metabolism enzymes. However, other substrates did not respond to degron tagging in such an ideal manner, indicating the apparent limitations of SspB-dependent systems. Several degron-tagged proteins were degraded too slowly to be completely depleted during active growth, whereas others appeared to be completely refractory to degron-promoted degradation. Thus, only a minority of our, admittedly biased, selection of degron substrates proved to be amenable to efficient SspB-catalyzed degradation. We also uncovered an apparent stalling and/or disengagement of ClpXP from a degron-tagged allele of beta-galactosidase (beta-gal). While a degron-containing fusion peptide attached to the carboxy-terminus of beta-gal was degraded quantitatively, no reductions in beta-gal activity or concentration were detected, demonstrating an apparently novel mechanism of protease resistance. We conclude that substrate-dependent effects of the SspB system present a continued challenge to the widespread adoption of this degron system. For substrates that prove to be degradable, we provide a series of titratable SspB-expression vehicles.
Collapse
Affiliation(s)
- Glen E Cronan
- Department of Microbiology, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| | - Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
Gabriela M, Barnes CBG, Leong D, Sleebs BE, Schneider MP, Littler DR, Crabb BS, de Koning‐Ward TF, Gilson PR. Sequence elements within the PEXEL motif and its downstream region modulate PTEX-dependent protein export in Plasmodium falciparum. Traffic 2024; 25:e12922. [PMID: 37926971 PMCID: PMC10952997 DOI: 10.1111/tra.12922] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/23/2023] [Accepted: 10/15/2023] [Indexed: 11/07/2023]
Abstract
The parasite Plasmodium falciparum causes the most severe form of malaria and to invade and replicate in red blood cells (RBCs), it exports hundreds of proteins across the encasing parasitophorous vacuole membrane (PVM) into this host cell. The exported proteins help modify the RBC to support rapid parasite growth and avoidance of the human immune system. Most exported proteins possess a conserved Plasmodium export element (PEXEL) motif with the consensus RxLxE/D/Q amino acid sequence, which acts as a proteolytic cleavage recognition site within the parasite's endoplasmic reticulum (ER). Cleavage occurs after the P1 L residue and is thought to help release the protein from the ER so it can be putatively escorted by the HSP101 chaperone to the parasitophorous vacuole space surrounding the intraerythrocytic parasite. HSP101 and its cargo are then thought to assemble with the rest of a Plasmodium translocon for exported proteins (PTEX) complex, that then recognises the xE/D/Q capped N-terminus of the exported protein and translocates it across the vacuole membrane into the RBC compartment. Here, we present evidence that supports a dual role for the PEXEL's conserved P2 ' position E/Q/D residue, first, for plasmepsin V cleavage in the ER, and second, for efficient PTEX mediated export across the PVM into the RBC. We also present evidence that the downstream 'spacer' region separating the PEXEL motif from the folded functional region of the exported protein controls cargo interaction with PTEX as well. The spacer must be of a sufficient length and permissive amino acid composition to engage the HSP101 unfoldase component of PTEX to be efficiently translocated into the RBC compartment.
Collapse
Affiliation(s)
- Mikha Gabriela
- Malaria Virulence and Drug Discovery GroupBurnet InstituteMelbourneVictoriaAustralia
- School of MedicineDeakin UniversityGeelongVictoriaAustralia
| | - Claudia B. G. Barnes
- Malaria Virulence and Drug Discovery GroupBurnet InstituteMelbourneVictoriaAustralia
| | - Dickson Leong
- Malaria Virulence and Drug Discovery GroupBurnet InstituteMelbourneVictoriaAustralia
| | - Brad E. Sleebs
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleVictoriaAustralia
| | | | - Dene R. Littler
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
| | - Brendan S. Crabb
- Malaria Virulence and Drug Discovery GroupBurnet InstituteMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleVictoriaAustralia
- Department of Microbiology and ImmunologyUniversity of MelbourneParkvilleVictoriaAustralia
- Department of ImmunologyMonash UniversityMelbourneVictoriaAustralia
| | - Tania F. de Koning‐Ward
- School of MedicineDeakin UniversityGeelongVictoriaAustralia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT)Deakin UniversityGeelongVictoriaAustralia
| | - Paul R. Gilson
- Malaria Virulence and Drug Discovery GroupBurnet InstituteMelbourneVictoriaAustralia
- Department of Microbiology and ImmunologyUniversity of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
4
|
Cronan GE, Kuzminov A. Degron-controlled protein degradation in Escherichia coli: New Approaches and Parameters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566101. [PMID: 37986802 PMCID: PMC10659297 DOI: 10.1101/2023.11.08.566101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Protein degron tags have proven uniquely useful for characterization of gene function. Degrons mediate quick depletion, usually within minutes, of a protein of interest - allowing researchers to characterize cellular responses to the loss of function. To develop a general purpose degron tool in E. coli, we sought to build upon a previously characterized system of SspB-dependent inducible protein degradation. For this, we created a family of expression vectors containing a destabilized allele of SspB, capable of a rapid and nearly perfect "off-to-on" induction response. Using this system, we demonstrated control over several enzymes of DNA metabolism, but also found with other substates apparent limitations of a SspB-dependent system. Several degron target proteins were degraded too slowly to affect their complete depletion during active growth, whereas others appeared completely refractory to degron-promoted degradation. We demonstrated that a model substrate, beta-galactosidase, was positively recognized as a degron substrate, but failed to be degraded by the ClpXP protease - demonstrating an apparently unknown mechanism of protease resistance. Thus, only a minority of our, admittedly biased, selection of degron substates proved amenable to rapid SspB-catalyzed degradation. We conclude that substrate-dependence of the SspB system remains a critical factor for the success of this degron system. For substrates that prove degradable, we provide a series of titratable SspB-expression vehicles.
Collapse
Affiliation(s)
- Glen E. Cronan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
5
|
Wang X, Simon SM, Coffino P. Single molecule microscopy reveals diverse actions of substrate sequences that impair ClpX AAA+ ATPase function. J Biol Chem 2022; 298:102457. [PMID: 36064000 PMCID: PMC9531181 DOI: 10.1016/j.jbc.2022.102457] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 10/28/2022] Open
Abstract
AAA+ (ATPases Associated with diverse cellular Activities) proteases unfold substrate proteins by pulling the substrate polypeptide through a narrow pore. To overcome the barrier to unfolding, substrates may require extended association with the ATPase. Failed unfolding attempts can lead to a slip of grip, which may result in substrate dissociation, but how substrate sequence affects slippage is unresolved. Here, we measured single molecule dwell time using total internal reflection fluorescence microscopy, scoring time-dependent dissociation of engaged substrates from bacterial AAA+ ATPase unfoldase/translocase ClpX. Substrates comprising a stable domain resistant to unfolding and a C-terminal unstructured tail, tagged with a degron for initiating translocase insertion, were used to determine dwell time in relation to tail length and composition. We found greater tail length promoted substrate retention during futile unfolding. Additionally, we tested two tail compositions known to frustrate unfolding. A poly-glycine tract (polyG) promoted release, but only when adjacent to the folded domain, whereas glycine-alanine repeats (GAr) did not promote release. A high complexity motif containing polar and charged residues also promoted release. We further investigated the impact of these and related motifs on substrate degradation rates and ATP consumption, using the unfoldase-protease complex ClpXP. Here, substrate domain stability modulates the effects of substrate tail sequences. polyG and GAr are both inhibitory for unfolding, but act in different ways. GAr motifs only negatively affected degradation of highly stable substrates, which is accompanied by reduced ClpXP ATPase activity. Together, our results specify substrate characteristics that affect unfolding and degradation by ClpXP.
