1
|
Cutolo EA, Mandalà G, Dall’Osto L, Bassi R. Harnessing the Algal Chloroplast for Heterologous Protein Production. Microorganisms 2022; 10:743. [PMID: 35456794 PMCID: PMC9025058 DOI: 10.3390/microorganisms10040743] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
Photosynthetic microbes are gaining increasing attention as heterologous hosts for the light-driven, low-cost production of high-value recombinant proteins. Recent advances in the manipulation of unicellular algal genomes offer the opportunity to establish engineered strains as safe and viable alternatives to conventional heterotrophic expression systems, including for their use in the feed, food, and biopharmaceutical industries. Due to the relatively small size of their genomes, algal chloroplasts are excellent targets for synthetic biology approaches, and are convenient subcellular sites for the compartmentalized accumulation and storage of products. Different classes of recombinant proteins, including enzymes and peptides with therapeutical applications, have been successfully expressed in the plastid of the model organism Chlamydomonas reinhardtii, and of a few other species, highlighting the emerging potential of transplastomic algal biotechnology. In this review, we provide a unified view on the state-of-the-art tools that are available to introduce protein-encoding transgenes in microalgal plastids, and discuss the main (bio)technological bottlenecks that still need to be addressed to develop robust and sustainable green cell biofactories.
Collapse
Affiliation(s)
| | | | | | - Roberto Bassi
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (E.A.C.); (G.M.); (L.D.)
| |
Collapse
|
2
|
Molecular identification of Schisandra chinensis and its allied species using multiplex PCR based on SNPs. Genes Genomics 2012. [DOI: 10.1007/s13258-011-0201-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
3
|
Salvador ML, Suay L, Klein U. Messenger RNA degradation is initiated at the 5' end and follows sequence- and condition-dependent modes in chloroplasts. Nucleic Acids Res 2011; 39:6213-22. [PMID: 21507888 PMCID: PMC3152361 DOI: 10.1093/nar/gkr226] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Using reporter gene constructs, consisting of the bacterial uidA (GUS) coding region flanked by the 5′ and 3′ regions of the Chlamydomonas rbcL and psaB genes, respectively, we studied the degradation of mRNAs in the chloroplast of Chlamydomonas reinhardtii in vivo. Extending the 5′ terminus of transcripts of the reporter gene by more than 6 nucleotides triggered rapid degradation. Placing a poly(G) tract, known to pause exoribonucleases, in various positions downstream of the 5′ terminus blocked rapid degradation of the transcripts. In all these cases the 5′ ends of the accumulating GUS transcripts were found to be trimmed to the 5′ end of the poly(G) tracts indicating that a 5′→3′ exoribonuclease is involved in the degradation process. Several unstable variants of the GUS transcript could not be rescued from rapid degradation by a poly(G) tract showing that sequence/structure-dependent modes of mRNA breakdown exist in the Chlamydomonas chloroplast. Furthermore, degradation of poly(G)-stabilized transcripts that accumulated in cells maintained in the dark could be augmented by illuminating the cells, implying a photo-activated mode of mRNA degradation that is not blocked by a poly(G) tract. These results suggest sequence- and condition-dependent 5′→3′ mRNA-degrading pathways in the chloroplast of C. reinhardtii.
Collapse
Affiliation(s)
- Maria L Salvador
- Department of Biochemistry and Molecular Biology, University of Valencia, Dr Moliner 50, Burjassot, Valencia 46100, Spain
| | | | | |
Collapse
|
4
|
Minai L, Wostrikoff K, Wollman FA, Choquet Y. Chloroplast biogenesis of photosystem II cores involves a series of assembly-controlled steps that regulate translation. THE PLANT CELL 2006; 18:159-75. [PMID: 16339851 PMCID: PMC1323491 DOI: 10.1105/tpc.105.037705] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The biogenesis of photosystem II, one of the major photosynthetic protein complexes, involves a cascade of assembly-governed regulation of translation of its major chloroplast-encoded subunits. In Chlamydomonas reinhardtii, the presence of the reaction center subunit D2 is required for the expression of the other reaction center subunit D1, while the presence of D1 is required for the expression of the core antenna subunit apoCP47. Using chimeric genes expressed in the chloroplast, we demonstrate that the decreased synthesis of D1 or apoCP47 in the absence of protein assembly is due to a genuine downregulation of translation. This regulation is mediated by the 5' untranslated region of the corresponding mRNA and originates from negative feedback exerted by the unassembled D1 or apoCP47 polypeptide. However, autoregulation of translation of subunit D1 is not implicated in the recovery from photoinhibition, which involves an increased translation of psbA mRNA in response to the degradation of photodamaged D1. De novo synthesis and repair of photosystem II complexes are independently controlled.
