1
|
de Araújo HL, Picinato BA, Lorenzetti APR, Muthunayake NS, Rathnayaka-Mudiyanselage IW, dos Santos NM, Schrader J, Koide T, Marques MV. The DEAD-box RNA helicase RhlB is required for efficient RNA processing at low temperature in Caulobacter. Microbiol Spectr 2023; 11:e0193423. [PMID: 37850787 PMCID: PMC10715135 DOI: 10.1128/spectrum.01934-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/12/2023] [Indexed: 10/19/2023] Open
Abstract
IMPORTANCE One of the most important control points in gene regulation is RNA stability, which determines the half-life of a transcript from its transcription until its degradation. Bacteria have evolved a sophisticated multi-enzymatic complex, the RNA degradosome, which is dedicated mostly to RNA turnover. The combined activity of RNase E and the other RNA degradosome enzymes provides an efficient pipeline for the complete degradation of RNAs. The DEAD-box RNA helicases are very often found in RNA degradosomes from phylogenetically distant bacteria, confirming their importance in unwinding structured RNA for subsequent degradation. This work showed that the absence of the RNA helicase RhlB in the free-living Alphaproteobacterium Caulobacter crescentus causes important changes in gene expression and cell physiology. These are probably due, at least in part, to inefficient RNA processing by the RNA degradosome, particularly at low-temperature conditions.
Collapse
Affiliation(s)
- Hugo L. de Araújo
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Beatriz A. Picinato
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Alan P. R. Lorenzetti
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | | | - Naara M. dos Santos
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Jared Schrader
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Tie Koide
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Marilis V. Marques
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Han R, Jiang J, Fang J, Contreras LM. PNPase and RhlB Interact and Reduce the Cellular Availability of Oxidized RNA in Deinococcus radiodurans. Microbiol Spectr 2022; 10:e0214022. [PMID: 35856907 PMCID: PMC9430589 DOI: 10.1128/spectrum.02140-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/30/2022] [Indexed: 01/01/2023] Open
Abstract
8-Oxo-7,8-dihydroguanine (8-oxoG) is a major RNA modification caused by oxidative stresses and has been implicated in carcinogenesis, neurodegeneration, and aging. Several RNA-binding proteins have been shown to have a binding preference for 8-oxoG-modified RNA in eukaryotes and protect cells from oxidative stress. To date, polynucleotide phosphorylase (PNPase) is one of the most well-characterized proteins in bacteria that recognize 8-oxoG-modified RNA, but how PNPase cooperates with other proteins to process oxidized RNA is still unclear. Here, we use RNA affinity chromatography and mass spectrometry to search for proteins that preferably bind 8-oxoG-modified RNA in Deinococcus radiodurans, an extremophilic bacterium with extraordinary resistance to oxidative stresses. We identified four proteins that preferably bind to oxidized RNA: PNPase (DR_2063), DEAD box RNA helicase (DR_0335/RhlB), ribosomal protein S1 (DR_1983/RpsA), and transcriptional termination factor (DR_1338/Rho). Among these proteins, PNPase and RhlB exhibit high-affinity binding to 8-oxoG-modified RNA in a dose-independent manner. Deletions of PNPase and RhlB caused increased sensitivity of D. radiodurans to oxidative stress. We further showed that PNPase and RhlB specifically reduce the cellular availability of 8-oxoG-modified RNA but have no effect on oxidized DNA. Importantly, PNPase directly interacts with RhlB in D. radiodurans; however, no additional phenotypic effect was observed for the double deletion of pnp and rhlB compared to the single deletions. Overall, our findings suggest the roles of PNPase and RhlB in targeting 8-oxoG-modified RNAs and thereby constitute an important component of D. radiodurans resistance to oxidative stress. IMPORTANCE Oxidative RNA damage can be caused by oxidative stress, such as hydrogen peroxide, ionizing radiation, and antibiotic treatment. 8-oxo-7,8-dihydroguanine (8-oxoG), a major type of oxidized RNA, is highly mutagenic and participates in a variety of disease occurrences and development. Although several proteins have been identified to recognize 8-oxoG-modified RNA, the knowledge of how RNA oxidative damage is controlled largely remains unclear, especially in nonmodel organisms. In this study, we identified four RNA binding proteins that show higher binding affinity to 8-oxoG-modified RNA compared to unmodified RNA in the extremophilic bacterium Deinococcus radiodurans, which can endure high levels of oxidative stress. Two of the proteins, polynucleotide phosphorylase (PNPase) and DEAD-box RNA helicase (RhlB), interact with each other and reduce the cellular availability of 8-oxoG-modified RNA under oxidative stress. As such, this work contributes to our understanding of how RNA oxidation is influenced by RNA binding proteins in bacteria.
Collapse
Affiliation(s)
- Runhua Han
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Jessie Jiang
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Jaden Fang
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Lydia M. Contreras
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
3
|
Jain M, Golzarroshan B, Lin CL, Agrawal S, Tang WH, Wu CJ, Yuan HS. Dimeric assembly of human Suv3 helicase promotes its RNA unwinding function in mitochondrial RNA degradosome for RNA decay. Protein Sci 2022; 31:e4312. [PMID: 35481630 PMCID: PMC9044407 DOI: 10.1002/pro.4312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/21/2022] [Accepted: 04/01/2022] [Indexed: 11/12/2022]
Abstract
Human Suv3 is a unique homodimeric helicase that constitutes the major component of the mitochondrial degradosome to work cooperatively with exoribonuclease PNPase for efficient RNA decay. However, the molecular mechanism of how Suv3 is assembled into a homodimer to unwind RNA remains elusive. Here, we show that dimeric Suv3 preferentially binds to and unwinds DNA-DNA, DNA-RNA, and RNA-RNA duplexes with a long 3' overhang (≥10 nucleotides). The C-terminal tail (CTT)-truncated Suv3 (Suv3ΔC) becomes a monomeric protein that binds to and unwinds duplex substrates with ~six to sevenfold lower activities relative to dimeric Suv3. Only dimeric Suv3, but not monomeric Suv3ΔC, binds RNA independently of ATP or ADP, and is capable of interacting with PNPase, indicating that dimeric Suv3 assembly ensures its continuous association with RNA and PNPase during ATP hydrolysis cycles for efficient RNA degradation. We further determined the crystal structure of the apo-form of Suv3ΔC, and SAXS structures of dimeric Suv3 and PNPase-Suv3 complex, showing that dimeric Suv3 caps on the top of PNPase via interactions with S1 domains, and forms a dumbbell-shaped degradosome complex with PNPase. Overall, this study reveals that Suv3 is assembled into a dimeric helicase by its CTT for efficient and persistent RNA binding and unwinding to facilitate interactions with PNPase, promote RNA degradation, and maintain mitochondrial genome integrity and homeostasis.
Collapse
Affiliation(s)
- Monika Jain
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | | | - Chia-Liang Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Sashank Agrawal
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Wei-Hsuan Tang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, Taiwan
| | - Chiu-Ju Wu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, Taiwan
| | - Hanna S Yuan
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
4
|
Costa SM, Saramago M, Matos RG, Arraiano CM, Viegas SC. How hydrolytic exoribonucleases impact human disease: Two sides of the same story. FEBS Open Bio 2022. [PMID: 35247037 DOI: 10.1002/2211-5463.13392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/16/2022] [Accepted: 03/03/2022] [Indexed: 11/05/2022] Open
Abstract
RNAs are extremely important molecules inside the cell which perform many different functions. For example, messenger RNAs, transfer RNAs, and ribosomal RNAs are involved in protein synthesis, whereas non-coding RNAs have numerous regulatory roles. Ribonucleases are the enzymes responsible for the processing and degradation of all types of RNAs, having multiple roles in every aspect of RNA metabolism. However, the involvement of RNases in disease is still not well understood. This review focuses on the involvement of the RNase II/RNB family of 3'-5' exoribonucleases in human disease. This can be attributed to direct effects, whereby mutations in the eukaryotic enzymes of this family (Dis3 (or Rrp44), Dis3L1 (or Dis3L), and Dis3L2) are associated with a disease, or indirect effects, whereby mutations in the prokaryotic counterparts of RNase II/RNB family (RNase II and/or RNase R) affect the physiology and virulence of several human pathogens. In this review, we will compare the structural and biochemical characteristics of the members of the RNase II/RNB family of enzymes. The outcomes of mutations impacting enzymatic function will be revisited, in terms of both the direct and indirect effects on disease. Furthermore, we also describe the SARS-CoV-2 viral exoribonuclease and its importance to combat COVID-19 pandemic. As a result, RNases may be a good therapeutic target to reduce bacterial and viral pathogenicity. These are the two perspectives on RNase II/RNB family enzymes that will be presented in this review.