Collapse
Affiliation(s)
- Xiao Wang
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York, USA
| | - Sanford M Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York, USA
| | - Philip Coffino
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York, USA.
| |
Collapse
|
6
|
Varikoti RA, Fonseka HYY, Kelly MS, Javidi A, Damre M, Mullen S, Nugent JL, Gonzales CM, Stan G, Dima RI. Exploring the Effect of Mechanical Anisotropy of Protein Structures in the Unfoldase Mechanism of AAA+ Molecular Machines. NANOMATERIALS 2022; 12:nano12111849. [PMID: 35683705 PMCID: PMC9182431 DOI: 10.3390/nano12111849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 02/06/2023]
Abstract
Essential cellular processes of microtubule disassembly and protein degradation, which span lengths from tens of μm to nm, are mediated by specialized molecular machines with similar hexameric structure and function. Our molecular simulations at atomistic and coarse-grained scales show that both the microtubule-severing protein spastin and the caseinolytic protease ClpY, accomplish spectacular unfolding of their diverse substrates, a microtubule lattice and dihydrofolate reductase (DHFR), by taking advantage of mechanical anisotropy in these proteins. Unfolding of wild-type DHFR requires disruption of mechanically strong β-sheet interfaces near each terminal, which yields branched pathways associated with unzipping along soft directions and shearing along strong directions. By contrast, unfolding of circular permutant DHFR variants involves single pathways due to softer mechanical interfaces near terminals, but translocation hindrance can arise from mechanical resistance of partially unfolded intermediates stabilized by β-sheets. For spastin, optimal severing action initiated by pulling on a tubulin subunit is achieved through specific orientation of the machine versus the substrate (microtubule lattice). Moreover, changes in the strength of the interactions between spastin and a microtubule filament, which can be driven by the tubulin code, lead to drastically different outcomes for the integrity of the hexameric structure of the machine.
Collapse
Affiliation(s)
- Rohith Anand Varikoti
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA; (R.A.V.); (H.Y.Y.F.); (M.S.K.); (M.D.); (J.L.N.IV)
| | - Hewafonsekage Yasan Y. Fonseka
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA; (R.A.V.); (H.Y.Y.F.); (M.S.K.); (M.D.); (J.L.N.IV)
| | - Maria S. Kelly
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA; (R.A.V.); (H.Y.Y.F.); (M.S.K.); (M.D.); (J.L.N.IV)
| | - Alex Javidi
- Data Sciences, Janssen Research and Development, Spring House, PA 19477, USA;
| | - Mangesh Damre
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA; (R.A.V.); (H.Y.Y.F.); (M.S.K.); (M.D.); (J.L.N.IV)
| | - Sarah Mullen
- Department of Chemistry, The College of Wooster, Wooster, OH 44691, USA;
| | - Jimmie L. Nugent
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA; (R.A.V.); (H.Y.Y.F.); (M.S.K.); (M.D.); (J.L.N.IV)
| | | | - George Stan
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA; (R.A.V.); (H.Y.Y.F.); (M.S.K.); (M.D.); (J.L.N.IV)
- Correspondence: (G.S.); (R.I.D.)
| | - Ruxandra I. Dima
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA; (R.A.V.); (H.Y.Y.F.); (M.S.K.); (M.D.); (J.L.N.IV)
- Correspondence: (G.S.); (R.I.D.)
| |
Collapse
|
7
|
Sauer RT, Fei X, Bell TA, Baker TA. Structure and function of ClpXP, a AAA+ proteolytic machine powered by probabilistic ATP hydrolysis. Crit Rev Biochem Mol Biol 2022; 57:188-204. [PMID: 34923891 PMCID: PMC9871882 DOI: 10.1080/10409238.2021.1979461] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
ClpXP is an archetypical AAA+ protease, consisting of ClpX and ClpP. ClpX is an ATP-dependent protein unfoldase and polypeptide translocase, whereas ClpP is a self-compartmentalized peptidase. ClpXP is currently the only AAA+ protease for which high-resolution structures exist, the molecular basis of recognition for a protein substrate is understood, extensive biochemical and genetic analysis have been performed, and single-molecule optical trapping has allowed direct visualization of the kinetics of substrate unfolding and translocation. In this review, we discuss our current understanding of ClpXP structure and function, evaluate competing sequential and probabilistic mechanisms of ATP hydrolysis, and highlight open questions for future exploration.
Collapse
Affiliation(s)
- Robert T. Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xue Fei
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tristan A. Bell
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tania A. Baker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
8
|
Ye X, Mayne L, Englander SW. A conserved strategy for structure change and energy transduction in Hsp104 and other AAA+ protein motors. J Biol Chem 2021; 297:101066. [PMID: 34384781 PMCID: PMC8449053 DOI: 10.1016/j.jbc.2021.101066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 01/09/2023] Open
Abstract
The superfamily of massively large AAA+ protein molecular machines functions to convert the chemical energy of cytosolic ATP into physicomechanical form and use it to perform an extraordinary number of physical operations on proteins, nucleic acids, and membrane systems. Cryo-EM studies now reveal some aspects of substrate handling at high resolution, but the broader interpretation of AAA+ functional properties is still opaque. This paper integrates recent hydrogen exchange results for the typical AAA+ protein Hsp104 with prior information on several near and distantly related others. The analysis points to a widely conserved functional strategy. Hsp104 cycles through a long-lived loosely-structured energy-input "open" state that releases spent ADP and rebinds cytosolic ATP. ATP-binding energy is transduced by allosteric structure change to poise the protein at a high energy level in a more tightly structured "closed" state. The briefly occupied energy-output closed state binds substrate strongly and is catalytically active. ATP hydrolysis permits energetically downhill structural relaxation, which is coupled to drive energy-requiring substrate processing. Other AAA+ proteins appear to cycle through states that are analogous functionally if not in structural detail. These results revise the current model for AAA+ function, explain the structural basis of single-molecule optical tweezer kinetic phases, identify the separate energetic roles of ATP binding and hydrolysis, and specify a sequence of structural and energetic events that carry AAA+ proteins unidirectionally around a functional cycle to propel their diverse physical tasks.
Collapse
Affiliation(s)
- Xiang Ye
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Leland Mayne
- Department of Biochemistry and Biophysics and Johnson Research Foundation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - S Walter Englander
- Department of Biochemistry and Biophysics and Johnson Research Foundation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
9
|
Fonseka HYY, Javidi A, Oliveira LFL, Micheletti C, Stan G. Unfolding and Translocation of Knotted Proteins by Clp Biological Nanomachines: Synergistic Contribution of Primary Sequence and Topology Revealed by Molecular Dynamics Simulations. J Phys Chem B 2021; 125:7335-7350. [PMID: 34110163 DOI: 10.1021/acs.jpcb.1c00898] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We use Langevin dynamics simulations to model, at an atomistic resolution, how various natively knotted proteins are unfolded in repeated allosteric translocating cycles of the ClpY ATPase. We consider proteins representative of different topologies, from the simplest knot (trefoil 31), to the three-twist 52 knot, to the most complex stevedore, 61, knot. We harness the atomistic detail of the simulations to address aspects that have so far remained largely unexplored, such as sequence-dependent effects on the ruggedness of the landscape traversed during knot sliding. Our simulations reveal the combined effect on translocation of the knotted protein structure, i.e., backbone topology and geometry, and primary sequence, i.e., side chain size and interactions, and show that the latter can dominate translocation hindrance. In addition, we observe that due to the interplay between the knotted topology and intramolecular contacts the transmission of tension along the polypeptide chain occurs very differently from that of homopolymers. Finally, by considering native and non-native interactions, we examine how the disruption or formation of such contacts can affect the translocation processivity and concomitantly create multiple unfolding pathways with very different activation barriers.
Collapse
Affiliation(s)
| | - Alex Javidi
- Data Sciences, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Luiz F L Oliveira
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Cristian Micheletti
- Molecular and Statistical Biophysics, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy
| | - George Stan
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
10
|
Multistep substrate binding and engagement by the AAA+ ClpXP protease. Proc Natl Acad Sci U S A 2020; 117:28005-28013. [PMID: 33106413 DOI: 10.1073/pnas.2010804117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Escherichia coli ClpXP is one of the most thoroughly studied AAA+ proteases, but relatively little is known about the reactions that allow it to bind and then engage specific protein substrates before the adenosine triphosphate (ATP)-fueled mechanical unfolding and translocation steps that lead to processive degradation. Here, we employ a fluorescence-quenching assay to study the binding of ssrA-tagged substrates to ClpXP. Polyphasic stopped-flow association and dissociation kinetics support the existence of at least three distinct substrate-bound complexes. These kinetic data fit well to a model in which ClpXP and substrate form an initial recognition complex followed by an intermediate complex and then, an engaged complex that is competent for substrate unfolding. The initial association and dissociation steps do not require ATP hydrolysis, but subsequent forward and reverse kinetic steps are accelerated by faster ATP hydrolysis. Our results, together with recent cryo-EM structures of ClpXP bound to substrates, support a model in which the ssrA degron initially binds in the top portion of the axial channel of the ClpX hexamer and then is translocated deeper into the channel in steps that eventually pull the native portion of the substrate against the channel opening. Reversible initial substrate binding allows ClpXP to check potential substrates for degrons, potentially increasing specificity. Subsequent substrate engagement steps allow ClpXP to grip a wide variety of sequences to ensure efficient unfolding and translocation of almost any native substrate.
