1
|
Leck LYW, Abd El-Aziz YS, McKelvey KJ, Park KC, Sahni S, Lane DJR, Skoda J, Jansson PJ. Cancer stem cells: Masters of all traits. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167549. [PMID: 39454969 DOI: 10.1016/j.bbadis.2024.167549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Cancer is a heterogeneous disease, which contributes to its rapid progression and therapeutic failure. Besides interpatient tumor heterogeneity, tumors within a single patient can present with a heterogeneous mix of genetically and phenotypically distinct subclones. These unique subclones can significantly impact the traits of cancer. With the plasticity that intratumoral heterogeneity provides, cancers can easily adapt to changes in their microenvironment and therapeutic exposure. Indeed, tumor cells dynamically shift between a more differentiated, rapidly proliferating state with limited tumorigenic potential and a cancer stem cell (CSC)-like state that resembles undifferentiated cellular precursors and is associated with high tumorigenicity. In this context, CSCs are functionally located at the apex of the tumor hierarchy, contributing to the initiation, maintenance, and progression of tumors, as they also represent the subpopulation of tumor cells most resistant to conventional anti-cancer therapies. Although the CSC model is well established, it is constantly evolving and being reshaped by advancing knowledge on the roles of CSCs in different cancer types. Here, we review the current evidence of how CSCs play a pivotal role in providing the many traits of aggressive tumors while simultaneously evading immunosurveillance and anti-cancer therapy in several cancer types. We discuss the key traits and characteristics of CSCs to provide updated insights into CSC biology and highlight its implications for therapeutic development and improved treatment of aggressive cancers.
Collapse
Affiliation(s)
- Lionel Y W Leck
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Yomna S Abd El-Aziz
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Oral Pathology Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | - Kelly J McKelvey
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Kyung Chan Park
- Proteina Co., Ltd./Seoul National University, Seoul, South Korea
| | - Sumit Sahni
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Darius J R Lane
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
| | - Patric J Jansson
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
2
|
Guo W, Zhang X, Li L, Shao P, Liang C, Zhang H, Liu K, Wang S, Peng Y, Luo J, Ju Y, De Marzo AM, Yu C, Chen L, Zhou B, Gao D. JAK/STAT signaling maintains an intermediate cell population during prostate basal cell fate determination. Nat Genet 2024; 56:2776-2789. [PMID: 39537874 DOI: 10.1038/s41588-024-01979-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Unipotent basal and luminal stem cells maintain prostate homeostasis, with an intermediate cell population emerging during prostate inflammation or cancer. However, the identities of basal stem cell and intermediate cell population remain unclear. Here we identified a rare intermediate cell population expressing luminal markers (termed Basal-B) with enhanced organoid formation capacity, and a larger basal population (termed Basal-A). Genetic lineage tracing revealed Basal-B cells represented a transient basal stem cell state during prostate homeostasis and androgen-mediated regeneration. Activated JAK/STAT signaling was identified in Basal-B cells, and its inhibition significantly reduced Basal-B markers expression. Inflammation increased Basal-B-to-luminal cell transdifferentiation, but JAK/STAT inhibition notably attenuated this effect. Pten gene deletion increased Nkx3.1-expressing Basal-B-like cell population and led to neoplasia. In humans, h-Basal-B cells were more prevalent in benign prostate hyperplasia. This study reveals the identities of intermediate Basal-B cells and underscores the role of JAK/STAT signaling in prostate cell fate determination.
Collapse
Affiliation(s)
- Wangxin Guo
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
| | - Xiaoyu Zhang
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lin Li
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pengfei Shao
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Liang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongjiong Zhang
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kuo Liu
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Shuoming Wang
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yunyi Peng
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun Luo
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yi Ju
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Angelo M De Marzo
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chen Yu
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China.
| | - Luonan Chen
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences, Hangzhou, China.
| | - Bin Zhou
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences, Hangzhou, China.
| | - Dong Gao
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
3
|
Zhou K, Lu H, Zhang J, Shen Q, Liu P, Xu Q, Yang C, Mao L. Prostate cancer stem cells: an updated mini-review. J Cancer 2024; 15:6570-6576. [PMID: 39668824 PMCID: PMC11632998 DOI: 10.7150/jca.100604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 08/31/2024] [Indexed: 12/14/2024] Open
Abstract
Prostate cancer is the most common malignant tumor in male genitourinary system. The incidence of prostate cancer ranks the first among all male malignant tumors worldwide, and the mortality rate ranks the second among all male malignant tumors. Prostate stem cells are heterogeneous subsets with the function of self-regeneration and proliferation in the prostate, which can produce all cell lineages that make up the prostate epithelium. At present, the pathogenesis of prostate cancer remains unclear. According to cancer stem cell hypothesis, prostate cancer may be a stem cell disease, which provides a new direction for revealing the pathogenesis of prostate cancer and developing treatment strategy for prostate cancer. In this mini-review, we highlight recent advances in our understanding of the origin, surface molecular markers, signaling pathway and the significance for clinical treatment of prostate cancer stem cells.
Collapse
Affiliation(s)
- Kaichen Zhou
- Department of Urology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Haosen Lu
- Department of Urology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Jielin Zhang
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical University, Xuzhou 221002, China
| | - Qi Shen
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical University, Xuzhou 221002, China
| | - Pengzhan Liu
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical University, Xuzhou 221002, China
| | - Qiqing Xu
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical University, Xuzhou 221002, China
| | - Chunhua Yang
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical University, Xuzhou 221002, China
| | - Lijun Mao
- Department of Urology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical University, Xuzhou 221002, China
| |
Collapse
|
4
|
Su H, Huang L, Zhou J, Yang G. Prostate cancer stem cells and their targeted therapies. Front Cell Dev Biol 2024; 12:1410102. [PMID: 39175878 PMCID: PMC11338935 DOI: 10.3389/fcell.2024.1410102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Prostate cancer (PCa) is the most common malignancy among men worldwide. Through androgen receptor signaling inhibitor (ARSI) treatment, patients eventually succumb to castration-resistant prostate cancer (CRPC). For this, the prostate cancer stem cells (PCSCs), as a minor population of tumor cells that can promote tumor relapse, ARSI resistance, and disease progression, are gaining attention. Therefore, specific therapy targeting PCSCs has momentum. This study reviewed the identification and characterization of PCSCs and PCSC-based putative biomarkers and summarized their mechanisms of action. We further discussed clinical trials of novel therapeutic interventions focused on PCSC-related pathways, the PCSC microenvironment, cutting-edge miRNA therapy, and immunotherapy approaches from a mechanistic standpoint. This review provides updated insights into PCSC plasticity, identifying new PCSC biomarkers and optimized treatments for patients with advanced PCa.
Collapse
Affiliation(s)
- Huilan Su
- Research Center for Translational Medicine, Cancer Stem Cell Institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liqun Huang
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianjun Zhou
- Research Center for Translational Medicine, Cancer Stem Cell Institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guosheng Yang
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Wen X, Wang J, Qin M, Wang H, Xu J, Guan X, Shan D, Chen P, Xie J, Shao J, Duan P, Chen C, Chen H. Characterization of ovarian progenitor cells for their potential to generate steroidogenic theca cells in vitro. Reproduction 2024; 168:e230407. [PMID: 38718815 PMCID: PMC11227037 DOI: 10.1530/rep-23-0407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 05/07/2024] [Indexed: 06/04/2024]
Abstract
In brief Progenitor cells with ovulation-related tissue repair activity were identified with defined markers (LGR5, EPCR, LY6A, and PDGFRA), but their potentials to form steroidogenic cells were not known. This study shows that the cells can generate progenies with different steroidogenic activities. Abstract Adult mammalian ovaries contain stem/progenitor cells necessary for folliculogenesis and ovulation-related tissue rupture repair. Theca cells are recruited and developed from progenitors during the folliculogenesis. Theca cell progenitors were not well defined. The aim of current study is to compare the potentials of four ovarian progenitors with defined markers (LY6A, EPCR, LGR5, and PDGFRA) to form steroidogenic theca cells in vitro. The location of the progenitors with defined makers was determined by immunohistochemistry and immunofluorescence staining of ovarian sections of adult mice. Different progenitor populations were purified by magnetic-activated cell sorting (MACS) and/or fluorescence-activated cell sorting (FACS) techniques from ovarian cell preparation and were tested for their abilities to generate steroidogenic theca cells in vitro. The cells were differentiated with a medium containing LH, ITS, and DHH agonist for 12 days. The results showed that EPCR+ and LGR5+ cells primarily distributed along the ovarian surface epithelium (OSE), while LY6A+ cells distributed in both the OSE and parenchyma. However, PDGFRA+ cells were exclusively located in interstitial compartment. When the progenitors were purified by these markers and differentiated in vitro, LY6A+ and PDGFRA+ cells formed steroidogenic cells expressing both CYP11A1 and CYP17A1 and primarily producing androgens, showing characteristics of theca-like cells, while LGR5+ cells generated steroidogenic cells devoid of CYP17A1 expression and androgen production, showing a characteristic of progesterone-producing cells (granulosa- or lutea-like cells). In conclusion, progenitors from both OSE and parenchyma of adult mice are capable of generating steroidogenic cells with different steroidogenic capacities, showing a possible lineage preference.
