1
|
Indole Sensing Regulator (IsrR) Promotes Virulence Gene Expression in Enteric Pathogens. mBio 2022; 13:e0193922. [PMID: 35916401 PMCID: PMC9426417 DOI: 10.1128/mbio.01939-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enteric pathogens such as enterohemorrhagic E. coli (EHEC) and its surrogate murine model Citrobacter rodentium sense indole levels within the gut to navigate its biogeography and modulate virulence gene expression. Indole is a microbiota-derived signal that is more abundant in the intestinal lumen, with its concentration decreasing at the epithelial lining where it is absorbed. E. coli, but not C. rodentium, produces endogenous indole because it harbors the tnaA gene. Microbiota-derived exogenous indole is sensed by the CpxAR two-component system, where CpxA is a membrane-bound histidine-sensor-kinase (HK) and CpxR is a response regulator (RR). Indole inhibits CpxAR function leading to decreased expression of the locus of enterocyte effacement (LEE) pathogenicity island, which is essential for these pathogens to form lesions on enterocytes. In our transcriptome studies comparing wild-type (WT) EHEC and ΔtnaA ± indole, one of the most upregulated genes by indole is ygeV, which is a predicted orphan RR. Because of the role YgeV plays in the indole signaling cascade, we renamed this gene indole sensing regulator (isrR). In the absence of endogenous indole, IsrR activates LEE gene expression. IsrR only responds to endogenous indole, with exogenous indole still blocking virulence gene expression independently from IsrR. Notably, a C. rodentiumisrR mutant is attenuated for murine infection, depicting delayed death, lower intestinal colonization, and LEE gene expression. IsrR aids in discriminating between microbiota-derived (exogenous) and endogenous self-produced indole in fine-tuning virulence gene expression by enteric pathogens in the intestine.
Collapse
|
2
|
Burin R, Shah DH. Global transcriptional profiling of tyramine and d-glucuronic acid catabolism in Salmonella. Int J Med Microbiol 2020; 310:151452. [PMID: 33091748 DOI: 10.1016/j.ijmm.2020.151452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/13/2020] [Accepted: 09/25/2020] [Indexed: 11/17/2022] Open
Abstract
Salmonella has evolved various metabolic pathways to scavenge energy from the metabolic byproducts of the host gut microbiota, however, the precise metabolic byproducts and pathways utilized by Salmonella remain elusive. Previously we reported that Salmonella can proliferate by deriving energy from two metabolites that naturally occur in the host as gut microbial metabolic byproducts, namely, tyramine (TYR, an aromatic amine) and d-glucuronic acid (DGA, a hexuronic acid). Salmonella Pathogenicity Island 13 (SPI-13) plays a critical role in the ability of Salmonella to derive energy from TYR and DGA, however the catabolic pathways of these two micronutrients in Salmonella are poorly defined. The objective of this study was to identify the specific genetic components and construct the regulatory circuits for the TYR and DGA catabolic pathways in Salmonella. To accomplish this, we employed TYR and DGA-induced global transcriptional profiling and gene functional network analysis approaches. We report that TYR induced differential expression of 319 genes (172 up-regulated and 157 down-regulated) when Salmonella was grown in the presence of TYR as a sole energy source. These included the genes originally predicted to be involved in the classical TYR catabolic pathway. TYR also induced expression of majority of genes involved in the acetaldehyde degradation pathway and aided identification of a few new genes that are likely involved in alternative pathway for TYR catabolism. In contrast, DGA induced differential expression of 71 genes (58 up-regulated and 13 down-regulated) when Salmonella was grown in the presence of DGA as a sole energy source. These included the genes originally predicted to be involved in the classical pathway and a few new genes likely involved in the alternative pathway for DGA catabolism. Interestingly, DGA also induced expression of SPI-2 T3SS, suggesting that DGA may also influence nutritional virulence of Salmonella. In summary, this is the first report describing the global transcriptional profiling of TYR and DGA catabolic pathways of Salmonella. This study will contribute to the better understanding of the role of TYR and DGA in metabolic adaptation and virulence of Salmonella.
Collapse
Affiliation(s)
- Raquel Burin
- Department of Veterinary Microbiology and Pathology, United States
| | - Devendra H Shah
- Department of Veterinary Microbiology and Pathology, United States; Paul Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164-7040, United States.
| |
Collapse
|
3
|
LaSarre B, Deutschbauer AM, Love CE, McKinlay JB. Covert Cross-Feeding Revealed by Genome-Wide Analysis of Fitness Determinants in a Synthetic Bacterial Mutualism. Appl Environ Microbiol 2020; 86:e00543-20. [PMID: 32332139 PMCID: PMC7301861 DOI: 10.1128/aem.00543-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/17/2020] [Indexed: 01/02/2023] Open
Abstract
Microbial interactions abound in natural ecosystems and shape community structure and function. Substantial attention has been given to cataloging mechanisms by which microbes interact, but there is a limited understanding of the genetic landscapes that promote or hinder microbial interactions. We previously developed a mutualistic coculture pairing Escherichia coli and Rhodopseudomonas palustris, wherein E. coli provides carbon to R. palustris in the form of glucose fermentation products and R. palustris fixes N2 gas and provides nitrogen to E. coli in the form of NH4+ The stable coexistence and reproducible trends exhibited by this coculture make it ideal for interrogating the genetic underpinnings of a cross-feeding mutualism. Here, we used random barcode transposon sequencing (RB-TnSeq) to conduct a genome-wide search for E. coli genes that influence fitness during cooperative growth with R. palustris RB-TnSeq revealed hundreds of genes that increased or decreased E. coli fitness in a mutualism-dependent manner. Some identified genes were involved in nitrogen sensing and assimilation, as expected given the coculture design. The other identified genes were involved in diverse cellular processes, including energy production and cell wall and membrane biogenesis. In addition, we discovered unexpected purine cross-feeding from R. palustris to E. coli, with coculture rescuing growth of an E. coli purine auxotroph. Our data provide insight into the genes and gene networks that can influence a cross-feeding mutualism and underscore that microbial interactions are not necessarily predictable a prioriIMPORTANCE Microbial communities impact life on Earth in profound ways, including driving global nutrient cycles and influencing human health and disease. These community functions depend on the interactions that resident microbes have with the environment and each other. Thus, identifying genes that influence these interactions will aid the management of natural communities and the use of microbial consortia as biotechnology. Here, we identified genes that influenced Escherichia coli fitness during cooperative growth with a mutualistic partner, Rhodopseudomonas palustris Although this mutualism centers on the bidirectional exchange of essential carbon and nitrogen, E. coli fitness was positively and negatively affected by genes involved in diverse cellular processes. Furthermore, we discovered an unexpected purine cross-feeding interaction. These results contribute knowledge on the genetic foundation of a microbial cross-feeding interaction and highlight that unanticipated interactions can occur even within engineered microbial communities.