Collapse
|
11
|
Modular and coordinated activity of AAA+ active sites in the double-ring ClpA unfoldase of the ClpAP protease. Proc Natl Acad Sci U S A 2020; 117:25455-25463. [PMID: 33020301 PMCID: PMC7568338 DOI: 10.1073/pnas.2014407117] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Understanding of how ClpA and other double-ring AAA+ enzymes perform mechanical work is limited. Using site-specific cross-linking and mutagenesis, we introduced ATPase-inactive AAA+ modules at alternating positions in individual ClpA rings, or in both rings, to investigate potential active-site coordination during ClpAP degradation. ClpA variants containing alternating active/inactive ATPase modules processively unfolded, translocated, and supported ClpP degradation of protein substrates with energetic efficiencies similar to, or higher than, completely active ClpA. These results impact current models describing the mechanisms of AAA+ family enzymes. The cross-linking/mutagenesis method we employed will also be useful for answering other structure-function questions about ClpA and related double-ring enzymes. ClpA is a hexameric double-ring AAA+ unfoldase/translocase that functions with the ClpP peptidase to degrade proteins that are damaged or unneeded. How the 12 ATPase active sites of ClpA, 6 in the D1 ring and 6 in the D2 ring, work together to fuel ATP-dependent degradation is not understood. We use site-specific cross-linking to engineer ClpA hexamers with alternating ATPase-active and ATPase-inactive modules in the D1 ring, the D2 ring, or both rings to determine if these active sites function together. Our results demonstrate that D2 modules coordinate with D1 modules and ClpP during mechanical work. However, there is no requirement for adjacent modules in either ring to be active for efficient enzyme function. Notably, ClpAP variants with just three alternating active D2 modules are robust protein translocases and function with double the energetic efficiency of ClpAP variants with completely active D2 rings. Although D2 is the more powerful motor, three or six active D1 modules are important for high enzyme processivity, which depends on D1 and D2 acting coordinately. These results challenge sequential models of ATP hydrolysis and coupled mechanical work by ClpAP and provide an engineering strategy that will be useful in testing other aspects of ClpAP mechanism.
Collapse
|
12
|
Avestan MS, Javidi A, Ganote LP, Brown JM, Stan G. Kinetic effects in directional proteasomal degradation of the green fluorescent protein. J Chem Phys 2020; 153:105101. [DOI: 10.1063/5.0015191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
| | - Alex Javidi
- Data Sciences, Janssen Research and Development, Spring House, Pennsylvania 19477, USA
| | | | | | - George Stan
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, USA
| |
Collapse
|
13
|
Shin M, Puchades C, Asmita A, Puri N, Adjei E, Wiseman RL, Karzai AW, Lander GC. Structural basis for distinct operational modes and protease activation in AAA+ protease Lon. SCIENCE ADVANCES 2020; 6:eaba8404. [PMID: 32490208 PMCID: PMC7239648 DOI: 10.1126/sciadv.aba8404] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/09/2020] [Indexed: 05/21/2023]
Abstract
Substrate-bound structures of AAA+ protein translocases reveal a conserved asymmetric spiral staircase architecture wherein a sequential ATP hydrolysis cycle drives hand-over-hand substrate translocation. However, this configuration is unlikely to represent the full conformational landscape of these enzymes, as biochemical studies suggest distinct conformational states depending on the presence or absence of substrate. Here, we used cryo-electron microscopy to determine structures of the Yersinia pestis Lon AAA+ protease in the absence and presence of substrate, uncovering the mechanistic basis for two distinct operational modes. In the absence of substrate, Lon adopts a left-handed, "open" spiral organization with autoinhibited proteolytic active sites. Upon the addition of substrate, Lon undergoes a reorganization to assemble an enzymatically active, right-handed "closed" conformer with active protease sites. These findings define the mechanistic principles underlying the operational plasticity required for processing diverse protein substrates.
Collapse
Affiliation(s)
- Mia Shin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Cristina Puchades
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ananya Asmita
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Neha Puri
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Eric Adjei
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - R. Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - A. Wali Karzai
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Gabriel C. Lander
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
14
|
Kardon JR, Moroco JA, Engen JR, Baker TA. Mitochondrial ClpX activates an essential biosynthetic enzyme through partial unfolding. eLife 2020; 9:54387. [PMID: 32091391 PMCID: PMC7077987 DOI: 10.7554/elife.54387] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/19/2020] [Indexed: 01/28/2023] Open
Abstract
Mitochondria control the activity, quality, and lifetime of their proteins with an autonomous system of chaperones, but the signals that direct substrate-chaperone interactions and outcomes are poorly understood. We previously discovered that the mitochondrial AAA+ protein unfoldase ClpX (mtClpX) activates the initiating enzyme for heme biosynthesis, 5-aminolevulinic acid synthase (ALAS), by promoting cofactor incorporation. Here, we ask how mtClpX accomplishes this activation. Using S. cerevisiae proteins, we identified sequence and structural features within ALAS that position mtClpX and provide it with a grip for acting on ALAS. Observation of ALAS undergoing remodeling by mtClpX revealed that unfolding is limited to a region extending from the mtClpX-binding site to the active site. Unfolding along this path is required for mtClpX to gate cofactor binding to ALAS. This targeted unfolding contrasts with the global unfolding canonically executed by ClpX homologs and provides insight into how substrate-chaperone interactions direct the outcome of remodeling.
Collapse
Affiliation(s)
- Julia R Kardon
- Department of Biochemistry, Brandeis University, Waltham, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| | - Jamie A Moroco
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, United States
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, United States
| | - Tania A Baker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
15
|
Dima RI, Stan G. Computational Studies of Mechanical Remodeling of Substrate Proteins by AAA+ Biological Nanomachines. ACS SYMPOSIUM SERIES 2020. [DOI: 10.1021/bk-2020-1356.ch008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ruxandra I. Dima
- Department of Chemistry, University of Cincinnati, P. O. Box 210172, Cincinnati, Ohio 45221, United States
| | - George Stan
- Department of Chemistry, University of Cincinnati, P. O. Box 210172, Cincinnati, Ohio 45221, United States
| |
Collapse
|
16
|
Sriramoju MK, Chen Y, Hsu STD. Protein knots provide mechano-resilience to an AAA+ protease-mediated proteolysis with profound ATP energy expenses. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1868:140330. [PMID: 31756432 DOI: 10.1016/j.bbapap.2019.140330] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/23/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022]
Abstract
Knotted proteins are some of the most fascinating examples of how linear polypeptide chains can achieve intricate topological arrangements efficiently and spontaneously. The entanglements of polypeptide chains could potentially enhance their folding stabilities. We recently reported the unprecedented mechanostability of the Gordian (52) knotted family of human ubiquitin C-terminal hydrolases (UCHs) in the context of withstanding the mechanical unfolding of the bacterial AAA+ proteasome, ClpXP; a green fluorescence protein (GFP) was fused to the N-terminus of various UCHs as a reporter of the unfolding and degradation of these topologically knotted substrates, but it also limited the ability to examine the effect of untying the knotted topology via N-terminal truncation. In this study, we directly monitored the ClpXP-mediated degradation of UCH variants by electrophoresis and quantitative imaging analyses. We demonstrated that untying of the 52 knot in UCHL1 via N-terminal truncation (UCHL1Δ11) significantly reduces its mechanostability. We further quantified the ATP expenditures of degrading different UCH variants by ClpXP. The unknotted UCHL1Δ11 underwent accelerated ClpXP-dependent proteolysis, with a 30-fold reduction in ATP consumption compared to the knotted wild type. Unlike all other known ClpXP substrates, UCHL5, which is the most resilient substrate known to date, significantly slowed down the ATP turnover rate by ClpXP. Furthermore, UCHL5 required 1000-fold more ATP to be fully degraded by ClpXP compared to GFP. Our results underscored how the complex, knotted folding topology in UCHs may interfere with the mechano-unfolding processes of the AAA+ unfoldase, ClpX.
Collapse
Affiliation(s)
| | - Yen Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Shang-Te Danny Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
17
|
Abstract
AAA+ proteolytic machines use energy from ATP hydrolysis to degrade damaged, misfolded, or unneeded proteins. Protein degradation occurs within a barrel-shaped self-compartmentalized peptidase. Before protein substrates can enter this peptidase, they must be unfolded and then translocated through the axial pore of an AAA+ ring hexamer. An unstructured region of the protein substrate is initially engaged in the axial pore, and conformational changes in the ring, powered by ATP hydrolysis, generate a mechanical force that pulls on and denatures the substrate. The same conformational changes in the hexameric ring then mediate mechanical translocation of the unfolded polypeptide into the peptidase chamber. For the bacterial ClpXP and ClpAP AAA+ proteases, the mechanical activities of protein unfolding and translocation have been directly visualized by single-molecule optical trapping. These studies in combination with structural and biochemical experiments illuminate many principles that underlie this universal mechanism of ATP-fueled protein unfolding and subsequent destruction.
