1
|
Santiago T, Konstantinovsky D, Tremblay M, Perets EA, Hammes-Schiffer S, Yan ECY. Drug binding disrupts chiral water structures in the DNA first hydration shell. Chem Sci 2025:d4sc08372e. [PMID: 40110517 PMCID: PMC11917447 DOI: 10.1039/d4sc08372e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/11/2025] [Indexed: 03/22/2025] Open
Abstract
Knowledge of how intermolecular interactions change hydration structures surrounding DNA will heighten understanding of DNA biology and advance drug development. However, probing changes in DNA hydration structures in response to molecular interactions and drug binding in situ under ambient conditions has remained challenging. Here, we apply a combined experimental and computational approach of chiral-selective vibrational sum frequency generation spectroscopy (chiral SFG) to probe changes of DNA hydration structures when a small-molecule drug, netropsin, binds the minor groove of DNA. Our results show that chiral SFG can detect water being displaced from the minor groove of DNA due to netropsin binding. Additionally, we observe that chiral SFG distinguishes between weakly and strongly hydrogen-bonded water hydrating DNA. Chiral SFG spectra show that netropsin binding, instead of displacing weakly hydrogen-bonded water, preferentially displaces water molecules strongly hydrogen-bonded to thymine carbonyl groups in the DNA minor groove, revealing the roles of water in modulating site-specificity of netropsin binding to duplex DNA rich in adenine-thymine sequences. The results convey the promise of chiral SFG to offer mechanistic insights into roles of water in drug development targeting DNA.
Collapse
Affiliation(s)
- Ty Santiago
- Department of Chemistry, Yale University New Haven CT 06520 USA
| | - Daniel Konstantinovsky
- Department of Chemistry, Yale University New Haven CT 06520 USA
- Department of Molecular Biophysics and Biochemistry, Yale University New Haven CT 06520 USA
| | - Matthew Tremblay
- Department of Chemistry, Yale University New Haven CT 06520 USA
- Department of Chemistry, Princeton University Princeton New Jersey 08544 USA
| | - Ethan A Perets
- Department of Chemistry, Yale University New Haven CT 06520 USA
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University New Haven CT 06520 USA
- Department of Chemistry, Princeton University Princeton New Jersey 08544 USA
| | - Elsa C Y Yan
- Department of Chemistry, Yale University New Haven CT 06520 USA
| |
Collapse
|
2
|
Wu G, Chen P, Yang R, Chen Z. Surface Hydration and Antifouling Activity of Coatings of Polymers and Their Zwitterionic Derivatives Prepared Using Initiated Chemical Vapor Deposition (iCVD). J Phys Chem Lett 2025; 16:238-244. [PMID: 39718555 DOI: 10.1021/acs.jpclett.4c03235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Sum frequency generation vibrational spectroscopy was applied to study the surface hydration and protein adsorption behavior on several polymer coatings based on pyridine, imidazole, and amine side groups along with vinyl or methacrylate backbones and their corresponding zwitterionic forms with carboxybetaine or sulfobetaine side chains, prepared by initiated chemical vapor deposition (iCVD). iCVD also enables facile tuning of the cross-linking density of the polymer coatings by blending in a cross-linker during the deposition, namely, 1,3,5,7-tetramethyl-1,3,5,7-tetravinyl cyclotetrasiloxane. Our results show that both the low- and high-cross-linking density zwitterionic polymers exhibit significantly better antifouling activities compared to those of the polymers without the zwitterionic side chains. The weak hydration signals from the low-density zwitterionic polymer/water interfaces were caused by the permeation of the polymer layer by water. The iCVD method is a widely applicable methodology to prepare zwitterionic polymer coatings with an excellent antifouling property.
Collapse
Affiliation(s)
- Guangyao Wu
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48103, United States
| | - Pengyu Chen
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Rong Yang
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48103, United States
| |
Collapse
|
3
|
Perets EA, Konstantinovsky D, Santiago T, Videla PE, Tremblay M, Velarde L, Batista VS, Hammes-Schiffer S, Yan ECY. Beyond the "spine of hydration": Chiral SFG spectroscopy detects DNA first hydration shell and base pair structures. J Chem Phys 2024; 161:095104. [PMID: 39230381 PMCID: PMC11377083 DOI: 10.1063/5.0220479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024] Open
Abstract
Experimental methods capable of selectively probing water at the DNA minor groove, major groove, and phosphate backbone are crucial for understanding how hydration influences DNA structure and function. Chiral-selective sum frequency generation spectroscopy (chiral SFG) is unique among vibrational spectroscopies because it can selectively probe water molecules that form chiral hydration structures around biomolecules. However, interpreting chiral SFG spectra is challenging since both water and the biomolecule can produce chiral SFG signals. Here, we combine experiment and computation to establish a theoretical framework for the rigorous interpretation of chiral SFG spectra of DNA. We demonstrate that chiral SFG detects the N-H stretch of DNA base pairs and the O-H stretch of water, exclusively probing water molecules in the DNA first hydration shell. Our analysis reveals that DNA transfers chirality to water molecules only within the first hydration shell, so they can be probed by chiral SFG spectroscopy. Beyond the first hydration shell, the electric field-induced water structure is symmetric and, therefore, precludes chiral SFG response. Furthermore, we find that chiral SFG can differentiate chiral subpopulations of first hydration shell water molecules at the minor groove, major groove, and phosphate backbone. Our findings challenge the scientific perspective dominant for more than 40 years that the minor groove "spine of hydration" is the only chiral water structure surrounding the DNA double helix. By identifying the molecular origins of the DNA chiral SFG spectrum, we lay a robust experimental and theoretical foundation for applying chiral SFG to explore the chemical and biological physics of DNA hydration.
Collapse
Affiliation(s)
- Ethan A Perets
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Daniel Konstantinovsky
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Ty Santiago
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Pablo E Videla
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Matthew Tremblay
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Luis Velarde
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Elsa C Y Yan
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
4
|
Zheng X, Ni Z, Pei Q, Wang M, Tan J, Bai S, Shi F, Ye S. Probing the Molecular Structure and Dynamics of Membrane-Bound Proteins during Misfolding Processes by Sum-Frequency Generation Vibrational Spectroscopy. Chempluschem 2024; 89:e202300684. [PMID: 38380553 DOI: 10.1002/cplu.202300684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 02/22/2024]
Abstract
Protein misfolding and amyloid formation are implicated in the protein dysfunction, but the underlying mechanism remains to be clarified due to the lack of effective tools for detecting the transient intermediates. Sum frequency generation vibrational spectroscopy (SFG-VS) has emerged as a powerful tool for identifying the structure and dynamics of proteins at the interfaces. In this review, we summarize recent SFG-VS studies on the structure and dynamics of membrane-bound proteins during misfolding processes. This paper first introduces the methods for determining the secondary structure of interfacial proteins: combining chiral and achiral spectra of amide A and amide I bands and combining amide I, amide II, and amide III spectral features. To demonstrate the ability of SFG-VS in investigating the interfacial protein misfolding and amyloid formation, studies on the interactions between different peptides/proteins (islet amyloid polypeptide, amyloid β, prion protein, fused in sarcoma protein, hen egg-white lysozyme, fusing fusion peptide, class I hydrophobin SC3 and class II hydrophobin HFBI) and surfaces such as lipid membranes are discussed. These molecular-level studies revealed that SFG-VS can provide a unique understanding of the mechanism of interfacial protein misfolding and amyloid formation in real time, in situ and without any exogenous labeling.
Collapse
Affiliation(s)
- Xiaoxuan Zheng
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Zijian Ni
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Quanbing Pei
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Mengmeng Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Junjun Tan
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Shiyu Bai
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Fangwen Shi
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Shuji Ye
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| |
Collapse
|
5
|
Konstantinovsky D, Santiago T, Tremblay M, Simpson GJ, Hammes-Schiffer S, Yan ECY. Theoretical basis for interpreting heterodyne chirality-selective sum frequency generation spectra of water. J Chem Phys 2024; 160:055102. [PMID: 38341693 PMCID: PMC10846909 DOI: 10.1063/5.0181718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/08/2024] [Indexed: 02/13/2024] Open
Abstract
Chirality-selective vibrational sum frequency generation (chiral SFG) spectroscopy has emerged as a powerful technique for the study of biomolecular hydration water due to its sensitivity to the induced chirality of the first hydration shell. Thus far, water O-H vibrational bands in phase-resolved heterodyne chiral SFG spectra have been fit using one Lorentzian function per vibrational band, and the resulting fit has been used to infer the underlying frequency distribution. Here, we show that this approach may not correctly reveal the structure and dynamics of hydration water. Our analysis illustrates that the chiral SFG responses of symmetric and asymmetric O-H stretch modes of water have opposite phase and equal magnitude and are separated in energy by intramolecular vibrational coupling and a heterogeneous environment. The sum of the symmetric and asymmetric responses implies that an O-H stretch in a heterodyne chiral SFG spectrum should appear as two peaks with opposite phase and equal amplitude. Using pairs of Lorentzian functions to fit water O-H stretch vibrational bands, we improve spectral fitting of previously acquired experimental spectra of model β-sheet proteins and reduce the number of free parameters. The fitting allows us to estimate the vibrational frequency distribution and thus reveals the molecular interactions of water in hydration shells of biomolecules directly from chiral SFG spectra.
Collapse
Affiliation(s)
| | - Ty Santiago
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Matthew Tremblay
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Garth J. Simpson
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | | | - Elsa C. Y. Yan
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
6
|
Seliya P, Bonn M, Grechko M. On selection rules in two-dimensional terahertz-infrared-visible spectroscopy. J Chem Phys 2024; 160:034201. [PMID: 38230809 DOI: 10.1063/5.0179041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/21/2023] [Indexed: 01/18/2024] Open
Abstract
Two-dimensional terahertz-infrared-visible (2D TIRV) spectroscopy directly measures the coupling between quantum high-frequency vibrations and classical low-frequency modes of molecular motion. In addition to coupling strength, the signal intensity in 2D TIRV spectroscopy can also depend on the selection rules of the excited transitions. Here, we explore the selection rules in 2D TIRV spectroscopy by studying the coupling between the high-frequency CH3 stretching and low-frequency vibrations of liquid dimethyl sulfoxide (DMSO). Different excitation pathways are addressed using variations in laser pulse timing and different polarizations of exciting pulses and detected signals. The DMSO signals generated via different excitation pathways can be readily distinguished in the spectrum. The intensities of different excitation pathways vary unequally with changes in polarization. We explain how this difference stems from the intensities of polarized and depolarized Raman and hyper-Raman spectra of high-frequency modes. These results apply to various systems and will help design and interpret new 2D TIRV spectroscopy experiments.