Collapse
Affiliation(s)
- Breah LaSarre
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Adam M Deutschbauer
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Crystal E Love
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - James B McKinlay
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
4
|
Chien CW, Chan YF, Shih PS, Kuan JE, Wu KF, Wu C, Wu WF. Regulation of metE + mRNA expression by FnrS small RNA in Salmonella enterica serovar Typhimurium. Microbiol Res 2019; 229:126319. [PMID: 31479952 DOI: 10.1016/j.micres.2019.126319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 11/18/2022]
Abstract
Methionine is critical for variety of metabolic processes in biological organisms, acting as a precursor or intermediate for many final products. The last step for the synthesis of methionine is the methylation of homocysteine, which is catalyzed by MetE. Here, we use Salmonella enterica serovar Typhimurium LT2 to study the regulation of the metE+ gene by an anaerobically induced small non-coding RNA-FnrS, the expression of which is strictly dependent on the anaerobic regulator-FNR. The MetE-HA protein was expressed at an increased level in the fnrS- and hfq- deficient strains under anaerobic conditions. The Hfq protein is predicted to stabilize the binding between small RNA(s) and their target mRNA(s). A transcriptional (op) and translational (pr) metE::lacZ fusion gene were separately constructed, with the metE+-promoter fused to a lacZ reporter gene. In an anaerobic environment, the metE::lacZ (pr) fusion gene and reverse transcription-PCR identified that FnrS and/or FNR negatively regulate metE+ mRNA levels in the rich media. Analysis of FnrS revealed a sequence complementary to the 5' mRNA translational initiation region (TIR) of the metE+ gene. Mutation(s) predicted to disrupt base pairing between FnrS and metE+ TIR were constructed in fnrS, and most of those resulted in the loss of repressive activity. When compensatory mutation(s) were made in metE+ 5' TIR to restore base pairing with FnrS, the repressive regulation was completely restored. Therefore, in this study, we identified that in anaerobic phase, there is a repression of metE+ gene expression by FnrS and that base-paring, between both expressive transcripts, plays an important role for this negative regulation.
Collapse
MESH Headings
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Base Pairing
- Base Sequence
- Gene Expression Regulation, Bacterial
- Gene Expression Regulation, Enzymologic
- Methyltransferases/chemistry
- Methyltransferases/genetics
- Methyltransferases/metabolism
- Nucleic Acid Conformation
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Untranslated/chemistry
- RNA, Small Untranslated/genetics
- RNA, Small Untranslated/metabolism
- Salmonella typhimurium/enzymology
- Salmonella typhimurium/genetics
- Salmonella typhimurium/metabolism
Collapse
Affiliation(s)
- Chia-Wei Chien
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University, Taipei, Taiwan, ROC
| | - Yu-Feng Chan
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University, Taipei, Taiwan, ROC
| | - Po-Shu Shih
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University, Taipei, Taiwan, ROC
| | - Jung-En Kuan
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University, Taipei, Taiwan, ROC
| | - Ke-Feng Wu
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University, Taipei, Taiwan, ROC
| | - Cindy Wu
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University, Taipei, Taiwan, ROC
| | - Whei-Fen Wu
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University, Taipei, Taiwan, ROC.
| |
Collapse
|
5
|
New insights into the adaptive transcriptional response to nitrogen starvation in Escherichia coli. Biochem Soc Trans 2018; 46:1721-1728. [PMID: 30514772 PMCID: PMC6299236 DOI: 10.1042/bst20180502] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/14/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022]
Abstract
Bacterial adaptive responses to biotic and abiotic stresses often involve large-scale reprogramming of the transcriptome. Since nitrogen is an essential component of the bacterial cell, the transcriptional basis of the adaptive response to nitrogen starvation has been well studied. The adaptive response to N starvation in Escherichia coli is primarily a 'scavenging response', which results in the transcription of genes required for the transport and catabolism of nitrogenous compounds. However, recent genome-scale studies have begun to uncover and expand some of the intricate regulatory complexities that underpin the adaptive transcriptional response to nitrogen starvation in E. coli The purpose of this review is to highlight some of these new developments.
Collapse
|
6
|
Switzer A, Evangelopoulos D, Figueira R, de Carvalho LPS, Brown DR, Wigneshweraraj S. A novel regulatory factor affecting the transcription of methionine biosynthesis genes in Escherichia coli experiencing sustained nitrogen starvation. Microbiology (Reading) 2018; 164:1457-1470. [DOI: 10.1099/mic.0.000683] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Amy Switzer
- 1MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, UK
| | - Dimitrios Evangelopoulos
- 2Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Rita Figueira
- 1MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, UK
| | - Luiz Pedro S. de Carvalho
- 2Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Daniel R. Brown
- 1MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, UK
| | | |
Collapse
|
7
|
Simen JD, Löffler M, Jäger G, Schäferhoff K, Freund A, Matthes J, Müller J, Takors R. Transcriptional response of Escherichia coli to ammonia and glucose fluctuations. Microb Biotechnol 2017; 10:858-872. [PMID: 28447391 PMCID: PMC5481515 DOI: 10.1111/1751-7915.12713] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/11/2017] [Accepted: 03/15/2017] [Indexed: 01/22/2023] Open
Abstract
In large‐scale production processes, metabolic control is typically achieved by limited supply of essential nutrients such as glucose or ammonia. With increasing bioreactor dimensions, microbial producers such as Escherichia coli are exposed to changing substrate availabilities due to limited mixing. In turn, cells sense and respond to these dynamic conditions leading to frequent activation of their regulatory programmes. Previously, we characterized short‐ and long‐term strategies of cells to adapt to glucose fluctuations. Here, we focused on fluctuating ammonia supply while studying a continuously running two‐compartment bioreactor system comprising a stirred tank reactor (STR) and a plug‐flow reactor (PFR). The alarmone ppGpp rapidly accumulated in PFR, initiating considerable transcriptional responses after 70 s. About 400 genes were repeatedly switched on/off when E. coli returned to the STR. E. coli revealed highly diverging long‐term transcriptional responses in ammonia compared to glucose fluctuations. In contrast, the induction of stringent regulation was a common feature of both short‐term responses. Cellular ATP demands for coping with fluctuating ammonia supply were found to increase maintenance by 15%. The identification of genes contributing to the increased ATP demand together with the elucidation of regulatory mechanisms may help to create robust cells and processes for large‐scale application.