Collapse
Affiliation(s)
- Adrian O Olivares
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Tania A Baker
- Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Robert T Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| |
Collapse
|
18
|
Amor AJ, Schmitz KR, Baker TA, Sauer RT. Roles of the ClpX IGF loops in ClpP association, dissociation, and protein degradation. Protein Sci 2019; 28:756-765. [PMID: 30767302 DOI: 10.1002/pro.3590] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/08/2019] [Indexed: 11/11/2022]
Abstract
IGF-motif loops project from the hexameric ring of ClpX and are required for docking with the self-compartmentalized ClpP peptidase, which consists of heptameric rings stacked back-to-back. Here, we show that ATP or ATPγS support assembly by changing the conformation of the ClpX ring, bringing the IGF loops closer to each other and allowing efficient multivalent contacts with docking clefts on ClpP. In single-chain ClpX pseudohexamers, deletion of one or two IGF loops modestly slows association with ClpP but strongly accelerates dissociation of ClpXP complexes. We probe how changes in the sequence and length of the IGF loops affect ClpX-ClpP interactions and show that deletion of one or two IGF loops slows ATP-dependent proteolysis by ClpXP. We also find that ClpXP degradation is less processive when two IGF loops are deleted.
Collapse
Affiliation(s)
- Alvaro J Amor
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Karl R Schmitz
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Tania A Baker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Robert T Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| |
Collapse
|
19
|
Sivertsson EM, Jackson SE, Itzhaki LS. The AAA+ protease ClpXP can easily degrade a 3 1 and a 5 2-knotted protein. Sci Rep 2019; 9:2421. [PMID: 30787316 PMCID: PMC6382783 DOI: 10.1038/s41598-018-38173-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 12/04/2018] [Indexed: 12/16/2022] Open
Abstract
Knots in proteins are hypothesized to make them resistant to enzymatic degradation by ATP-dependent proteases and recent studies have shown that whereas ClpXP can easily degrade a protein with a shallow 31 knot, it cannot degrade 52-knotted proteins if degradation is initiated at the C-terminus. Here, we present detailed studies of the degradation of both 31- and 52-knotted proteins by ClpXP using numerous constructs where proteins are tagged for degradation at both N- and C-termini. Our results confirm and extend earlier work and show that ClpXP can easily degrade a deeply 31-knotted protein. In contrast to recently published work on the degradation of 52-knotted proteins, our results show that the ClpXP machinery can also easily degrade these proteins. However, the degradation depends critically on the location of the degradation tag and the local stability near the tag. Our results are consistent with mechanisms in which either the knot simply slips along the polypeptide chain and falls off the free terminus, or one in which the tightened knot enters the translocation pore of ClpXP. Results of experiments on knotted protein fusions with a highly stable domain show partial degradation and the formation of degradation intermediates.
Collapse
Affiliation(s)
- Elin M Sivertsson
- Department of Pharmacology, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Sophie E Jackson
- Department of Chemistry, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Laura S Itzhaki
- Department of Pharmacology, Tennis Court Road, Cambridge, CB2 1PD, UK.
| |
Collapse
|
20
|
Javidialesaadi A, Flournoy SM, Stan G. Role of Diffusion in Unfolding and Translocation of Multidomain Titin I27 Substrates by a Clp ATPase Nanomachine. J Phys Chem B 2019; 123:2623-2635. [DOI: 10.1021/acs.jpcb.8b10282] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
| | - Shanice M. Flournoy
- Department of Chemistry, Virginia State University, Petersburg, Virginia 23806, United States
| | - George Stan
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
21
|
Cordova JC, Olivares AO, Lang MJ. Mechanically Watching the ClpXP Proteolytic Machinery. Methods Mol Biol 2018; 1486:317-341. [PMID: 27844434 DOI: 10.1007/978-1-4939-6421-5_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Energy-dependent protein degradation is studied through the dual bead ClpXP motility assay. Processing of folded proteins involves recognition, unfolding, translocation, and degradation stages. A dual optical trap, in a passive force-clamp geometry, exhibits bead-to-bead displacements that directly follow subprocesses underlying protein degradation. Discrete nanometer-scale displacements of the bead position reveal steps, dwells and pauses during the unfolding and translocation substeps. With a few structural modifications to the protease machinery and an engineered substrate, the assay represents a "chassis" for the measurement of a wide range of substrates and related machinery. The methods described faithfully record our assay as implemented, including substrate design, wet assay preparation, and the motility assay experiment protocol. The strategies herein permit adaptation of the ClpXP mechanical assay to a wide range of protein degradation systems.
Collapse
Affiliation(s)
- Juan Carlos Cordova
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, 308-A Olin Hall, VU Mailbox: PMB 351604, Nashville, TN, 37235, USA
| | - Adrian O Olivares
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Matthew J Lang
- Department of Chemical and Biomolecular Engineering and Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 308-A Olin Hall, VU Mailbox: PMB 351604, Nashville, TN, 37235, USA.
| |
Collapse
|
22
|
VCP/p97-Mediated Unfolding as a Principle in Protein Homeostasis and Signaling. Mol Cell 2017; 69:182-194. [PMID: 29153394 DOI: 10.1016/j.molcel.2017.10.028] [Citation(s) in RCA: 267] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/06/2017] [Accepted: 10/20/2017] [Indexed: 01/14/2023]
Abstract
The AAA+-type ATPase p97 governs an ever-expanding number of cellular processes reaching from degradation of damaged proteins and organelles to key signaling events and chromatin regulation with thousands of client proteins. With its relevance for cellular homeostasis and genome stability, it is linked to muscular and neuronal degeneration and, conversely, constitutes an attractive anti-cancer drug target. Its molecular function is ATP-driven protein unfolding, which is directed by ubiquitin and assisted by a host of cofactor proteins. This activity underlies p97's diverse ability to pull proteins out of membranes, unfold proteins for proteasomal degradation, or segregate proteins from partners for downstream activity. Recent advances in structural analysis and biochemical reconstitution have underscored this notion, resolved detailed molecular motions within the p97 hexamer, and suggested substrate threading through the central channel of the p97 hexamer as the driving mechanism. We will discuss the mechanisms and open questions in the context of the diverse cellular activities.
Collapse
|
23
|
Abstract
ATP-dependent proteases translocate proteins through a narrow pore for their controlled destruction. However, how a protein substrate containing a knotted topology affects this process remains unknown. Here, we characterized the effects of the trefoil-knotted protein MJ0366 from Methanocaldococcus jannaschii on the operation of the ClpXP protease from Escherichia coli ClpXP completely degrades MJ0366 when pulling from the C-terminal ssrA-tag. However, when a GFP moiety is appended to the N terminus of MJ0366, ClpXP releases intact GFP with a 47-residue tail. The extended length of this tail suggests that ClpXP tightens the trefoil knot against GFP, which prevents GFP unfolding. Interestingly, if the linker between the knot core of MJ0366 and GFP is longer than 36 residues, ClpXP tightens and translocates the knot before it reaches GFP, enabling the complete unfolding and degradation of the substrate. These observations suggest that a knot-induced stall during degradation of multidomain proteins by AAA proteases may constitute a novel mechanism to produce partially degraded products with potentially new functions.
Collapse
|
24
|
Worden EJ, Dong KC, Martin A. An AAA Motor-Driven Mechanical Switch in Rpn11 Controls Deubiquitination at the 26S Proteasome. Mol Cell 2017; 67:799-811.e8. [PMID: 28844860 DOI: 10.1016/j.molcel.2017.07.023] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/27/2017] [Accepted: 07/25/2017] [Indexed: 11/16/2022]
Abstract
Poly-ubiquitin chains direct protein substrates to the 26S proteasome, where they are removed by the deubiquitinase Rpn11 during ATP-dependent substrate degradation. Rapid deubiquitination is required for efficient degradation but must be restricted to committed substrates that are engaged with the ATPase motor to prevent premature ubiquitin chain removal and substrate escape. Here we reveal the ubiquitin-bound structure of Rpn11 from S. cerevisiae and the mechanisms for mechanochemical coupling of substrate degradation and deubiquitination. Ubiquitin binding induces a conformational switch of Rpn11's Insert-1 loop from an inactive closed state to an active β hairpin. This switch is rate-limiting for deubiquitination and strongly accelerated by mechanical substrate translocation into the AAA+ motor. Deubiquitination by Rpn11 and ubiquitin unfolding by the ATPases are in direct competition. The AAA+ motor-driven acceleration of Rpn11 is therefore important to ensure that poly-ubiquitin chains are removed only from committed substrates and fast enough to prevent their co-degradation.