Collapse
Affiliation(s)
- Limor Minai
- Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie (Paris VI), Institut de Biologie Physico-Chimique, France
| | | | | | | |
Collapse
|
5
|
Barnes D, Franklin S, Schultz J, Henry R, Brown E, Coragliotti A, Mayfield SP. Contribution of 5′- and 3′-untranslated regions of plastid mRNAs to the expression of Chlamydomonas reinhardtii chloroplast genes. Mol Genet Genomics 2005; 274:625-36. [PMID: 16231149 DOI: 10.1007/s00438-005-0055-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Accepted: 09/05/2005] [Indexed: 10/25/2022]
Abstract
Expression of chloroplast genes is primarily regulated posttranscriptionally, and a number of RNA elements, found in either the 5'- or 3'-untranslated regions (UTRs) of plastid mRNAs, that impact gene expression have been identified. Complex regulatory and feedback mechanisms influence both translation and protein accumulation, making assignment of roles for specific RNA elements difficult. To identify specific contributions made by various UTRs on translation of plastid mRNAs, we used a heterologous gfp reporter gene that is fused combinatorially to chloroplast 5'- and 3'-UTRs. In general, the 5'-UTR, including the promoter, of the plastid atpA and psbD genes produced the highest levels of chimeric mRNA and protein accumulation, while the 5'-UTR of the rbcL and psbA genes produced less mRNA and protein. Varying the 3'-UTR had little impact on mRNA and protein accumulation, as long as a 3'-UTR was present. Overall, accumulation of chimeric mRNAs was proportional to protein accumulation, with a few notable exceptions. Light-regulated translation continues to operate in chimeric mRNAs containing the 5'-UTR of either the psbA or psbD mRNAs, despite translation of these two chimeric mRNAs at very different efficiencies, suggesting that translational efficiency and light-regulated translation are separate events. Translation of some chimeric mRNAs was much more efficient than others, suggesting that interactions between the untranslated and coding sequences can dramatically impact translational efficiency.
Collapse
Affiliation(s)
- Dwight Barnes
- Department of Cell Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Rodermel S, Viret JF, Krebbers E. Lawrence Bogorad (1921-2003), a pioneer in photosynthesis research: a tribute. PHOTOSYNTHESIS RESEARCH 2005; 83:17-24. [PMID: 16143903 DOI: 10.1007/s11120-004-6316-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Accepted: 11/04/2004] [Indexed: 05/04/2023]
Affiliation(s)
- Steve Rodermel
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA.
| | | | | |
Collapse
|
7
|
Wostrikoff K, Girard-Bascou J, Wollman FA, Choquet Y. Biogenesis of PSI involves a cascade of translational autoregulation in the chloroplast of Chlamydomonas. EMBO J 2004; 23:2696-705. [PMID: 15192706 PMCID: PMC449776 DOI: 10.1038/sj.emboj.7600266] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Accepted: 05/13/2004] [Indexed: 11/09/2022] Open
Abstract
Photosystem I comprises 13 subunits in Chlamydomonas reinhardtii, four of which-the major reaction center I subunits PsaA and PsaB, PsaC and PsaJ-are chloroplast genome-encoded. We demonstrate that PSI biogenesis involves an assembly-governed regulation of synthesis of the major chloroplast-encoded subunits where the presence of PsaB is required to observe significant rates of PsaA synthesis and the presence of PsaA is required to observe significant rates of PsaC synthesis. Using chimeric genes expressed in the chloroplast, we show that these regulatory processes correspond to autoregulation of translation for PsaA and PsaC. The downregulation of translation occurs at some early stage since it arises from the interaction between unassembled PsaA and PsaC polypeptides and 5' untranslated regions of psaA and psaC mRNAs, respectively. These assembly-dependent autoregulations of translation represent two new instances of a control by epistasy of synthesis process that turns out to be a general feature of protein expression in the chloroplast of C. reinhardtii.