Collapse
Affiliation(s)
- Pankaj Seliya
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Mischa Bonn
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Maksim Grechko
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| |
Collapse
|
7
|
Kizmann M, Yadalam HK, Chernyak VY, Mukamel S. Intraband Exciton Transitions in Photosynthetic Complexes Revealed by Novel Five-Wave-Mixing Spectroscopy. J Chem Theory Comput 2024; 20:280-289. [PMID: 38128473 DOI: 10.1021/acs.jctc.3c00919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
We calculate the χ(4) optical response of an oriented photosystem II reaction center of purple bacteria described by the Frenkel exciton model using nonlinear exciton equations (NEE). This approach treats each chromophore as an anharmonic oscillator and provides an intuitive quasiparticle picture of nonlinear spectroscopic signals of interacting excitons. It provides a computationally powerful description of nonlinear spectroscopic signals that avoids complete diagonalization of the total Hamiltonian. Expressions for the second- and the fourth-order nonlinear signals are derived. The NEE have been successfully employed in the past to describe even-order-wave-mixing. Here, we extend them to aggregates with broken inversion symmetries. Even-order susceptibilities require the introduction of permanent dipoles, which allow to directly probe low-frequency intraband transitions of excitons.
Collapse
Affiliation(s)
- Matthias Kizmann
- Department of Chemistry, University of California, Irvine, California 92614, United States
- Department of Physics and Astronomy, University of California, Irvine, California 92614, United States
| | - Hari Kumar Yadalam
- Department of Chemistry, University of California, Irvine, California 92614, United States
- Department of Physics and Astronomy, University of California, Irvine, California 92614, United States
| | - Vladimir Y Chernyak
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
- Department of Mathematics, Wayne State University, 656 W. Kirby, Detroit, Michigan 48202, United States
| | - Shaul Mukamel
- Department of Chemistry, University of California, Irvine, California 92614, United States
- Department of Physics and Astronomy, University of California, Irvine, California 92614, United States
| |
Collapse
|
8
|
Turner GA, Hwang Y, Rong J, Strachan C, Simpson GJ. Incoherent Nonreciprocal Absorbance Circular Dichroism of Uniaxial Assemblies. J Phys Chem B 2023; 127:8216-8225. [PMID: 37722139 DOI: 10.1021/acs.jpcb.3c03104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Analytical theory is proposed predicting remarkably large and fully electric-dipole-allowed circular dichroism (CD) in electronic ultraviolet-visible (UV-vis) absorbance spectroscopy of uniaxial surface assemblies. Partial depolarization of the transmitted beam provides a pathway for surface-specific and chiral-specific dissymmetry parameters that are orders of magnitude greater than those from analogous measurements of isotropic systems. Predictions of the model generated using ab initio quantum chemical calculations with no adjustable parameters agreed with UV-vis absorbance CD measurements of naproxen microcrystals prepared on hydrophilic substrates. Notably, these calculations correctly predicted (i) the key spectroscopic features, (ii) the relative magnitudes of chiral-specific peaks in the CD spectrum, (iii) the absolute CD sign, and (iv) the reciprocal CD sign inversion arising from sample reorientation in the instrument. These results connect the molecular structure and orientation to large CD observable in oriented thin-film assemblies, with the potential for further extension to broad classes of chiral-specific spectral analyses.
Collapse
Affiliation(s)
- Gwendylan A Turner
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yechan Hwang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jiayue Rong
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Camila Strachan
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Garth J Simpson
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
9
|
Litman Y, Lan J, Nagata Y, Wilkins DM. Fully First-Principles Surface Spectroscopy with Machine Learning. J Phys Chem Lett 2023; 14:8175-8182. [PMID: 37671886 PMCID: PMC10510433 DOI: 10.1021/acs.jpclett.3c01989] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023]
Abstract
Our current understanding of the structure and dynamics of aqueous interfaces at the molecular level has grown substantially due to the continuous development of surface-specific spectroscopies, such as vibrational sum-frequency generation (VSFG). As in other vibrational spectroscopies, we must turn to atomistic simulations to extract all of the information encoded in the VSFG spectra. The high computational cost associated with existing methods means that they have limitations in representing systems with complex electronic structure or in achieving statistical convergence. In this work, we combine high-dimensional neural network interatomic potentials and symmetry-adapted Gaussian process regression to overcome these constraints. We show that it is possible to model VSFG signals with fully ab initio accuracy using machine learning and illustrate the versatility of our approach on the water/air interface. Our strategy allows us to identify the main sources of theoretical inaccuracy and establish a clear pathway toward the modeling of surface-sensitive spectroscopy of complex interfaces.
Collapse
Affiliation(s)
- Yair Litman
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Jinggang Lan
- Department
of Chemistry, New York University, New York, New York 10003, United States
- Simons
Center for Computational Physical Chemistry at New York University, New York, New York 10003, United States
| | - Yuki Nagata
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - David M. Wilkins
- Centre
for Quantum Materials and Technologies School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, Northern Ireland, United Kingdom
| |
Collapse
|
10
|
Gao J, Stengel P, Lu T, Wu Y, Hawker DD, Gutowski KE, Hankett JM, Kellermeier M, Chen Z. Antiadhesive Copolymers at Solid/Liquid Interfaces: Complementary Characterization of Polymer Adsorption and Protein Fouling by Sum Frequency Generation Vibrational Spectroscopy and Quartz-Crystal Microbalance Measurements with Dissipation Monitoring. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12270-12282. [PMID: 37586045 DOI: 10.1021/acs.langmuir.3c01759] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Amphiphilic copolymers comprising hydrophilic segments of poly(ethylene glycol) and hydrophobic domains that are able to adhere to solid/liquid interfaces have proven to be versatile ingredients in formulated products for various types of applications. Recently, we have reported the successful synthesis of a copolymer designed for modifying the surface properties of polyesters as mimics for synthetic textiles. Using sum frequency generation (SFG) spectroscopy, it was shown that the newly developed copolymer adsorbs effectively on the targeted substrates even in the presence of surfactants as supplied by common detergents. In the present work, these studies were extended to evaluate the ability of the formed copolymer adlayers to passivate polyester surfaces against undesired deposition of bio(macro)molecules, as represented by fibrinogen as model protein foulants. In addition, SFG spectroscopy was used to elucidate the structure of fibrinogen at the interface between polyester and water. To complement the obtained data with an independent technique, analogous experiments were performed using quartz-crystal microbalance with dissipation monitoring for the detection of the relevant interfacial processes. Both methods give consistent results and deliver a holistic picture of brush copolymer adsorption on polyester surfaces and subsequent antiadhesive effects against proteins under different conditions representing the targeted application in home care products.
Collapse
Affiliation(s)
- Jinpeng Gao
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Peter Stengel
- Material Science, BASF SE, RGA/BM - B007, Carl-Bosch-Strasse 38, D-67056 Ludwigshafen, Germany
| | - Tieyi Lu
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Yuchen Wu
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
- Department of Macromolecular Science and Engineering, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Dustin D Hawker
- BASF Corporation, 1609 Biddle Avenue, Wyandotte, Michigan 48192, United States
| | - Keith E Gutowski
- BASF Corporation, 1609 Biddle Avenue, Wyandotte, Michigan 48192, United States
| | - Jeanne M Hankett
- BASF Corporation, 1609 Biddle Avenue, Wyandotte, Michigan 48192, United States
| | - Matthias Kellermeier
- Material Science, BASF SE, RGA/BM - B007, Carl-Bosch-Strasse 38, D-67056 Ludwigshafen, Germany
| | - Zhan Chen
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
- Department of Macromolecular Science and Engineering, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
11
|
Lininger A, Palermo G, Guglielmelli A, Nicoletta G, Goel M, Hinczewski M, Strangi G. Chirality in Light-Matter Interaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2107325. [PMID: 35532188 DOI: 10.1002/adma.202107325] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 04/07/2022] [Indexed: 06/14/2023]
Abstract
The scientific effort to control the interaction between light and matter has grown exponentially in the last 2 decades. This growth has been aided by the development of scientific and technological tools enabling the manipulation of light at deeply sub-wavelength scales, unlocking a large variety of novel phenomena spanning traditionally distant research areas. Here, the role of chirality in light-matter interactions is reviewed by providing a broad overview of its properties, materials, and applications. A perspective on future developments is highlighted, including the growing role of machine learning in designing advanced chiroptical materials to enhance and control light-matter interactions across several scales.