Collapse
Affiliation(s)
- Susana M Costa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157, Oeiras, Portugal
| | - Margarida Saramago
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157, Oeiras, Portugal
| | - Rute G Matos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157, Oeiras, Portugal
| | - Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157, Oeiras, Portugal
| | - Sandra C Viegas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157, Oeiras, Portugal
| |
Collapse
|
5
|
Zhang J, Hess WR, Zhang C. "Life is short, and art is long": RNA degradation in cyanobacteria and model bacteria. MLIFE 2022; 1:21-39. [PMID: 38818322 PMCID: PMC10989914 DOI: 10.1002/mlf2.12015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 06/01/2024]
Abstract
RNA turnover plays critical roles in the regulation of gene expression and allows cells to respond rapidly to environmental changes. In bacteria, the mechanisms of RNA turnover have been extensively studied in the models Escherichia coli and Bacillus subtilis, but not much is known in other bacteria. Cyanobacteria are a diverse group of photosynthetic organisms that have great potential for the sustainable production of valuable products using CO2 and solar energy. A better understanding of the regulation of RNA decay is important for both basic and applied studies of cyanobacteria. Genomic analysis shows that cyanobacteria have more than 10 ribonucleases and related proteins in common with E. coli and B. subtilis, and only a limited number of them have been experimentally investigated. In this review, we summarize the current knowledge about these RNA-turnover-related proteins in cyanobacteria. Although many of them are biochemically similar to their counterparts in E. coli and B. subtilis, they appear to have distinct cellular functions, suggesting a different mechanism of RNA turnover regulation in cyanobacteria. The identification of new players involved in the regulation of RNA turnover and the elucidation of their biological functions are among the future challenges in this field.
Collapse
Affiliation(s)
- Ju‐Yuan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Algal Biology, Institute of HydrobiologyChinese Academy of SciencesWuhanChina
| | - Wolfgang R. Hess
- Genetics and Experimental Bioinformatics, Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Cheng‐Cai Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Algal Biology, Institute of HydrobiologyChinese Academy of SciencesWuhanChina
- Institut WUT‐AMUAix‐Marseille University and Wuhan University of TechnologyWuhanChina
| |
Collapse
|
6
|
Mohanty BK, Kushner SR. Regulation of mRNA decay in E. coli. Crit Rev Biochem Mol Biol 2022; 57:48-72. [PMID: 34547957 PMCID: PMC9973670 DOI: 10.1080/10409238.2021.1968784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/03/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
Detailed studies of the Gram-negative model bacterium, Escherichia coli, have demonstrated that post-transcriptional events exert important and possibly greater control over gene regulation than transcription initiation or effective translation. Thus, over the past 30 years, considerable effort has been invested in understanding the pathways of mRNA turnover in E. coli. Although it is assumed that most of the ribonucleases and accessory proteins involved in mRNA decay have been identified, our understanding of the regulation of mRNA decay is still incomplete. Furthermore, the vast majority of the studies on mRNA decay have been conducted on exponentially growing cells. Thus, the mechanism of mRNA decay as currently outlined may not accurately reflect what happens when cells find themselves under a variety of stress conditions, such as, nutrient starvation, changes in pH and temperature, as well as a host of others. While the cellular machinery for degradation is relatively constant over a wide range of conditions, intracellular levels of specific ribonucleases can vary depending on the growth conditions. Substrate competition will also modulate ribonucleolytic activity. Post-transcriptional modifications of transcripts by polyadenylating enzymes may favor a specific ribonuclease activity. Interactions with small regulatory RNAs and RNA binding proteins add additional complexities to mRNA functionality and stability. Since many of the ribonucleases are found at the inner membrane, the physical location of a transcript may help determine its half-life. Here we discuss the properties and role of the enzymes involved in mRNA decay as well as the multiple factors that may affect mRNA decay under various in vivo conditions.
Collapse
Affiliation(s)
| | - Sidney R. Kushner
- Department of Genetics, University of Georgia, Athens GA 30602
- Department of Microbiology, University of Georgia, Athens GA 30602
| |
Collapse
|
7
|
Falchi FA, Pizzoccheri R, Briani F. Activity and Function in Human Cells of the Evolutionary Conserved Exonuclease Polynucleotide Phosphorylase. Int J Mol Sci 2022; 23:ijms23031652. [PMID: 35163574 PMCID: PMC8836086 DOI: 10.3390/ijms23031652] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
Polynucleotide phosphorylase (PNPase) is a phosphorolytic RNA exonuclease highly conserved throughout evolution. Human PNPase (hPNPase) is located in mitochondria and is essential for mitochondrial function and homeostasis. Not surprisingly, mutations in the PNPT1 gene, encoding hPNPase, cause serious diseases. hPNPase has been implicated in a plethora of processes taking place in different cell compartments and involving other proteins, some of which physically interact with hPNPase. This paper reviews hPNPase RNA binding and catalytic activity in relation with the protein structure and in comparison, with the activity of bacterial PNPases. The functions ascribed to hPNPase in different cell compartments are discussed, highlighting the gaps that still need to be filled to understand the physiological role of this ancient protein in human cells.
Collapse
|
8
|
Apura P, Gonçalves LG, Viegas SC, Arraiano CM. The world of ribonucleases from pseudomonads: a short trip through the main features and singularities. Microb Biotechnol 2021; 14:2316-2333. [PMID: 34427985 PMCID: PMC8601179 DOI: 10.1111/1751-7915.13890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/30/2021] [Indexed: 11/27/2022] Open
Abstract
The development of synthetic biology has brought an unprecedented increase in the number molecular tools applicable into a microbial chassis. The exploration of such tools into different bacteria revealed not only the challenges of context dependency of biological functions but also the complexity and diversity of regulatory layers in bacterial cells. Most of the standardized genetic tools and principles/functions have been mostly based on model microorganisms, namely Escherichia coli. In contrast, the non-model pseudomonads lack a deeper understanding of their regulatory layers and have limited molecular tools. They are resistant pathogens and promising alternative bacterial chassis, making them attractive targets for further studies. Ribonucleases (RNases) are key players in the post-transcriptional control of gene expression by degrading or processing the RNA molecules in the cell. These enzymes act according to the cellular requirements and can also be seen as the recyclers of ribonucleotides, allowing a continuous input of these cellular resources. This makes these post-transcriptional regulators perfect candidates to regulate microbial physiology. This review summarizes the current knowledge and unique properties of ribonucleases in the world of pseudomonads, taking into account genomic context analysis, biological function and strategies to use ribonucleases to improve biotechnological processes.
Collapse
Affiliation(s)
- Patrícia Apura
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAv. da República, EANOeiras2780‐157Portugal
| | - Luis G. Gonçalves
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAv. da República, EANOeiras2780‐157Portugal
| | - Sandra C. Viegas
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAv. da República, EANOeiras2780‐157Portugal
| | - Cecília M. Arraiano
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAv. da República, EANOeiras2780‐157Portugal
| |
Collapse
|
9
|
Abstract
Ribonucleases (RNases) are essential for almost every aspect of RNA metabolism. However, despite their important metabolic roles, RNases can also be destructive enzymes. As a consequence, cells must carefully regulate the amount, the activity, and the localization of RNases to avoid the inappropriate degradation of essential RNA molecules. In addition, bacterial cells often must adjust RNase levels as environmental situations demand, also requiring careful regulation of these critical enzymes. As the need for strict control of RNases has become more evident, multiple mechanisms for this regulation have been identified and studied, and these are described in this review. The major conclusion that emerges is that no common regulatory mechanism applies to all RNases, or even to a family of RNases; rather, a wide variety of processes have evolved that act on these enzymes, and in some cases, multiple regulatory mechanisms can even act on a single RNase. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Murray P Deutscher
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33101, USA;
| |
Collapse
|
10
|
Posttranscriptional Regulation of tnaA by Protein-RNA Interaction Mediated by Ribosomal Protein L4 in Escherichia coli. J Bacteriol 2020; 202:JB.00799-19. [PMID: 32123036 PMCID: PMC7186457 DOI: 10.1128/jb.00799-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/13/2020] [Indexed: 11/26/2022] Open
Abstract
Some ribosomal proteins have extraribosomal functions in addition to ribosome translation function. The extraribosomal functions of several r-proteins control operon expression by binding to own-operon transcripts. Previously, we discovered a posttranscriptional, RNase E-dependent regulatory role for r-protein L4 in the stabilization of stress-responsive transcripts. Here, we found an additional extraribosomal function for L4 in regulating the tna operon by L4-intergenic spacer mRNA interactions. L4 binds to the transcribed spacer RNA between tnaC and tnaA and alters the structural conformation of the spacer RNA, thereby reducing the translation of TnaA. Our study establishes a previously unknown L4-mediated mechanism for regulating gene expression, suggesting that bacterial cells have multiple strategies for controlling levels of tryptophanase in response to varied cell growth conditions. Escherichia coli ribosomal protein (r-protein) L4 has extraribosomal biological functions. Previously, we described L4 as inhibiting RNase E activity through protein-protein interactions. Here, we report that from stabilized transcripts regulated by L4-RNase E, mRNA levels of tnaA (encoding tryptophanase from the tnaCAB operon) increased upon ectopic L4 expression, whereas TnaA protein levels decreased. However, at nonpermissive temperatures (to inactivate RNase E), tnaA mRNA and protein levels both increased in an rne temperature-sensitive [rne(Ts)] mutant strain. Thus, L4 protein fine-tunes TnaA protein levels independently of its inhibition of RNase E. We demonstrate that ectopically expressed L4 binds with transcribed spacer RNA between tnaC and tnaA and downregulates TnaA translation. We found that deletion of the 5′ or 3′ half of the spacer compared to the wild type resulted in a similar reduction in TnaA translation in the presence of L4. In vitro binding of L4 to the tnaC-tnaA transcribed spacer RNA results in changes to its secondary structure. We reveal that during early stationary-phase bacterial growth, steady-state levels of tnaA mRNA increased but TnaA protein levels decreased. We further confirm that endogenous L4 binds to tnaC-tnaA transcribed spacer RNA in cells at early stationary phase. Our results reveal the novel function of L4 in fine-tuning TnaA protein levels during cell growth and demonstrate that r-protein L4 acts as a translation regulator outside the ribosome and its own operon. IMPORTANCE Some ribosomal proteins have extraribosomal functions in addition to ribosome translation function. The extraribosomal functions of several r-proteins control operon expression by binding to own-operon transcripts. Previously, we discovered a posttranscriptional, RNase E-dependent regulatory role for r-protein L4 in the stabilization of stress-responsive transcripts. Here, we found an additional extraribosomal function for L4 in regulating the tna operon by L4-intergenic spacer mRNA interactions. L4 binds to the transcribed spacer RNA between tnaC and tnaA and alters the structural conformation of the spacer RNA, thereby reducing the translation of TnaA. Our study establishes a previously unknown L4-mediated mechanism for regulating gene expression, suggesting that bacterial cells have multiple strategies for controlling levels of tryptophanase in response to varied cell growth conditions.