Collapse
Affiliation(s)
- Katia Wostrikoff
- CNRS/UPR 1261, ass. Univ. Paris VI, Institut de Biologie Physico-Chimique, Paris, France
| | | | - Francis-André Wollman
- CNRS/UPR 1261, ass. Univ. Paris VI, Institut de Biologie Physico-Chimique, Paris, France
| | - Yves Choquet
- CNRS/UPR 1261, ass. Univ. Paris VI, Institut de Biologie Physico-Chimique, Paris, France
| |
Collapse
|
8
|
|
9
|
Lezhneva L, Meurer J. The nuclear factor HCF145 affects chloroplast psaA-psaB-rps14 transcript abundance in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 38:740-753. [PMID: 15144376 DOI: 10.1111/j.1365-313x.2004.02081.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The high chlorophyll fluorescence (hcf)145 mutant of Arabidopsis thaliana is specifically affected in photosystem (PS)I function as judged from spectroscopic analysis of PSII and PSI activity. The defect is because of a severe deficiency of PSI core subunits, whereas levels of the four outer antenna subunits of PSI were less reduced in hcf145. Pulse labelling of chloroplast proteins indicated that synthesis of the two largest PSI reaction-centre polypeptides, Psa (photosystem I subunit) A and PsaB, is significantly affected by the mutation. A comparison of stationary transcript levels with rates of transcription demonstrates that hcf145 induces a decreased stability and, probably, transcription of the tricistronic psaA-psaB-rps (small-subunit ribosomal protein)14 mRNA, which is generated by the plastid-encoded RNA polymerase. Translation inhibition experiments excluded translational defects as primary cause of impaired mRNA stability. Larger primary transcripts, which also contain sequences of the ycf3 (hypothetical chloroplast reading frame) gene located upstream of the psaA-psaB-rps14 operon and generated by the action of the nuclear-encoded RNA polymerase, are not targeted by the mutation. Real-time reverse transcription (RT)-PCR analysis has successfully been applied to quantify defined intervals of the tricistronic transcript and it was established that the psaA region is less stable than the rps14 region in hcf145. The hcf145 gene has been mapped on the upper part of chromosome 5.
Collapse
Affiliation(s)
- Lina Lezhneva
- Department Biologie I, Ludwig-Maximilians-Universität, Botanik, Menzingerstr. 67, 80638 München, Germany
| | | |
Collapse
|
10
|
Hirata N, Yonekura D, Yanagisawa S, Iba K. Possible involvement of the 5'-flanking region and the 5'UTR of plastid accD gene in NEP-dependent transcription. PLANT & CELL PHYSIOLOGY 2004; 45:176-86. [PMID: 14988488 DOI: 10.1093/pcp/pch021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In many developmentally and functionally important higher plant plastid genes, expression depends on a specific nuclear-encoded RNA polymerase (NEP). Molecular mechanisms for NEP-mediated gene expression are poorly understood. We have improved a transient expression assay based on biolistics and the dual-luciferase reporter technique, which facilitated investigations into the regulation of plastid genes in vivo. We scrutinized the 5'-flanking region and the 5'-untranslated region (5'UTR) of accD, a plastid gene encoding a subunit of the prokaryotic-type acetyl-CoA carboxylase which is transcribed exclusively by NEP. The results indicated that two AT-rich sequences, one of them containing two overlapping YRTA-like motifs, were essential for accD expression in vivo. The results also revealed that the length of the 5'UTR rather than a particular sequence element was a determinant for the level of accD expression. Because transcripts accumulated in proportion to reporter enzyme activity and protein levels, and transcript degradation rates were independent of the nature of the 5'UTR, it was unlikely that the 5'UTR acts as a translational enhancer or a stabilizer of the transcripts. Therefore, the length of 5'UTR might be a factor contributing to the efficiency of NEP-dependent transcription in plastids.
Collapse
Affiliation(s)
- Norihiro Hirata
- Department of Biology, Faculty of Sciences, Kyushu University, Hakozaki, Fukuoka, 812-8581 Japan
| | | | | | | |
Collapse
|
11
|
Herrin DL, Nickelsen J. Chloroplast RNA processing and stability. PHOTOSYNTHESIS RESEARCH 2004; 82:301-14. [PMID: 16143842 DOI: 10.1007/s11120-004-2741-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2003] [Accepted: 03/18/2004] [Indexed: 05/04/2023]
Abstract
Primary chloroplast transcripts are processed in a number of ways, including intron splicing, internal cleavage of polycistronic RNAs, and endonucleolytic or exonucleolytic cleavages at the transcript termini. All chloroplast RNAs are also subject to degradation, although a curious feature of many chloroplast mRNAs is their relative longevity. Some of these processes, e.g., psbA splicing and stability of a number of chloroplast mRNAs, are regulated in response to light-dark cycles or nutrient availability. This review highlights recent advances in our understanding of these processes in the model organism Chlamydomonas reinhardtii, focusing on results since the extensive reviews published in 1998 [Herrin DL et al. 1998 (pp. 183-195), Nickelsen Y 1998 (pp. 151-163), Stern DB and Drager RG 1998 (pp. 164-182), in Rochaix JD et al. (eds) The Molecular Biology of Chloroplasts and Mitochondria in Chlamydomonas. Kluwer Academic Publishers, Dordrecht, The Netherlands]. We also allude to studies with other organisms, and to the potential impact of the Chlamydomonas genome project where appropriate.