Collapse
Affiliation(s)
- Andrew Lininger
- Department of Physics, Case Western Reserve University, 2076 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Giovanna Palermo
- Department of Physics, NLHT-Lab, University of Calabria and CNR-NANOTEC Istituto di Nanotecnologia, Rende, 87036, Italy
| | - Alexa Guglielmelli
- Department of Physics, NLHT-Lab, University of Calabria and CNR-NANOTEC Istituto di Nanotecnologia, Rende, 87036, Italy
| | - Giuseppe Nicoletta
- Department of Physics, NLHT-Lab, University of Calabria and CNR-NANOTEC Istituto di Nanotecnologia, Rende, 87036, Italy
| | - Madhav Goel
- Department of Physics, Case Western Reserve University, 2076 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Michael Hinczewski
- Department of Physics, Case Western Reserve University, 2076 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Giuseppe Strangi
- Department of Physics, Case Western Reserve University, 2076 Adelbert Rd, Cleveland, OH, 44106, USA
- Department of Physics, NLHT-Lab, University of Calabria and CNR-NANOTEC Istituto di Nanotecnologia, Rende, 87036, Italy
| |
Collapse
|
12
|
Sarker P, Lu T, Liu D, Wu G, Chen H, Jahan Sajib MS, Jiang S, Chen Z, Wei T. Hydration behaviors of nonfouling zwitterionic materials. Chem Sci 2023; 14:7500-7511. [PMID: 37449074 PMCID: PMC10337769 DOI: 10.1039/d3sc01977b] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/02/2023] [Indexed: 07/18/2023] Open
Abstract
Zwitterionic materials have emerged as highly effective ultralow fouling materials for many applications, however the underlying mechanism of fouling resistance remains unclear. Using ab initio molecular dynamics simulations and surface-sensitive sum frequency generation vibrational spectroscopy, we studied the hydration behaviors of zwitterionic materials, including trimethylamine-N-oxide (TMAO) and carboxybetaines of different charge-separation distances, to understand their fouling-resistant mechanism and provide a design principle for improved performance. Our study reveals that the interplay among hydrogen bonding, net charge, and dipole moment is crucial to the fouling-resistant capabilities of zwitterionic materials. Shortening of the zwitterionic spacing strengthens hydrogen bonding with water against biomolecule attachment due to the increased electrostatic and induction interactions, charge transfer, and improved structural stability. Moreover, the shortened charge separation reduces the dipole moment of zwitterionic materials with an intrinsic near-neutral net charge, decreasing their electrostatic and dipole-dipole interactions with biofoulers, and increasing their resistance to fouling. Compared to carboxybetaine compounds, TMAO has the shortest zwitterionic spacing and exhibits the strongest hydrogen bonding, the smallest net charge, and the minimum dipole moment, making it an excellent nonfouling material.
Collapse
Affiliation(s)
- Pranab Sarker
- Department of Chemical Engineering, Howard University Washington D.C. USA
| | - Tieyi Lu
- Department of Chemistry, University of Michigan Ann Arbor Michigan USA
| | - Di Liu
- Meinig School of Biomedical Engineering, Cornell University Ithaca NY 14853 USA
| | - Guangyao Wu
- Department of Chemistry, University of Michigan Ann Arbor Michigan USA
| | - Hanning Chen
- Texas Advanced Computing Center, The University of Texas at Austin Austin Texas USA
| | | | - Shaoyi Jiang
- Meinig School of Biomedical Engineering, Cornell University Ithaca NY 14853 USA
| | - Zhan Chen
- Department of Chemistry, University of Michigan Ann Arbor Michigan USA
| | - Tao Wei
- Department of Chemical Engineering, Howard University Washington D.C. USA
| |
Collapse
|
13
|
Yan ECY, Perets EA, Konstantinovsky D, Hammes-Schiffer S. Detecting Interplay of Chirality, Water, and Interfaces for Elucidating Biological Functions. Acc Chem Res 2023; 56:1494-1504. [PMID: 37163574 PMCID: PMC10344471 DOI: 10.1021/acs.accounts.3c00088] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Chemists have long been fascinated by chirality, water, and interfaces, making tremendous progress in each research area. However, the chemistry emerging from the interplay of chirality, water, and interfaces has been difficult to study due to technical challenges, creating a barrier to elucidating biological functions at interfaces. Most biopolymers (proteins, DNA, and RNA) fold into macroscopic chiral structures to perform biological functions. Their folding requires water, but water behaves differently at interfaces where the bulk water hydrogen-bonding network terminates. A question arises as to how water molecules rearrange to minimize free energy at interfaces while stabilizing the macroscopic folding of biopolymers to support biological function. This question is central to solving many research challenges, including the molecular origin of biological homochirality, folding and insertion of proteins into cell membranes, and the design of heterogeneous biocatalysts. Researchers can resolve these challenges if they have the theoretical tools to accurately predict molecular behaviors of water and biopolymers at various interfaces. However, developing such tools requires validation by the experimental data. These experimental data are scarce because few physical methods can simultaneously distinguish chiral folding of the biopolymers, separate signals of interfaces from the overwhelming background of bulk solvent, and differentiate water in hydration shells of the polymers from water elsewhere.We recently illustrated these very capacities of chirality-sensitive vibrational sum frequency generation spectroscopy (chiral SFG). While chiral SFG theory dictates that the method is surface-specific under the condition of electronic nonresonance, we show the method can distinguish chiral folding of proteins and DNA and probe water structures in the first hydration shell of proteins at interfaces. Using amide I signals, we observe protein folding into β-sheets without background signals from α-helices and disordered structures at interfaces, thereby demonstrating the effect of 2D crowding on protein folding. Also, chiral SFG signals of C-H stretches are silent from single-stranded DNA, but prominent for canonical antiparallel duplexes as well as noncanonical parallel duplexes at interfaces, allowing for sensing DNA secondary structures and hybridization. In establishing chiral SFG for detecting protein hydration structures, we observe an H218O isotopic shift that reveals water contribution to the chiral SFG spectra. Additionally, the phase of the O-H stretching bands flips when the protein chirality is switched from L to D. These experimental results agree with our simulated chiral SFG spectra of water hydrating the β-sheet protein at the vacuum-water interface. The simulations further reveal that over 90% of the total chiral SFG signal comes from water in the first hydration shell. We conclude that the chiral SFG signals originate from achiral water molecules that assemble around the protein into a chiral supramolecular structure with chirality transferred from the protein. As water O-H stretches can reveal hydrogen-bonding interactions, chiral SFG shows promise in probing the structures and dynamics of water-biopolymer interactions at interfaces. Altogether, our work has created an experimental and computational framework for chiral SFG to elucidate biological functions at interfaces, setting the stage for probing the intricate chemical interplay of chirality, water, and interfaces.
Collapse
Affiliation(s)
- Elsa C. Y. Yan
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Ethan A. Perets
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Daniel Konstantinovsky
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
14
|
Rozak H, Nihonyanagi S, Myalitsin A, Roy S, Ahmed M, Tahara T, Rzeznicka II. Adsorption of SARS-CoV-2 Spike (N501Y) RBD to Human Angiotensin-Converting Enzyme 2 at a Lipid/Water Interface. J Phys Chem B 2023; 127:4406-4414. [PMID: 37171105 DOI: 10.1021/acs.jpcb.3c00832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The receptor binding domain (RBD) of spike proteins plays a crucial role in the process of severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) attachment to the human angiotensin-converting enzyme 2 (ACE2). The N501Y mutation and later mutations introduced extra positive charges on the spike RBD and resulted in higher transmissibility, likely due to stronger binding with the highly negatively charged ACE2. Consequently, many studies have been devoted to understanding the molecular mechanism of spike protein binding with the ACE2 receptor. Most of the theoretical studies, however, have been done on isolated proteins. ACE2 is a transmembrane protein; thus, it is important to understand the interaction of spike proteins with ACE2 in a lipid matrix. In this study, the adsorption of ACE2 and spike (N501Y) RBD at a lipid/water interface was studied using the heterodyne-detected vibrational sum frequency generation (HD-VSFG) technique. The technique is a non-linear optical spectroscopy which measures vibrational spectra of molecules at an interface and provides information on their structure and orientation. It is found that ACE2 is effectively adsorbed at the positively charged 1,2-dipalmitoyl-3-trimethylammonium-propane (DPTAP) lipid monolayer via electrostatic interactions. The adsorption of ACE2 at the DPTAP monolayer causes a reorganization of interfacial water (D2O) from the D-down to the D-up orientation, indicating that the originally positively charged DPTAP interface becomes negatively charged due to ACE2 adsorption. The negatively charged interface (DPTAP/ACE2) allows further adsorption of positively charged spike RBD. HD-VSFG spectra in the amide I region show differences for spike (N501Y) RBD adsorbed at D2O, DPTAP, and DPTAP/ACE2 interfaces. A red shift observed for the spectra of spike RBD/DPTAP suggests that spike RBD oligomers are formed upon contact with DPTAP lipids.
Collapse
Affiliation(s)
- Harison Rozak
- College of Engineering, Shibaura Institute of Technology, Saitama City, Saitama 337-8570, Japan
| | - Satoshi Nihonyanagi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Anton Myalitsin
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- ANVOS Analytics Co., 4-168 Motomachi, Naka-ku, Yokohama, Kanagawa 231-0861, Japan
| | - Subhadip Roy
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mohammed Ahmed
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Izabela I Rzeznicka
- College of Engineering, Shibaura Institute of Technology, Saitama City, Saitama 337-8570, Japan
| |
Collapse
|
15
|
Lu T, Chen Z. Monitoring the Molecular Structure of Fibrinogen during the Adsorption Process at the Buried Silicone Oil Interface In Situ in Real Time. J Phys Chem Lett 2023; 14:3139-3145. [PMID: 36961304 DOI: 10.1021/acs.jpclett.3c00331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Interfacial proteins play important roles in many research fields and applications, such as biosensors, biomedical implants, nonfouling coatings, etc. Directly probing interfacial protein behavior at buried solid/liquid and liquid/liquid interfaces is challenging. We used sum frequency generation vibrational spectroscopy and a Hamiltonian data analysis method to monitor the molecular structure of fibrinogen on silicone oil during the adsorption process in situ in real time. The results showed that the adsorbed fibrinogen molecules tend to adopt a bent structure throughout the entire adsorption process with the same orientation. This is different from the case of adsorbed fibrinogen on CaF2 with a linear structure or on polystyrene with a bent structure but a different orientation. The method introduced herein is generally applicable for following time-dependent molecular structures of many other proteins and peptides at interfaces in situ in real time at the molecular level.