Collapse
Affiliation(s)
- Xin Wen
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pediatric Urology, Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiexia Wang
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pediatric Urology, Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mengjie Qin
- Department of Pharmacology, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hu Wang
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingfeng Xu
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoju Guan
- Department of Pediatric Urology, Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dan Shan
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Panpan Chen
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiajia Xie
- Department of Pharmacology, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingjing Shao
- Department of Pharmacology, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ping Duan
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Congde Chen
- Department of Pediatric Urology, Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haolin Chen
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pediatric Urology, Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pharmacology, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
6
|
Soundararajan L, Warrier S, Dharmarajan A, Bhaskaran N. Predominant factors influencing reactive oxygen species in cancer stem cells. J Cell Biochem 2024; 125:3-21. [PMID: 37997702 DOI: 10.1002/jcb.30506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/17/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
Reactive oxygen species (ROS) and its related signaling pathways and regulating molecules play a major role in the growth and development of cancer stem cells. The concept of ROS and cancer stem cells (CSCs) has been gaining much attention since the past decade and the evidence show that these CSCs possess robust self-renewal and tumorigenic potential and are resistant to conventional chemo- and radiotherapy and believed to be responsible for tumor progression, metastasis, and recurrence. It seems reasonable to say that cancer can be cured only if the CSCs are eradicated. ROS are Janus-faced molecules that can regulate cellular physiology as well as induce cytotoxicity, depending on the magnitude, duration, and site of generation. Unlike normal cancer cells, CSCs expel ROS efficiently by upregulating ROS scavengers. This unique redox regulation in CSCs protects them from ROS-mediated cell death and nullifies the effect of radiation, leading to chemoresistance and radioresistance. However, how these CSCs control ROS production by scavenging free radicals and how they maintain low levels of ROS is a challenging to understand and these attributes make CSCs as prime therapeutic targets. Here, we summarize the mechanisms of redox regulation in CSCs, with a focus on therapy resistance, its various pathways and microRNAs regulation, and the potential therapeutic implications of manipulating the ROS levels to eradicate CSCs. A better understanding of these molecules, their interactions in the CSCs may help us to adopt proper control and treatment measures.
Collapse
Affiliation(s)
- Loshini Soundararajan
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, Karnataka, India
| | - Sudha Warrier
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, Karnataka, India
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Bangalore, Karnataka, India
- Cuor Stem Cellutions Pvt Ltd., Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Bangalore, Karnataka, India
- Department of Biotechnology, Sri Ramachandra Institute of Higher Education and Research, Faculty of Biomedical Sciences and Technology, Chennai, Tamil Nādu, India
| | - Arun Dharmarajan
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Faculty of Biomedical Sciences and Technology, Chennai, Tamil Nādu, India
- Stem Cell and Cancer Biology laboratory, Curtin University, Perth, Western Australia, Australia
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Western Australia, Australia
- Curtin Health and Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
- School of Human Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Natarajan Bhaskaran
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Faculty of Biomedical Sciences and Technology, Chennai, Tamil Nādu, India
| |
Collapse
|
7
|
Liu D, Xu C, Liu Y, Ouyang W, Lin S, Xu A, Zhang Y, Xie Y, Huang Q, Zhao W, Chen Z, Wang L, Chen S, Huang J, Wu ZB, Sun X. A systematic survey of LU domain-containing proteins reveals a novel human gene, LY6A, which encodes the candidate ortholog of mouse Ly-6A/Sca-1 and is aberrantly expressed in pituitary tumors. Front Med 2023; 17:458-475. [PMID: 36928550 DOI: 10.1007/s11684-022-0968-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/12/2022] [Indexed: 03/18/2023]
Abstract
The Ly-6 and uPAR (LU) domain-containing proteins represent a large family of cell-surface markers. In particular, mouse Ly-6A/Sca-1 is a widely used marker for various stem cells; however, its human ortholog is missing. In this study, based on a systematic survey and comparative genomic study of mouse and human LU domain-containing proteins, we identified a previously unannotated human gene encoding the candidate ortholog of mouse Ly-6A/Sca-1. This gene, hereby named LY6A, reversely overlaps with a lncRNA gene in the majority of exonic sequences. We found that LY6A is aberrantly expressed in pituitary tumors, but not in normal pituitary tissues, and may contribute to tumorigenesis. Similar to mouse Ly-6A/Sca-1, human LY6A is also upregulated by interferon, suggesting a conserved transcriptional regulatory mechanism between humans and mice. We cloned the full-length LY6A cDNA, whose encoded protein sequence, domain architecture, and exon-intron structures are all well conserved with mouse Ly-6A/Sca-1. Ectopic expression of the LY6A protein in cells demonstrates that it acts the same as mouse Ly-6A/Sca-1 in their processing and glycosylphosphatidylinositol anchoring to the cell membrane. Collectively, these studies unveil a novel human gene encoding a candidate biomarker and provide an interesting model gene for studying gene regulatory and evolutionary mechanisms.
Collapse
Affiliation(s)
- Dan Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunhui Xu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yanting Liu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wen Ouyang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shaojian Lin
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Aining Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuanliang Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yinyin Xie
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qiuhua Huang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Weili Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lan Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Saijuan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jinyan Huang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Biomedical Big Data Center, First Affiliated Hospital, Zhejiang University School of Medicine, and Cancer Center, Zhejiang University, Hangzhou, 310000, China.
| | - Zhe Bao Wu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Xiaojian Sun
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
8
|
Gogola S, Rejzer M, Bahmad HF, Abou-Kheir W, Omarzai Y, Poppiti R. Epithelial-to-Mesenchymal Transition-Related Markers in Prostate Cancer: From Bench to Bedside. Cancers (Basel) 2023; 15:cancers15082309. [PMID: 37190236 DOI: 10.3390/cancers15082309] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Prostate cancer (PCa) is the second most frequent type of cancer in men worldwide, with 288,300 new cases and 34,700 deaths estimated in the United States in 2023. Treatment options for early-stage disease include external beam radiation therapy, brachytherapy, radical prostatectomy, active surveillance, or a combination of these. In advanced cases, androgen-deprivation therapy (ADT) is considered the first-line therapy; however, PCa in most patients eventually progresses to castration-resistant prostate cancer (CRPC) despite ADT. Nonetheless, the transition from androgen-dependent to androgen-independent tumors is not yet fully understood. The physiological processes of epithelial-to-non-epithelial ("mesenchymal") transition (EMT) and mesenchymal-to-epithelial transition (MET) are essential for normal embryonic development; however, they have also been linked to higher tumor grade, metastatic progression, and treatment resistance. Due to this association, EMT and MET have been identified as important targets for novel cancer therapies, including CRPC. Here, we discuss the transcriptional factors and signaling pathways involved in EMT, in addition to the diagnostic and prognostic biomarkers that have been identified in these processes. We also tackle the various studies that have been conducted from bench to bedside and the current landscape of EMT-targeted therapies.