Collapse
Affiliation(s)
- Evan J Worden
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ken C Dong
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Andreas Martin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
25
|
Duran EC, Weaver CL, Lucius AL. Comparative Analysis of the Structure and Function of AAA+ Motors ClpA, ClpB, and Hsp104: Common Threads and Disparate Functions. Front Mol Biosci 2017; 4:54. [PMID: 28824920 PMCID: PMC5540906 DOI: 10.3389/fmolb.2017.00054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/13/2017] [Indexed: 11/25/2022] Open
Abstract
Cellular proteostasis involves not only the expression of proteins in response to environmental needs, but also the timely repair or removal of damaged or unneeded proteins. AAA+ motor proteins are critically involved in these pathways. Here, we review the structure and function of AAA+ proteins ClpA, ClpB, and Hsp104. ClpB and Hsp104 rescue damaged proteins from toxic aggregates and do not partner with any protease. ClpA functions as the regulatory component of the ATP dependent protease complex ClpAP, and also remodels inactive RepA dimers into active monomers in the absence of the protease. Because ClpA functions both with and without a proteolytic component, it is an ideal system for developing strategies that address one of the major challenges in the study of protein remodeling machines: how do we observe a reaction in which the substrate protein does not undergo covalent modification? Here, we review experimental designs developed for the examination of polypeptide translocation catalyzed by the AAA+ motors in the absence of proteolytic degradation. We propose that transient state kinetic methods are essential for the examination of elementary kinetic mechanisms of these motor proteins. Furthermore, rigorous kinetic analysis must also account for the thermodynamic properties of these complicated systems that reside in a dynamic equilibrium of oligomeric states, including the biologically active hexamer.
Collapse
Affiliation(s)
- Elizabeth C Duran
- Department of Chemistry, University of Alabama at BirminghamBirmingham, AL, United States
| | - Clarissa L Weaver
- Department of Chemistry, University of Alabama at BirminghamBirmingham, AL, United States
| | - Aaron L Lucius
- Department of Chemistry, University of Alabama at BirminghamBirmingham, AL, United States
| |
Collapse
|
26
|
Effect of directional pulling on mechanical protein degradation by ATP-dependent proteolytic machines. Proc Natl Acad Sci U S A 2017; 114:E6306-E6313. [PMID: 28724722 DOI: 10.1073/pnas.1707794114] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
AAA+ proteases and remodeling machines couple hydrolysis of ATP to mechanical unfolding and translocation of proteins following recognition of sequence tags called degrons. Here, we use single-molecule optical trapping to determine the mechanochemistry of two AAA+ proteases, Escherichia coli ClpXP and ClpAP, as they unfold and translocate substrates containing multiple copies of the titinI27 domain during degradation initiated from the N terminus. Previous studies characterized degradation of related substrates with C-terminal degrons. We find that ClpXP and ClpAP unfold the wild-type titinI27 domain and a destabilized variant far more rapidly when pulling from the N terminus, whereas translocation speed is reduced only modestly in the N-to-C direction. These measurements establish the role of directionality in mechanical protein degradation, show that degron placement can change whether unfolding or translocation is rate limiting, and establish that one or a few power strokes are sufficient to unfold some protein domains.
Collapse
|
27
|
Bittner LM, Arends J, Narberhaus F. Mini review: ATP-dependent proteases in bacteria. Biopolymers 2017; 105:505-17. [PMID: 26971705 DOI: 10.1002/bip.22831] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/11/2016] [Accepted: 03/07/2016] [Indexed: 01/22/2023]
Abstract
AAA(+) proteases are universal barrel-like and ATP-fueled machines preventing the accumulation of aberrant proteins and regulating the proteome according to the cellular demand. They are characterized by two separate operating units, the ATPase and peptidase domains. ATP-dependent unfolding and translocation of a substrate into the proteolytic chamber is followed by ATP-independent degradation. This review addresses the structure and function of bacterial AAA(+) proteases with a focus on the ATP-driven mechanisms and the coordinated movements in the complex mainly based on the knowledge of ClpXP. We conclude by discussing strategies how novel protease substrates can be trapped by mutated AAA(+) protease variants. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 505-517, 2016.
Collapse
Affiliation(s)
| | - Jan Arends
- Microbial Biology, Ruhr University Bochum, Bochum, Germany
| | | |
Collapse
|
28
|
Oroz J, Bruix M, Laurents D, Galera-Prat A, Schönfelder J, Cañada F, Carrión-Vázquez M. The Y9P Variant of the Titin I27 Module: Structural Determinants of Its Revisited Nanomechanics. Structure 2016; 24:606-616. [DOI: 10.1016/j.str.2016.02.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 11/30/2015] [Accepted: 02/22/2016] [Indexed: 11/28/2022]
|
29
|
Luan B, Huynh T, Li J, Zhou R. Nanomechanics of Protein Unfolding Outside a Generic Nanopore. ACS NANO 2016; 10:317-323. [PMID: 26655061 DOI: 10.1021/acsnano.5b04557] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Protein folding and unfolding have been the subject of active research for decades. Most of previous studies in protein unfolding were focused on temperature, chemical, and/or force (such as in atomic force microscopy (AFM)) induced denaturations. Recent studies on the functional roles of proteasomes (such as ClpXP) revealed a different unfolding process in cell, during which a target protein is mechanically unfolded and pulled into a confined, pore-like geometry for degradation. While the proteasome nanomachine has been extensively studied, the mechanism for unfolding proteins with the proteasome pore is still poorly understood. Here, we investigate the mechanical unfolding process of ubiquitin with (or really outside) a generic nanopore, and compare such process with that in the AFM pulling experiment. Unexpectedly, the required force for protein unfolding through a pore can be much smaller than that by the AFM. Simulation results also unveiled different nanomechanics, tearing fracture vs shearing friction, in these two distinct types of mechanical unfoldings.
Collapse
Affiliation(s)
- Binquan Luan
- Computational Biological Center, IBM Thomas J. Watson Research , Yorktown Heights, New York 10598, United States
| | - Tien Huynh
- Computational Biological Center, IBM Thomas J. Watson Research , Yorktown Heights, New York 10598, United States
| | - Jingyuan Li
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, China
| | - Ruhong Zhou
- Computational Biological Center, IBM Thomas J. Watson Research , Yorktown Heights, New York 10598, United States
| |
Collapse
|
30
|
Olivares AO, Baker TA, Sauer RT. Mechanistic insights into bacterial AAA+ proteases and protein-remodelling machines. Nat Rev Microbiol 2015; 14:33-44. [PMID: 26639779 DOI: 10.1038/nrmicro.2015.4] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
To maintain protein homeostasis, AAA+ proteolytic machines degrade damaged and unneeded proteins in bacteria, archaea and eukaryotes. This process involves the ATP-dependent unfolding of a target protein and its subsequent translocation into a self-compartmentalized proteolytic chamber. Related AAA+ enzymes also disaggregate and remodel proteins. Recent structural and biochemical studies, in combination with direct visualization of unfolding and translocation in single-molecule experiments, have illuminated the molecular mechanisms behind these processes and suggest how remodelling of macromolecular complexes by AAA+ enzymes could occur without global denaturation. In this Review, we discuss the structural and mechanistic features of AAA+ proteases and remodelling machines, focusing on the bacterial ClpXP and ClpX as paradigms. We also consider the potential of these enzymes as antibacterial targets and outline future challenges for the field.
Collapse
Affiliation(s)
- Adrian O Olivares
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Tania A Baker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Robert T Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
31
|
Iosefson O, Olivares AO, Baker TA, Sauer RT. Dissection of Axial-Pore Loop Function during Unfolding and Translocation by a AAA+ Proteolytic Machine. Cell Rep 2015; 12:1032-41. [PMID: 26235618 DOI: 10.1016/j.celrep.2015.07.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 10/23/2022] Open
Abstract
In the axial channels of ClpX and related hexameric AAA+ protein-remodeling rings, the pore-1 loops are thought to play important roles in engaging, mechanically unfolding, and translocating protein substrates. How these loops perform these functions and whether they also prevent substrate dissociation to ensure processive degradation by AAA+ proteases are open questions. Using ClpX pore-1-loop variants, single-molecule force spectroscopy, and ensemble assays, we find that the six pore-1 loops function synchronously to grip and unfold protein substrates during a power stroke but are not important in preventing substrate slipping between power strokes. The importance of grip strength is task dependent. ClpX variants with multiple mutant pore-1 loops translocate substrates as well as the wild-type enzyme against a resisting force but show unfolding defects and a higher frequency of substrate release. These problems are magnified for more mechanically stable target proteins, supporting a threshold model of substrate gripping.