Collapse
Affiliation(s)
- Tieyi Lu
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
16
|
Gao J, Khan MR, Wu Y, Hawker DD, Gutowski KE, Konradi R, Mayr L, Hankett JM, Kellermeier M, Chen Z. Probing Interfacial Behavior and Antifouling Activity of Adsorbed Copolymers at Solid/Liquid Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4557-4570. [PMID: 36947877 DOI: 10.1021/acs.langmuir.2c03056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Polymers containing poly(ethylene glycol) (PEG) units can exhibit excellent antifouling properties, which have been proposed/used for coating of biomedical implants, separation membranes, and structures in marine environments, as well as active ingredients in detergent formulations to avoid soil redepositioning in textile laundry. This study aimed to elucidate the molecular behavior of a copolymer poly(MMA-co-MPEGMA) containing antiadhesive PEG side chains and a backbone of poly(methyl methacrylate), at a buried polymer/solution interface. Polyethylene terephthalate (PET) was used as a substrate to model polyester textile surfaces. Sum frequency generation (SFG) vibrational spectroscopy was applied to examine the interfacial behavior of the copolymer at PET/solution interfaces in situ and in real time. Complementarily, copolymer adsorption on PET and subsequent antiadhesion against protein foulants were probed by quartz-crystal microbalance experiments with dissipation monitoring (QCM-D). Both applied techniques show that poly(MMA-co-MPEGMA) adsorbs significantly to the PET/solution interface at bulk polymer solution concentrations as low as 2 ppm, while saturation of the surface was reached at 20 ppm. The hydrophobic MMA segments provide an anchor for the copolymer to bind onto PET in an ordered way, while the pendant PEG segments are more disordered but contain ordered interfacial water. In the presence of considerable amounts of dissolved surfactants, poly(MMA-co-MPEGMA) could still effectively adsorb on the PET surface and remained stable at the surface upon washing with hot and cold water or surfactant solution. In addition, it was found that adsorbed poly(MMA-co-MPEGMA) provided the PET surface with antiadhesive properties and could prevent protein deposition, highlighting the superior surface affinity and antifouling performance of the copolymer. The results obtained in this work demonstrate that amphiphilic copolymers containing PMMA anchors and PEG side chains can be used in detergent formulations to modify polyester surfaces during laundry and reduce deposition of proteins (and likely also other soils) on the textile.
Collapse
Affiliation(s)
- Jinpeng Gao
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Md Rubel Khan
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yuchen Wu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Dustin D Hawker
- BASF Corporation, 1609 Biddle Avenue, Wyandotte, Michigan 48192, United States
| | - Keith E Gutowski
- BASF Corporation, 1609 Biddle Avenue, Wyandotte, Michigan 48192, United States
| | - Rupert Konradi
- Biointerfaces & Delivery Systems, BASF SE, Carl-Bosch-Strasse 38, Ludwigshafen D-67056, Germany
| | - Lukas Mayr
- Material Physics, BASF SE, RAA/OS - B007, Carl-Bosch-Strasse 38, Ludwigshafen D-67056, Germany
| | - Jeanne M Hankett
- BASF Corporation, 1609 Biddle Avenue, Wyandotte, Michigan 48192, United States
| | - Matthias Kellermeier
- Material Physics, BASF SE, RAA/OS - B007, Carl-Bosch-Strasse 38, Ludwigshafen D-67056, Germany
| | - Zhan Chen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
17
|
Wang C, Ma YH, Han X, Lu X. Re-Examining Interaction between Antimicrobial Peptide Aurein 1.2 and Model Cell Membranes via SFG. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:690-699. [PMID: 36576332 DOI: 10.1021/acs.langmuir.2c03068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Aurein 1.2 (Aur), a highly efficient 13-residue antimicrobial peptide (AMP) with a broad-spectrum antibiotic activity originally derived from the Australian frog skin secretions, can nonspecifically disrupt bacterial membranes. To deeply understand the molecular-level detail of the antimicrobial mechanism, here, we artificially established comparative experimental models to investigate the interfacial interaction process between Aur and negatively charged model cell membranes via sum frequency generation vibrational spectroscopy. Sequencing the vibrational signals of phenyl, C-H, and amide groups from Aur has characteristically helped us differentiate between the initial adsorption and subsequent insertion steps upon mutual interaction between Aur and the charged lipids. The phenyl group at the terminal phenylalanine residue can act as an anchor in the adsorption process. The time-dependent signal intensity of α-helices showed a sharp rise once the Aur molecules came into contact with the negatively charged lipids, indicating that the adsorption process was ongoing. Insertion of Aur into the charged lipids then offered the detectable interfacial C-H signals from Aur. The achiral and chiral amide I signals suggest that Aur had formed β-folding-like aggregates after interacting with the charged lipids, along with the subsequent descending α-helical amide I signals. The above-mentioned experimental results provide the molecular-level detail on how the Aur molecules interact with the cell membranes, and such a mechanism study can offer the necessary support for the AMP design and later application.
Collapse
Affiliation(s)
- Chu Wang
- State Key Laboratory of Bioelectronics, School of Biomedical Engineering, Southeast University, Nanjing 210096, China
| | - Yong-Hao Ma
- State Key Laboratory of Bioelectronics, School of Biomedical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaofeng Han
- State Key Laboratory of Bioelectronics, School of Biomedical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaolin Lu
- State Key Laboratory of Bioelectronics, School of Biomedical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
18
|
Direct observation of long-range chirality transfer in a self-assembled supramolecular monolayer at interface in situ. Nat Commun 2022; 13:7737. [PMID: 36517528 PMCID: PMC9750980 DOI: 10.1038/s41467-022-35548-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Due to the interest in the origin of life and the need to synthesize new functional materials, the study of the origin of chirality has been given significant attention. The mechanism of chirality transfer at molecular and supramolecular levels remains underexplored. Herein, we study the mechanism of chirality transfer of N, N'-bis (octadecyl)-L-/D-(anthracene-9-carboxamide)-glutamic diamide (L-/D-GAn) supramolecular chiral self-assembled at the air/water interface by chiral sum-frequency generation vibrational spectroscopy (chiral SFG) and molecular dynamics (MD) simulations. We observe long-range chirality transfer in the systems. The chirality of Cα-H is transferred first to amide groups and then transferred to the anthracene unit, through intermolecular hydrogen bonds and π-π stacking to produce an antiparallel β-sheet-like structure, and finally it is transferred to the end of hydrophobic alkyl chains at the interface. These results are relevant for understanding the chirality origin in supramolecular systems and the rational design of supramolecular chiral materials.
Collapse
|
19
|
Konstantinovsky D, Perets EA, Santiago T, Velarde L, Hammes-Schiffer S, Yan ECY. Detecting the First Hydration Shell Structure around Biomolecules at Interfaces. ACS CENTRAL SCIENCE 2022; 8:1404-1414. [PMID: 36313165 PMCID: PMC9615115 DOI: 10.1021/acscentsci.2c00702] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Indexed: 05/15/2023]
Abstract
Understanding the role of water in biological processes remains a central challenge in the life sciences. Water structures in hydration shells of biomolecules are difficult to study in situ due to overwhelming background from aqueous environments. Biological interfaces introduce additional complexity because biomolecular hydration differs at interfaces compared to bulk solution. Here, we perform experimental and computational studies of chiral sum frequency generation (chiral SFG) spectroscopy to probe chirality transfer from a protein to the surrounding water molecules. This work reveals that chiral SFG probes the first hydration shell around the protein almost exclusively. We explain the selectivity to the first hydration shell in terms of the asymmetry induced by the protein structure and specific protein-water hydrogen-bonding interactions. This work establishes chiral SFG as a powerful technique for studying hydration shell structures around biomolecules at interfaces, presenting new possibilities to address grand research challenges in biology, including the molecular origins of life.
Collapse
Affiliation(s)
- Daniel Konstantinovsky
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Department
of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Ethan A. Perets
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Ty Santiago
- Department
of Chemistry, University at Buffalo, Buffalo, New York 14260, United States
| | - Luis Velarde
- Department
of Chemistry, University at Buffalo, Buffalo, New York 14260, United States
| | | | - Elsa C. Y. Yan
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
20
|
Lu T, Fu L, Qiu Y, Zhang J, Chen Z. Probing Molecular Interactions of Antibody Drugs, Silicone Oil, and Surfactant at Buried Interfaces In Situ. Anal Chem 2022; 94:14761-14768. [PMID: 36215703 DOI: 10.1021/acs.analchem.2c03425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antibody drugs have been rapidly developed to cure many diseases including COVID-19 infection. Silicone oil is commonly used as a lubricant coating material for devices used in the pharmaceutical industry to store and administer antibody drug formulations. However, the interaction between silicone oil and antibody molecules could lead to the adsorption, denaturation, and aggregation of antibody molecules, impacting the efficacy of antibody drugs. Here, we studied the molecular interactions between antibodies and silicone oil in situ in real time. The effect of the surfactant on such interactions was also investigated. Specifically, the adsorption dynamics of a bispecific antibody (BsAb) onto a silicone oil surface without and with different concentrations of the surfactant PS80 in antibody solutions were monitored. Also the possible lowest effective PS80 concentrations that can prevent the adsorption of BsAb as well as a monoclonal antibody (mAb) onto silicone oil were measured. It was found that different concentrations of PS80 are required for preventing the adsorption of different antibodies. Both BsAB and mAB denature on silicone oil without a surfactant. However, for a low surfactant concentration in the solution, although the surfactant could not completely prevent the antibody from adsorption, it could maintain the native structures of adsorbed BsAb and mAb antibodies on silicone oil. This is important knowledge, showing that to prevent antibody aggregation on silicone oil it is not necessary to add surfactant to a concentration high enough to completely minimize protein adsorption.
Collapse
Affiliation(s)
- Tieyi Lu
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Li Fu
- Sanofi, 1 The Mountain Road, Framingham, Massachusetts 01701, United States
| | - Yu Qiu
- Sanofi, 350 Water St, Cambridge, Massachusetts 02141, United States
| | - Jifeng Zhang
- Sanofi, 1 The Mountain Road, Framingham, Massachusetts 01701, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
21
|
Tutorial on the instrumentation of sum frequency generation vibrational spectroscopy: Using a Ti:sapphire based system as an example. Biointerphases 2022; 17:051201. [PMID: 36070973 DOI: 10.1116/6.0002007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Sum frequency generation vibrational spectroscopy (SFG-VS) is an intrinsically surface-selective vibrational spectroscopic technique based on the second-order nonlinear optical process. Since its birth in the 1980s, SFG-VS has been used to solve interfacial structure and dynamics in a variety of research fields including chemistry, physics, materials sciences, biological sciences, environmental sciences, etc. Better understanding of SFG-VS instrumentation is no doubt an essential step to master this sophisticated technique. To address this need, here we will present a Tutorial with respect to the classification, setup layout, construction, operation, and data processing about SFG-VS. We will focus on the steady state Ti:sapphire based broad bandwidth SFG-VS system and use it as an example. We hope this Tutorial is beneficial for newcomers to the SFG-VS field and for people who are interested in using SFG-VS technique in their research.