Collapse
|
11
|
Viegas SC, Matos RG, Arraiano CM. The Bacterial Counterparts of the Eukaryotic Exosome: An Evolutionary Perspective. Methods Mol Biol 2020; 2062:37-46. [PMID: 31768970 DOI: 10.1007/978-1-4939-9822-7_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
There are striking similarities between the processes of RNA degradation in bacteria and eukaryotes, which rely on the same basic set of enzymatic activities. In particular, enzymes that catalyze 3'→5' RNA decay share evolutionary relationships across the three domains of life. Over the years, a large body of biochemical and structural data has been generated that elucidated the mechanism of action of these enzymes. In this overview, to trace the evolutionary origins of the multisubunit RNA exosome complex, we compare the structural and functional characteristics of the eukaryotic and prokaryotic exoribonucleolytic activities.
Collapse
Affiliation(s)
- Sandra C Viegas
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal.
| | - Rute G Matos
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal.
| |
Collapse
|
12
|
Jain C. Role of ribosome assembly in Escherichia coli ribosomal RNA degradation. Nucleic Acids Res 2019; 46:11048-11060. [PMID: 30219894 PMCID: PMC6237783 DOI: 10.1093/nar/gky808] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/28/2018] [Indexed: 01/09/2023] Open
Abstract
DEAD-Box proteins (DBPs) constitute a prominent class of RNA remodeling factors that play a role in virtually all aspects of RNA metabolism. To better define their cellular functions, deletions in the genes encoding each of the Escherichia coli DBPs were combined with mutations in genes encoding different Ribonucleases (RNases). Significantly, double-deletion strains lacking Ribonuclease R (RNase R) and either the DeaD or SrmB DBP were found to display growth defects and an enhanced accumulation of ribosomal RNA (rRNA) fragments. As RNase R is known to play a key role in removing rRNA degradation products, these observations initially suggested that these two DBPs could be directly involved in the same process. However, additional investigations indicated that DeaD and SrmB-dependent rRNA breakdown is caused by delays in ribosome assembly that increase the exposure of nascent RNAs to endonucleolytic cleavage. Consistent with this notion, mutations in factors known to be important for ribosome assembly also resulted in enhanced rRNA breakdown. Additionally, significant levels of rRNA breakdown products could be visualized in growing cells even in the absence of assembly defects. These findings reveal a hitherto unappreciated mechanism of rRNA degradation under conditions of both normal and abnormal ribosome assembly.
Collapse
Affiliation(s)
- Chaitanya Jain
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
13
|
Bechhofer DH, Deutscher MP. Bacterial ribonucleases and their roles in RNA metabolism. Crit Rev Biochem Mol Biol 2019; 54:242-300. [PMID: 31464530 PMCID: PMC6776250 DOI: 10.1080/10409238.2019.1651816] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/22/2019] [Accepted: 07/31/2019] [Indexed: 12/16/2022]
Abstract
Ribonucleases (RNases) are mediators in most reactions of RNA metabolism. In recent years, there has been a surge of new information about RNases and the roles they play in cell physiology. In this review, a detailed description of bacterial RNases is presented, focusing primarily on those from Escherichia coli and Bacillus subtilis, the model Gram-negative and Gram-positive organisms, from which most of our current knowledge has been derived. Information from other organisms is also included, where relevant. In an extensive catalog of the known bacterial RNases, their structure, mechanism of action, physiological roles, genetics, and possible regulation are described. The RNase complement of E. coli and B. subtilis is compared, emphasizing the similarities, but especially the differences, between the two. Included are figures showing the three major RNA metabolic pathways in E. coli and B. subtilis and highlighting specific steps in each of the pathways catalyzed by the different RNases. This compilation of the currently available knowledge about bacterial RNases will be a useful tool for workers in the RNA field and for others interested in learning about this area.
Collapse
Affiliation(s)
- David H. Bechhofer
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Murray P. Deutscher
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
14
|
Šiková M, Janoušková M, Ramaniuk O, Páleníková P, Pospíšil J, Bartl P, Suder A, Pajer P, Kubičková P, Pavliš O, Hradilová M, Vítovská D, Šanderová H, Převorovský M, Hnilicová J, Krásný L. Ms1 RNA increases the amount of RNA polymerase in Mycobacterium smegmatis. Mol Microbiol 2018; 111:354-372. [PMID: 30427073 DOI: 10.1111/mmi.14159] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2018] [Indexed: 01/13/2023]
Abstract
Ms1 is a sRNA recently found in mycobacteria and several other actinobacterial species. Ms1 interacts with the RNA polymerase (RNAP) core devoid of sigma factors, which differs from 6S RNA that binds to RNAP holoenzymes containing the primary sigma factor. Here we show that Ms1 is the most abundant non-rRNA transcript in stationary phase in Mycobacterium smegmatis. The accumulation of Ms1 stems from its high-level synthesis combined with decreased degradation. We identify the Ms1 promoter, PMs1 , and cis-acting elements important for its activity. Furthermore, we demonstrate that PNPase (an RNase) contributes to the differential accumulation of Ms1 during growth. Then, by comparing the transcriptomes of wt and ΔMs1 strains from stationary phase, we reveal that Ms1 affects the intracellular level of RNAP. The absence of Ms1 results in decreased levels of the mRNAs encoding β and β' subunits of RNAP, which is also reflected at the protein level. Thus, the ΔMs1 strain has a smaller pool of RNAPs available when the transcriptional demand increases. This contributes to the inability of the ΔMs1 strain to rapidly react to environmental changes during outgrowth from stationary phase.
Collapse
Affiliation(s)
- Michaela Šiková
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Martina Janoušková
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic.,Faculty of Science, Department of Genetics and Microbiology, Charles University, Prague, Czech Republic
| | - Olga Ramaniuk
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Petra Páleníková
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Pospíšil
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Pavel Bartl
- Faculty of Nuclear Science and Physical Engineering, Department of Nuclear Chemistry, Czech Technical University in Prague, Prague, Czech Republic
| | - Agnieszka Suder
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Pajer
- Military Health Institute, Military Medical Agency, Prague, Czech Republic
| | - Pavla Kubičková
- Military Health Institute, Military Medical Agency, Prague, Czech Republic
| | - Ota Pavliš
- Military Health Institute, Military Medical Agency, Prague, Czech Republic
| | - Miluše Hradilová
- Department of Genomics and Bioinformatics, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Dragana Vítovská
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Šanderová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Převorovský
- Faculty of Science, Department of Cell Biology, Charles University, Prague, Czech Republic
| | - Jarmila Hnilicová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Libor Krásný
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
15
|
Cameron TA, Matz LM, De Lay NR. Polynucleotide phosphorylase: Not merely an RNase but a pivotal post-transcriptional regulator. PLoS Genet 2018; 14:e1007654. [PMID: 30307990 PMCID: PMC6181284 DOI: 10.1371/journal.pgen.1007654] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Almost 60 years ago, Severo Ochoa was awarded the Nobel Prize in Physiology or Medicine for his discovery of the enzymatic synthesis of RNA by polynucleotide phosphorylase (PNPase). Although this discovery provided an important tool for deciphering the genetic code, subsequent work revealed that the predominant function of PNPase in bacteria and eukaryotes is catalyzing the reverse reaction, i.e., the release of ribonucleotides from RNA. PNPase has a crucial role in RNA metabolism in bacteria and eukaryotes mainly through its roles in processing and degrading RNAs, but additional functions in RNA metabolism have recently been reported for this enzyme. Here, we discuss these established and noncanonical functions for PNPase and the possibility that the major impact of PNPase on cell physiology is through its unorthodox roles.