Collapse
Affiliation(s)
- Joana Danica Simen
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Michael Löffler
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Günter Jäger
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstr. 7, 72076, Tübingen, Germany
| | - Karin Schäferhoff
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstr. 7, 72076, Tübingen, Germany
| | - Andreas Freund
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Jakob Matthes
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstr. 7, 72076, Tübingen, Germany
| | - Jan Müller
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | | |
Collapse
|
8
|
Sanchuki HBS, Gravina F, Rodrigues TE, Gerhardt ECM, Pedrosa FO, Souza EM, Raittz RT, Valdameri G, de Souza GA, Huergo LF. Dynamics of the Escherichia coli proteome in response to nitrogen starvation and entry into the stationary phase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:344-352. [PMID: 27939605 DOI: 10.1016/j.bbapap.2016.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 01/31/2023]
Abstract
Nitrogen is needed for the biosynthesis of biomolecules including proteins and nucleic acids. In the absence of fixed nitrogen prokaryotes such as E. coli immediately ceases growth. Ammonium is the preferred nitrogen source for E. coli supporting the fastest growth rates. Under conditions of ammonium limitation, E. coli can use alternative nitrogen sources to supply ammonium ions and this reprogramming is led by the induction of the NtrC regulon. Here we used label free proteomics to determine the dynamics of E. coli proteins expression in response to ammonium starvation in both the short (30min) and the longer (60min) starvation. Protein abundances and post-translational modifications confirmed that activation of the NtrC regulon acts as the first line of defense against nitrogen starvation. The ribosome inactivating protein Rmf was induced shortly after ammonium exhaustion and this was preceded by induction of other ribosome inactivating proteins such as Hpf and RaiA supporting the hypothesis that ribosome shut-down is a key process during nitrogen limitation stress. The proteomic data revealed that growth arrest due to nitrogen starvation correlates with the accumulation of proteins involved in DNA condensation, RNA and protein catabolism and ribosome hibernation. Collectively, these proteome adaptations will result in metabolic inactive cells which are likely to exhibit multidrug tolerance.
Collapse
Affiliation(s)
| | - Fernanda Gravina
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | - Thiago E Rodrigues
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | | | - Fábio O Pedrosa
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | - Emanuel M Souza
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | - Roberto T Raittz
- Setor de Educação Profissional e Tecnológica, UFPR, Curitiba, PR, Brazil
| | - Glaucio Valdameri
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil; Departamento de Análises Clínicas, UFPR, Curitiba, PR, Brazil
| | - Gustavo A de Souza
- Department of Immunology, University of Oslo and Oslo University Hospital, The Proteomics Core Facility, Rikshospitalet, Oslo, Norway; Instituto do Cérebro, UFRN, Natal, RN, Brazil
| | - Luciano F Huergo
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil; Setor Litoral, UFPR, Matinhos, PR, Brazil.
| |
Collapse
|
9
|
Abstract
The metabolite 2-oxoglutarate (also known as α-ketoglutarate, 2-ketoglutaric acid, or oxoglutaric acid) lies at the intersection between the carbon and nitrogen metabolic pathways. This compound is a key intermediate of one of the most fundamental biochemical pathways in carbon metabolism, the tricarboxylic acid (TCA) cycle. In addition, 2-oxoglutarate also acts as the major carbon skeleton for nitrogen-assimilatory reactions. Experimental data support the conclusion that intracellular levels of 2-oxoglutarate fluctuate according to nitrogen and carbon availability. This review summarizes how nature has capitalized on the ability of 2-oxoglutarate to reflect cellular nutritional status through evolution of a variety of 2-oxoglutarate-sensing regulatory proteins. The number of metabolic pathways known to be regulated by 2-oxoglutarate levels has increased significantly in recent years. The signaling properties of 2-oxoglutarate are highlighted by the fact that this metabolite regulates the synthesis of the well-established master signaling molecule, cyclic AMP (cAMP), in Escherichia coli.
Collapse
|
10
|
Abstract
This review focuses on the steps unique to methionine biosynthesis, namely the conversion of homoserine to methionine. The past decade has provided a wealth of information concerning the details of methionine metabolism and the review focuses on providing a comprehensive overview of the field, emphasizing more recent findings. Details of methionine biosynthesis are addressed along with key cellular aspects, including regulation, uptake, utilization, AdoMet, the methyl cycle, and growing evidence that inhibition of methionine biosynthesis occurs under stressful cellular conditions. The first unique step in methionine biosynthesis is catalyzed by the metA gene product, homoserine transsuccinylase (HTS, or homoserine O-succinyltransferase). Recent experiments suggest that transcription of these genes is indeed regulated by MetJ, although the repressor-binding sites have not yet been verified. Methionine also serves as the precursor of S-adenosylmethionine, which is an essential molecule employed in numerous biological processes. S-adenosylhomocysteine is produced as a consequence of the numerous AdoMet-dependent methyl transfer reactions that occur within the cell. In E. coli and Salmonella, this molecule is recycled in two discrete steps to complete the methyl cycle. Cultures challenged by oxidative stress appear to experience a growth limitation that depends on methionine levels. E. coli that are deficient for the manganese and iron superoxide dismutases (the sodA and sodB gene products, respectively) require the addition of methionine or cysteine for aerobic growth. Modulation of methionine levels in response to stressful conditions further increases the complexity of its regulation.
Collapse
|
11
|
Pletnev P, Osterman I, Sergiev P, Bogdanov A, Dontsova O. Survival guide: Escherichia coli in the stationary phase. Acta Naturae 2015; 7:22-33. [PMID: 26798489 PMCID: PMC4717247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
This review centers on the stationary phase of bacterial culture. The basic processes specific to the stationary phase, as well as the regulatory mechanisms that allow the bacteria to survive in conditions of stress, are described.
Collapse
Affiliation(s)
- P. Pletnev
- Moscow State University, Chemistry Department, Moscow, 119991, Russia
| | - I. Osterman
- Moscow State University, Chemistry Department, Moscow, 119991, Russia
| | - P. Sergiev
- Moscow State University, Chemistry Department, Moscow, 119991, Russia
| | - A. Bogdanov
- Moscow State University, Chemistry Department, Moscow, 119991, Russia
| | - O. Dontsova
- Moscow State University, Chemistry Department, Moscow, 119991, Russia
| |
Collapse
|
12
|
Lin J, Peng T, Jiang L, Ni JZ, Liu Q, Chen L, Zhang Y. Comparative genomics reveals new candidate genes involved in selenium metabolism in prokaryotes. Genome Biol Evol 2015; 7:664-76. [PMID: 25638258 PMCID: PMC5322559 DOI: 10.1093/gbe/evv022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Selenium (Se) is an important micronutrient that mainly occurs in proteins in the form of selenocysteine and in tRNAs in the form of selenouridine. In the past 20 years, several genes involved in Se utilization have been characterized in both prokaryotes and eukaryotes. However, Se homeostasis and the associated regulatory network are not fully understood. In this study, we conducted comparative genomics and phylogenetic analyses to examine the occurrence of all known Se utilization traits in prokaryotes. Our results revealed a highly mosaic pattern of species that use Se (in different forms) in spite that most organisms do not use this element. Further investigation of genomic context of known Se-related genes in different organisms suggested novel candidate genes that may participate in Se metabolism in bacteria and/or archaea. Among them, a membrane protein, YedE, which contains ten transmembrane domains and shows distant similarity to a sulfur transporter, is exclusively found in Se-utilizing organisms, suggesting that it may be involved in Se transport. A LysR-like transcription factor subfamily might be important for the regulation of Sec biosynthesis and/or other Se-related genes. In addition, a small protein family DUF3343 is widespread in Se-utilizing organisms, which probably serves as an important chaperone for Se trafficking within the cells. Finally, we proposed a simple model of Se homeostasis based on our findings. Our study reveals new candidate genes involved in Se metabolism in prokaryotes and should be useful for a further understanding of the complex metabolism and the roles of Se in biology.