Collapse
Affiliation(s)
- Ohad Iosefson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Adrian O Olivares
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tania A Baker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert T Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
32
|
Subunit asymmetry and roles of conformational switching in the hexameric AAA+ ring of ClpX. Nat Struct Mol Biol 2015; 22:411-6. [PMID: 25866879 PMCID: PMC4424054 DOI: 10.1038/nsmb.3012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/18/2015] [Indexed: 11/08/2022]
Abstract
The hexameric AAA+ ring of Escherichia. coli ClpX, an ATP-dependent protein unfolding and translocation machine, functions with the ClpP peptidase to degrade target substrates. For efficient function, ClpX subunits must switch between nucleotide-loadable (L) and nucleotide-unloadable (U) conformations, but the roles of switching are uncertain. Moreover, it is controversial whether working AAA+ ring enzymes assume symmetric or asymmetric conformations. Here, we show that a covalent ClpX ring with one subunit locked in the U conformation catalyzes robust ATP-hydrolysis, with each unlocked subunit able to bind and hydrolyze ATP, albeit with highly asymmetric position-specific affinities. Preventing U⇔L interconversion in one subunit alters the cooperativity of ATP hydrolysis and reduces the efficiency of substrate binding, unfolding, and degradation, showing that conformational switching enhances multiple aspects of wild-type ClpX function. These results support an asymmetric and probabilistic model of AAA+ ring activity.
Collapse
|
33
|
Stochastic but highly coordinated protein unfolding and translocation by the ClpXP proteolytic machine. Cell 2015; 158:647-58. [PMID: 25083874 DOI: 10.1016/j.cell.2014.05.043] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/18/2014] [Accepted: 05/13/2014] [Indexed: 10/25/2022]
Abstract
ClpXP and other AAA+ proteases recognize, mechanically unfold, and translocate target proteins into a chamber for proteolysis. It is not known whether these remarkable molecular machines operate by a stochastic or sequential mechanism or how power strokes relate to the ATP-hydrolysis cycle. Single-molecule optical trapping allows ClpXP unfolding to be directly visualized and reveals translocation steps of ∼1-4 nm in length, but how these activities relate to solution degradation and the physical properties of substrate proteins remains unclear. By studying single-molecule degradation using different multidomain substrates and ClpXP variants, we answer many of these questions and provide evidence for stochastic unfolding and translocation. We also present a mechanochemical model that accounts for single-molecule, biochemical, and structural results for our observation of enzymatic memory in translocation stepping, for the kinetics of translocation steps of different sizes, and for probabilistic but highly coordinated subunit activity within the ClpX ring.
Collapse
|
34
|
Coordinated gripping of substrate by subunits of a AAA+ proteolytic machine. Nat Chem Biol 2015; 11:201-6. [PMID: 25599533 PMCID: PMC4333055 DOI: 10.1038/nchembio.1732] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 11/10/2014] [Indexed: 11/08/2022]
Abstract
Hexameric ATP-dependent proteases and protein remodeling machines use conserved loops that line the axial pore to apply force to substrates during the mechanical processes of protein unfolding and translocation. Whether loops from multiple subunits act independently or coordinately in these processes is a critical aspect of the mechanism but is currently unknown for any AAA+ machine. By studying covalently linked hexamers of the Escherichia coli ClpX unfoldase bearing different numbers and configurations of wild-type and mutant pore loops, we show that loops function synergistically, and the number of wild-type loops required for efficient degradation is dependent on the stability of the protein substrate. Our results support a mechanism in which a power stroke initiated in one subunit of the ClpX hexamer results in the concurrent movement of all six pore loops, which coordinately grip and apply force to the substrate.
Collapse
|
35
|
Abstract
Microorganisms live in fluctuating environments, requiring stress response pathways to resist environmental insults and stress. These pathways dynamically monitor cellular status, and mediate adaptive changes by remodeling the proteome, largely accomplished by remodeling transcriptional networks and protein degradation. The complementarity of fast, specific proteolytic degradation and slower, broad transcriptomic changes gives cells the mechanistic repertoire to dynamically adjust cellular processes and optimize response behavior. Together, this enables cells to minimize the 'cost' of the response while maximizing the ability to survive environmental stress. Here we highlight recent progress in our understanding of transcriptional networks and proteolysis that illustrates the design principles used by bacteria to generate the complex behaviors required to resist stress.
Collapse
|
36
|
Bustamante CJ, Kaiser CM, Maillard RA, Goldman DH, Wilson CAM. Mechanisms of cellular proteostasis: insights from single-molecule approaches. Annu Rev Biophys 2014; 43:119-40. [PMID: 24895851 DOI: 10.1146/annurev-biophys-051013-022811] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cells employ a variety of strategies to maintain proteome homeostasis. Beginning during protein biogenesis, the translation machinery and a number of molecular chaperones promote correct de novo folding of nascent proteins even before synthesis is complete. Another set of molecular chaperones helps to maintain proteins in their functional, native state. Polypeptides that are no longer needed or pose a threat to the cell, such as misfolded proteins and aggregates, are removed in an efficient and timely fashion by ATP-dependent proteases. In this review, we describe how applications of single-molecule manipulation methods, in particular optical tweezers, are shedding new light on the molecular mechanisms of quality control during the life cycles of proteins.
Collapse
|
37
|
Schmitz KR, Sauer RT. Substrate delivery by the AAA+ ClpX and ClpC1 unfoldases activates the mycobacterial ClpP1P2 peptidase. Mol Microbiol 2014; 93:617-28. [PMID: 24976069 DOI: 10.1111/mmi.12694] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2014] [Indexed: 11/29/2022]
Abstract
Mycobacterial Clp-family proteases function via collaboration of the heteromeric ClpP1P2 peptidase with a AAA+ partner, ClpX or ClpC1. These enzymes are essential for M. tuberculosis viability and are validated antibacterial drug targets, but the requirements for assembly and regulation of functional proteolytic complexes are poorly understood. Here, we report the reconstitution of protein degradation by mycobacterial Clp proteases in vitro and describe novel features of these enzymes that distinguish them from orthologues in other bacteria. Both ClpX and ClpC1 catalyse ATP-dependent unfolding and degradation of native protein substrates in conjunction with ClpP1P2, but neither mediates protein degradation with just ClpP1 or ClpP2. ClpP1P2 alone has negligible peptidase activity, but is strongly stimulated by translocation of protein substrates into ClpP1P2 by either AAA+ partner. Interestingly, our results support a model in which both binding of a AAA+ partner and protein-substrate delivery are required to stabilize active ClpP1P2. Our model has implications for therapeutically targeting ClpP1P2 in dormant M. tuberculosis, and our reconstituted systems should facilitate identification of novel Clp protease inhibitors and activators.
Collapse
Affiliation(s)
- Karl R Schmitz
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | | |
Collapse
|
38
|
Nassif ND, Cambray SE, Kraut DA. Slipping up: Partial substrate degradation by ATP-dependent proteases. IUBMB Life 2014; 66:309-17. [DOI: 10.1002/iub.1271] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 04/23/2014] [Indexed: 12/16/2022]
Affiliation(s)
| | | | - Daniel A. Kraut
- Department of Chemistry; Villanova University; Villanova PA USA
| |
Collapse
|
39
|
Compton CL, Schmitz KR, Sauer RT, Sello JK. Antibacterial activity of and resistance to small molecule inhibitors of the ClpP peptidase. ACS Chem Biol 2013; 8:2669-77. [PMID: 24047344 DOI: 10.1021/cb400577b] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is rapidly mounting evidence that intracellular proteases in bacteria are compelling targets for antibacterial drugs. Multiple reports suggest that the human pathogen Mycobacterium tuberculosis and other actinobacteria may be particularly sensitive to small molecules that perturb the activities of self-compartmentalized peptidases, which catalyze intracellular protein turnover as components of ATP-dependent proteolytic machines. Here, we report chemical syntheses and evaluations of structurally diverse β-lactones, which have a privileged structure for selective, suicide inhibition of the self-compartmentalized ClpP peptidase. β-Lactones with certain substituents on the α- and β-carbons were found to be toxic to M. tuberculosis. Using an affinity-labeled analogue of a bioactive β-lactone in a series of chemical proteomic experiments, we selectively captured the ClpP1P2 peptidase from live cultures of two different actinobacteria that are related to M. tuberculosis. Importantly, we found that the growth inhibitory β-lactones also inactivate the M. tuberculosis ClpP1P2 peptidase in vitro via formation of a covalent adduct at the ClpP2 catalytic serine. Given the potent antibacterial activity of these compounds and their medicinal potential, we sought to identify innate mechanisms of resistance. Using a genome mining strategy, we identified a genetic determinant of β-lactone resistance in Streptomyces coelicolor, a non-pathogenic relative of M. tuberculosis. Collectively, these findings validate the potential of ClpP inhibition as a strategy in antibacterial drug development and define a mechanism by which bacteria could resist the toxic effects of ClpP inhibitors.