Collapse
|
22
|
Yu CC, Seki T, Wang Y, Bonn M, Nagata Y. Polarization-Dependent Sum-Frequency Generation Spectroscopy for Ångstrom-Scale Depth Profiling of Molecules at Interfaces. PHYSICAL REVIEW LETTERS 2022; 128:226001. [PMID: 35714258 DOI: 10.1103/physrevlett.128.226001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/28/2022] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
The three-dimensional spatial distribution of molecules at soft matter interfaces is crucial for processes ranging from membrane biophysics to atmospheric chemistry. While several techniques can access surface composition, obtaining information on the depth distribution is challenging. We develop a noninvasive, polarization-resolved, surface-specific sum-frequency generation spectroscopy providing quantitative depth information. We demonstrate the technique on formic acid molecules at the air-water interface. With increasing molar fraction from 2.5% to 10%, the formic acid molecules shift, on average, ∼0.9 Å into the bulk. The consistency with the simulation data manifests that the technique allows for probing the Ångstrom-scale depth profile.
Collapse
Affiliation(s)
- Chun-Chieh Yu
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Takakazu Seki
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Yongkang Wang
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Mischa Bonn
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Yuki Nagata
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| |
Collapse
|
23
|
Perets EA, Olesen KB, Yan ECY. Chiral Sum Frequency Generation Spectroscopy Detects Double-Helix DNA at Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5765-5778. [PMID: 35482888 DOI: 10.1021/acs.langmuir.2c00365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Many DNA-based technologies involve the immobilization of DNA and therefore require a fundamental understanding of the DNA structure-function relationship at interfaces. We present three immobilization methods compatible with chiral sum frequency generation (SFG) spectroscopy at interfaces. They are the "anchor" method for covalently attaching DNA on a glass surface, the "island" method for dropcasting DNA on solid substrates, and the "buoy" method using a hydrocarbon moiety for localizing DNA at the air-water interface. Although SFG was previously used to probe DNA, the chiral and achiral SFG responses of single-stranded and double-stranded DNA have not been compared systemically. Using the three immobilization methods, we obtain the achiral and chiral C-H stretching spectra. The results introduce four potential applications of chiral SFG. First, chiral SFG gives null response from single-stranded DNA but prominent signals from double-stranded DNA, providing a simple binary readout for label-free detection of DNA hybridization. Second, with heterodyne detection, chiral SFG gives an opposite-signed spectral response useful for distinguishing native (D-) right-handed double helix from non-native (L-) left-handed double helix. Third, chiral SFG captures the aromatic C-H stretching modes of nucleobases that emerge upon hybridization, revealing the power of chiral SFG to probe highly localized molecular structures within DNA. Finally, chiral SFG is sensitive to macroscopic chirality but not local chiral centers and thus can detect not only canonical antiparallel double helix but also other DNA secondary structures, such as a poly-adenine parallel double helix. Our work benchmarks the SFG responses of DNA immobilized by the three distinct methods, building a basis for new chiral SFG applications to solve fundamental and biotechnological problems.
Collapse
Affiliation(s)
- Ethan A Perets
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Kristian B Olesen
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Elsa C Y Yan
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
24
|
Early sum frequency generation vibrational spectroscopic studies on peptides and proteins at interfaces. Biointerphases 2022; 17:031202. [PMID: 35525602 DOI: 10.1116/6.0001859] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This paper summarizes the early research results on studying proteins and peptides at interfaces using sum frequency generation (SFG) vibrational spectroscopy. SFG studies in the C-H stretching frequency region to examine the protein side-chain behavior and in the amide I frequency region to investigate the orientation and conformation of interfacial peptides/proteins are presented. The early chiral SFG research and SFG isotope labeling studies on interfacial peptides/proteins are also discussed. These early SFG studies demonstrate the feasibility of using SFG to elucidate interfacial molecular structures of peptides and proteins in situ, which built a foundation for later SFG investigations on peptides and proteins at interfaces.
Collapse
|
25
|
Choose your own adventure: Picosecond or broadband vibrational sum-frequency generation spectroscopy. Biointerphases 2022; 17:031201. [PMID: 35513338 DOI: 10.1116/6.0001844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Vibrational sum-frequency generation (VSFG) spectroscopy is a method capable of measuring chemical structure and dynamics within the interfacial region between two bulk phases. At the core of every experimental system is a laser source that influences the experimental capabilities of the VSFG spectrometer. In this article, we discuss the differences between VSFG spectrometers built with picosecond and broadband laser sources as it will impact everything from material costs, experimental build time, experimental capabilities, and more. A focus is placed on the accessibility of the two different SFG systems to newcomers in the SFG field and provides a resource for laboratories considering incorporating VSFG spectroscopy into their research programs. This Tutorial provides a model decision tree to aid newcomers when determining whether the picosecond or femtosecond laser system is sufficient for their research program and navigates through it for a few specific scenarios.
Collapse
|
26
|
Lin L, Li Y, Qin X, Yu C, Liu M, Zhang Z, Guo Y. In situ nonlinear optical spectroscopic study of the structural chirality in DPPC Langmuir monolayers at the air/water interface. J Chem Phys 2022; 156:094704. [DOI: 10.1063/5.0069860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Lu Lin
- Institute of Chemistry CAS, China
| | - Yiyi Li
- Institute of Chemistry CAS, China
| | | | | | - Minghua Liu
- Institute of Chemistry, Chinese Academy of Science, China
| | - Zhen Zhang
- the State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry CAS, China
| | - Yuan Guo
- Institute of Chemistry, Chinese Academy of Sciences, China
| |
Collapse
|
27
|
Lu T, Guo W, Datar PM, Xin Y, Marsh ENG, Chen Z. Probing protein aggregation at buried interfaces: distinguishing between adsorbed protein monomers, dimers, and a monomer-dimer mixture in situ. Chem Sci 2022; 13:975-984. [PMID: 35211262 PMCID: PMC8790787 DOI: 10.1039/d1sc04300e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/04/2021] [Indexed: 11/21/2022] Open
Abstract
Protein adsorption on surfaces greatly impacts many applications such as biomedical materials, anti-biofouling coatings, bio-separation membranes, biosensors, antibody protein drugs etc. For example, protein drug adsorption on the widely used lubricant silicone oil surface may induce protein aggregation and thus affect the protein drug efficacy. It is therefore important to investigate the molecular behavior of proteins at the silicone oil/solution interface. Such an interfacial study is challenging because the targeted interface is buried. By using sum frequency generation vibrational spectroscopy (SFG) with Hamiltonian local mode approximation method analysis, we studied protein adsorption at the silicone oil/protein solution interface in situ in real time, using bovine serum albumin (BSA) as a model. The results showed that the interface was mainly covered by BSA dimers. The deduced BSA dimer orientation on the silicone oil surface from the SFG study can be explained by the surface distribution of certain amino acids. To confirm the BSA dimer adsorption, we treated adsorbed BSA dimer molecules with dithiothreitol (DTT) to dissociate these dimers. SFG studies on adsorbed BSA after the DTT treatment indicated that the silicone oil surface is covered by BSA dimers and BSA monomers in an approximate 6 : 4 ratio. That is to say, about 25% of the adsorbed BSA dimers were converted to monomers after the DTT treatment. Extensive research has been reported in the literature to determine adsorbed protein dimer formation using ex situ experiments, e.g., by washing off the adsorbed proteins from the surface then analyzing the washed-off proteins, which may induce substantial errors in the washing process. Dimerization is a crucial initial step for protein aggregation. This research developed a new methodology to investigate protein aggregation at a solid/liquid (or liquid/liquid) interface in situ in real time using BSA dimer as an example, which will greatly impact many research fields and applications involving interfacial biological molecules.
Collapse
Affiliation(s)
- Tieyi Lu
- Department of Chemistry, University of Michigan Ann Arbor Michigan 48109 USA
| | - Wen Guo
- Department of Chemistry, University of Michigan Ann Arbor Michigan 48109 USA
| | - Prathamesh M Datar
- Department of Chemistry, University of Michigan Ann Arbor Michigan 48109 USA
| | - Yue Xin
- Department of Chemistry, University of Michigan Ann Arbor Michigan 48109 USA
| | - E Neil G Marsh
- Department of Chemistry, University of Michigan Ann Arbor Michigan 48109 USA
| | - Zhan Chen
- Department of Chemistry, University of Michigan Ann Arbor Michigan 48109 USA
| |
Collapse
|
28
|
Guo W, Lu T, Gandhi Z, Chen Z. Probing Orientations and Conformations of Peptides and Proteins at Buried Interfaces. J Phys Chem Lett 2021; 12:10144-10155. [PMID: 34637311 DOI: 10.1021/acs.jpclett.1c02956] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Molecular structures of peptides/proteins at interfaces determine their interfacial properties, which play important roles in many applications. It is difficult to probe interfacial peptide/protein structures because of the lack of appropriate tools. Sum frequency generation (SFG) vibrational spectroscopy has been developed into a powerful technique to elucidate molecular structures of peptides/proteins at buried solid/liquid and liquid/liquid interfaces. SFG has been successfully applied to study molecular interactions between model cell membranes and antimicrobial peptides/membrane proteins, surface-immobilized peptides/enzymes, and physically adsorbed peptides/proteins on polymers and 2D materials. A variety of other analytical techniques and computational simulations provide supporting information to SFG studies, leading to more complete understanding of structure-function relationships of interfacial peptides/proteins. With the advance of SFG techniques and data analysis methods, along with newly developed supplemental tools and simulation methodology, SFG research on interfacial peptides/proteins will further impact research in fields like chemistry, biology, biophysics, engineering, and beyond.