Collapse
Affiliation(s)
- Jie Lin
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ting Peng
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Liang Jiang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences, Shenzhen University, Guangdong Province, China
| | - Jia-Zuan Ni
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences, Shenzhen University, Guangdong Province, China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences, Shenzhen University, Guangdong Province, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yan Zhang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
13
|
Sandberg TE, Pedersen M, LaCroix RA, Ebrahim A, Bonde M, Herrgard MJ, Palsson BO, Sommer M, Feist AM. Evolution of Escherichia coli to 42 °C and subsequent genetic engineering reveals adaptive mechanisms and novel mutations. Mol Biol Evol 2014; 31:2647-62. [PMID: 25015645 PMCID: PMC4166923 DOI: 10.1093/molbev/msu209] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Adaptive laboratory evolution (ALE) has emerged as a valuable method by which to investigate microbial adaptation to a desired environment. Here, we performed ALE to 42 °C of ten parallel populations of Escherichia coli K-12 MG1655 grown in glucose minimal media. Tightly controlled experimental conditions allowed selection based on exponential-phase growth rate, yielding strains that uniformly converged toward a similar phenotype along distinct genetic paths. Adapted strains possessed as few as 6 and as many as 55 mutations, and of the 144 genes that mutated in total, 14 arose independently across two or more strains. This mutational recurrence pointed to the key genetic targets underlying the evolved fitness increase. Genome engineering was used to introduce the novel ALE-acquired alleles in random combinations into the ancestral strain, and competition between these engineered strains reaffirmed the impact of the key mutations on the growth rate at 42 °C. Interestingly, most of the identified key gene targets differed significantly from those found in similar temperature adaptation studies, highlighting the sensitivity of genetic evolution to experimental conditions and ancestral genotype. Additionally, transcriptomic analysis of the ancestral and evolved strains revealed a general trend for restoration of the global expression state back toward preheat stressed levels. This restorative effect was previously documented following evolution to metabolic perturbations, and thus may represent a general feature of ALE experiments. The widespread evolved expression shifts were enabled by a comparatively scant number of regulatory mutations, providing a net fitness benefit but causing suboptimal expression levels for certain genes, such as those governing flagellar formation, which then became targets for additional ameliorating mutations. Overall, the results of this study provide insight into the adaptation process and yield lessons important for the future implementation of ALE as a tool for scientific research and engineering.
Collapse
Affiliation(s)
- Troy E Sandberg
- Department of Bioengineering, University of California, San Diego
| | - Margit Pedersen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Ryan A LaCroix
- Department of Bioengineering, University of California, San Diego
| | - Ali Ebrahim
- Department of Bioengineering, University of California, San Diego
| | - Mads Bonde
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Markus J Herrgard
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Morten Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Adam M Feist
- Department of Bioengineering, University of California, San Diego Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
14
|
Kocharunchitt C, King T, Gobius K, Bowman JP, Ross T. Global genome response of Escherichia coli O157∶H7 Sakai during dynamic changes in growth kinetics induced by an abrupt downshift in water activity. PLoS One 2014; 9:e90422. [PMID: 24594867 PMCID: PMC3940904 DOI: 10.1371/journal.pone.0090422] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 01/30/2014] [Indexed: 01/10/2023] Open
Abstract
The present study was undertaken to investigate growth kinetics and time-dependent change in global expression of Escherichia coli O157∶H7 Sakai upon an abrupt downshift in water activity (aw). Based on viable count data, shifting E. coli from aw 0.993 to aw 0.985 or less caused an apparent loss, then recovery, of culturability. Exponential growth then resumed at a rate characteristic for the aw imposed. To understand the responses of this pathogen to abrupt osmotic stress, we employed an integrated genomic and proteomic approach to characterize its cellular response during exposure to a rapid downshift but still within the growth range from aw 0.993 to aw 0.967. Of particular interest, genes and proteins with cell envelope-related functions were induced during the initial loss and subsequent recovery of culturability. This implies that cells undergo remodeling of their envelope composition, enabling them to adapt to osmotic stress. Growth at low aw, however, involved up-regulating additional genes and proteins, which are involved in the biosynthesis of specific amino acids, and carbohydrate catabolism and energy generation. This suggests their important role in facilitating growth under such stress. Finally, we highlighted the ability of E. coli to activate multiple stress responses by transiently inducing the RpoE and RpoH regulons to control protein misfolding, while simultaneously activating the master stress regulator RpoS to mediate long-term adaptation to hyperosmolality. This investigation extends our understanding of the potential mechanisms used by pathogenic E. coli to adapt, survive and grow under osmotic stress, which could potentially be exploited to aid the selection and/or development of novel strategies to inactivate this pathogen.
Collapse
Affiliation(s)
- Chawalit Kocharunchitt
- Food Safety Centre, Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
- * E-mail:
| | - Thea King
- Commonwealth Scientific and Industrial Research Organisation Animal, Food and Health Sciences, North Ryde, New South Wales, Australia
| | - Kari Gobius
- Commonwealth Scientific and Industrial Research Organisation Animal, Food and Health Sciences, Werribee, Victoria, Australia
| | - John P. Bowman
- Food Safety Centre, Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| | - Tom Ross
- Food Safety Centre, Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
15
|
Abstract
UNLABELLED Remodeling of the host cytoskeleton is a common strategy employed by bacterial pathogens. Although there is vigorous investigation of the cell biology underlying these bacterially mediated cytoskeleton modifications, knowledge of the plasticity and dynamics of the bacterial signaling networks that regulate the expression of genes necessary for these phenotypes is lacking. Enterohemorrhagic Escherichia coli attaches to enterocytes, forming pedestal-like structures. Pedestal formation requires the expression of the locus-of-enterocyte-effacement (LEE) and espFu genes. The LEE encodes a molecular syringe, a type III secretion system (T3SS) used by pathogens to translocate effectors such as EspFu into the host cell. By using a combination of genetic, biochemical, and cell biology approaches, we show that pedestal formation relies on posttranscriptional regulation by two small RNAs (sRNAs), GlmY and GlmZ. The GlmY and GlmZ sRNAs are unique; they have extensive secondary structures and work in concert. Although these sRNAs may offer unique insights into RNA and posttranscriptional biology, thus far, only one target and one mechanism of action (exposure of the ribosome binding site from the glmS gene to promote its translation) has been described. Here we uncovered new targets and two different molecular mechanisms of action of these sRNAs. In the case of EspFu expression, they promote translation by cleavage of the transcript, while in regard to the LEE, they promote destabilization of the mRNA. Our findings reveal that two unique sRNAs act in concert through different molecular mechanisms to coordinate bacterial attachment to mammalian cells. IMPORTANCE Pathogens evolve by horizontal acquisition of pathogenicity islands. We describe here how two sRNAs, GlmY and GlmZ, involved in cellular metabolism and cellular architecture, through the posttranscriptional control of GlmS (the previously only known target of GlmY and GlmZ), which controls amino sugar synthesis, have been coopted to modulate the expression of virulence. These sRNAs quickly allow for plasticity in gene expression in order for enterohemorrhagic Escherichia coli to fine-tune the expression of its complex type III secretion machinery and its effectors to promote bacterial attachment and subsequent actin rearrangement on host cells. Pedestal formation is a very dynamic process. Many of the genes necessary for pedestal formation are located within the same operon to evolutionarily guarantee that they are inherited together. However, it is worth noting that within these operons, several genes need to yield more proteins than others and that these differences cannot be efficiently regulated at the transcriptional level.