Collapse
Affiliation(s)
- Todd A. Cameron
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Lisa M. Matz
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Nicholas R. De Lay
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, United States of America
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
16
|
Dos Santos RF, Quendera AP, Boavida S, Seixas AF, Arraiano CM, Andrade JM. Major 3'-5' Exoribonucleases in the Metabolism of Coding and Non-coding RNA. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 159:101-155. [PMID: 30340785 DOI: 10.1016/bs.pmbts.2018.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
3'-5' exoribonucleases are key enzymes in the degradation of superfluous or aberrant RNAs and in the maturation of precursor RNAs into their functional forms. The major bacterial 3'-5' exoribonucleases responsible for both these activities are PNPase, RNase II and RNase R. These enzymes are of ancient nature with widespread distribution. In eukaryotes, PNPase and RNase II/RNase R enzymes can be found in the cytosol and in mitochondria and chloroplasts; RNase II/RNase R-like enzymes are also found in the nucleus. Humans express one PNPase (PNPT1) and three RNase II/RNase R family members (Dis3, Dis3L and Dis3L2). These enzymes take part in a multitude of RNA surveillance mechanisms that are critical for translation accuracy. Although active against a wide range of both coding and non-coding RNAs, the different 3'-5' exoribonucleases exhibit distinct substrate affinities. The latest studies on these RNA degradative enzymes have contributed to the identification of additional homologue proteins, the uncovering of novel RNA degradation pathways, and to a better comprehension of several disease-related processes and response to stress, amongst many other exciting findings. Here, we provide a comprehensive and up-to-date overview on the function, structure, regulation and substrate preference of the key 3'-5' exoribonucleases involved in RNA metabolism.
Collapse
Affiliation(s)
- Ricardo F Dos Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana P Quendera
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Sofia Boavida
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - André F Seixas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - José M Andrade
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
17
|
Mohanty BK, Kushner SR. Enzymes Involved in Posttranscriptional RNA Metabolism in Gram-Negative Bacteria. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0011-2017. [PMID: 29676246 PMCID: PMC5912700 DOI: 10.1128/microbiolspec.rwr-0011-2017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Indexed: 02/08/2023] Open
Abstract
Gene expression in Gram-negative bacteria is regulated at many levels, including transcription initiation, RNA processing, RNA/RNA interactions, mRNA decay, and translational controls involving enzymes that alter translational efficiency. In this review, we discuss the various enzymes that control transcription, translation, and RNA stability through RNA processing and degradation. RNA processing is essential to generate functional RNAs, while degradation helps control the steady-state level of each individual transcript. For example, all the pre-tRNAs are transcribed with extra nucleotides at both their 5' and 3' termini, which are subsequently processed to produce mature tRNAs that can be aminoacylated. Similarly, rRNAs that are transcribed as part of a 30S polycistronic transcript are matured to individual 16S, 23S, and 5S rRNAs. Decay of mRNAs plays a key role in gene regulation through controlling the steady-state level of each transcript, which is essential for maintaining appropriate protein levels. In addition, degradation of both translated and nontranslated RNAs recycles nucleotides to facilitate new RNA synthesis. To carry out all these reactions, Gram-negative bacteria employ a large number of endonucleases, exonucleases, RNA helicases, and poly(A) polymerase, as well as proteins that regulate the catalytic activity of particular RNases. Under certain stress conditions, an additional group of specialized endonucleases facilitate the cell's ability to adapt and survive. Many of the enzymes, such as RNase E, RNase III, polynucleotide phosphorylase, RNase R, and poly(A) polymerase I, participate in multiple RNA processing and decay pathways.
Collapse
Affiliation(s)
| | - Sidney R Kushner
- Department of Genetics
- Department of Microbiology, University of Georgia, Athens, GA 30602
| |
Collapse
|
18
|
Raj R, Mitra S, Gopal B. Characterization of Staphylococcus epidermidis Polynucleotide phosphorylase and its interactions with ribonucleases RNase J1 and RNase J2. Biochem Biophys Res Commun 2017; 495:2078-2084. [PMID: 29242153 DOI: 10.1016/j.bbrc.2017.12.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 12/10/2017] [Indexed: 11/16/2022]
Abstract
Polynucleotide phosphorylase catalyzes both 3'-5' exoribonuclease and polyadenylation reactions. The crystal structure of Staphylococcus epidermidis PNPase revealed a bound phosphate in the PH2 domain of each protomer coordinated by three adjacent serine residues. Mutational analysis suggests that phosphate coordination by these serine residues is essential to maintain the catalytic center in an active conformation. We note that PNPase forms a complex with RNase J1 and RNase J2 without substantially altering either exo-ribonuclease or polyadenylation activity of this enzyme. This decoupling of catalytic activity from protein-protein interactions suggests that association of these endo- or exo-ribonucleases with PNPase could be more relevant for cellular localization or concerted targeting of structured RNA for recycling.
Collapse
Affiliation(s)
- Rishi Raj
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Sharmistha Mitra
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
19
|
Stone CM, Butt LE, Bufton JC, Lourenco DC, Gowers DM, Pickford AR, Cox PA, Vincent HA, Callaghan AJ. Inhibition of homologous phosphorolytic ribonucleases by citrate may represent an evolutionarily conserved communicative link between RNA degradation and central metabolism. Nucleic Acids Res 2017; 45:4655-4666. [PMID: 28334892 PMCID: PMC5416783 DOI: 10.1093/nar/gkx114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/17/2017] [Accepted: 02/14/2017] [Indexed: 12/05/2022] Open
Abstract
Ribonucleases play essential roles in all aspects of RNA metabolism, including the coordination of post-transcriptional gene regulation that allows organisms to respond to internal changes and environmental stimuli. However, as inherently destructive enzymes, their activity must be carefully controlled. Recent research exemplifies the repertoire of regulatory strategies employed by ribonucleases. The activity of the phosphorolytic exoribonuclease, polynucleotide phosphorylase (PNPase), has previously been shown to be modulated by the Krebs cycle metabolite citrate in Escherichia coli. Here, we provide evidence for the existence of citrate-mediated inhibition of ribonucleases in all three domains of life. In silico molecular docking studies predict that citrate will bind not only to bacterial PNPases from E. coli and Streptomyces antibioticus, but also PNPase from human mitochondria and the structurally and functionally related archaeal exosome complex from Sulfolobus solfataricus. Critically, we show experimentally that citrate also inhibits the exoribonuclease activity of bacterial, eukaryotic and archaeal PNPase homologues in vitro. Furthermore, bioinformatics data, showing key citrate-binding motifs conserved across a broad range of PNPase homologues, suggests that this regulatory mechanism may be widespread. Overall, our data highlight a communicative link between ribonuclease activity and central metabolism that may have been conserved through the course of evolution.
Collapse
Affiliation(s)
- Carlanne M. Stone
- School of Biological Sciences and Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK
| | - Louise E. Butt
- School of Biological Sciences and Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK
| | - Joshua C. Bufton
- School of Biological Sciences and Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK
| | - Daniel C. Lourenco
- School of Biological Sciences and Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK
| | - Darren M. Gowers
- School of Biological Sciences and Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK
| | - Andrew R. Pickford
- School of Biological Sciences and Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK
| | - Paul A. Cox
- School of Pharmacy and Biomedical Sciences and Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DT, UK
| | - Helen A. Vincent
- School of Biological Sciences and Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK
| | - Anastasia J. Callaghan
- School of Biological Sciences and Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK
| |
Collapse
|
20
|
Huen J, Lin CL, Golzarroshan B, Yi WL, Yang WZ, Yuan HS. Structural Insights into a Unique Dimeric DEAD-Box Helicase CshA that Promotes RNA Decay. Structure 2017; 25:469-481. [PMID: 28238534 DOI: 10.1016/j.str.2017.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/05/2017] [Accepted: 01/29/2017] [Indexed: 11/28/2022]
Abstract
CshA is a dimeric DEAD-box helicase that cooperates with ribonucleases for mRNA turnover. The molecular mechanism for how a dimeric DEAD-box helicase aids in RNA decay remains unknown. Here, we report the crystal structure and small-angle X-ray scattering solution structure of the CshA from Geobacillus stearothermophilus. In contrast to typical monomeric DEAD-box helicases, CshA is exclusively a dimeric protein with the RecA-like domains of each protomer forming a V-shaped structure. We show that the C-terminal domains protruding outward from the tip of the V-shaped structure is critical for mediating strong RNA binding and is crucial for efficient RNA-dependent ATP hydrolysis. We also show that RNA remains bound with CshA during ATP hydrolysis cycles and thus bulk RNAs could be unwound and degraded in a processive manner through cooperation between exoribonucleases and CshA. A dimeric helicase is hence preserved in RNA-degrading machinery for efficient RNA turnover in prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Jennifer Huen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, ROC
| | - Chia-Liang Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, ROC
| | - Bagher Golzarroshan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, ROC; Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan 11529, ROC; Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan 30013, ROC
| | - Wan-Li Yi
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, ROC
| | - Wei-Zen Yang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, ROC
| | - Hanna S Yuan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, ROC; Graduate Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, Taiwan 10048, ROC.