Collapse
Affiliation(s)
- Wen Guo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tieyi Lu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zahra Gandhi
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
29
|
Altman RM, Christoffersen EL, Jones KK, Krause VM, Richmond GL. Playing Favorites: Preferential Adsorption of Nonionic over Anionic Surfactants at the Liquid/Liquid Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12213-12222. [PMID: 34607422 DOI: 10.1021/acs.langmuir.1c02189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
While many studies have investigated synergic interactions between surfactants in mixed systems, understanding possible competitive behaviors between interfacial components of binary surfactant systems is necessary for the optimized efficacy of applications dependent on surface properties. Such is the focus of these studies in which the surface behavior of a binary surfactant mixture containing nonionic (Span-80) and anionic (AOT) components adsorbing to the oil/water interface was investigated with vibrational sum-frequency (VSF) spectroscopy and surface tensiometry experimental methods. Time-dependent spectroscopic studies reveal that while both nonionic and anionic surfactants initially adsorb to the interface, anionic surfactants desorb over time as the nonionic surfactant continues to adsorb. Concentration studies that vary the ratio of Span-80 to AOT in bulk solution show that the nonionic surfactant preferentially adsorbs to the oil/water interface over the anionic surfactant. These studies have important implications for applications in which mixed surfactant systems are used to alter interfacial properties, such as pharmaceuticals, industrial films, and environmental remediation.
Collapse
Affiliation(s)
- Rebecca M Altman
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Evan L Christoffersen
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Konnor K Jones
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Virginia M Krause
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Geraldine L Richmond
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
30
|
Yamaguchi S, Otosu T. Progress in phase-sensitive sum frequency generation spectroscopy. Phys Chem Chem Phys 2021; 23:18253-18267. [PMID: 34195730 DOI: 10.1039/d1cp01994e] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Sum frequency generation (SFG) spectroscopy is a unique and powerful tool for investigating surfaces and interfaces at the molecular level. Phase-sensitive SFG (PS-SFG) is an upgraded technique that can overcome the inherent drawbacks of conventional SFG. Here we review several methods of PS-SFG developed and reported in 1990-2020. We introduce how and by which group each PS-SFG method was designed and built in terms of interferometer implementation for optical heterodyne detection, with one exception of a recent numerical method that does not rely on interferometry. We also discuss how PS-SFG solved some typical problems for aqueous interfaces that were once left open by conventional SFG. These problems and their solutions are good examples to demonstrate why PS-SFG is essential. In addition, we briefly note a few terminology issues related with PS-SFG to avoid confusion.
Collapse
Affiliation(s)
- Shoichi Yamaguchi
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan.
| | | |
Collapse
|
31
|
Gogoi A, Konwer S, Zhuo GY. Polarimetric Measurements of Surface Chirality Based on Linear and Nonlinear Light Scattering. Front Chem 2021; 8:611833. [PMID: 33644001 PMCID: PMC7902787 DOI: 10.3389/fchem.2020.611833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/31/2020] [Indexed: 01/21/2023] Open
Abstract
A molecule, molecular aggregate, or protein that cannot be superimposed on its mirror image presents chirality. Most living systems are organized by chiral building blocks, such as amino acids, peptides, and carbohydrates, and any change in their molecular structure (i.e., handedness or helicity) alters the biochemical and pharmacological functions of the molecules, many of which take place at surfaces. Therefore, studying surface chirogenesis at the nanoscale is fundamentally important and derives various applications. For example, since proteins contain highly ordered secondary structures, the intrinsic chirality can be served as a signature to measure the dynamics of protein adsorption and protein conformational changes at biological surfaces. Furthermore, a better understanding of chiral recognition and separation at bio-nanointerfaces is helpful to standardize chiral drugs and monitor the synthesis of adsorbents with high precision. Thus, exploring the changes in surface chirality with polarized excitations would provide structural and biochemical information of the adsorbed molecules, which has led to the development of label-free and noninvasive measurement tools based on linear and nonlinear optical effects. In this review, the principles and selected applications of linear and nonlinear optical methods for quantifying surface chirality are introduced and compared, aiming to conceptualize new ideas to address critical issues in surface biochemistry.
Collapse
Affiliation(s)
- Ankur Gogoi
- Department of Physics, Jagannath Barooah College, Jorhat, India
| | - Surajit Konwer
- Department of Chemistry, Dibrugarh University, Dibrugarh, India
| | - Guan-Yu Zhuo
- Institute of New Drug Development, China Medical University, Taichung, Taiwan.,Integrative Stem Cell Center, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
32
|
Zheng RH, Wei WM, Liu YY. Theoretical study on spectral differences of polypeptides constituted by L- and D-amino acids. Mol Phys 2021. [DOI: 10.1080/00268976.2020.1812747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Ren-Hui Zheng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Wen-Mei Wei
- School of Basic Medical Science, Anhui Medical University, Hefei, People’s Republic of China
| | - Yan-Ying Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
33
|
Chen Z, Lu X. Self-assembly of plasmonic chiral superstructures with intense chiroptical activity. NANO EXPRESS 2020. [DOI: 10.1088/2632-959x/abbb3d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
34
|
Zheng RH, Wei WM, Xing T. Herzberg-Teller Effect Predominates in Sum-Frequency Vibrational Spectroscopy of Limonene Chiral Liquids. J Phys Chem B 2020; 124:6642-6650. [PMID: 32649203 DOI: 10.1021/acs.jpcb.0c04519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We theoretically study the bulk sum-frequency vibrational spectroscopy of chiral liquids under the influence of the Franck-Condon, Herzberg-Teller, and nonadiabatic effects. With quantum chemistry computations we calculate the chiral spectra for the R-limonene molecule. When we compare the theoretical and experimental spectra, we find that the Herzberg-Teller effect under the Born-Oppenheimer approximation, instead of the nonadiabatic effect, predominates in the chiral spectra.
Collapse
Affiliation(s)
- Ren-Hui Zheng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, P. R. China
| | - Wen-Mei Wei
- School of Basic Medical Science, Anhui Medical University, Hefei, Anhui 230032, P. R. China
| | - Tao Xing
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, P. R. China
| |
Collapse
|
35
|
Lin T, Guo W, Guo R, Chen Z. Probing Biological Molecule Orientation and Polymer Surface Structure at the Polymer/Solution Interface In Situ. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7681-7690. [PMID: 32525691 DOI: 10.1021/acs.langmuir.0c01319] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polymers are widely used for many applications ranging from biomedical materials, marine antifouling coatings, membranes for biomolecule separation, to substrates for enzyme molecules for biosensing. For such applications, it is important to understand molecular interactions between biological molecules and polymer materials in situ in real time. Such understanding provides vital knowledge to manipulate biological molecule-polymer interactions and to optimize polymer surface structures to improve polymer performance. In this research, sum frequency generation (SFG) vibrational spectroscopy was applied to study interactions between peptides (serving as models for biological molecules) and deuterated polystyrene (d8-PS, serving as a model for polymer materials). The peptide conformations/orientations and polymer surface phenyl orientation during the peptide-d8-PS interactions were determined using SFG. It was found that the π-π interaction between the aromatic amino acids on peptides and phenyl groups on d8-PS surface does not play a significant role. Instead, the peptide-d8-PS interactions are mediated by general hydrophobic interactions between the peptides and the polymer surface.
Collapse
|
36
|
Zhang C, Gao J, Hankett J, Varanasi P, Borst J, Shirazi Y, Zhao S, Chen Z. Corn Oil-Water Separation: Interactions of Proteins and Surfactants at Corn Oil/Water Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4044-4054. [PMID: 32212710 DOI: 10.1021/acs.langmuir.0c00338] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Purification and collection of industrial products from oil-water mixtures are commonly implemented processes. However, the efficiencies of such processes can be severely influenced by the presence of emulsifiers that induce the formation of small oil droplets dispersed in the mixtures. Understanding of this emulsifying effect and its counteractions which occur at the oil/water interface is therefore necessary for the improvement of designs of these processes. In this paper, we investigated the interfacial mechanisms of protein-induced emulsification and the opposing surfactant-induced demulsification related to corn oil refinement. At corn oil/water interfaces, the pH-dependent emulsifying function of zein protein, which is the major storage protein of corn, was elucidated by the surface/interface-sensitive sum frequency generation (SFG) vibrational spectroscopy technique. The effective stabilization of corn oil droplets by zein protein was illustrated and correlated to its ordered amide I group at the oil/water interface. Substantial decrease of this ordering with the addition of three industrial surfactants to corn oil-zein solution mixtures was also observed using SFG, which explains the surfactant-induced destabilization and coalescence of small oil droplets. Surfactant-protein interaction was then demonstrated to be the driving force for the disordering of interfacial proteins, either by disrupting protein layers or partially excluding protein molecules from the interface. The ordered zein proteins at the interface were therefore revealed to be the critical factor for the formation of corn oil-water emulsion.