Collapse
|
16
|
Al-Naseri A, Bowman JP, Wilson R, Nilsson RE, Britz ML. Impact of Lactose Starvation on the Physiology of Lactobacillus casei GCRL163 in the Presence or Absence of Tween 80. J Proteome Res 2013; 12:5313-22. [DOI: 10.1021/pr400661g] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ali Al-Naseri
- Food
Safety Centre, Tasmanian Institute of Agricultural Research, School
of Agricultural Science, University of Tasmania, Private Bag 54, Hobart, Tasmania 7001, Australia
| | - John P. Bowman
- Food
Safety Centre, Tasmanian Institute of Agricultural Research, School
of Agricultural Science, University of Tasmania, Private Bag 54, Hobart, Tasmania 7001, Australia
| | - Richard Wilson
- Central
Science Laboratory, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Rolf E. Nilsson
- Food
Safety Centre, Tasmanian Institute of Agricultural Research, School
of Agricultural Science, University of Tasmania, Private Bag 54, Hobart, Tasmania 7001, Australia
| | - Margaret L. Britz
- Food
Safety Centre, Tasmanian Institute of Agricultural Research, School
of Agricultural Science, University of Tasmania, Private Bag 54, Hobart, Tasmania 7001, Australia
| |
Collapse
|
17
|
Profile of Michael I. Jordan. Proc Natl Acad Sci U S A 2013; 110:1141-3. [DOI: 10.1073/pnas.1222664110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
18
|
Withman B, Gunasekera TS, Beesetty P, Agans R, Paliy O. Transcriptional responses of uropathogenic Escherichia coli to increased environmental osmolality caused by salt or urea. Infect Immun 2013; 81:80-9. [PMID: 23090957 PMCID: PMC3536127 DOI: 10.1128/iai.01049-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 10/11/2012] [Indexed: 12/30/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is the most common causative agent of urinary tract infections in humans. The majority of urinary infections develop via ascending route through the urethra, where bacterial cells come in contact with human urine prior to reaching the bladder or kidneys. Since urine contains significant amounts of inorganic ions and urea, it imposes osmotic and denaturing stresses on bacterial cells. In this study, we determined the transcriptional adaptive responses of UPEC strain CFT073 to the presence of 0.3 M NaCl or 0.6 M urea in the growth medium. The cell responses to these two osmolytes were drastically different. Although most of the genes of the osmotically inducible regulon were overexpressed in medium with salt, urea failed to stimulate osmotic stress response. At the same time, UPEC colonization genes encoding type 1 and F1C fimbriae and capsule biosynthesis were transcriptionally induced in the presence of urea but did not respond to increased salt concentration. We speculate that urea can potentially be sensed by uropathogenic bacteria to initiate infection program. In addition, several molecular chaperone genes were overexpressed in the presence of urea, whereas adding NaCl to the medium led to an upregulation of a number of anaerobic metabolism pathways.
Collapse
Affiliation(s)
- Benjamin Withman
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA
| | | | | | | | | |
Collapse
|
19
|
Kocharunchitt C, King T, Gobius K, Bowman JP, Ross T. Integrated transcriptomic and proteomic analysis of the physiological response of Escherichia coli O157:H7 Sakai to steady-state conditions of cold and water activity stress. Mol Cell Proteomics 2012; 11:M111.009019. [PMID: 22008207 PMCID: PMC3270098 DOI: 10.1074/mcp.m111.009019] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An integrated transcriptomic and proteomic analysis was undertaken to determine the physiological response of Escherichia coli O157:H7 Sakai to steady-state conditions relevant to low temperature and water activity conditions experienced during meat carcass chilling in cold air. The response of E. coli during exponential growth at 25 °C a(w) 0.985, 14 °C a(w) 0.985, 25 °C a(w) 0.967, and 14 °C a(w) 0.967 was compared with that of a reference culture (35 °C a(w) 0.993). Gene and protein expression profiles of E. coli were more strongly affected by low water activity (a(w) 0.967) than by low temperature (14 °C). Predefined group enrichment analysis revealed that a universal response of E. coli to all test conditions included activation of the master stress response regulator RpoS and the Rcs phosphorelay system involved in the biosynthesis of the exopolysaccharide colanic acid, as well as down-regulation of elements involved in chemotaxis and motility. However, colanic acid-deficient mutants were shown to achieve comparable growth rates to their wild-type parents under all conditions, indicating that colanic acid is not required for growth. In contrast to the transcriptomic data, the proteomic data revealed that several processes involved in protein synthesis were down-regulated in overall expression at 14 °C a(w) 0.985, 25 °C a(w) 0.967, and 14 °C a(w) 0.967. This result suggests that during growth under these conditions, E. coli, although able to transcribe the required mRNA, may lack the cellular resources required for translation. Elucidating the global adaptive response of E. coli O157:H7 during exposure to chilling and water activity stress has provided a baseline of knowledge of the physiology of this pathogen.