| |
Collapse
|
21
|
Cascante-Estepa N, Gunka K, Stülke J. Localization of Components of the RNA-Degrading Machine in Bacillus subtilis. Front Microbiol 2016; 7:1492. [PMID: 27708634 PMCID: PMC5030255 DOI: 10.3389/fmicb.2016.01492] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 09/07/2016] [Indexed: 11/17/2022] Open
Abstract
In bacteria, the control of mRNA stability is crucial to allow rapid adaptation to changing conditions. In most bacteria, RNA degradation is catalyzed by the RNA degradosome, a protein complex composed of endo- and exoribonucleases, RNA helicases, and accessory proteins. In the Gram-positive model organism Bacillus subtilis, the existence of a RNA degradosome assembled around the membrane-bound endoribonuclease RNase Y has been proposed. Here, we have studied the intracellular localization of the protein that have been implicated in the potential B. subtilis RNA degradosome, i.e., polynucleotide phosphorylase, the exoribonucleases J1 and J2, the DEAD-box RNA helicase CshA, and the glycolytic enzymes enolase and phosphofructokinase. Our data suggests that the bulk of these enzymes is located in the cytoplasm. The RNases J1 and J2 as well as the RNA helicase CshA were mainly localized in the peripheral regions of the cell where also the bulk of messenger RNA is localized. We were able to demonstrate active exclusion of these proteins from the transcribing nucleoid. Taken together, our findings suggest that the interactions of the enzymes involved in RNA degradation in B. subtilis are rather transient.
Collapse
Affiliation(s)
- Nora Cascante-Estepa
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen Göttingen, Germany
| | - Katrin Gunka
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen Göttingen, Germany
| | - Jörg Stülke
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen Göttingen, Germany
| |
Collapse
|
22
|
Hossain ST, Deutscher MP. Helicase Activity Plays a Crucial Role for RNase R Function in Vivo and for RNA Metabolism. J Biol Chem 2016; 291:9438-43. [PMID: 27022019 DOI: 10.1074/jbc.c116.726091] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Indexed: 11/06/2022] Open
Abstract
RNase R is a 3' to 5' hydrolytic exoribonuclease that has the unusual ability to digest highly structured RNA. The enzyme possesses an intrinsic, ATP-dependent RNA helicase activity that is essential in vitro for efficient nuclease activity against double-stranded RNA substrates, particularly at lower temperatures, with more stable RNA duplexes, and for duplexes with short 3' overhangs. Here, we inquired whether the helicase activity was also important for RNase R function in vivo and for RNA metabolism. We find that strains containing a helicase-deficient RNase R due to mutations in its ATP-binding Walker motifs exhibit growth defects at low temperatures. Most importantly, cells also lacking polynucleotide phosphorylase (PNPase), and dependent for growth on RNase R, grow extremely poorly at 34, 37, and 42 °C and do not grow at all at 31 °C. Northern analysis revealed that in these cells, fragments of 16S and 23S rRNA accumulate to high levels, leading to interference with ribosome maturation and ultimately to cell death. These findings indicate that the intrinsic helicase activity of RNase R is required for its proper functioning in vivo and for effective RNA metabolism.
Collapse
Affiliation(s)
- Sk Tofajjen Hossain
- From the Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33101
| | - Murray P Deutscher
- From the Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33101
| |
Collapse
|
23
|
Hossain ST, Malhotra A, Deutscher MP. How RNase R Degrades Structured RNA: ROLE OF THE HELICASE ACTIVITY AND THE S1 DOMAIN. J Biol Chem 2016; 291:7877-87. [PMID: 26872969 DOI: 10.1074/jbc.m116.717991] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Indexed: 11/06/2022] Open
Abstract
RNase R, a ubiquitous 3' exoribonuclease, plays an important role in many aspects of RNA metabolism. In contrast to other exoribonucleases, RNase R can efficiently degrade highly structured RNAs, but the mechanism by which this is accomplished has remained elusive. It is known that RNase R contains an unusual, intrinsic RNA helicase activity that facilitates degradation of duplex RNA, but how it stimulates the nuclease activity has also been unclear. Here, we have made use of specifically designed substrates to compare the nuclease and helicase activities of RNase R. We have also identified and mutated several residues in the S1 RNA-binding domain that are important for interacting with duplex RNA and have measured intrinsic tryptophan fluorescence to analyze the conformational changes that occur upon binding of structured RNA. Using these approaches, we have determined the relation of the RNA helicase, ATP binding, and nuclease activities of RNase R. This information has been combined with a structural analysis of RNase R, based on its homology to RNase II, whose structure has been determined, to develop a detailed model that explains how RNase R digests structured RNA and how this differs from its action on single-stranded RNA.
Collapse
Affiliation(s)
- Sk Tofajjen Hossain
- From the Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33101
| | - Arun Malhotra
- From the Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33101
| | - Murray P Deutscher
- From the Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33101
| |
Collapse
|
24
|
Briani F, Carzaniga T, Dehò G. Regulation and functions of bacterial PNPase. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:241-58. [PMID: 26750178 DOI: 10.1002/wrna.1328] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/23/2015] [Accepted: 11/23/2015] [Indexed: 01/29/2023]
Abstract
Polynucleotide phosphorylase (PNPase) is an exoribonuclease that catalyzes the processive phosphorolytic degradation of RNA from the 3'-end. The enzyme catalyzes also the reverse reaction of polymerization of nucleoside diphosphates that has been implicated in the generation of heteropolymeric tails at the RNA 3'-end. The enzyme is widely conserved and plays a major role in RNA decay in both Gram-negative and Gram-positive bacteria. Moreover, it participates in maturation and quality control of stable RNA. PNPase autoregulates its own expression at post-transcriptional level through a complex mechanism that involves the endoribonuclease RNase III and translation control. The activity of PNPase is modulated in an intricate and still unclear manner by interactions with small molecules and recruitment in different multiprotein complexes. Not surprisingly, given the wide spectrum of PNPase substrates, PNPase-defective mutations in different bacterial species have pleiotropic effects and perturb the execution of genetic programs involving drastic changes in global gene expression such as biofilm formation, growth at suboptimal temperatures, and virulence.
Collapse
Affiliation(s)
- Federica Briani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Thomas Carzaniga
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Gianni Dehò
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
25
|
Tseng YT, Chiou NT, Gogiraju R, Lin-Chao S. The Protein Interaction of RNA Helicase B (RhlB) and Polynucleotide Phosphorylase (PNPase) Contributes to the Homeostatic Control of Cysteine in Escherichia coli. J Biol Chem 2015; 290:29953-63. [PMID: 26494621 PMCID: PMC4705995 DOI: 10.1074/jbc.m115.691881] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Indexed: 11/12/2022] Open
Abstract
PNPase, one of the major enzymes with 3′ to 5′ single-stranded RNA degradation and processing activities, can interact with the RNA helicase RhlB independently of RNA degradosome formation in Escherichia coli. Here, we report that loss of interaction between RhlB and PNPase impacts cysteine homeostasis in E. coli. By random mutagenesis, we identified a mutant RhlBP238L that loses 75% of its ability to interact with PNPase but retains normal interaction with RNase E and RNA, in addition to exhibiting normal helicase activity. Applying microarray analyses to an E. coli strain with impaired RNA degradosome formation, we investigated the biological consequences of a weakened interaction between RhlB and PNPase. We found significant increases in 11 of 14 genes involved in cysteine biosynthesis. Subsequent Northern blot analyses showed that the up-regulated transcripts were the result of stabilization of the cysB transcript encoding a transcriptional activator for the cys operons. Furthermore, Northern blots of PNPase or RhlB mutants showed that RhlB-PNPase plays both a catalytic and structural role in regulating cysB degradation. Cells expressing the RhlBP238L mutant exhibited an increase in intracellular cysteine and an enhanced anti-oxidative response. Collectively, this study suggests a mechanism by which bacteria use the PNPase-RhlB exosome-like complex to combat oxidative stress by modulating cysB mRNA degradation.