Collapse
Affiliation(s)
- Chengcheng Zhang
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Jinpeng Gao
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Jeanne Hankett
- BASF Corporation, 1609 Biddle Avenue, Wyandotte, Michigan 48192, United States
| | - Prabodh Varanasi
- BASF Corporation, 1609 Biddle Avenue, Wyandotte, Michigan 48192, United States
| | - Joseph Borst
- BASF Corporation, 1609 Biddle Avenue, Wyandotte, Michigan 48192, United States
| | - Yaser Shirazi
- BASF Corporation, 1609 Biddle Avenue, Wyandotte, Michigan 48192, United States
| | - Shouxun Zhao
- BASF Corporation, 1609 Biddle Avenue, Wyandotte, Michigan 48192, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
37
|
Keiderling TA. Structure of Condensed Phase Peptides: Insights from Vibrational Circular Dichroism and Raman Optical Activity Techniques. Chem Rev 2020; 120:3381-3419. [DOI: 10.1021/acs.chemrev.9b00636] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Timothy A. Keiderling
- Department of Chemistry, University of Illinois at Chicago 845 West Taylor Street m/c 111, Chicago, Illinois 60607-7061, United States
| |
Collapse
|
38
|
Hu XH, Fu L, Hou J, Zhang YN, Zhang Z, Wang HF. N-H Chirality in Folded Peptide LK 7β Is Governed by the C α-H Chirality. J Phys Chem Lett 2020; 11:1282-1290. [PMID: 31977221 DOI: 10.1021/acs.jpclett.9b03470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recent chiral sum-frequency generation vibrational spectroscopy (SFG-VS) measurements revealed that two N-H stretching modes in the 3100-3500 cm-1 range in folded peptide LK7β exhibit chiral characteristics. Here, we report the first phase-resolved subwavenumber high-resolution broadband SFG-VS (HR-BB-SFG-VS) measurement of the folded peptide LK7β. The results show that this chiral N-H band consists of four, instead of two, distinctive peaks, and they are with two groups of opposite spectral phases. Moreover, the phases of these N-H peaks completely flip from the l-LK7β to the d-LK7β peptide, suggesting that the chirality of the N-H in the folded peptide LK7β is completely governed by the chirality of the Cα-H of the amino acids. This discovery provides a clue on why proteins in nature are composed of the α-amino acids rather than β- or γ-amino acids and may help us understand how life works.
Collapse
Affiliation(s)
- Xiao-Hua Hu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials , Fudan University , 220 Handan Road , Shanghai 200433 , China
| | - Li Fu
- William R. Wiley Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Jian Hou
- Beijing National Laboratory for Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
| | - Yue-Ning Zhang
- Beijing National Laboratory for Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
| | - Zhen Zhang
- Beijing National Laboratory for Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
| | - Hong-Fei Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials , Fudan University , 220 Handan Road , Shanghai 200433 , China
- School of Science , Westlake University , 18 Shilongshan Road , Hangzhou 310024 , China
| |
Collapse
|
39
|
Hosseinpour S, Roeters SJ, Bonn M, Peukert W, Woutersen S, Weidner T. Structure and Dynamics of Interfacial Peptides and Proteins from Vibrational Sum-Frequency Generation Spectroscopy. Chem Rev 2020; 120:3420-3465. [DOI: 10.1021/acs.chemrev.9b00410] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Saman Hosseinpour
- Institute of Particle Technology (LFG), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | | | - Mischa Bonn
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Wolfgang Peukert
- Institute of Particle Technology (LFG), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Sander Woutersen
- Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 EP Amsterdam, The Netherlands
| | - Tobias Weidner
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
40
|
Wang Y, Du J, Ma X, Wang H, Chou KC, Li Q. Chirality discrimination at the carvone air/liquid interfaces detected by heterodyne-detected sum frequency generation. Heliyon 2019; 5:e03061. [PMID: 31890974 PMCID: PMC6928311 DOI: 10.1016/j.heliyon.2019.e03061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/23/2019] [Accepted: 12/12/2019] [Indexed: 11/29/2022] Open
Abstract
The chiral signal of the carvone air/liquid interface is probed by heterodyne-detected sum frequency generation (HD-SFG) without the electronic resonance. The chiral SFG spectra exhibit two distinguishable spectral signatures. Four chiral vibrational peaks of the R- and S-carvone molecules are with opposite signs, which can directly determine the surface molecular chirality. Two achiral vibrational peaks are also observed with the same sign. The different spectral signatures can provide a detailed chirality characterization at the molecular interface.
Collapse
Affiliation(s)
- Yang Wang
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, China
| | - Jianbin Du
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, China
| | - Xiangyun Ma
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, China
| | - Huijie Wang
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, China
| | - Keng C. Chou
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Qifeng Li
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
41
|
Perera HAG, Lu T, Fu L, Zhang J, Chen Z. Probing the Interfacial Interactions of Monoclonal and Bispecific Antibodies at the Silicone Oil-Aqueous Solution Interface by Using Sum Frequency Generation Vibrational Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14339-14347. [PMID: 31597425 DOI: 10.1021/acs.langmuir.9b02768] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Silicone oil has been widely utilized in the pharmaceutical industry especially as a lubricant coating commonly used in syringes for the smooth delivery of drugs. Protein structure perturbation and aggregation have been reported upon protein contacting silicone oil by using indirect methods and ex-situ techniques. The conclusions derived from such indirect and ex-situ methods may not truly reflect the exact nature of the protein-silicone oil interfacial interactions. Recently, we have successfully demonstrated that sum frequency generation (SFG) vibrational spectroscopy can be used as a powerful and direct method of studying the fusion protein-silicone oil interfacial interactions in situ and in real time. In this article, we studied monoclonal and bispecific antibody interactions with the silicone oil surface by using SFG spectroscopy. Being structurally and functionally different in the nature of fusion proteins and antibodies, this study is important in enhancing our current understanding of protein-silicone oil interfacial interactions. Both types of antibodies investigated here readily and strongly adsorb onto the silicone oil surface and remain stable at least for 10 h. SFG spectra in the amide I region for monoclonal and bispecific antibodies centered at 1660 and 1665 cm-1, respectively, suggest the difference in their molecular structures. The absence of the antibody signals in the amide I region of time-dependent and static SFG spectra obtained for preadsorbed antibodies onto silicone oil after contacting polysorbate 80 (PS-80) surfactant suggests that PS-80 can effectively remove both types of antibodies from the silicone oil surface. This study demonstrated the feasibility of using SFG spectroscopy as a powerful tool for probing the antibody-interfacial interactions in situ and in real time.
Collapse
Affiliation(s)
- H A Ganganath Perera
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Tieyi Lu
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Li Fu
- Sanofi , 1 The Mountain Road , Framingham , Massachusetts 01701 , United States
| | - Jifeng Zhang
- Sanofi , 1 The Mountain Road , Framingham , Massachusetts 01701 , United States
| | - Zhan Chen
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
42
|
Li X, Rupprechter G. A modeling analysis of molecular orientation at interfaces by polarization-dependent sum frequency generation vibrational spectroscopy. CHINESE JOURNAL OF CATALYSIS 2019. [DOI: 10.1016/s1872-2067(19)63357-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
43
|
Li Y, Shrestha M, Luo M, Sit I, Song M, Grassian VH, Xiong W. Salting Up of Proteins at the Air/Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13815-13820. [PMID: 31584824 DOI: 10.1021/acs.langmuir.9b01901] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Vibrational sum frequency generation (VSFG) spectroscopy and surface pressure measurements are used to investigate the adsorption of a globular protein, bovine serum albumin (BSA), at the air/water interface with and without the presence of salts. We find at low (2 to 5 ppm) protein concentrations, which is relevant to environmental conditions, both VSFG and surface pressure measurements of BSA behave drastically different from at higher concentrations. Instead of emerging to the surface immediately, as observed at 1000 ppm, protein adsorption kinetics is on the order of tens of minutes at lower concentrations. Most importantly, salts strongly enhance the presence of BSA at the interface. This "salting up" effect differs from the well-known "salting out" effect as it occurs at protein concentrations well-below where "salting out" occurs. The dependence on salt concentration suggests this effect relates to a large extent electrostatic interactions and volume exclusion. Additionally, results from other proteins and the pH dependence of the kinetics indicate that salting up depends on the flexibility of proteins. This initial report demonstrates "salting up" as a new type of salt-driven interfacial phenomenon, which is worthy of continued investigation given the importance of salts in biological and environmental aqueous systems.
Collapse
|
44
|
Wang F, Li X, Zhang F, Liu X, Hu P, Beke-Somfai T, Lu X. Revealing Interfacial Lipid Hydrolysis Catalyzed by Phospholipase A 1 at Molecular Level via Sum Frequency Generation Vibrational Spectroscopy and Fluorescence Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12831-12838. [PMID: 31475518 DOI: 10.1021/acs.langmuir.9b02284] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The interfacial hydrolysis of phospholipids catalyzed by phospholipase A1 (PLA1) was studied via sum frequency generation (SFG) vibrational spectroscopy and fluorescence microscopy. Both monolayer and bilayer setups were used to confirm the hydrolysis mechanism. During the hydrolysis, lysophospholipids, one of the hydrolysis products, were desorbed from the interface into the solution, while the other products, fatty acids, self-organized and accumulated with PLA1 at the interface to form the PLA1-induced regions, which can serve as nonspecific binding domains for proteins and thus lead to human vascular diseases. This experimental study provides the essential information on revealing the interfacial biochemical process related to the metabolism of the lipids, which is one of the basic building blocks for cells.
Collapse
Affiliation(s)
- Feng Wang
- Department of Biomedical Engineering , Southeast University , Nanjing , Jiangsu 210096 , China
| | - Xu Li
- Department of Biomedical Engineering , Southeast University , Nanjing , Jiangsu 210096 , China
| | - Furong Zhang
- Department of Biomedical Engineering , Southeast University , Nanjing , Jiangsu 210096 , China
| | - Xiaoyang Liu
- Department of Biomedical Engineering , Southeast University , Nanjing , Jiangsu 210096 , China
| | - Pengcheng Hu
- Department of Biomedical Engineering , Southeast University , Nanjing , Jiangsu 210096 , China
| | - Tamás Beke-Somfai
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences , Hungarian Academy of Sciences , H-1117 Budapest , Hungary
| | - Xiaolin Lu
- Department of Biomedical Engineering , Southeast University , Nanjing , Jiangsu 210096 , China
| |
Collapse
|
45
|
Golbek TW, Padmanarayana M, Roeters SJ, Weidner T, Johnson CP, Baio JE. Otoferlin C2F Domain-Induced Changes in Membrane Structure Observed by Sum Frequency Generation. Biophys J 2019; 117:1820-1830. [PMID: 31587832 DOI: 10.1016/j.bpj.2019.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/16/2019] [Accepted: 09/10/2019] [Indexed: 12/30/2022] Open
Abstract
Proteins that contain C2 domains are involved in a variety of biological processes, including encoding of sound, cell signaling, and cell membrane repair. Of particular importance is the interface activity of the C-terminal C2F domain of otoferlin due to the pathological mutations known to significantly disrupt the protein's lipid membrane interface binding activity, resulting in hearing loss. Therefore, there is a critical need to define the geometry and positions of functionally important sites and structures at the otoferlin-lipid membrane interface. Here, we describe the first in situ probe of the protein orientation of otoferlin's C2F domain interacting with a cell membrane surface. To identify this protein's orientation at the lipid interface, we applied sum frequency generation (SFG) vibrational spectroscopy and coupled it with simulated SFG spectra to observe and quantify the otoferlin C2F domain interacting with model lipid membranes. A model cell membrane was built with equal amounts of phosphatidylserine and phosphatidylcholine. SFG measurements of the lipids that make up the model membrane indicate a 62% increase in amplitude from the SFG signal near 2075 cm-1 upon protein interaction, suggesting domain-induced changes in the orientation of the lipids and possible membrane curvature. This increase is related to lipid ordering caused by the docking interaction of the otoferlin C2F domain. SFG spectra taken from the amide-I region contain features near 1630 and 1670 cm-1 related to the C2F domains beta-sandwich secondary structure, thus indicating that the domain binds in a specific orientation. By mapping the simulated SFG spectra to the experimentally collected SFG spectra, we found the C2F domain of otoferlin orients 22° normal to the lipid surface. This information allows us to map what portion of the domain directly interacts with the lipid membrane.