Collapse
Affiliation(s)
- Samantha Gogola
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Michael Rejzer
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Hisham F Bahmad
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| | - Yumna Omarzai
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
- Department of Pathology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Robert Poppiti
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
- Department of Pathology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
9
|
Bhatia V, Kamat NV, Pariva TE, Wu LT, Tsao A, Sasaki K, Sun H, Javier G, Nutt S, Coleman I, Hitchcock L, Zhang A, Rudoy D, Gulati R, Patel RA, Roudier MP, True LD, Srivastava S, Morrissey CM, Haffner MC, Nelson PS, Priceman SJ, Ishihara J, Lee JK. Targeting advanced prostate cancer with STEAP1 chimeric antigen receptor T cell and tumor-localized IL-12 immunotherapy. Nat Commun 2023; 14:2041. [PMID: 37041154 PMCID: PMC10090190 DOI: 10.1038/s41467-023-37874-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/04/2023] [Indexed: 04/13/2023] Open
Abstract
Six transmembrane epithelial antigen of the prostate 1 (STEAP1) is a cell surface antigen for therapeutic targeting in prostate cancer. Here, we report broad expression of STEAP1 relative to prostate-specific membrane antigen (PSMA) in lethal metastatic prostate cancers and the development of a STEAP1-directed chimeric antigen receptor (CAR) T cell therapy. STEAP1 CAR T cells demonstrate reactivity in low antigen density, antitumor activity across metastatic prostate cancer models, and safety in a human STEAP1 knock-in mouse model. STEAP1 antigen escape is a recurrent mechanism of treatment resistance and is associated with diminished tumor antigen processing and presentation. The application of tumor-localized interleukin-12 (IL-12) therapy in the form of a collagen binding domain (CBD)-IL-12 fusion protein combined with STEAP1 CAR T cell therapy enhances antitumor efficacy by remodeling the immunologically cold tumor microenvironment of prostate cancer and combating STEAP1 antigen escape through the engagement of host immunity and epitope spreading.
Collapse
Affiliation(s)
- Vipul Bhatia
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Nikhil V Kamat
- Division of Medical Oncology, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Tiffany E Pariva
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Li-Ting Wu
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Annabelle Tsao
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Koichi Sasaki
- Department of Bioengineering, Imperial College London, 86 Wood Lane, London, W12 0BZ, UK
| | - Huiyun Sun
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Gerardo Javier
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Sam Nutt
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Ilsa Coleman
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Lauren Hitchcock
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Ailin Zhang
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Dmytro Rudoy
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Roman Gulati
- Public Health Sciences Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Radhika A Patel
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Martine P Roudier
- Department of Urology, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Lawrence D True
- Department of Pathology and Laboratory Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Shivani Srivastava
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Colm M Morrissey
- Department of Urology, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Michael C Haffner
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
- Department of Pathology and Laboratory Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Peter S Nelson
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
- Division of Medical Oncology, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
- Department of Urology, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
- Department of Pathology and Laboratory Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Saul J Priceman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Jun Ishihara
- Department of Bioengineering, Imperial College London, 86 Wood Lane, London, W12 0BZ, UK.
| | - John K Lee
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA.
- Division of Medical Oncology, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA.
- Department of Pathology and Laboratory Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA.
- Clinical Research Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA.
| |
Collapse
|
10
|
Verma P, Shukla N, Kumari S, Ansari M, Gautam NK, Patel GK. Cancer stem cell in prostate cancer progression, metastasis and therapy resistance. Biochim Biophys Acta Rev Cancer 2023; 1878:188887. [PMID: 36997008 DOI: 10.1016/j.bbcan.2023.188887] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/18/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023]
Abstract
Prostate cancer (PCa) is the most diagnosed malignancy in the men worldwide. Cancer stem cells (CSCs) are the sub-population of cells present in the tumor which possess unique properties of self-renewal and multilineage differentiation thus thought to be major cause of therapy resistance, disease relapse, and mortality in several malignancies including PCa. CSCs have also been shown positive for the common stem cells markers such as ALDH EZH2, OCT4, SOX2, c-MYC, Nanog etc. Therefore, isolation and characterization of CSCs specific markers which may discriminate CSCs and normal stem cells are critical to selectively eliminate CSCs. Rapid advances in the field offers a theoretical explanation for many of the enduring uncertainties encompassing the etiology and an optimism for the identification of new stem-cell targets, development of reliable and efficient therapies in the future. The emerging reports have also provided unprecedented insights into CSCs plasticity, quiescence, renewal, and therapeutic response. In this review, we discuss the identification of PCa stem cells, their unique properties, stemness-driving pathways, new diagnostics, and therapeutic interventions.
Collapse
|
11
|
Graham MK, Chikarmane R, Wang R, Vaghasia A, Gupta A, Zheng Q, Wodu B, Pan X, Castagna N, Liu J, Meyers J, Skaist A, Wheelan S, Simons BW, Bieberich C, Nelson WG, DeWeese TL, De Marzo AM, Yegnasubramanian S. Single-cell atlas of epithelial and stromal cell heterogeneity by lobe and strain in the mouse prostate. Prostate 2023; 83:286-303. [PMID: 36373171 DOI: 10.1002/pros.24460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Evaluating the complex interplay of cell types in the tissue microenvironment is critical to understanding the origin and progression of diseases in the prostate and potential opportunities for intervention. Mouse models are an essential tool to investigate the molecular and cell-type-specific contributions of prostate disease at an organismal level. While there are well-documented differences in the extent, timing, and nature of disease development in various genetically engineered and exposure-based mouse models in different mouse strains and prostate lobes within each mouse strain, the underlying molecular phenotypic differences in cell types across mouse strains and prostate lobes are incompletely understood. METHODS In this study, we used single-cell RNA-sequencing (scRNA-seq) methods to assess the single-cell transcriptomes of 6-month-old mouse prostates from two commonly used mouse strains, friend virus B/NIH jackson (FVB/NJ) (N = 2) and C57BL/6J (N = 3). For each mouse, the lobes of the prostate were dissected (anterior, dorsal, lateral, and ventral), and individual scRNA-seq libraries were generated. In situ and pathological analyses were used to explore the spatial and anatomical distributions of novel cell types and molecular markers defining these cell types. RESULTS Data dimensionality reduction and clustering analysis of scRNA-seq data revealed that basal and luminal cells possessed strain-specific transcriptomic differences, with luminal cells also displaying marked lobe-specific differences. Gene set enrichment analysis comparing luminal cells by strain showed enrichment of proto-Oncogene targets in FVB/NJ mice. Additionally, three rare populations of epithelial cells clustered independently of strain and lobe: one population of luminal cells expressing Foxi1 and components of the vacuolar ATPase proton pump (Atp6v0d2 and Atp6v1g3), another population expressing Psca and other stem cell-associated genes (Ly6a/Sca-1, Tacstd2/Trop-2), and a neuroendocrine population expressing Chga, Chgb, and Syp. In contrast, stromal cell clusters, including fibroblasts, smooth muscle cells, endothelial cells, pericytes, and immune cell types, were conserved across strain and lobe, clustering largely by cell type and not by strain or lobe. One notable exception to this was the identification of two distinct fibroblast populations that we term subglandular fibroblasts and interstitial fibroblasts based on their strikingly distinct spatial distribution in the mouse prostate. CONCLUSIONS Altogether, these data provide a practical reference of the transcriptional profiles of mouse prostate from two commonly used mouse strains and across all four prostate lobes.
Collapse
Affiliation(s)
- Mindy K Graham
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland, USA
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Roshan Chikarmane
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Rulin Wang
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ajay Vaghasia
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Anuj Gupta
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Qizhi Zheng
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Bulouere Wodu
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Xin Pan
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nicole Castagna
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jianyong Liu
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jennifer Meyers
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Alyza Skaist
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sarah Wheelan
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Brian W Simons
- Center for Comparative Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Charles Bieberich
- Department of Biological Sciences, University of Maryland at Baltimore County, Baltimore, Maryland, USA
| | - William G Nelson
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Theodore L DeWeese
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland, USA
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Angelo M De Marzo
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Srinivasan Yegnasubramanian
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland, USA
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Germanos AA, Arora S, Zheng Y, Goddard ET, Coleman IM, Ku AT, Wilkinson S, Song H, Brady NJ, Amezquita RA, Zager M, Long A, Yang YC, Bielas JH, Gottardo R, Rickman DS, Huang FW, Ghajar CM, Nelson PS, Sowalsky AG, Setty M, Hsieh AC. Defining cellular population dynamics at single-cell resolution during prostate cancer progression. eLife 2022; 11:e79076. [PMID: 36511483 PMCID: PMC9747158 DOI: 10.7554/elife.79076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 11/27/2022] [Indexed: 12/13/2022] Open
Abstract
Advanced prostate malignancies are a leading cause of cancer-related deaths in men, in large part due to our incomplete understanding of cellular drivers of disease progression. We investigate prostate cancer cell dynamics at single-cell resolution from disease onset to the development of androgen independence in an in vivo murine model. We observe an expansion of a castration-resistant intermediate luminal cell type that correlates with treatment resistance and poor prognosis in human patients. Moreover, transformed epithelial cells and associated fibroblasts create a microenvironment conducive to pro-tumorigenic immune infiltration, which is partially androgen responsive. Androgen-independent prostate cancer leads to significant diversification of intermediate luminal cell populations characterized by a range of androgen signaling activity, which is inversely correlated with proliferation and mRNA translation. Accordingly, distinct epithelial populations are exquisitely sensitive to translation inhibition, which leads to epithelial cell death, loss of pro-tumorigenic signaling, and decreased tumor heterogeneity. Our findings reveal a complex tumor environment largely dominated by castration-resistant luminal cells and immunosuppressive infiltrates.