Collapse
Affiliation(s)
- Yi-Ting Tseng
- From the Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, the Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Ni-Ting Chiou
- From the Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, the Institute of Biochemistry & Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | | | - Sue Lin-Chao
- From the Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan,
| |
Collapse
|
26
|
Hossain ST, Malhotra A, Deutscher MP. The Helicase Activity of Ribonuclease R Is Essential for Efficient Nuclease Activity. J Biol Chem 2015; 290:15697-15706. [PMID: 25931119 DOI: 10.1074/jbc.m115.650176] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Indexed: 01/15/2023] Open
Abstract
RNase R, which belongs to the RNB family of enzymes, is a 3' to 5' hydrolytic exoribonuclease able to digest highly structured RNA. It was previously reported that RNase R possesses an intrinsic helicase activity that is independent of its ribonuclease activity. However, the properties of this helicase activity and its relationship to the ribonuclease activity were not clear. Here, we show that helicase activity is dependent on ATP and have identified ATP-binding Walker A and Walker B motifs that are present in Escherichia coli RNase R and in 88% of mesophilic bacterial genera analyzed, but absent from thermophilic bacteria. We also show by mutational analysis that both of these motifs are required for helicase activity. Interestingly, the Walker A motif is located in the C-terminal region of RNase R, whereas the Walker B motif is in its N-terminal region implying that the two parts of the protein must come together to generate a functional ATP-binding site. Direct measurement of ATP binding confirmed that ATP binds only when double-stranded RNA is present. Detailed analysis of the helicase activity revealed that ATP hydrolysis is not required because both adenosine 5'-O-(thiotriphosphate) and adenosine 5'-(β,γ-imino)triphosphate can stimulate helicase activity, as can other nucleoside triphosphates. Although the nuclease activity of RNase R is not needed for its helicase activity, the helicase activity is important for effective nuclease activity against a dsRNA substrate, particularly at lower temperatures and with more stable duplexes. Moreover, competition experiments and mutational analysis revealed that the helicase activity utilizes the same catalytic channel as the nuclease activity. These findings indicate that the helicase activity plays an essential role in the catalytic efficiency of RNase R.
Collapse
Affiliation(s)
- Sk Tofajjen Hossain
- From the Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33101
| | - Arun Malhotra
- From the Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33101
| | - Murray P Deutscher
- From the Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33101.
| |
Collapse
|
27
|
Deutscher MP. How bacterial cells keep ribonucleases under control. FEMS Microbiol Rev 2015; 39:350-61. [PMID: 25878039 DOI: 10.1093/femsre/fuv012] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2015] [Indexed: 11/13/2022] Open
Abstract
Ribonucleases (RNases) play an essential role in essentially every aspect of RNA metabolism, but they also can be destructive enzymes that need to be regulated to avoid unwanted degradation of RNA molecules. As a consequence, cells have evolved multiple strategies to protect RNAs against RNase action. They also utilize a variety of mechanisms to regulate the RNases themselves. These include post-transcriptional regulation, post-translational modification, trans-acting inhibitors, cellular localization, as well as others that are less well studied. In this review, I will briefly discuss how RNA molecules are protected and then examine in detail our current understanding of the mechanisms known to regulate individual RNases.
Collapse
Affiliation(s)
- Murray P Deutscher
- Biochemistry & Molecular Biology, University of Miami, Miami, FL 33136-6129, USA
| |
Collapse
|
28
|
Rische-Grahl T, Weber L, Remes B, Förstner KU, Klug G. RNase J is required for processing of a small number of RNAs in Rhodobacter sphaeroides. RNA Biol 2014; 11:855-64. [PMID: 24922065 PMCID: PMC4179960 DOI: 10.4161/rna.29440] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
All bacteria contain multiple exoribonucleases to ensure a fast breakdown of different RNA molecules, either for maturation or for complete degradation to the level of mononucleotides. This efficient RNA degradation plays pivotal roles in the post-transcriptional gene regulation, in RNA processing and maturation as well as in RNA quality control mechanisms and global adaption to stress conditions. Besides different 3'-to-5' exoribonucleases mostly with overlapping functions in vivo many bacteria additionally possess the 5'-to-3' exoribonuclease, RNase J, to date the only known bacterial ribonuclease with this activity. An RNA-seq approach was applied to identify specific targets of RNase J in the α-proteobacterium Rhodobacter sphaeroides. Only few transcripts were strongly affected by the lack of RNase J implying that its function is mostly required for specific processing/degradation steps in this bacterium. The accumulation of diverse RNA fragments in the RNase J deletion mutant points to RNA features that apparently cannot be targeted by the conventional 3'-exoribonucleases in Gram-negative bacteria.
Collapse
Affiliation(s)
- Tom Rische-Grahl
- Institut für Mikrobiologie und Molekularbiologie, University of Giessen, Germany
| | - Lennart Weber
- Institut für Mikrobiologie und Molekularbiologie, University of Giessen, Germany
| | - Bernhard Remes
- Institut für Mikrobiologie und Molekularbiologie, University of Giessen, Germany
| | - Konrad U Förstner
- Institute for Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany; Research Center for Infectious Diseases, University of Würzburg, 97080 Würzburg, Germany
| | - Gabriele Klug
- Institut für Mikrobiologie und Molekularbiologie, University of Giessen, Germany
| |
Collapse
|
29
|
Rapid degradation of Hfq-free RyhB in Yersinia pestis by PNPase independent of putative ribonucleolytic complexes. BIOMED RESEARCH INTERNATIONAL 2014; 2014:798918. [PMID: 24818153 PMCID: PMC4003864 DOI: 10.1155/2014/798918] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 03/10/2014] [Accepted: 03/15/2014] [Indexed: 11/17/2022]
Abstract
The RNA chaperone Hfq in bacteria stabilizes sRNAs by protecting them from the attack of ribonucleases. Upon release from Hfq, sRNAs are preferably degraded by PNPase. PNPase usually forms multienzyme ribonucleolytic complexes with endoribonuclease E and/or RNA helicase RhlB to facilitate the degradation of the structured RNA. However, whether PNPase activity on Hfq-free sRNAs is associated with the assembly of RNase E or RhlB has yet to be determined. Here we examined the roles of the main endoribonucleases, exoribonucleases, and ancillary RNA-modifying enzymes in the degradation of Y. pestis RyhB in the absence of Hfq. Expectedly, the transcript levels of both RyhB1 and RyhB2 increase only after inactivating PNPase, which confirms the importance of PNPase in sRNA degradation. By contrast, the signal of RyhB becomes barely perceptible after inactivating of RNase III, which may be explained by the increase in PNPase levels resulting from the exemption of pnp mRNA from RNase III processing. No significant changes are observed in RyhB stability after deletion of either the PNPase-binding domain of RNase E or rhlB. Therefore, PNPase acts as a major enzyme of RyhB degradation independent of PNPase-containing RNase E and RhlB assembly in the absence of Hfq.
Collapse
|
30
|
Intracellular ribonucleases involved in transcript processing and decay: precision tools for RNA. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:491-513. [PMID: 23545199 DOI: 10.1016/j.bbagrm.2013.03.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/19/2013] [Accepted: 03/22/2013] [Indexed: 12/15/2022]
Abstract
In order to adapt to changing environmental conditions and regulate intracellular events such as division, cells are constantly producing new RNAs while discarding old or defective transcripts. These functions require the coordination of numerous ribonucleases that precisely cleave and trim newly made transcripts to produce functional molecules, and rapidly destroy unnecessary cellular RNAs. In recent years our knowledge of the nature, functions and structures of these enzymes in bacteria, archaea and eukaryotes has dramatically expanded. We present here a synthetic overview of the recent development in this dynamic area which has seen the identification of many new endoribonucleases and exoribonucleases. Moreover, the increasing pace at which the structures of these enzymes, or of their catalytic domains, have been solved has provided atomic level detail into their mechanisms of action. Based on sequence conservation and structural data, these proteins have been grouped into families, some of which contain only ribonuclease members, others including a variety of nucleolytic enzymes that act upon DNA and/or RNA. At the other extreme some ribonucleases belong to families of proteins involved in a wide variety of enzymatic reactions. Functional characterization of these fascinating enzymes has provided evidence for the extreme diversity of their biological functions that include, for example, removal of poly(A) tails (deadenylation) or poly(U) tails from eukaryotic RNAs, processing of tRNA and mRNA 3' ends, maturation of rRNAs and destruction of unnecessary mRNAs. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
|
31
|
Bacterial helicases in post-transcriptional control. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:878-83. [PMID: 23291566 DOI: 10.1016/j.bbagrm.2012.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 12/17/2012] [Accepted: 12/20/2012] [Indexed: 12/25/2022]
Abstract
Among the five superfamilies of helicases involved in RNA and DNA metabolism, superfamily 2 and superfamily 5 include bacterial RNA-helicases. These enzymes have been shown to be involved in ribosome biogenesis and post-transcriptional gene regulation. Here, we focus on bacterial regulatory mechanisms that are mediated by RNA helicases belonging to superfamily 2, which includes DEAD-box and DEAH-box helicases. Some of these helicases are part of bacterial degradosomes and were shown to unwind RNA duplexes. We will review examples where these enzymes have been implicated in translatability and metabolic stability of bacterial transcripts. This article is part of a Special Issue entitled: The Biology of RNA helicases - Modulation for life.