Collapse
Affiliation(s)
- Thaddeus W Golbek
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon; Department of Chemistry, Aarhus University, Aarhus, Denmark
| | | | | | - Tobias Weidner
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Colin P Johnson
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon.
| | - Joe E Baio
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon.
| |
Collapse
|
46
|
Perets EA, Videla PE, Yan ECY, Batista VS. Chiral Inversion of Amino Acids in Antiparallel β-Sheets at Interfaces Probed by Vibrational Sum Frequency Generation Spectroscopy. J Phys Chem B 2019; 123:5769-5781. [PMID: 31194546 PMCID: PMC9059514 DOI: 10.1021/acs.jpcb.9b04029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A parallel study of protein variants with all (l-), all (d-), or mixed (l-)/(d-) amino acids can be used to assess how backbone architecture versus side chain identity determines protein structure. Here, we investigate the secondary structure and side chain orientation dynamics of the antiparallel β-sheet peptide LK7β (Ac-Leu-Lys-Leu-Lys-Leu-Lys-Leu-NH2) composed of all (l-), all (d-), or alternating (l-Leu)/(d-Lys) amino acids. Using interface-selective vibrational sum frequency generation spectroscopy (VSFG), we observe that the alternating (l-)/(d-) peptide lacks a resonant C-H stretching mode compared to the (l-) and (d-) variants and does not form antiparallel β-sheets. We rationalize our observations on the basis of density functional theory calculations and molecular dynamics (MD) simulations of LK7β at the air-water interface. Irrespective of the handedness of the amino acids, leucine side chains prefer to orient toward the hydrophobic air phase while lysine side chains prefer the hydrophilic water phase. These preferences dictate the backbone configuration of LK7β and thereby the folding of the peptide. Our MD simulations show that the preferred side chain orientations can force the backbone of a single strand of (l-) LK7β at the air-water interface to adopt β-sheet Ramachandran angles. However, denaturation of the β-sheets at pH = 2 results in a negligible chiral VSFG amide I response. The combined computational and experimental results lend critical support to the theory that a chiral VSFG response requires macroscopic chirality, such as in β-sheets. Our results can guide expectations about the VSFG optical responses of proteins and should improve understanding of how amino acid chirality modulates the structure and function of natural and de novo proteins at biological interfaces.
Collapse
Affiliation(s)
- Ethan A. Perets
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, CT 06520
| | - Pablo E. Videla
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, CT 06520
- Energy Sciences Institute, Yale University, 810 West Campus Drive, West Haven, CT 06516
| | - Elsa C. Y. Yan
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, CT 06520
| | - Victor S. Batista
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, CT 06520
- Energy Sciences Institute, Yale University, 810 West Campus Drive, West Haven, CT 06516
| |
Collapse
|
47
|
Perets EA, Yan ECY. Chiral Water Superstructures around Antiparallel β-Sheets Observed by Chiral Vibrational Sum Frequency Generation Spectroscopy. J Phys Chem Lett 2019; 10:3395-3401. [PMID: 31070921 PMCID: PMC9059516 DOI: 10.1021/acs.jpclett.9b00878] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Hydration modulates every aspect of protein structure and function. However, studying water structures in hydration shells remains challenging mostly due to overwhelming background from bulk water. We used vibrational sum frequency generation (SFG) spectroscopy to characterize hydrated films of an antiparallel β-sheet peptide (LK7β) adsorbed on glass slides. The hydrated films give chiral SFG response from water only when the peptide self-assembles into antiparallel β-sheets. Experiments of isotopic labeling, isotopic dilution of water, and H2O-D2O exchange kinetics corroborate the assignments of the chiral SFG response to water stretching modes. Because individual water molecules are achiral, the chiral SFG response indicates formation of chiral superstructures of water around the antiparallel β-sheet, implying that a protein secondary structure can imprint its chirality onto the surrounding water. This result demonstrates chiral SFG spectroscopy as a promising tool for probing water structures in protein hydration and addressing fundamental questions of protein structure-function.
Collapse
Affiliation(s)
- Ethan A. Perets
- Department of Chemistry, Yale University, New Haven, Connecticut 06520 United States
| | - E. Chui-Ying Yan
- Department of Chemistry, Yale University, New Haven, Connecticut 06520 United States
| |
Collapse
|
48
|
Mao X, Wang Z, Zeng D, Cao H, Zhan Y, Wang Y, Li Q, Shen Y, Wang J. Self-Assembled Chiral Nanoparticle Superstructures and Identification of Their Collective Optical Activity from Ligand Asymmetry. ACS NANO 2019; 13:2879-2887. [PMID: 30848884 DOI: 10.1021/acsnano.8b06269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The spontaneous self-assembly of chiral nanoparticles (NPs) into stationary fabrication has garnered great interest in technique investigation and science advancement due to its expected apparent properties via orderly collective behaviors. However, this kind of characterization of assembled nanoparticles superstructure (NPS) is rarely reported and is distinguished with monodispersed chiral NPs. In this work, we used l-cysteine (Cys) as the chiral molecule in the form of functional surfactant, which had capped CdS/CdTe NPs and was treated as a linkage bridge for constructing orderly assembled NPS. Among the circular dichrosim (CD) phenomenon, Cys ligands exhibit related changes in CD absorption, while whole-molecule solution was used for treatment in different pH-controlling procedures. Synthesized chiral NPs are organized into ordered rod-shaped NPS during the spontaneous self-assembly process, and the CD response of NPS is monitored in different cultivating times; it showed a persuasive response appears in sum frequency generation (SFG) spectroscopy. Both experimental works and theory calculation convey that the ordered stacking of chiral stabilizer and the chirality of NPS, which are identified from chiral molecular status and their collective optical activity, originated from ligand asymmetry.
Collapse
Affiliation(s)
- Xiang Mao
- State Key Laboratory of Ultrasound Engineering in Medicine Co-founded by Chongqing and MOST, College of Biomedical Engineering , Chongqing Medical University , Chongqing 400016 , PR China
| | - Zhenyu Wang
- State Key Laboratory of Ultrasound Engineering in Medicine Co-founded by Chongqing and MOST, College of Biomedical Engineering , Chongqing Medical University , Chongqing 400016 , PR China
| | - Deping Zeng
- State Key Laboratory of Ultrasound Engineering in Medicine Co-founded by Chongqing and MOST, College of Biomedical Engineering , Chongqing Medical University , Chongqing 400016 , PR China
| | - Hua Cao
- State Key Laboratory of Ultrasound Engineering in Medicine Co-founded by Chongqing and MOST, College of Biomedical Engineering , Chongqing Medical University , Chongqing 400016 , PR China
| | - Yang Zhan
- Department of Colorectal Cancer , Tianjin Medical University, Cancer Institute and Hospital (National Clinical Research Center for Cancer), Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer , Tianjin 300072 , PR China
| | | | | | | | - Jiefu Wang
- Department of Colorectal Cancer , Tianjin Medical University, Cancer Institute and Hospital (National Clinical Research Center for Cancer), Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer , Tianjin 300072 , PR China
| |
Collapse
|
49
|
Bulk-or-interface assignment of heterodyne-detected chiral vibrational sum frequency generation signal by its polarization dependence. J Chem Phys 2018; 149:244703. [DOI: 10.1063/1.5063290] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
50
|
Li X, Ma L, Lu X. Calcium Ions Affect Water Molecular Structures Surrounding an Oligonucleotide Duplex as Revealed by Sum Frequency Generation Vibrational Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14774-14779. [PMID: 30089212 DOI: 10.1021/acs.langmuir.8b01763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The solvation of DNA in water facilitates the formation of a hydration layer surrounding it, thus stabilizing the DNA duplex in the biological aqueous environment. In this study, via using the lipid bilayer as a soft substrate to accommodate the duplex oligonucleotide, the structure of the water layer surrounding the oligonucleotide was detected under the perturbation of the calcium ions (Ca2+) with chiral and achiral sum frequency generation (SFG) vibrational spectroscopy. With increasing Ca2+ concentration, both the chiral and achiral water vibrational signals had similar concentration-dependent changes, i.e., an initial decreasing phase followed by an increasing phase. However, when the Ca2+ concentrations were adjusted to within the range comparable to those in the human serum, the chiral water vibrational signals remained nearly unchanged, whereas the achiral water vibrational signals still changed as a function of the Ca2+ concentration. Therefore, the current experimental result supports the possible protection function of the chiral hydration layer against the Ca2+ ions, which generally exist in the cell sap and play important roles in many biological functions.
Collapse
Affiliation(s)
- Xu Li
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering , Southeast University , Nanjing 210096 , Jiangsu Province , P. R. China
| | - Liang Ma
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering , Southeast University , Nanjing 210096 , Jiangsu Province , P. R. China
| | - Xiaolin Lu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering , Southeast University , Nanjing 210096 , Jiangsu Province , P. R. China
| |
Collapse
|