Collapse
Affiliation(s)
- Chawalit Kocharunchitt
- Food Safety Centre, Tasmanian Institute of Agricultural Research, School of Agricultural Science, University of Tasmania, Private Bag 54, Hobart TAS 7001, Australia
| | - Thea King
- CSIRO Food and Nutritional Sciences, PO Box 52, North Ryde NSW 1670, Australia
| | - Kari Gobius
- CSIRO Food and Nutritional Sciences, PO Box 745, Archerfield BC QLD 4108, Australia
| | - John P Bowman
- Food Safety Centre, Tasmanian Institute of Agricultural Research, School of Agricultural Science, University of Tasmania, Private Bag 54, Hobart TAS 7001, Australia
| | - Tom Ross
- Food Safety Centre, Tasmanian Institute of Agricultural Research, School of Agricultural Science, University of Tasmania, Private Bag 54, Hobart TAS 7001, Australia.
| |
Collapse
|
20
|
Wang T, Leyh TS. Three-stage assembly of the cysteine synthase complex from Escherichia coli. J Biol Chem 2011; 287:4360-7. [PMID: 22179612 DOI: 10.1074/jbc.m111.288423] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Control of sulfur metabolism in plants and bacteria is linked, in significant measure, to the behavior of the cysteine synthase complex (CSC). The complex is comprised of the two enzymes that catalyze the final steps in cysteine biosynthesis: serine O-acetyltransferase (SAT, EC 2.3.1.30), which produces O-acetyl-L-serine, and O-acetyl-L-serine sulfhydrylase (OASS, EC 2.5.1.47), which converts it to cysteine. SAT (a dimer of homotrimers) binds a maximum of two molecules of OASS (a dimer) in an interaction believed to involve docking of the C terminus from a protomer in an SAT trimer into an OASS active site. This interaction inactivates OASS catalysis and prevents further binding to the trimer; thus, the system exhibits a contact-induced inactivation of half of each biomolecule. To better understand the dynamics and energetics that underlie formation of the CSC, the interactions of OASS and SAT from Escherichia coli were studied at equilibrium and in the pre-steady state. Using an experimental strategy that initiates dissociation of the CSC at different points in the CSC-forming reaction, three stable forms of the complex were identified. Comparison of the binding behaviors of SAT and its C-terminal peptide supports a mechanism in which SAT interacts with OASS in a non-allosteric interaction involving its C terminus. This early docking event appears to fasten the proteins in close proximity and thus prepares the system to engage in a series of subsequent, energetically favorable isomerizations that inactivate OASS and produce the fully isomerized CSC.
Collapse
Affiliation(s)
- Ting Wang
- Department of Microbiology and Immunology, The Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
21
|
The Streptococcus iniae transcriptional regulator CpsY is required for protection from neutrophil-mediated killing and proper growth in vitro. Infect Immun 2011; 79:4638-48. [PMID: 21911465 DOI: 10.1128/iai.05567-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The ability of a pathogen to metabolically adapt to the local environment for optimal expression of virulence determinants is a continued area of research. Orthologs of the Streptococcus iniae LysR family regulator CpsY have been shown to regulate methionine biosynthesis and uptake pathways but appear to influence expression of several virulence genes as well. An S. iniae mutant with an in-frame deletion of cpsY (ΔcpsY mutant) is highly attenuated in a zebrafish infection model. The ΔcpsY mutant displays a methionine-independent growth defect in serum, which differs from the methionine-dependent defect observed for orthologous mutants of Streptococcus mutans and Streptococcus agalactiae. On the contrary, the ΔcpsY mutant can grow in excess of the wild type (WT) when supplemented with proteose peptone, suggesting an inability to properly regulate growth. CpsY is critical for protection of S. iniae from clearance by neutrophils in whole blood but is dispensable for intracellular survival in macrophages. Susceptibility of the ΔcpsY mutant to killing in whole blood is not due to a growth defect, because inhibition of neutrophil phagocytosis rescues the mutant to WT levels. Thus, CpsY appears to have a pleiotropic regulatory role for S. iniae, integrating metabolism and virulence. Furthermore, S. iniae provides a unique model to investigate the paradigm of CpsY-dependent regulation during systemic streptococcal infection.
Collapse
|
22
|
Abstract
We report a quantitative theoretical analysis of long-range electron transfer through sensitizer wires bound in the active-site channel of cytochrome P450cam. Each sensitizer wire consists of a substrate group with high binding affinity for the enzyme active site connected to a ruthenium-diimine through a bridging aliphatic or aromatic chain. Experiments have revealed a dramatic dependence of electron transfer rates on the chemical composition of both the bridging group and the substrate. Using combined molecular dynamics simulations and electronic coupling calculations, we show that electron tunneling through perfluorinated aromatic bridges is promoted by enhanced superexchange coupling through virtual reduced states. In contrast, electron flow through aliphatic bridges occurs by hole-mediated superexchange. We have found that a small number of wire conformations with strong donor-acceptor couplings can account for the observed electron tunneling rates for sensitizer wires terminated with either ethylbenzene or adamantane. In these instances, the rate is dependent not only on electronic coupling of the donor and acceptor but also on the nuclear motion of the sensitizer wire, necessitating the calculation of average rates over the course of a molecular dynamics simulation. These calculations along with related recent findings have made it possible to analyze the results of many other sensitizer-wire experiments that in turn point to new directions in our attempts to observe reactive intermediates in the catalytic cycles of P450 and other heme enzymes.
Collapse
|
23
|
SigmaS controls multiple pathways associated with intracellular multiplication of Legionella pneumophila. J Bacteriol 2009; 191:2461-73. [PMID: 19218380 DOI: 10.1128/jb.01578-08] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Legionella pneumophila is the causative agent of the severe and potentially fatal pneumonia Legionnaires' disease. L. pneumophila is able to replicate within macrophages and protozoa by establishing a replicative compartment in a process that requires the Icm/Dot type IVB secretion system. The signals and regulatory pathways required for Legionella infection and intracellular replication are poorly understood. Mutation of the rpoS gene, which encodes sigma(S), does not affect growth in rich medium but severely decreases L. pneumophila intracellular multiplication within protozoan hosts. To gain insight into the intracellular multiplication defect of an rpoS mutant, we examined its pattern of gene expression during exponential and postexponential growth. We found that sigma(S) affects distinct groups of genes that contribute to Legionella intracellular multiplication. We demonstrate that rpoS mutants have a functional Icm/Dot system yet are defective for the expression of many genes encoding Icm/Dot-translocated substrates. We also show that sigma(S) affects the transcription of the cpxR and pmrA genes, which encode two-component response regulators that directly affect the transcription of Icm/Dot substrates. Our characterization of the L. pneumophila small RNA csrB homologs, rsmY and rsmZ, introduces a link between sigma(S) and the posttranscriptional regulator CsrA. We analyzed the network of sigma(S)-controlled genes by mutational analysis of transcriptional regulators affected by sigma(S). One of these, encoding the L. pneumophila arginine repressor homolog gene, argR, is required for maximal intracellular growth in amoebae. These data show that sigma(S) is a key regulator of multiple pathways required for L. pneumophila intracellular multiplication.