Collapse
|
32
|
Abstract
Escherichia coli contains multiple 3' to 5' RNases, of which two, RNase PH and polynucleotide phosphorylase (PNPase), use inorganic phosphate as a nucleophile to catalyze RNA cleavage. It is known that an absence of these two enzymes causes growth defects, but the basis for these defects has remained undefined. To further an understanding of the function of these enzymes, the degradation pattern of different cellular RNAs was analyzed. It was observed that an absence of both enzymes results in the appearance of novel mRNA degradation fragments. Such fragments were also observed in strains containing mutations in RNase R and PNPase, enzymes whose collective absence is known to cause an accumulation of structured RNA fragments. Additional experiments indicated that the growth defects of strains containing RNase R and PNPase mutations were exacerbated upon RNase PH removal. Taken together, these observations suggested that RNase PH could play a role in structured RNA degradation. Biochemical experiments with RNase PH demonstrated that this enzyme digests through RNA duplexes of moderate stability. In addition, mapping and sequence analysis of an mRNA degradation fragment that accumulates in the absence of the phosphorolytic enzymes revealed the presence of an extended stem-loop motif at the 3' end. Overall, these results indicate that RNase PH plays a novel role in the degradation of structured RNAs and provides a potential explanation for the growth defects caused by an absence of the phosphorolytic RNases.
Collapse
|
33
|
Burger A, Whiteley C, Boshoff A. Current perspectives of the Escherichia coli RNA degradosome. Biotechnol Lett 2011; 33:2337-50. [DOI: 10.1007/s10529-011-0713-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 07/20/2011] [Indexed: 11/29/2022]
|
34
|
Characterization of components of the Staphylococcus aureus mRNA degradosome holoenzyme-like complex. J Bacteriol 2011; 193:5520-6. [PMID: 21764917 DOI: 10.1128/jb.05485-11] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial two-hybrid analysis identified the Staphylococcus aureus RNA degradosome-like complex to include RNase J1, RNase J2, RNase Y, polynucleotide phosphorylase (PNPase), enolase, phosphofructokinase, and a DEAD box RNA helicase. Results also revealed that the recently recognized RNase RnpA interacts with the S. aureus degradosome and that this interaction is conserved in other Gram-positive organisms.
Collapse
|
35
|
Kaberdin VR, Singh D, Lin-Chao S. Composition and conservation of the mRNA-degrading machinery in bacteria. J Biomed Sci 2011; 18:23. [PMID: 21418661 PMCID: PMC3071783 DOI: 10.1186/1423-0127-18-23] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 03/22/2011] [Indexed: 11/29/2022] Open
Abstract
RNA synthesis and decay counteract each other and therefore inversely regulate gene expression in pro- and eukaryotic cells by controlling the steady-state level of individual transcripts. Genetic and biochemical data together with recent in depth annotation of bacterial genomes indicate that many components of the bacterial RNA decay machinery are evolutionarily conserved and that their functional analogues exist in organisms belonging to all kingdoms of life. Here we briefly review biological functions of essential enzymes, their evolutionary conservation and multienzyme complexes that are involved in mRNA decay in Escherichia coli and discuss their conservation in evolutionarily distant bacteria.
Collapse
|
36
|
Structure and Degradation Mechanisms of 3′ to 5′ Exoribonucleases. NUCLEIC ACIDS AND MOLECULAR BIOLOGY 2011. [DOI: 10.1007/978-3-642-21078-5_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
37
|
Abstract
Bacterial stress responses provide them the opportunity to survive hostile environments, proliferate and potentially cause diseases in humans and animals. The way in which pathogenic bacteria interact with host immune cells triggers a complicated series of events that include rapid genetic re‐programming in response to the various host conditions encountered. Viewed in this light, the bacterial host‐cell induced stress response (HCISR) is similar to any other well‐characterized environmental stress to which bacteria must respond by upregulating a group of specific stress‐responsive genes. Post stress, bacteria must resume their pre‐stress genetic program, and, as a consequence, must degrade unnecessary stress responsive transcripts through RNA decay mechanisms. Further, there is a well‐established role for several ribonucleases in the cold shock response whereby they modulate the changing transcript landscape in response to the stress, and during acclimation and subsequent genetic re‐programming post stress. Recently, ribonucleases have been implicated as virulence‐associated factors in several notable Gram‐negative pathogens including, the yersiniae, the salmonellae, Helicobacter pylori, Shigella flexneri and Aeromonas hydrophila. This review will focus on the roles played by ribonucleases in bacterial virulence, other bacterial stress responses, and on their novel therapeutic applications.
Collapse
Affiliation(s)
- Abidat Lawal
- Department of Biology, Center for Bionanotechnology and Environmental Research, Texas Southern University, Houston, TX, USA
| | | | | | | |
Collapse
|
38
|
Arraiano CM, Andrade JM, Domingues S, Guinote IB, Malecki M, Matos RG, Moreira RN, Pobre V, Reis FP, Saramago M, Silva IJ, Viegas SC. The critical role of RNA processing and degradation in the control of gene expression. FEMS Microbiol Rev 2010; 34:883-923. [PMID: 20659169 DOI: 10.1111/j.1574-6976.2010.00242.x] [Citation(s) in RCA: 260] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The continuous degradation and synthesis of prokaryotic mRNAs not only give rise to the metabolic changes that are required as cells grow and divide but also rapid adaptation to new environmental conditions. In bacteria, RNAs can be degraded by mechanisms that act independently, but in parallel, and that target different sites with different efficiencies. The accessibility of sites for degradation depends on several factors, including RNA higher-order structure, protection by translating ribosomes and polyadenylation status. Furthermore, RNA degradation mechanisms have shown to be determinant for the post-transcriptional control of gene expression. RNases mediate the processing, decay and quality control of RNA. RNases can be divided into endonucleases that cleave the RNA internally or exonucleases that cleave the RNA from one of the extremities. Just in Escherichia coli there are >20 different RNases. RNase E is a single-strand-specific endonuclease critical for mRNA decay in E. coli. The enzyme interacts with the exonuclease polynucleotide phosphorylase (PNPase), enolase and RNA helicase B (RhlB) to form the degradosome. However, in Bacillus subtilis, this enzyme is absent, but it has other main endonucleases such as RNase J1 and RNase III. RNase III cleaves double-stranded RNA and family members are involved in RNA interference in eukaryotes. RNase II family members are ubiquitous exonucleases, and in eukaryotes, they can act as the catalytic subunit of the exosome. RNases act in different pathways to execute the maturation of rRNAs and tRNAs, and intervene in the decay of many different mRNAs and small noncoding RNAs. In general, RNases act as a global regulatory network extremely important for the regulation of RNA levels.
Collapse
Affiliation(s)
- Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, 2781-901 Oeiras, Portugal.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lehnik-Habrink M, Pförtner H, Rempeters L, Pietack N, Herzberg C, Stülke J. The RNA degradosome in Bacillus subtilis: identification of CshA as the major RNA helicase in the multiprotein complex. Mol Microbiol 2010; 77:958-71. [PMID: 20572937 DOI: 10.1111/j.1365-2958.2010.07264.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In most organisms, dedicated multiprotein complexes, called exosome or RNA degradosome, carry out RNA degradation and processing. In addition to varying exoribonucleases or endoribonucleases, most of these complexes contain a RNA helicase. In the Gram-positive bacterium Bacillus subtilis, a RNA degradosome has recently been described; however, no RNA helicase was identified. In this work, we tested the interaction of the four DEAD box RNA helicases encoded in the B. subtilis genome with the RNA degradosome components. One of these helicases, CshA, is able to interact with several of the degradosome proteins, i.e. RNase Y, the polynucleotide phosphorylase, and the glycolytic enzymes enolase and phosphofructokinase. The determination of in vivo protein-protein interactions revealed that CshA is indeed present in a complex with polynucleotide phosphorylase. CshA is composed of two RecA-like domains that are found in all DEAD box RNA helicases and a C-terminal domain that is present in some members of this protein family. An analysis of the contribution of the individual domains of CshA revealed that the C-terminal domain is crucial both for dimerization of CshA and for all interactions with components of the RNA degradosome, including RNase Y. A transfer of this domain to CshB allowed the resulting chimeric protein to interact with RNase Y suggesting that this domain confers interaction specificity. As a degradosome component, CshA is present in the cell in similar amounts under all conditions. Taken together, our results suggest that CshA is the functional equivalent of the RhlB helicase of the Escherichia coli RNA degradosome.
Collapse
Affiliation(s)
- Martin Lehnik-Habrink
- Department of General Microbiology, Georg-August-University Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Henrike Pförtner
- Department of General Microbiology, Georg-August-University Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Leonie Rempeters
- Department of General Microbiology, Georg-August-University Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Nico Pietack
- Department of General Microbiology, Georg-August-University Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Christina Herzberg
- Department of General Microbiology, Georg-August-University Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Jörg Stülke
- Department of General Microbiology, Georg-August-University Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| |
Collapse
|
40
|
Self-assembly of the bacterial cytoskeleton-associated RNA helicase B protein into polymeric filamentous structures. J Bacteriol 2010; 192:3222-6. [PMID: 20382767 DOI: 10.1128/jb.00105-10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli RNA degradosome proteins are organized into a helical cytoskeletal-like structure within the cell. Here we describe the ATP-dependent assembly of the RhlB component of the degradosome into polymeric filamentous structures in vitro, which suggests that extended polymers of RhlB are likely to comprise a basic core element of the degradosome cytoskeletal structures.