Collapse
Affiliation(s)
- Alexandre A Germanos
- Division of Human Biology, Fred Hutchinson Cancer CenterSeattleUnited States
- University of Washington Molecular and Cellular Biology ProgramSeattleUnited States
| | - Sonali Arora
- Division of Human Biology, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Ye Zheng
- Division of Vaccine and infectious Diseases, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Erica T Goddard
- Division of Public Health Sciences, Translational Research Program, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Ilsa M Coleman
- Division of Human Biology, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Anson T Ku
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIHBethesdaUnited States
| | - Scott Wilkinson
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIHBethesdaUnited States
| | - Hanbing Song
- Division of Hematology/Oncology, Department of Medicine, University of California, San FranciscoSan FranciscoUnited States
| | - Nicholas J Brady
- Department of Pathology and Laboratory Medicine, Weill Cornell MedicineNew YorkUnited States
| | - Robert A Amezquita
- Division of Vaccine and infectious Diseases, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Michael Zager
- Center for Data Visualization, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Annalysa Long
- Division of Public Health Sciences, Translational Research Program, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Yu Chi Yang
- Division of Human Biology, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Jason H Bielas
- Division of Public Health Sciences, Translational Research Program, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Raphael Gottardo
- Division of Vaccine and infectious Diseases, Fred Hutchinson Cancer CenterSeattleUnited States
- Division of Public Health Sciences, Translational Research Program, Fred Hutchinson Cancer CenterSeattleUnited States
| | - David S Rickman
- Department of Pathology and Laboratory Medicine, Weill Cornell MedicineNew YorkUnited States
| | - Franklin W Huang
- Division of Hematology/Oncology, Department of Medicine, University of California, San FranciscoSan FranciscoUnited States
| | - Cyrus M Ghajar
- Division of Human Biology, Fred Hutchinson Cancer CenterSeattleUnited States
- Division of Public Health Sciences, Translational Research Program, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Peter S Nelson
- Division of Human Biology, Fred Hutchinson Cancer CenterSeattleUnited States
- University of Washington Departments of Medicine and Genome SciencesSeattleUnited States
| | - Adam G Sowalsky
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIHBethesdaUnited States
| | - Manu Setty
- Translational Data Science Integrated Research Center, Fred Hutchinson Cancer CenterSeattleUnited States
- Division of Basic Sciences, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Andrew C Hsieh
- Division of Human Biology, Fred Hutchinson Cancer CenterSeattleUnited States
- University of Washington Departments of Medicine and Genome SciencesSeattleUnited States
| |
Collapse
|
13
|
Yang J, Aljitawi O, Van Veldhuizen P. Prostate Cancer Stem Cells: The Role of CD133. Cancers (Basel) 2022; 14:5448. [PMID: 36358865 PMCID: PMC9656005 DOI: 10.3390/cancers14215448] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/17/2022] [Accepted: 11/01/2022] [Indexed: 09/27/2023] Open
Abstract
Prostate cancer stem cells (PCSCs), possessing self-renewal properties and resistance to anticancer treatment, are possibly the leading cause of distant metastasis and treatment failure in prostate cancer (PC). CD133 is one of the most well-known and valuable cell surface markers of cancer stem cells (CSCs) in many cancers, including PC. In this article, we focus on reviewing the role of CD133 in PCSC. Any other main stem cell biomarkers in PCSC reported from key publications, as well as about vital research progress of CD133 in CSCs of different cancers, will be selectively reviewed to help us inform the main topic.
Collapse
Affiliation(s)
| | - Omar Aljitawi
- Department of Medicine, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Peter Van Veldhuizen
- Department of Medicine, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
14
|
Kushwaha PP, Verma S, Kumar S, Gupta S. Role of prostate cancer stem-like cells in the development of antiandrogen resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:459-471. [PMID: 35800367 PMCID: PMC9255247 DOI: 10.20517/cdr.2022.07] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/16/2022] [Accepted: 03/24/2022] [Indexed: 12/22/2022]
Abstract
Androgen deprivation therapy (ADT) is the standard of care treatment for advance stage prostate cancer. Treatment with ADT develops resistance in multiple ways leading to the development of castration-resistant prostate cancer (CRPC). Present research establishes that prostate cancer stem-like cells (CSCs) play a central role in the development of treatment resistance followed by disease progression. Prostate CSCs are capable of self-renewal, differentiation, and regenerating tumor heterogeneity. The stemness properties in prostate CSCs arise due to various factors such as androgen receptor mutation and variants, epigenetic and genetic modifications leading to alteration in the tumor microenvironment, changes in ATP-binding cassette (ABC) transporters, and adaptations in molecular signaling pathways. ADT reprograms prostate tumor cellular machinery leading to the expression of various stem cell markers such as Aldehyde Dehydrogenase 1 Family Member A1 (ALDH1A1), Prominin 1 (PROM1/CD133), Indian blood group (CD44), SRY-Box Transcription Factor 2 (Sox2), POU Class 5 Homeobox 1(POU5F1/Oct4), Nanog and ABC transporters. These markers indicate enhanced self-renewal and stemness stimulating CRPC evolution, metastatic colonization, and resistance to antiandrogens. In this review, we discuss the role of ADT in prostate CSCs differentiation and acquisition of CRPC, their isolation, identification and characterization, as well as the factors and pathways contributing to CSCs expansion and therapeutic opportunities.
Collapse
Affiliation(s)
- Prem Prakash Kushwaha
- Department of Urology, Case Western Reserve University, Cleveland, OH 44106, USA.,The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Shiv Verma
- Department of Urology, Case Western Reserve University, Cleveland, OH 44106, USA.,The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Shashank Kumar
- Molecular Signaling and Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda 151401, India
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University, Cleveland, OH 44106, USA.,The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA.,Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA.,Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA.,Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA.,Divison of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| |
Collapse
|
15
|
Crowley L, Shen MM. Heterogeneity and complexity of the prostate epithelium: New findings from single-cell RNA sequencing studies. Cancer Lett 2022; 525:108-114. [PMID: 34728312 PMCID: PMC8629925 DOI: 10.1016/j.canlet.2021.10.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/07/2021] [Accepted: 10/25/2021] [Indexed: 01/30/2023]
Abstract
The recent advent of single-cell RNA-sequencing technology has provided new fundamental insights into the heterogeneity of the prostate epithelium. Several independent studies have described extensive heterogeneity of the luminal epithelial compartment, including a major division between a novel population of luminal cells located in the proximal region of the prostate ducts versus luminal cells located more distally. Proximal luminal cells as well as novel periurethral cells display increased progenitor potential in organoid culture and tissue reconstitution assays, but not in lineage-tracing analyses during prostate homeostasis, suggesting context-dependent plasticity of these populations. Here we describe and synthesize recent findings regarding the epithelial cell populations in the mouse prostate, draw comparisons to the human prostate, and address the relevance of these findings to prostate diseases and cancer.
Collapse
Affiliation(s)
| | - Michael M. Shen
- Author for correspondence at: phone: (212) 851-4723; fax: (212) 851-4572;
| |
Collapse
|
16
|
Prostate luminal progenitor cells: from mouse to human, from health to disease. Nat Rev Urol 2022; 19:201-218. [DOI: 10.1038/s41585-021-00561-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2021] [Indexed: 12/11/2022]
|
17
|
Fu X, He Q, Tao Y, Wang M, Wang W, Wang Y, Yu QC, Zhang F, Zhang X, Chen YG, Gao D, Hu P, Hui L, Wang X, Zeng YA. Recent advances in tissue stem cells. SCIENCE CHINA. LIFE SCIENCES 2021; 64:1998-2029. [PMID: 34865207 DOI: 10.1007/s11427-021-2007-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022]
Abstract
Stem cells are undifferentiated cells capable of self-renewal and differentiation, giving rise to specialized functional cells. Stem cells are of pivotal importance for organ and tissue development, homeostasis, and injury and disease repair. Tissue-specific stem cells are a rare population residing in specific tissues and present powerful potential for regeneration when required. They are usually named based on the resident tissue, such as hematopoietic stem cells and germline stem cells. This review discusses the recent advances in stem cells of various tissues, including neural stem cells, muscle stem cells, liver progenitors, pancreatic islet stem/progenitor cells, intestinal stem cells, and prostate stem cells, and the future perspectives for tissue stem cell research.