Collapse
|
24
|
Dressaire C, Redon E, Milhem H, Besse P, Loubière P, Cocaign-Bousquet M. Growth rate regulated genes and their wide involvement in the Lactococcus lactis stress responses. BMC Genomics 2008; 9:343. [PMID: 18644113 PMCID: PMC2526093 DOI: 10.1186/1471-2164-9-343] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 07/21/2008] [Indexed: 11/21/2022] Open
Abstract
Background The development of transcriptomic tools has allowed exhaustive description of stress responses. These responses always superimpose a general response associated to growth rate decrease and a specific one corresponding to the stress. The exclusive growth rate response can be achieved through chemostat cultivation, enabling all parameters to remain constant except the growth rate. Results We analysed metabolic and transcriptomic responses of Lactococcus lactis in continuous cultures at different growth rates ranging from 0.09 to 0.47 h-1. Growth rate was conditioned by isoleucine supply. Although carbon metabolism was constant and homolactic, a widespread transcriptomic response involving 30% of the genome was observed. The expression of genes encoding physiological functions associated with biogenesis increased with growth rate (transcription, translation, fatty acid and phospholipids metabolism). Many phages, prophages and transposon related genes were down regulated as growth rate increased. The growth rate response was compared to carbon and amino-acid starvation transcriptomic responses, revealing constant and significant involvement of growth rate regulations in these two stressful conditions (overlap 27%). Two regulators potentially involved in the growth rate regulations, llrE and yabB, have been identified. Moreover it was established that genes positively regulated by growth rate are preferentially located in the vicinity of replication origin while those negatively regulated are mainly encountered at the opposite, thus indicating the relationship between genes expression and their location on chromosome. Although stringent response mechanism is considered as the one governing growth deceleration in bacteria, the rigorous comparison of the two transcriptomic responses clearly indicated the mechanisms are distinct. Conclusion This work of integrative biology was performed at the global level using transcriptomic analysis obtained in various growth conditions. It raised the importance of growth rate regulations in bacteria but also participated to the elucidation of the involved mechanism. Though the mechanism controlling growth rate is not yet fully understood in L. lactis, one expected regulatory mechanism has been ruled out, two potential regulators have been pointed out and the involvement of gene location on the chromosome has also been found to be involved in the expression regulation of these growth related genes.
Collapse
Affiliation(s)
- Clémentine Dressaire
- Université de Toulouse; INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France.
| | | | | | | | | | | |
Collapse
|
25
|
Paliy O, Gargac SM, Cheng Y, Uversky VN, Dunker AK. Protein disorder is positively correlated with gene expression in Escherichia coli. J Proteome Res 2008; 7:2234-45. [PMID: 18465893 PMCID: PMC2754758 DOI: 10.1021/pr800055r] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We considered, on a global scale, the relationship between the predicted fraction of protein disorder and the RNA and protein expression in Escherichia coli. Fraction of protein disorder correlated positively with both measured RNA expression levels of E. coli genes in three different growth media and with predicted abundance levels of E. coli proteins. Though weak, the correlation was highly significant. Correlation of protein disorder with RNA expression did not depend on the growth rate of E. coli cultures and was not caused by a small subset of genes showing exceptionally high concordance in their disorder and expression levels. Global analysis was complemented by detailed consideration of several groups of proteins.
Collapse
Affiliation(s)
- Oleg Paliy
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio 45435, USA.
| | | | | | | | | |
Collapse
|
26
|
Genome-wide transcriptional responses of Escherichia coli K-12 to continuous osmotic and heat stresses. J Bacteriol 2008; 190:3712-20. [PMID: 18359805 DOI: 10.1128/jb.01990-07] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Osmotic stress is known to increase the thermotolerance and oxidative-stress resistance of bacteria by a mechanism that is not adequately understood. We probed the cross-regulation of continuous osmotic and heat stress responses by characterizing the effects of external osmolarity (0.3 M versus 0.0 M NaCl) and temperature (43 degrees C versus 30 degrees C) on the transcriptome of Escherichia coli K-12. Our most important discovery was that a number of genes in the SoxRS and OxyR oxidative-stress regulons were up-regulated by high osmolarity, high temperature, or a combination of both stresses. This result can explain the previously noted cross-protection of osmotic stress against oxidative and heat stresses. Most of the genes shown in previous studies to be induced during the early phase of adaptation to hyperosmotic shock were found to be also overexpressed under continuous osmotic stress. However, there was a poorer overlap between the heat shock genes that are induced transiently after high temperature shifts and the genes that we found to be chronically up-regulated at 43 degrees C. Supplementation of the high-osmolarity medium with the osmoprotectant glycine betaine, which reduces the cytoplasmic K(+) pool, did not lead to a universal reduction in the expression of osmotically induced genes. This finding does not support the hypothesis that K(+) is the central osmoregulatory signal in Enterobacteriaceae.
Collapse
|
27
|
RpoS regulation of gene expression during exponential growth of Escherichia coli K12. Mol Genet Genomics 2007; 279:267-77. [PMID: 18158608 DOI: 10.1007/s00438-007-0311-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2007] [Accepted: 12/03/2007] [Indexed: 12/12/2022]
Abstract
RpoS is a major regulator of genes required for adaptation to stationary phase in E. coli. However, the exponential phase expression of some genes is affected by rpoS mutation, suggesting RpoS may also have an important physiological role in growing cells. To test this hypothesis, we examined the regulatory role of RpoS in exponential phase using both genomic and biochemical approaches. Microarray expression data revealed that, in the rpoS mutant, the expression of 268 genes was attenuated while the expression of 24 genes was enhanced. Genes responsible for carbon source transport (the mal operon for maltose), protein folding (dnaK and mopAB), and iron acquisition (fepBD, entCBA, fecI, and exbBD) were positively controlled by RpoS. The importance of RpoS-mediated control of iron acquisition was confirmed by cellular metal analysis which revealed that the intracellular iron content of wild type cells was two-fold higher than in rpoS mutant cells. Surprisingly, many previously identified RpoS stationary-phase dependent genes were not controlled by RpoS in exponential phase and several genes were RpoS-regulated only in exponential phase, suggesting the involvement of other regulators. The expression of RpoS-dependent genes osmY, tnaA and malK was controlled by Crl, a transcriptional regulator that modulates RpoS activity. In summary, the identification of a group of exponential phase genes controlled by RpoS reveals a novel aspect of RpoS function.
Collapse
|
28
|
Tralau T, Vuilleumier S, Thibault C, Campbell BJ, Hart CA, Kertesz MA. Transcriptomic analysis of the sulfate starvation response of Pseudomonas aeruginosa. J Bacteriol 2007; 189:6743-50. [PMID: 17675390 PMCID: PMC2045191 DOI: 10.1128/jb.00889-07] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes a number of infections in humans, but is best known for its association with cystic fibrosis. It is able to use a wide range of sulfur compounds as sources of sulfur for growth. Gene expression in response to changes in sulfur supply was studied in P. aeruginosa E601, a cystic fibrosis isolate that displays mucin sulfatase activity, and in P. aeruginosa PAO1. A large family of genes was found to be upregulated by sulfate limitation in both isolates, encoding sulfatases and sulfonatases, transport systems, oxidative stress proteins, and a sulfate-regulated TonB/ExbBD complex. These genes were localized in five distinct islands on the genome and encoded proteins with a significantly reduced content of cysteine and methionine. Growth of P. aeruginosa E601 with mucin as the sulfur source led not only to a sulfate starvation response but also to induction of genes involved with type III secretion systems.