Collapse
Affiliation(s)
- Corey L. Compton
- Department
of Chemistry, Brown University, 324 Brook Street, Providence, Rhode Island 02912, United States
| | - Karl R. Schmitz
- Department
of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Robert T. Sauer
- Department
of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jason K. Sello
- Department
of Chemistry, Brown University, 324 Brook Street, Providence, Rhode Island 02912, United States
| |
Collapse
|
40
|
Lee SY, Pullen L, Virgil DJ, Castañeda CA, Abeykoon D, Bolon DNA, Fushman D. Alanine scan of core positions in ubiquitin reveals links between dynamics, stability, and function. J Mol Biol 2013; 426:1377-89. [PMID: 24361330 DOI: 10.1016/j.jmb.2013.10.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/25/2013] [Accepted: 10/26/2013] [Indexed: 11/17/2022]
Abstract
Mutations at solvent-inaccessible core positions in proteins can impact function through many biophysical mechanisms including alterations to thermodynamic stability and protein dynamics. As these properties of proteins are difficult to investigate, the impacts of core mutations on protein function are poorly understood for most systems. Here, we determined the effects of alanine mutations at all 15 core positions in ubiquitin on function in yeast. The majority (13 of 15) of alanine substitutions supported yeast growth as the sole ubiquitin. Both the two null mutants (I30A and L43A) were less stable to temperature-induced unfolding in vitro than wild type (WT) but were well folded at physiological temperatures. Heteronuclear NMR studies indicated that the L43A mutation reduces temperature stability while retaining a ground-state structure similar to WT. This structure enables L43A to bind to common ubiquitin receptors in vitro. Many of the core alanine ubiquitin mutants, including one of the null variants (I30A), exhibited an increased accumulation of high-molecular-weight species, suggesting that these mutants caused a defect in the processing of ubiquitin-substrate conjugates. In contrast, L43A exhibited a unique accumulation pattern with reduced levels of high-molecular-weight species and undetectable levels of free ubiquitin. When conjugation to other proteins was blocked, L43A ubiquitin accumulated as free ubiquitin in yeast. Based on these findings, we speculate that ubiquitin's stability to unfolding may be required for efficient recycling during proteasome-mediated substrate degradation.
Collapse
Affiliation(s)
- Shirley Y Lee
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, USA
| | - Lester Pullen
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Daniel J Virgil
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Carlos A Castañeda
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, USA
| | - Dulith Abeykoon
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, USA
| | - Daniel N A Bolon
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - David Fushman
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
41
|
Critical clamp loader processing by an essential AAA+ protease in Caulobacter crescentus. Proc Natl Acad Sci U S A 2013; 110:18138-43. [PMID: 24145408 DOI: 10.1073/pnas.1311302110] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chromosome replication relies on sliding clamps that are loaded by energy-dependent complexes. In Escherichia coli, the ATP-binding clamp loader subunit DnaX exists as both long (τ) and short (γ) forms generated through programmed translational frameshifting, but the need for both forms is unclear. Here, we show that in Caulobacter crescentus, DnaX isoforms are unexpectedly generated through partial proteolysis by the AAA+ protease casein lytic proteinase (Clp) XP. We find that the normally processive ClpXP protease partially degrades DnaX to produce stable fragments upon encountering a glycine-rich region adjacent to a structured domain. Increasing the sequence complexity of this region prevents partial proteolysis and generates a τ-only form of DnaX in vivo that is unable to support viability on its own. Growth is restored when γ is provided in trans, but these strains are more sensitive to DNA damage compared with strains that can generate γ through proteolysis. Our work reveals an unexpected mode of partial processing by the ClpXP protease to generate DnaX isoforms, demonstrates that both τ and γ forms of DnaX are required for Caulobacter viability, and identifies a role for clamp loader diversity in responding to DNA damage. The conservation of distinct DnaX isoforms throughout bacteria despite fundamentally different mechanisms for producing them suggests there may be a conserved need for alternate clamp loader complexes during DNA damaging conditions.
Collapse
|
42
|
Sauer RT. Mutagenic dissection of the sequence determinants of protein folding, recognition, and machine function. Protein Sci 2013; 22:1675-87. [PMID: 23963737 DOI: 10.1002/pro.2334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 08/12/2013] [Indexed: 11/08/2022]
Abstract
Understanding the relationship between the amino-acid sequence of a protein and its ability to fold and to function is one of the major challenges of protein science. Here, cases are reviewed in which mutagenesis, biochemistry, structure determination, protein engineering, and single-molecule biophysics have illuminated the sequence determinants of folding, binding specificity, and biological function for DNA-binding proteins and ATP-fueled machines that forcibly unfold native proteins as a prelude to degradation. In addition to structure-function relationships, these studies provide information about folding intermediates, mutations that accelerate folding, slow unfolding, and stabilize proteins against denaturation, show how new binding specificities and folds can evolve, and reveal strategies that proteolytic machines use to recognize, unfold, and degrade thousands of distinct substrates.
Collapse
Affiliation(s)
- Robert T Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| |
Collapse
|
43
|
Too PHM, Erales J, Simen JD, Marjanovic A, Coffino P. Slippery substrates impair function of a bacterial protease ATPase by unbalancing translocation versus exit. J Biol Chem 2013; 288:13243-57. [PMID: 23530043 DOI: 10.1074/jbc.m113.452524] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND ATP-dependent proteases translocate and unfold their substrates. RESULTS A human virus sequence with only Gly and Ala residues causes similar dysfunctions of eukaryotic and prokaryotic protease motors: unfolding failure. CONCLUSION Sequences with amino acids of simple shape and small size impair unfolding of contiguous stable domains. SIGNIFICANCE Compartmented ATP-dependent proteases of diverse origin share conserved principles of interaction between translocase/effector and substrate/recipient. ATP-dependent proteases engage, translocate, and unfold substrate proteins. A sequence with only Gly and Ala residues (glycine-alanine repeat; GAr) encoded by the Epstein-Barr virus of humans inhibits eukaryotic proteasome activity. It causes the ATPase translocase to slip on its protein track, stalling unfolding and interrupting degradation. The bacterial protease ClpXP is structurally simpler than the proteasome but has related elements: a regulatory ATPase complex (ClpX) and associated proteolytic chamber (ClpP). In this study, GAr sequences were found to impair ClpXP function much as in proteasomes. Stalling depended on interaction between a GAr and a suitably spaced and positioned folded domain resistant to mechanical unfolding. Persistent unfolding failure results in the interruption of degradation and the production of partial degradation products that include the resistant domain. The capacity of various sequences to cause unfolding failure was investigated. Among those tested, a GAr was most effective, implying that viral selection had optimized processivity failure. More generally, amino acids of simple shape and small size promoted unfolding failure. The ClpX ATPase is a homohexamer. Partial degradation products could exit the complex through transient gaps between the ClpX monomers or, alternatively, by backing out. Production of intermediates by diverse topological forms of the hexamer was shown to be similar, excluding lateral escape. In principle, a GAr could interrupt degradation because 1) the translocase thrusts forward less effectively or because 2) the translocase retains substrate less well when resetting between forward strokes. Kinetic analysis showed that the predominant effect was through the second of these mechanisms.