Collapse
Affiliation(s)
- Xin Fu
- Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200233, China
| | - Qiang He
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Tao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mengdi Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yalong Wang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qing Cissy Yu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Fang Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaoyu Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Max-Planck Center for Tissue Stem Cell Research and Regenerative Medicine, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510530, China.
| | - Dong Gao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ping Hu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200233, China.
- Max-Planck Center for Tissue Stem Cell Research and Regenerative Medicine, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510530, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Bio-Research Innovation Center, Shanghai Institute of Biochemistry and Cell Biology, Suzhou, 215121, China.
| | - Lijian Hui
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Bio-Research Innovation Center, Shanghai Institute of Biochemistry and Cell Biology, Suzhou, 215121, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Xiaoqun Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| | - Yi Arial Zeng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Bio-Research Innovation Center, Shanghai Institute of Biochemistry and Cell Biology, Suzhou, 215121, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
18
|
Chaves LP, Melo CM, Saggioro FP, dos Reis RB, Squire JA. Epithelial-Mesenchymal Transition Signaling and Prostate Cancer Stem Cells: Emerging Biomarkers and Opportunities for Precision Therapeutics. Genes (Basel) 2021; 12:1900. [PMID: 34946849 PMCID: PMC8701270 DOI: 10.3390/genes12121900] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 12/24/2022] Open
Abstract
Prostate cancers may reactivate a latent embryonic program called the epithelial-mesenchymal transition (EMT) during the development of metastatic disease. Through EMT, tumors can develop a mesenchymal phenotype similar to cancer stem cell traits that contributes to metastasis and variation in therapeutic responses. Some of the recurrent somatic mutations of prostate cancer affect EMT driver genes and effector transcription factors that induce the chromatin- and androgen-dependent epigenetic alterations that characterize castrate-resistant prostate cancer (CRPC). EMT regulators in prostate cancer comprise transcription factors (SNAI1/2, ZEB1, TWIST1, and ETS), tumor suppressor genes (RB1, PTEN, and TP53), and post-transcriptional regulators (miRNAs) that under the selective pressures of antiandrogen therapy can develop an androgen-independent metastatic phenotype. In prostate cancer mouse models of EMT, Slug expression, as well as WNT/β-Catenin and notch signaling pathways, have been shown to increase stemness potential. Recent single-cell transcriptomic studies also suggest that the stemness phenotype of advanced prostate cancer may be related to EMT. Other evidence correlates EMT and stemness with immune evasion, for example, activation of the polycomb repressor complex I, promoting EMT and stemness and cytokine secretion through RB1, TP53, and PRC1. These findings are helping clinical trials in CRPC that seek to understand how drugs and biomarkers related to the acquisition of EMT can improve drug response.
Collapse
Affiliation(s)
- Luiz Paulo Chaves
- Department of Genetics, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil; (L.P.C.); (C.M.M.)
| | - Camila Morais Melo
- Department of Genetics, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil; (L.P.C.); (C.M.M.)
| | - Fabiano Pinto Saggioro
- Pathology Department, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil;
| | - Rodolfo Borges dos Reis
- Division of Urology, Department of Surgery and Anatomy, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil;
| | - Jeremy Andrew Squire
- Department of Genetics, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil; (L.P.C.); (C.M.M.)
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
19
|
Cancer Vaccines: Promising Therapeutics or an Unattainable Dream. Vaccines (Basel) 2021; 9:vaccines9060668. [PMID: 34207062 PMCID: PMC8233841 DOI: 10.3390/vaccines9060668] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 02/08/2023] Open
Abstract
The advent of cancer immunotherapy has revolutionized the field of cancer treatment and offers cancer patients new hope. Although this therapy has proved highly successful for some patients, its efficacy is not all encompassing and several cancer types do not respond. Cancer vaccines offer an alternate approach to promote anti-tumor immunity that differ in their mode of action from antibody-based therapies. Cancer vaccines serve to balance the equilibrium of the crosstalk between the tumor cells and the host immune system. Recent advances in understanding the nature of tumor-mediated tolerogenicity and antigen presentation has aided in the identification of tumor antigens that have the potential to enhance anti-tumor immunity. Cancer vaccines can either be prophylactic (preventative) or therapeutic (curative). An exciting option for therapeutic vaccines is the emergence of personalized vaccines, which are tailor-made and specific for tumor type and individual patient. This review summarizes the current standing of the most promising vaccine strategies with respect to their development and clinical efficacy. We also discuss prospects for future development of stem cell-based prophylactic vaccines.
Collapse
|
20
|
Overexpression and surface localization of HPRT in prostate cancer provides a potential target for cancer specific antibody mediated cellular cytotoxicity. Exp Cell Res 2021; 403:112567. [PMID: 33812866 DOI: 10.1016/j.yexcr.2021.112567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 01/15/2023]
Abstract
We chose to evaluate Hypoxanthine Guanine Phosphoribosyltransferase (HPRT) as a possible biomarker for prostate cancer due to its involvement in nucleotide synthesis and cell cycle progression. We utilized two prostate cancer cell lines (PC3 and DU145) along with patient tissue and knockdowns to evaluate overall HPRT expression. The surface localization of HPRT was determined utilizing flow cytometry, confocal microscopy, and scanning electron microscopy followed by ADCC to evaluate targeting potential. We found significant upregulation of HPRT within malignant samples with approximately 47% of patients had elevated levels of HPRT compared to normal controls. We also observed a significant association between HPRT and the plasma membrane of DU145 cells (p = 0.0004), but found no presence on PC3 cells (p = 0.14). This was confirmed with scanning electron microscopy and confocal microscopy. ADCC experiments were performed to determine whether HPRT could be used as a target antigen for selective cell-mediated killing. We found that DU145 cells treated with HPRT antibodies had a significantly higher incidence of cell death than both isotype treated samples and PC3 cells treated with the same concentrations of HPRT antibody. Finally, we determined that p53 had a significant impact on HPRT expression both internally and on the surface of cancer cells. These results suggest HPRT as a possible biomarker target for the treatment of patients with prostate cancer.
Collapse
|
21
|
Joseph DB, Turco AE, Vezina CM, Strand DW. Progenitors in prostate development and disease. Dev Biol 2021; 473:50-58. [PMID: 33529704 DOI: 10.1016/j.ydbio.2020.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022]
Abstract
The prostate develops by epithelial budding and branching processes that occur during fetal and postnatal stages. The adult prostate demonstrates remarkable regenerative capacity, with the ability to regrow to its original size over multiple cycles of castration and androgen administration. This capacity for controlled regeneration prompted the search for an androgen-independent epithelial progenitor in benign prostatic hyperplasia (BPH) and prostate cancer (PCa). BPH is hypothesized to be a reawakening of ductal branching, resulting in the formation of new proximal glands, all while androgen levels are decreasing in the aging male. Advanced prostate cancer can be slowed with androgen deprivation, but resistance eventually occurs, suggesting the existence of an androgen-independent progenitor. Recent studies indicate that there are multiple castration-insensitive epithelial cell types in the proximal area of the prostate, but not all act as progenitors during prostate development or regeneration. This review highlights how recent cellular and anatomical studies are changing our perspective on the identity of the prostate progenitor.
Collapse
Affiliation(s)
- Diya B Joseph
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Anne E Turco
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Chad M Vezina
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Douglas W Strand
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
22
|
Mevel R, Steiner I, Mason S, Galbraith LCA, Patel R, Fadlullah MZH, Ahmad I, Leung HY, Oliveira P, Blyth K, Baena E, Lacaud G. RUNX1 marks a luminal castration-resistant lineage established at the onset of prostate development. eLife 2020; 9:e60225. [PMID: 33025905 PMCID: PMC7644213 DOI: 10.7554/elife.60225] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
The characterization of prostate epithelial hierarchy and lineage heterogeneity is critical to understand its regenerative properties and malignancies. Here, we report that the transcription factor RUNX1 marks a specific subpopulation of proximal luminal cells (PLCs), enriched in the periurethral region of the developing and adult mouse prostate, and distinct from the previously identified NKX3.1+ luminal castration-resistant cells. Using scRNA-seq profiling and genetic lineage tracing, we show that RUNX1+ PLCs are unaffected by androgen deprivation, and do not contribute to the regeneration of the distal luminal compartments. Furthermore, we demonstrate that a transcriptionally similar RUNX1+ population emerges at the onset of embryonic prostate specification to populate the proximal region of the ducts. Collectively, our results reveal that RUNX1+ PLCs is an intrinsic castration-resistant and self-sustained lineage that emerges early during prostate development and provide new insights into the lineage relationships of the prostate epithelium.