Collapse
|
41
|
Wang DDH, Shu Z, Lieser SA, Chen PL, Lee WH. Human mitochondrial SUV3 and polynucleotide phosphorylase form a 330-kDa heteropentamer to cooperatively degrade double-stranded RNA with a 3'-to-5' directionality. J Biol Chem 2009; 284:20812-21. [PMID: 19509288 DOI: 10.1074/jbc.m109.009605] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Efficient turnover of unnecessary and misfolded RNAs is critical for maintaining the integrity and function of the mitochondria. The mitochondrial RNA degradosome of budding yeast (mtEXO) has been recently studied and characterized; yet no RNA degradation machinery has been identified in the mammalian mitochondria. In this communication, we demonstrated that purified human SUV3 (suppressor of Var1 3) dimer and polynucleotide phosphorylase (PNPase) trimer form a 330-kDa heteropentamer that is capable of efficiently degrading double-stranded RNA (dsRNA) substrates in the presence of ATP, a task the individual components cannot perform separately. The configuration of this complex is similar to that of the core complex of the E. coli RNA degradosome lacking RNase E but very different from that of the yeast mtEXO. The hSUV3-hPNPase complex prefers substrates containing a 3' overhang and degrades the RNA in a 3'-to-5' directionality. Deleting a short stretch of amino acids (positions 510-514) compromises the ability of hSUV3 to form a stable complex with hPNPase to degrade dsRNA substrates but does not affect its helicase activity. Furthermore, two additional hSUV3 mutants with abolished helicase activity because of disrupted ATPase or RNA binding activities were able to bind hPNPase. However, the resulting complexes failed to degrade dsRNA, suggesting that an intact helicase activity is essential for the complex to serve as an effective RNA degradosome. Taken together, these results strongly suggest that the complex of hSUV3-hPNPase is an integral entity for efficient degradation of structured RNA and may be the long sought RNA-degrading complex in the mammalian mitochondria.
Collapse
Affiliation(s)
- Dennis Ding-Hwa Wang
- Department of Biological Chemistry, University of California, Irvine, California 92697, USA.
| | | | | | | | | |
Collapse
|
42
|
Chapter 1 A Phylogenetic View of Bacterial Ribonucleases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:1-41. [DOI: 10.1016/s0079-6603(08)00801-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
43
|
Andrade JM, Pobre V, Silva IJ, Domingues S, Arraiano CM. The role of 3'-5' exoribonucleases in RNA degradation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:187-229. [PMID: 19215773 DOI: 10.1016/s0079-6603(08)00805-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RNA degradation is a major process controlling RNA levels and plays a central role in cell metabolism. From the labile messenger RNA to the more stable noncoding RNAs (mostly rRNA and tRNA, but also the expanding class of small regulatory RNAs) all molecules are eventually degraded. Elimination of superfluous transcripts includes RNAs whose expression is no longer required, but also the removal of defective RNAs. Consequently, RNA degradation is an inherent step in RNA quality control mechanisms. Furthermore, it contributes to the recycling of the nucleotide pool in the cell. Escherichia coli has eight 3'-5' exoribonucleases, which are involved in multiple RNA metabolic pathways. However, only four exoribonucleases appear to accomplish all RNA degradative activities: polynucleotide phosphorylase (PNPase), ribonuclease II (RNase II), RNase R, and oligoribonuclease. Here, we summarize the available information on the role of bacterial 3'-5' exoribonucleases in the degradation of different substrates, highlighting the most recent data that have contributed to the understanding of the diverse modes of operation of these degradative enzymes.
Collapse
Affiliation(s)
- José M Andrade
- Instituto de Tecnologia Quimica e Biologica, Universidade Nova de Lisboa, Qeiras, Portugal
| | | | | | | | | |
Collapse
|
44
|
Del Favero M, Mazzantini E, Briani F, Zangrossi S, Tortora P, Dehò G. Regulation of Escherichia coli polynucleotide phosphorylase by ATP. J Biol Chem 2008; 283:27355-27359. [PMID: 18650428 DOI: 10.1074/jbc.c800113200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polynucleotide phosphorylase (PNPase), an enzyme conserved in bacteria and eukaryotic organelles, processively catalyzes the phosphorolysis of RNA, releasing nucleotide diphosphates, and the reverse polymerization reaction. In Escherichia coli, both reactions are implicated in RNA decay, as addition of either poly(A) or heteropolymeric tails targets RNA to degradation. PNPase may also be associated with the RNA degradosome, a heteromultimeric protein machine that can degrade highly structured RNA. Here, we report that ATP binds to PNPase and allosterically inhibits both its phosphorolytic and polymerization activities. Our data suggest that PNPase-dependent RNA tailing and degradation occur mainly at low ATP concentrations, whereas other enzymes may play a more significant role at high energy charge. These findings connect RNA turnover with the energy charge of the cell and highlight unforeseen metabolic roles of PNPase.
Collapse
Affiliation(s)
- Marta Del Favero
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milan, Italy
| | - Elisa Mazzantini
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milan, Italy
| | - Federica Briani
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, 20133 Milan, Italy
| | - Sandro Zangrossi
- Centro di Studio del Consiglio Nazionale delle Ricerche sulla Biologia Cellulare e Molecolare delle Piante, 20133 Milan, Italy
| | - Paolo Tortora
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milan, Italy
| | - Gianni Dehò
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, 20133 Milan, Italy.
| |
Collapse
|
45
|
Taghbalout A, Rothfield L. RNaseE and RNA helicase B play central roles in the cytoskeletal organization of the RNA degradosome. J Biol Chem 2008; 283:13850-5. [PMID: 18337249 DOI: 10.1074/jbc.m709118200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RNA degradosome of Escherichia coli is a multiprotein complex that plays an essential role in normal RNA processing and decay. It was recently shown that the major degradosome constituents are organized in a coiled cytoskeletal-like structure that extends along the length of the cell. Here we show that the endoribonuclease E (RNaseE) and RNA helicase B (RhlB) components of the degradosome can each independently form coiled structures in the absence of the other degradosome proteins. In contrast, the cytoskeletal organization of the other degradosome proteins required the presence of the RNaseE or RhlB coiled elements. Although the RNaseE and RhlB structures were equally competent to support the helical organization of polynucleotide phosphorylase, the cytoskeletal-like organization of enolase occurred only in the presence of the RNaseE coiled structure. The results indicate that the RNA degradosome proteins are components of the bacterial cytoskeleton rather than existing as randomly distributed multiprotein complexes within the cell and suggest a model for the cellular organization of the components within the helical degradosomal structure.
Collapse
Affiliation(s)
- Aziz Taghbalout
- Department of Molecular, Microbial, and Structural Biology, University of Connecticut Health Center, Farmington, Connecticut 06032, USA.
| | | |
Collapse
|
46
|
Mauri P, Dehò G. Chapter 6 A Proteomic Approach to the Analysis of RNA Degradosome Composition in Escherichia coli. Methods Enzymol 2008; 447:99-117. [DOI: 10.1016/s0076-6879(08)02206-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
47
|
Abstract
The RNA degradosome of Escherichia coli is a multiprotein complex involved in the degradation of mRNA. The principal components are RNase E, PNPase, RhlB, and enolase. RNase E is a large multidomain protein with an N-terminal catalytic region and a C-terminal noncatalytic region that is mostly natively unstructured protein. The noncatalytic region contains sites for binding RNA and for protein-protein interactions with other components of the RNA degradosome. Several recent studies suggest that there are alternative forms of the RNA degradosome depending on growth conditions or other factors. These alternative forms appear to modulate RNase E activity in the degradation of mRNA. RNA degradosome-like complexes appear to be conserved throughout the Proteobacteria, but there is a surprising variability in composition that might contribute to the adaptation of these bacteria to the enormously wide variety of niches in which they live.
Collapse
Affiliation(s)
- Agamemnon J Carpousis
- Laboratoire de Microbiologie et Génétique Moléculaires, Unité Mixte de Recherche 5100, Centre National de la Recherche Scientifique et Université Paul Sabatier, 31062 Toulouse, France.
| |
Collapse
|
48
|
Jourdan SS, McDowall KJ. Sensing of 5′ monophosphate by Escherichia coli RNase G can significantly enhance association with RNA and stimulate the decay of functional mRNA transcripts in vivo. Mol Microbiol 2007; 67:102-15. [DOI: 10.1111/j.1365-2958.2007.06028.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Chen HW, Koehler CM, Teitell MA. Human polynucleotide phosphorylase: location matters. Trends Cell Biol 2007; 17:600-8. [DOI: 10.1016/j.tcb.2007.09.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 09/01/2007] [Accepted: 09/03/2007] [Indexed: 01/21/2023]
|
50
|
Biomedical vignette. J Biomed Sci 2007. [DOI: 10.1007/s11373-007-9184-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|