Collapse
Affiliation(s)
- Priscilla Hiu-Mei Too
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143, USA
| | | | | | | | | |
Collapse
|
44
|
Wohlever ML, Nager AR, Baker TA, Sauer RT. Engineering fluorescent protein substrates for the AAA+ Lon protease. Protein Eng Des Sel 2013; 26:299-305. [PMID: 23359718 DOI: 10.1093/protein/gzs105] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AAA+ proteases, such as Escherichia coli Lon, recognize protein substrates by binding to specific peptide degrons and then unfold and translocate the protein into an internal degradation chamber for proteolysis. For some AAA+ proteases, attaching specific degrons to the N- or C-terminus of green fluorescent protein (GFP) generates useful substrates, whose unfolding and degradation can be monitored by loss of fluorescence, but Lon fails to degrade appropriately tagged GFP variants at a significant rate. Here, we demonstrate that Lon catalyzes robust unfolding and degradation of circularly permuted variants of GFP with a β20 degron appended to the N terminus or a sul20 degron appended to the C terminus. Lon degradation of non-permuted GFP-sul20 is very slow, in part because the enzyme cannot efficiently extract the degron-proximal C-terminal β-strand to initiate denaturation. The circularly permuted GFP substrates described here allow convenient high-throughput assays of the kinetics of Lon degradation in vitro and also permit assays of Lon proteolysis in vivo.
Collapse
Affiliation(s)
- Matthew L Wohlever
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
45
|
Abstract
Bacteria are frequently exposed to changes in environmental conditions, such as fluctuations in temperature, pH or the availability of nutrients. These assaults can be detrimental to cell as they often result in a proteotoxic stress, which can cause the accumulation of unfolded proteins. In order to restore a productive folding environment in the cell, bacteria have evolved a network of proteins, known as the protein quality control (PQC) network, which is composed of both chaperones and AAA+ proteases. These AAA+ proteases form a major part of this PQC network, as they are responsible for the removal of unwanted and damaged proteins. They also play an important role in the turnover of specific regulatory or tagged proteins. In this review, we describe the general features of an AAA+ protease, and using two of the best-characterised AAA+ proteases in Escherichia coli (ClpAP and ClpXP) as a model for all AAA+ proteases, we provide a detailed mechanistic description of how these machines work. Specifically, the review examines the physiological role of these machines, as well as the substrates and the adaptor proteins that modulate their substrate specificity.
Collapse
|
46
|
Rood KL, Clark NE, Stoddard PR, Garman SC, Chien P. Adaptor-dependent degradation of a cell-cycle regulator uses a unique substrate architecture. Structure 2012; 20:1223-32. [PMID: 22682744 DOI: 10.1016/j.str.2012.04.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 03/15/2012] [Accepted: 04/25/2012] [Indexed: 01/31/2023]
Abstract
In Caulobacter crescentus, the ClpXP protease degrades several crucial cell-cycle regulators, including the phosphodiesterase PdeA. Degradation of PdeA requires the response regulator CpdR and signals a morphological transition in concert with initiation of DNA replication. Here, we report the structure of a Per-Arnt-Sim (PAS) domain of PdeA and show that it is necessary for CpdR-dependent degradation in vivo and in vitro. CpdR acts as an adaptor, tethering the amino-terminal PAS domain to ClpXP and promoting recognition of the weak carboxyl-terminal degron of PdeA, a combination that ensures processive proteolysis. We identify sites on the PAS domain needed for CpdR recognition and find that one subunit of the PdeA dimer can be delivered to ClpXP by its partner. Finally, we show that improper stabilization of PdeA in vivo alters cellular behavior. These results introduce an adaptor/substrate pair for ClpXP and reveal broad diversity in adaptor-mediated proteolysis.
Collapse
Affiliation(s)
- Keith L Rood
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | | | | | | | | |
Collapse
|
47
|
Dynamic and static components power unfolding in topologically closed rings of a AAA+ proteolytic machine. Nat Struct Mol Biol 2012; 19:616-22. [PMID: 22562135 PMCID: PMC3372766 DOI: 10.1038/nsmb.2288] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 04/02/2012] [Indexed: 11/17/2022]
Abstract
In the E. coli ClpXP protease, a hexameric ClpX ring couples ATP binding and hydrolysis to mechanical protein unfolding and translocation into the ClpP degradation chamber. Rigid-body packing between the small AAA+ domain of each ClpX subunit and the large AAA+ domain of its neighbor stabilizes the hexamer. By connecting the parts of each rigid-body unit with disulfide bonds or linkers, we created covalently closed rings that retained robust activity. A single-residue insertion in the hinge that connects the large and small AAA+ domains and forms part of the nucleotide-binding site uncoupled ATP hydrolysis from productive unfolding. We propose that ATP hydrolysis drives changes in the conformation of one hinge and its flanking domains, which are propagated around the AAA+ ring via the topologically constrained set of rigid-body units and hinges to produce coupled ring motions that power substrate unfolding.
Collapse
|
48
|
Sundar S, Baker TA, Sauer RT. The I domain of the AAA+ HslUV protease coordinates substrate binding, ATP hydrolysis, and protein degradation. Protein Sci 2012; 21:188-98. [PMID: 22102327 DOI: 10.1002/pro.2001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 11/09/2011] [Accepted: 11/10/2011] [Indexed: 11/11/2022]
Abstract
In the AAA+ HslUV protease, substrates are bound and unfolded by a ring hexamer of HslU, before translocation through an axial pore and into the HslV degradation chamber. Here, we show that the N-terminal residues of an Arc substrate initially bind in the HslU axial pore, with key contacts mediated by a pore loop that is highly conserved in all AAA+ unfoldases. Disordered loops from the six intermediate domains of the HslU hexamer project into a funnel-shaped cavity above the pore and are positioned to contact protein substrates. Mutations in these I-domain loops increase K(M) and decrease V(max) for degradation, increase the mobility of bound substrates, and prevent substrate stimulation of ATP hydrolysis. HslU-ΔI has negligible ATPase activity. Thus, the I domain plays an active role in coordinating substrate binding, ATP hydrolysis, and protein degradation by the HslUV proteolytic machine.
Collapse
Affiliation(s)
- Shankar Sundar
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
49
|
Gur E, Vishkautzan M, Sauer RT. Protein unfolding and degradation by the AAA+ Lon protease. Protein Sci 2012; 21:268-78. [PMID: 22162032 DOI: 10.1002/pro.2013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 11/07/2011] [Indexed: 11/11/2022]
Abstract
AAA+ proteases employ a hexameric ring that harnesses the energy of ATP binding and hydrolysis to unfold native substrates and translocate the unfolded polypeptide into an interior compartment for degradation. What determines the ability of different AAA+ enzymes to unfold and thus degrade different native protein substrates is currently uncertain. Here, we explore the ability of the E. coli Lon protease to unfold and degrade model protein substrates beginning at N-terminal, C-terminal, or internal degrons. Lon has historically been viewed as a weak unfoldase, but we demonstrate robust and processive unfolding/degradation of some substrates with very stable protein domains, including mDHFR and titin(I27) . For some native substrates, Lon is a more active unfoldase than related AAA+ proteases, including ClpXP and ClpAP. For other substrates, this relationship is reversed. Thus, unfolding activity does not appear to be an intrinsic enzymatic property. Instead, it depends on the specific protease and substrate, suggesting that evolution has diversified rather than optimized the protein unfolding activities of different AAA+ proteases.
Collapse
Affiliation(s)
- Eyal Gur
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | | | | |
Collapse
|
50
|
Davis JH, Baker TA, Sauer RT. Small-molecule control of protein degradation using split adaptors. ACS Chem Biol 2011; 6:1205-13. [PMID: 21866931 DOI: 10.1021/cb2001389] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Targeted intracellular degradation provides a method to study the biological function of proteins and has numerous applications in biotechnology. One promising approach uses adaptor proteins to target substrates with genetically encoded degradation tags for proteolysis. Here, we describe an engineered split-adaptor system, in which adaptor assembly and delivery of substrates to the ClpXP protease depends on a small molecule (rapamycin). This degradation system does not require modification of endogenous proteases, functions robustly over a wide range of adaptor concentrations, and does not require new synthesis of adaptors or proteases to initiate degradation. We demonstrate the efficacy of this system in E. coli by degrading tagged variants of LacI repressor and FtsA, an essential cell-division protein. In the latter case, addition of rapamycin causes pronounced filamentation because daughter cells cannot divide. Strikingly, washing rapamycin away reverses this phenotype. Our system is highly modular, with clearly defined interfaces for substrate binding, protease binding, and adaptor assembly, providing a clear path to extend this system to other degradation tags, proteases, or induction systems. Together, these new reagents should be useful in controlling protein degradation in bacteria.
Collapse
Affiliation(s)
- Joseph H. Davis
- Department of Biology and ‡Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Tania A. Baker
- Department of Biology and ‡Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Robert T. Sauer
- Department of Biology and ‡Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|