Collapse
Affiliation(s)
- Renaud Mevel
- Cancer Research United Kingdom, Stem Cell Biology Group, Cancer Research United Kingdom Manchester Institute, The University of Manchester, Alderley Park, Alderley EdgeMacclesfieldUnited Kingdom
| | - Ivana Steiner
- Cancer Research United Kingdom, Prostate Oncobiology Group, Cancer Research United Kingdom Manchester Institute, The University of Manchester, Alderley Park, Alderley EdgeMacclesfieldUnited Kingdom
| | - Susan Mason
- Cancer Research United Kingdom Beatson Institute, BearsdenGlasgowUnited Kingdom
| | - Laura CA Galbraith
- Cancer Research United Kingdom Beatson Institute, BearsdenGlasgowUnited Kingdom
| | - Rahima Patel
- Cancer Research United Kingdom, Stem Cell Biology Group, Cancer Research United Kingdom Manchester Institute, The University of Manchester, Alderley Park, Alderley EdgeMacclesfieldUnited Kingdom
| | - Muhammad ZH Fadlullah
- Cancer Research United Kingdom, Stem Cell Biology Group, Cancer Research United Kingdom Manchester Institute, The University of Manchester, Alderley Park, Alderley EdgeMacclesfieldUnited Kingdom
| | - Imran Ahmad
- Cancer Research United Kingdom Beatson Institute, BearsdenGlasgowUnited Kingdom
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, BearsdenGlasgowUnited Kingdom
| | - Hing Y Leung
- Cancer Research United Kingdom Beatson Institute, BearsdenGlasgowUnited Kingdom
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, BearsdenGlasgowUnited Kingdom
| | - Pedro Oliveira
- Department of Pathology, The Christie NHS Foundation TrustManchesterUnited Kingdom
| | - Karen Blyth
- Cancer Research United Kingdom Beatson Institute, BearsdenGlasgowUnited Kingdom
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, BearsdenGlasgowUnited Kingdom
| | - Esther Baena
- Cancer Research United Kingdom, Prostate Oncobiology Group, Cancer Research United Kingdom Manchester Institute, The University of Manchester, Alderley Park, Alderley EdgeMacclesfieldUnited Kingdom
- Belfast-Manchester Movember Centre of Excellence, Cancer Research United Kingdom Manchester Institute, The University of ManchesterAlderley ParkUnited Kingdom
| | - Georges Lacaud
- Cancer Research United Kingdom, Stem Cell Biology Group, Cancer Research United Kingdom Manchester Institute, The University of Manchester, Alderley Park, Alderley EdgeMacclesfieldUnited Kingdom
| |
Collapse
|
23
|
Guo W, Li L, He J, Liu Z, Han M, Li F, Xia X, Zhang X, Zhu Y, Wei Y, Li Y, Aji R, Dai H, Wei H, Li C, Chen Y, Chen L, Gao D. Single-cell transcriptomics identifies a distinct luminal progenitor cell type in distal prostate invagination tips. Nat Genet 2020; 52:908-918. [PMID: 32807988 PMCID: PMC8383310 DOI: 10.1038/s41588-020-0642-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/07/2020] [Indexed: 11/09/2022]
Abstract
The identification of prostate stem/progenitor cells and characterization of the prostate epithelial cell lineage hierarchy are critical for understanding prostate cancer initiation. Here, we characterized 35,129 cells from mouse prostates, and identified a unique luminal cell type (termed type C luminal cell (Luminal-C)) marked by Tacstd2, Ck4 and Psca expression. Luminal-C cells located at the distal prostate invagination tips (termed Dist-Luminal-C) exhibited greater capacity for organoid formation in vitro and prostate epithelial duct regeneration in vivo. Lineage tracing of Luminal-C cells indicated that Dist-Luminal-C cells reconstituted distal prostate luminal lineages through self-renewal and differentiation. Deletion of Pten in Dist-Luminal-C cells resulted in prostatic intraepithelial neoplasia. We further characterized 11,374 human prostate cells and confirmed the existence of h-Luminal-C cells. Our study provides insights into the prostate lineage hierarchy, identifies Dist-Luminal-C cells as the luminal progenitor cell population in invagination tips and suggests one of the potential cellular origins of prostate cancer.
Collapse
Affiliation(s)
- Wangxin Guo
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lin Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Juan He
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhuang Liu
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ming Han
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinyi Xia
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyu Zhang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Shanghai, China
| | - Yu Wei
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Shanghai, China
| | - Yunguang Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rebiguli Aji
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hao Dai
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Wei
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Chunfeng Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College and New York-Presbyterian Hospital, New York, NY, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medical College and New York-Presbyterian Hospital, New York, NY, USA.
| | - Luonan Chen
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China.
| | - Dong Gao
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
24
|
Kwon OJ, Choi JM, Zhang L, Jia D, Li Z, Zhang Y, Jung SY, Creighton CJ, Xin L. The Sca-1 + and Sca-1 - mouse prostatic luminal cell lineages are independently sustained. Stem Cells 2020; 38:1479-1491. [PMID: 32627901 DOI: 10.1002/stem.3253] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/05/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022]
Abstract
The phenotypic and functional heterogeneity of the mouse prostate epithelial cell lineages remains incompletely characterized. We show that the Sca-1+ luminal cells at the mouse proximal prostate express Sox2. These cells are replicative quiescent, castration resistant, and do not possess secretory function. We use the Probasin-CreERT2 and Sox2-CreERT2 models in concert with a fluorescent reporter line to label the Sca-1- and Sca-1+ luminal cells, respectively. By a lineage tracing approach, we show that the two luminal cell populations are independently sustained. Sox2 is dispensable for the maintenance of the Sca-1+ luminal cells but is essential for their facultative bipotent differentiation capacity. The Sca-1+ luminal cells share molecular features with the human TACSTD2+ luminal cells. This study corroborates the heterogeneity of the mouse prostate luminal cell lineage and shows that the adult mouse prostate luminal cell lineage is maintained by distinct cellular entities rather than a single progenitor population.
Collapse
Affiliation(s)
- Oh-Joon Kwon
- Department of Urology, University of Washington, Seattle, Washington, USA
| | - Jong Min Choi
- Department of Chemistry and Biochemistry, Baylor College of Medicine, Houston, Texas, USA
| | - Li Zhang
- Department of Urology, University of Washington, Seattle, Washington, USA
| | - Deyong Jia
- Department of Urology, University of Washington, Seattle, Washington, USA
| | - Zhouyihan Li
- Department of Chemistry and Biochemistry, University of Washington, Seattle, Washington, USA
| | - Yiqun Zhang
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Sung Yun Jung
- Department of Chemistry and Biochemistry, Baylor College of Medicine, Houston, Texas, USA
| | - Chad J Creighton
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Li Xin
- Department of Urology, University of Washington, Seattle, Washington, USA.,Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
25
|
Joseph DB, Henry GH, Malewska A, Iqbal NS, Ruetten HM, Turco AE, Abler LL, Sandhu SK, Cadena MT, Malladi VS, Reese JC, Mauck RJ, Gahan JC, Hutchinson RC, Roehrborn CG, Baker LA, Vezina CM, Strand DW. Urethral luminal epithelia are castration-insensitive cells of the proximal prostate. Prostate 2020; 80:872-884. [PMID: 32497356 PMCID: PMC7339731 DOI: 10.1002/pros.24020] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Castration-insensitive epithelial progenitors capable of regenerating the prostate have been proposed to be concentrated in the proximal region based on facultative assays. Functional characterization of prostate epithelial populations isolated with individual cell surface markers has failed to provide a consensus on the anatomical and transcriptional identity of proximal prostate progenitors. METHODS Here, we use single-cell RNA sequencing to obtain a complete transcriptomic profile of all epithelial cells in the mouse prostate and urethra to objectively identify cellular subtypes. Pan-transcriptomic comparison to human prostate cell types identified a mouse equivalent of human urethral luminal cells, which highly expressed putative prostate progenitor markers. Validation of the urethral luminal cell cluster was performed using immunostaining and flow cytometry. RESULTS Our data reveal that previously identified facultative progenitors marked by Trop2, Sca-1, KRT4, and PSCA are actually luminal epithelial cells of the urethra that extend into the proximal region of the prostate, and are resistant to castration-induced androgen deprivation. Mouse urethral luminal cells were identified to be the equivalent of previously identified human club and hillock cells that similarly extend into proximal prostate ducts. Benign prostatic hyperplasia (BPH) has long been considered an "embryonic reawakening," but the cellular origin of the hyperplastic growth concentrated in the periurethral region is unclear. We demonstrate an increase in urethral luminal cells within glandular nodules from BPH patients. Urethral luminal cells are further increased in patients treated with a 5-α reductase inhibitor. CONCLUSIONS Our data demonstrate that cells of the proximal prostate that express putative progenitor markers, and are enriched by castration in the proximal prostate, are urethral luminal cells and that these cells may play an important role in the etiology of human BPH.