Collapse
Affiliation(s)
- David L Herrin
- Section of Molecular Cell and Developmental Biology, University of Texas at Austin, 1 University Station A6700, Austin, TX, 78712, USA,
| | | |
Collapse
|
12
|
Zou Z, Eibl C, Koop HU. The stem-loop region of the tobacco psbA 5'UTR is an important determinant of mRNA stability and translation efficiency. Mol Genet Genomics 2003; 269:340-9. [PMID: 12690442 DOI: 10.1007/s00438-003-0842-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2002] [Accepted: 03/12/2003] [Indexed: 11/29/2022]
Abstract
Regulation of chloroplast gene expression involves networked and concerted interactions of nucleus-encoded factors with their target sites on untranslated regions (UTRs) of chloroplast transcripts. So far, only a few cis-acting elements within such 5'UTR sequences have been identified as functional determinants of mRNA stability and efficient translation in Chlamydomonas in vivo. In this study, we have used chloroplast transformation and site-directed mutagenesis to analyse the functions of the 5'UTRs of tobacco psbA and rbcL fused to the coding region of the reporter gene uidA. Various mutant versions of the psbA leader, as well as rbcL/psbA hybrid leader elements, were investigated. Our results showed a 1.5- to 3-fold decrease in uidA mRNA levels and a 1.5- to 6-fold reduction in uidA translation efficiency in all psbA 5'UTR stem-loop mutants generated by sequence deletions and base alterations. This indicates that the correct primary sequence and secondary structure of the psbA 5'UTR stem-loop are required for mRNA stabilisation and translation. The 5'-terminal segment of the rbcL 5'UTR did not enhance the stability or translational activity of chimeric uidA mRNA under the standard light-dark regime of 16 h light and 8 h dark. Stabilising effects were, however, observed when the cells were kept continuously in the dark. Possible reasons for the influence of the 5'UTR of the tobacco psbA on mRNA stability and translation efficiency are discussed.
Collapse
Affiliation(s)
- Z Zou
- Botanisches Institut, Ludwig-Maximilians-Universität, Menzinger Strasse 67, 80638 Munich, Germany
| | | | | |
Collapse
|
13
|
Anthonisen IL, Salvador ML, Klein U. Specific sequence elements in the 5' untranslated regions of rbcL and atpB gene mRNas stabilize transcripts in the chloroplast of Chlamydomonas reinhardtii. RNA (NEW YORK, N.Y.) 2001; 7:1024-33. [PMID: 11453063 PMCID: PMC1370143 DOI: 10.1017/s1355838201001479] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Using a series of point mutations in chimeric reporter gene constructs consisting of the 5' regions of the Chlamydomonas chloroplast rbcL or atpB genes fused 5' to the coding sequence of the bacterial uidA (GUS) gene, RNA-stabilizing sequence elements were identified in vivo in the 5' untranslated regions (5' UTRs) of transcripts of the chloroplast genes rbcL and atpB in Chlamydomonas reinhardtii. In chimeric rbcL 5' UTR:GUS transcripts, replacement of single nucleotides in the 10-nt sequence 5'-AUUUCCGGAC-3', extending from positions +38 to +47 relative to the transcripts' 5' terminus, shortened transcript longevity and led to a reduction in transcript abundance of more than 95%. A similar mutational analysis of atpB 5' UTR:GUS transcripts showed that the 12-nt atpB 5' UTR sequence 5'-AUAAGCGUUAGU-3', extending from position +31 to position +42, is important for transcript stability and transcript accumulation in the chloroplast of Chlamydomonas. We discuss how the 5' UTR sequence elements, which are predicted to be part of RNA secondary structures, might function in RNA stabilization.
Collapse
Affiliation(s)
- I L Anthonisen
- Department of Biology, University of Oslo, Blindern, Norway
| | | | | |
Collapse
|