Collapse
Affiliation(s)
- Tewes Tralau
- Faculty of Life Sciences, University of Manchester, Michael Smith Bldg., Oxford Rd., Manchester M13 9PT, England
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Plants often grow in soils that contain very low concentrations of the macronutrients nitrogen, phosphorus, potassium, and sulfur. To adapt and grow in nutrient-deprived environments plants must sense changes in external and internal mineral nutrient concentrations and adjust growth to match resource availability. The sensing and signal transduction networks that control plant responses to nutrient deprivation are not well characterized for nitrogen, potassium, and sulfur deprivation. One branch of the signal transduction cascade related to phosphorus-deprivation response has been defined through the identification of a transcription factor that is regulated by sumoylation. Two different microRNAs play roles in regulating gene expression under phosphorus and sulfur deprivation. Reactive oxygen species increase rapidly after mineral nutrient deprivation and may be one upstream mediator of nutrient signaling. A number of molecular analyses suggest that both short-term and longer-term responses will be important in understanding the progression of signaling events when the external, then internal, supplies of nutrients become depleted.
Collapse
|
30
|
|
31
|
Hayes ET, Wilks JC, Sanfilippo P, Yohannes E, Tate DP, Jones BD, Radmacher MD, BonDurant SS, Slonczewski JL. Oxygen limitation modulates pH regulation of catabolism and hydrogenases, multidrug transporters, and envelope composition in Escherichia coli K-12. BMC Microbiol 2006; 6:89. [PMID: 17026754 PMCID: PMC1626474 DOI: 10.1186/1471-2180-6-89] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Accepted: 10/06/2006] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND In Escherichia coli, pH regulates genes for amino-acid and sugar catabolism, electron transport, oxidative stress, periplasmic and envelope proteins. Many pH-dependent genes are co-regulated by anaerobiosis, but the overall intersection of pH stress and oxygen limitation has not been investigated. RESULTS The pH dependence of gene expression was analyzed in oxygen-limited cultures of E. coli K-12 strain W3110. E. coli K-12 strain W3110 was cultured in closed tubes containing LBK broth buffered at pH 5.7, pH 7.0, and pH 8.5. Affymetrix array hybridization revealed pH-dependent expression of 1,384 genes and 610 intergenic regions. A core group of 251 genes showed pH responses similar to those in a previous study of cultures grown with aeration. The highly acid-induced gene yagU was shown to be required for extreme-acid resistance (survival at pH 2). Acid also up-regulated fimbriae (fimAC), periplasmic chaperones (hdeAB), cyclopropane fatty acid synthase (cfa), and the "constitutive" Na+/H+ antiporter (nhaB). Base up-regulated core genes for maltodextrin transport (lamB, mal), ATP synthase (atp), and DNA repair (recA, mutL). Other genes showed opposite pH responses with or without aeration, for example ETS components (cyo,nuo, sdh) and hydrogenases (hya, hyb, hyc, hyf, hyp). A hypF strain lacking all hydrogenase activity showed loss of extreme-acid resistance. Under oxygen limitation only, acid down-regulated ribosome synthesis (rpl,rpm, rps). Acid up-regulated the catabolism of sugar derivatives whose fermentation minimized acid production (gnd, gnt, srl), and also a cluster of 13 genes in the gadA region. Acid up-regulated drug transporters (mdtEF, mdtL), but down-regulated penicillin-binding proteins (dacACD, mreBC). Intergenic regions containing regulatory sRNAs were up-regulated by acid (ryeA, csrB, gadY, rybC). CONCLUSION pH regulates a core set of genes independently of oxygen, including yagU, fimbriae, periplasmic chaperones, and nhaB. Under oxygen limitation, however, pH regulation is reversed for genes encoding electron transport components and hydrogenases. Extreme-acid resistance requires yagU and hydrogenase production. Ribosome synthesis is down-regulated at low pH under oxygen limitation, possibly due to the restricted energy yield of catabolism. Under oxygen limitation, pH regulates metabolism and transport so as to maximize alternative catabolic options while minimizing acidification or alkalinization of the cytoplasm.
Collapse
Affiliation(s)
- Everett T Hayes
- Department of Biology, Kenyon College, Gambier, OH 43022, USA
| | - Jessica C Wilks
- Department of Biology, Kenyon College, Gambier, OH 43022, USA
| | | | | | - Daniel P Tate
- Department of Biology, Kenyon College, Gambier, OH 43022, USA
| | - Brian D Jones
- Department of Mathematics, Kenyon College, Gambier, OH 43022, USA
| | | | | | | |
Collapse
|
32
|
Silberbach M, Burkovski A. Application of global analysis techniques to Corynebacterium glutamicum: New insights into nitrogen regulation. J Biotechnol 2006; 126:101-10. [PMID: 16698104 DOI: 10.1016/j.jbiotec.2006.03.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Revised: 01/24/2006] [Accepted: 03/29/2006] [Indexed: 11/16/2022]
Abstract
The regulation of nitrogen metabolism in the amino acid producer Corynebacterium glutamicum was subject of research for several decades. While previous studies focused on single enzymes or pathways, the publication of the C. glutamicum genome sequence gave a fresh impetus to research, since a global investigation of metabolism and regulation networks became possible based on these data. This communication summarizes the advances made by different studies, in which global analysis approaches were used to characterize the C. glutamicum nitrogen starvation response. A combination of bioinformatics approaches, transcriptome and proteome analyses as well as chemostat experiments revealed new insights into the nitrogen control network of C. glutamicum. C. glutamicum reacts to a limited nitrogen supply with a rearrangement of the cellular transport capacity, changes in metabolic pathways for nitrogen assimilation and amino acid biosynthesis, an increased energy generation and increased protein stability. With the aid of chemostat experiments, in which different growth rates were obtained by nitrogen limitation, general starvation effects could be distinguished from specific nitrogen limitation-dependent changes. The core adaptations on the level of transcription are controlled by the master regulator of nitrogen control, the TetR-type protein AmtR. This global regulator governs transcription of at least 33 genes via binding to a palindromic consensus motif (AmtR box). Genes with AmtR box-containing promoters were identified by genome-wide screening and validated, besides by other methods, by transcriptome analyses using DNA microarrays.
Collapse
Affiliation(s)
- Maike Silberbach
- Institut für Biochemie der Universität zu Köln, Zülpicher Strasse 47, D-50674 Köln, Germany
| | | |
Collapse
|
33
|
Methionine Biosynthesis in Escherichia coli and Corynebacterium glutamicum. AMINO ACID BIOSYNTHESIS ~ PATHWAYS, REGULATION AND METABOLIC ENGINEERING 2006. [DOI: 10.1007/7171_2006_059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
34
|
Peterson CN, Mandel MJ, Silhavy TJ. Escherichia coli starvation diets: essential nutrients weigh in distinctly. J Bacteriol 2005; 187:7549-53. [PMID: 16267278 PMCID: PMC1280323 DOI: 10.1128/jb.187.22.7549-7553.2005] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|