Collapse
Affiliation(s)
- Diya B. Joseph
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas
| | - Gervaise H. Henry
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas
- Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas
| | - Alicia Malewska
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas
| | - Nida S. Iqbal
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas
| | - Hannah M. Ruetten
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Anne E. Turco
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Lisa L. Abler
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Simran K. Sandhu
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Mark T. Cadena
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Venkat S. Malladi
- Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas
| | | | - Ryan J. Mauck
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas
| | - Jeffrey C. Gahan
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas
| | | | | | - Linda A. Baker
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas
| | - Chad M. Vezina
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Douglas W. Strand
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
26
|
He L, Nguyen NB, Ardehali R, Zhou B. Heart Regeneration by Endogenous Stem Cells and Cardiomyocyte Proliferation: Controversy, Fallacy, and Progress. Circulation 2020; 142:275-291. [PMID: 32687441 DOI: 10.1161/circulationaha.119.045566] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ischemic heart disease is the leading cause of death worldwide. Myocardial infarction results in an irreversible loss of cardiomyocytes with subsequent adverse remodeling and heart failure. Identifying new sources for cardiomyocytes and promoting their formation represents a goal of cardiac biology and regenerative medicine. Within the past decade, many types of putative cardiac stem cells (CSCs) have been reported to regenerate the injured myocardium by differentiating into new cardiomyocytes. Some of these CSCs have been translated from bench to bed with reported therapeutic effectiveness. However, recent basic research studies on stem cell tracing have begun to question their fundamental biology and mechanisms of action, raising serious concerns over the myogenic potential of CSCs. We review the history of different types of CSCs within the past decade and provide an update of recent cell tracing studies that have challenged the origin and existence of CSCs. In addition to the potential role of CSCs in heart regeneration, proliferation of preexisting cardiomyocytes has recently gained more attention. This review will also evaluate the methodologic and technical aspects of past and current studies on CSCs and cardiomyocyte proliferation, with emphasis on technical strengths, advantages, and potential limitations of research approaches. While our understanding of cardiomyocyte generation and regeneration continues to evolve, it is important to address the shortcomings and inaccuracies in this field. This is best achieved by embracing technological advancements and improved methods to label single cardiomyocytes/progenitors and accurately investigate their developmental potential and fate/lineage commitment.
Collapse
Affiliation(s)
- Lingjuan He
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China (L.H., B.Z.)
| | - Ngoc B Nguyen
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine (N.B.N., R.A.), University of California, Los Angeles.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research (N.B.N., R.A.), University of California, Los Angeles
| | - Reza Ardehali
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine (N.B.N., R.A.), University of California, Los Angeles.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research (N.B.N., R.A.), University of California, Los Angeles
| | - Bin Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China (L.H., B.Z.).,School of Life Science and Technology, ShanghaiTech University, Shanghai, China (B.Z.).,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China (B.Z.).,Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China (B.Z.)
| |
Collapse
|
27
|
Lin CJ, Lo UG, Hsieh JT. The regulatory pathways leading to stem-like cells underlie prostate cancer progression. Asian J Androl 2020; 21:233-240. [PMID: 30178777 PMCID: PMC6498735 DOI: 10.4103/aja.aja_72_18] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer (PCa) is the most common cause of malignancy in males and the third leading cause of cancer mortality in the United States. The standard care for primary PCa with local invasive disease mainly is surgery and radiation. For patients with distant metastases, androgen deprivation therapy (ADT) is a gold standard. Regardless of a favorable outcome of ADT, patients inevitably relapse to an end-stage castration-resistant prostate cancer (CRPC) leading to mortality. Therefore, revealing the mechanism and identifying cellular components driving aggressive PCa is critical for prognosis and therapeutic intervention. Cancer stem cell (CSC) phenotypes characterized as poor differentiation, cancer initiation with self-renewal capabilities, and therapeutic resistance are proposed to contribute to the onset of CRPC. In this review, we discuss the role of CSC in CRPC with the evidence of CSC phenotypes and the possible underlying mechanisms.
Collapse
Affiliation(s)
- Chun-Jung Lin
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - U-Ging Lo
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jer-Tsong Hsieh
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
28
|
Masoumi J, Jafarzadeh A, Khorramdelazad H, Abbasloui M, Abdolalizadeh J, Jamali N. Role of Apelin/APJ axis in cancer development and progression. Adv Med Sci 2020; 65:202-213. [PMID: 32087570 DOI: 10.1016/j.advms.2020.02.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/26/2019] [Accepted: 02/11/2020] [Indexed: 02/07/2023]
Abstract
Apelin is an endogenous peptide, which is expressed in a vast board of organs such as the brain, placenta, heart, lungs, kidneys, pancreas, testis, prostate and adipose tissues. The apelin receptor, called angiotensin-like-receptor 1 (APJ), is also expressed in the brain, spleen, placenta, heart, liver, intestine, prostate, thymus, testis, ovary, lungs, kidneys, stomach, and adipose tissue. The apelin/APJ axis is involved in a number of physiological and pathological processes. The apelin expression is increased in various kinds of cancer and the apelin/APJ axis plays a key role in the development of tumors through enhancing angiogenesis, metastasis, cell proliferation and also through the development of cancer stem cells and drug resistance. The apelin also stops the apoptosis of cancer cells. The apelin/APJ axis was considered in this review as an attractive therapeutic target for cancer treatment.
Collapse
|
29
|
Wang X, Xu H, Cheng C, Ji Z, Zhao H, Sheng Y, Li X, Wang J, Shu Y, He Y, Fan L, Dong B, Xue W, Wai Chua C, Wu D, Gao WQ, He Zhu H. Identification of a Zeb1 expressing basal stem cell subpopulation in the prostate. Nat Commun 2020; 11:706. [PMID: 32024836 PMCID: PMC7002669 DOI: 10.1038/s41467-020-14296-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 12/15/2019] [Indexed: 12/30/2022] Open
Abstract
The basal cell compartment in many epithelial tissues is generally believed to serve as an important pool of stem cells. However, basal cells are heterogenous and the stem cell subpopulation within basal cells is not well elucidated. Here we uncover that the core epithelial-to-mesenchymal transition (EMT) inducer Zeb1 is expressed in a prostate basal cell subpopulation. The Zeb1+ prostate epithelial cells are multipotent prostate basal stem cells (PBSCs) that can self-renew and generate functional prostatic glandular structures at the single-cell level. Genetic ablation studies reveal an indispensable role for Zeb1 in prostate basal cell development. Utilizing unbiased single-cell transcriptomic analysis of over 9000 mouse prostate basal cells, we confirm the existence of the Zeb1+ basal cell subset. Moreover, Zeb1+ epithelial cells can be detected in mouse and human prostate tumors. Identification of the PBSC and its transcriptome profile is crucial to advance our understanding of prostate development and tumorigenesis.
Collapse
Affiliation(s)
- Xue Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China.,Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Haibo Xu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Sciences, Kunming, 650223, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chaping Cheng
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China.,Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Zhongzhong Ji
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China.,Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Huifang Zhao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yaru Sheng
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiaoxia Li
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jinming Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yu Shu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yuman He
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Liancheng Fan
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Baijun Dong
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wei Xue
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Chee Wai Chua
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China.,Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Dongdong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Sciences, Kunming, 650223, China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China. .,Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Helen He Zhu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China. .,Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
30
|
Xiong X, Schober M, Tassone E, Khodadadi-Jamayran A, Sastre-Perona A, Zhou H, Tsirigos A, Shen S, Chang M, Melamed J, Ossowski L, Wilson EL. KLF4, A Gene Regulating Prostate Stem Cell Homeostasis, Is a Barrier to Malignant Progression and Predictor of Good Prognosis in Prostate Cancer. Cell Rep 2019; 25:3006-3020.e7. [PMID: 30540935 PMCID: PMC6405286 DOI: 10.1016/j.celrep.2018.11.065] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 11/07/2018] [Accepted: 11/15/2018] [Indexed: 12/18/2022] Open
Abstract
There is a considerable need to identify those individuals with prostate cancer who have indolent disease. We propose that
genes that control adult stem cell homeostasis in organs with slow turnover, such as the prostate, control cancer fate. One such
gene, KLF4, overexpressed in murine prostate stem cells, regulates their homeostasis, blocks malignant transformation, and
controls the self-renewal of tumor-initiating cells. KLF4 loss induces the molecular features of aggressive cancer and converts
PIN lesions to invasive sarcomatoid carcinomas; its re-expression in vivo reverses this process. Bioinformatic
analysis links these changes to human cancer. KLF4 and its downstream targets make up a gene signature that identifies indolent
tumors and predicts recurrence-free survival. This approach may improve prognosis and identify therapeutic targets for advanced
cancer. Available criteria for segregating prostate cancer patients into those requiring therapeutic intervention and those who can
be followed are inadequate. Xiong et al. show that KLF4 and its downstream targets make up a gene signature that identifies
indolent tumors. This approach may improve prognosis and identify therapeutic targets for advanced cancer.
Collapse
Affiliation(s)
- Xiaozhong Xiong
- Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA.
| | - Markus Schober
- Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA; Department of Dermatology, NYU School of Medicine, New York, NY 10016, USA
| | - Evelyne Tassone
- Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Alireza Khodadadi-Jamayran
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA; Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY 10016, USA
| | - Ana Sastre-Perona
- Department of Dermatology, NYU School of Medicine, New York, NY 10016, USA
| | - Hua Zhou
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA; Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY 10016, USA
| | - Aristotelis Tsirigos
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA; Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY 10016, USA
| | - Steven Shen
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Miao Chang
- Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Jonathan Melamed
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - Liliana Ossowski
- Department of Medicine, Mt. Sinai School of Medicine, New York, NY 10029, USA
| | - Elaine L Wilson
- Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA; Department of Urology, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
31
|
Fan X, Bjerke GA, Riemondy K, Wang L, Yi R. A basal-enriched microRNA is required for prostate tumorigenesis in a Pten knockout mouse model. Mol Carcinog 2019; 58:2241-2253. [PMID: 31512783 PMCID: PMC7791532 DOI: 10.1002/mc.23112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) play important roles in prostate cancer development. However, it remains unclear how individual miRNAs contribute to the initiation and progression of prostate cancer. Here we show that a basal layer-enriched miRNA is required for prostate tumorigenesis. We identify miR-205 as the most highly expressed miRNA and enriched in the basal cells of the prostate. Although miR-205 is not required for normal prostate development and homeostasis, genetic deletion of miR-205 in a Pten null tumor model significantly compromises tumor progression and does not promote metastasis. In Pten null basal cells, loss of miR-205 attenuates pAkt levels and promotes cellular senescence. Furthermore, although overexpression of miR-205 in prostate cancer cells with luminal phenotypes inhibits cell growth in both human and mouse, miR-205 has a minimal effect on the growth of a normal human prostate cell line. Taken together, we have provided genetic evidence for a requirement of miR-205 in the progression of Pten null-induced prostate cancer.
Collapse
Affiliation(s)
- Xiying Fan
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Boulder, Colorado
| | - Glen A Bjerke
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Boulder, Colorado
| | - Kent Riemondy
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Boulder, Colorado
| | - Li Wang
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Boulder, Colorado
| | - Rui Yi
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Boulder, Colorado
| |
Collapse
|
32
|
Davis JE, Kirk J, Ji Y, Tang DG. Tumor Dormancy and Slow-Cycling Cancer Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1164:199-206. [PMID: 31576550 DOI: 10.1007/978-3-030-22254-3_15] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cancer cell heterogeneity is a universal feature of human tumors and represents a significant barrier to the efficacy and duration of anticancer therapies, especially targeted therapeutics. Among the heterogeneous cancer cell populations is a subpopulation of relatively quiescent cancer cells, which are in the G0/G1 cell-cycle phase and refractory to anti-mitotic drugs that target proliferative cells. These slow-cycling cells (SCCs) preexist in untreated tumors and frequently become enriched in treatment-failed tumors, raising the possibility that these cells may mediate therapy resistance and tumor relapse. Here we review several general concepts on tumor cell heterogeneity, quiescence, and tumor dormancy. We discuss the potential relationship between SCCs and cancer stem cells (CSCs). We also present our current understanding of how SCCs and cancer dormancy might be regulated. Increasing knowledge of SCCs and tumor dormancy should lead to identification of novel molecular regulators and therapeutic targets of tumor relapse, residual diseases, and metastasis.
Collapse
Affiliation(s)
- John E Davis
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jason Kirk
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Yibing Ji
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
33
|
Zhang L, Sultana N, Yan J, Yang F, Chen F, Chepurko E, Yang FC, Du Q, Zangi L, Xu M, Bu L, Cai CL. Cardiac Sca-1 + Cells Are Not Intrinsic Stem Cells for Myocardial Development, Renewal, and Repair. Circulation 2019; 138:2919-2930. [PMID: 30566018 DOI: 10.1161/circulationaha.118.035200] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND For more than a decade, Sca-1+ cells within the mouse heart have been widely recognized as a stem cell population with multipotency that can give rise to cardiomyocytes, endothelial cells, and smooth muscle cells in vitro and after cardiac grafting. However, the developmental origin and authentic nature of these cells remain elusive. METHODS Here, we used a series of high-fidelity genetic mouse models to characterize the identity and regenerative potential of cardiac resident Sca-1+ cells. RESULTS With these novel genetic tools, we found that Sca-1 does not label cardiac precursor cells during early embryonic heart formation. Postnatal cardiac resident Sca-1+ cells are in fact a pure endothelial cell population. They retain endothelial properties and exhibit minimal cardiomyogenic potential during development, normal aging and upon ischemic injury. CONCLUSIONS Our study provides definitive insights into the nature of cardiac resident Sca-1+ cells. The observations challenge the current dogma that cardiac resident Sca-1+ cells are intrinsic stem cells for myocardial development, renewal, and repair, and suggest that the mechanisms of transplanted Sca-1+ cells in heart repair need to be reassessed.
Collapse
Affiliation(s)
- Lu Zhang
- Riley Heart Research Center and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis (L. Zhang, F.Y., C.-L.C.).,Department of Developmental and Regenerative Biology and The Black Family Stem Cell Institute (L. Zhang, N.S., F.Y., C.-L.C.), Icahn School of Medicine at Mount Sinai, New York
| | - Nishat Sultana
- Department of Developmental and Regenerative Biology and The Black Family Stem Cell Institute (L. Zhang, N.S., F.Y., C.-L.C.), Icahn School of Medicine at Mount Sinai, New York.,Department of Medicine and Cardiovascular Research Center (N.S., E.C., L. Zangi), Icahn School of Medicine at Mount Sinai, New York
| | - Jianyun Yan
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, and Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China (J.Y.)
| | - Fan Yang
- Riley Heart Research Center and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis (L. Zhang, F.Y., C.-L.C.).,Department of Developmental and Regenerative Biology and The Black Family Stem Cell Institute (L. Zhang, N.S., F.Y., C.-L.C.), Icahn School of Medicine at Mount Sinai, New York
| | - Fuxue Chen
- College of Life Sciences, Shanghai University, China (F.C.)
| | - Elena Chepurko
- Department of Medicine and Cardiovascular Research Center (N.S., E.C., L. Zangi), Icahn School of Medicine at Mount Sinai, New York
| | - Feng-Chun Yang
- Department of Biochemistry and Molecular Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, FL (F.-C.Y., Q.D., M.X.)
| | - Qinghua Du
- Department of Biochemistry and Molecular Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, FL (F.-C.Y., Q.D., M.X.)
| | - Lior Zangi
- Department of Medicine and Cardiovascular Research Center (N.S., E.C., L. Zangi), Icahn School of Medicine at Mount Sinai, New York
| | - Mingjiang Xu
- Department of Biochemistry and Molecular Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, FL (F.-C.Y., Q.D., M.X.)
| | - Lei Bu
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY (L.B.)
| | - Chen-Leng Cai
- Riley Heart Research Center and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis (L. Zhang, F.Y., C.-L.C.).,Department of Developmental and Regenerative Biology and The Black Family Stem Cell Institute (L. Zhang, N.S., F.Y., C.-L.C.), Icahn School of Medicine at Mount Sinai, New York
| |
Collapse
|
34
|
Madueke I, Hu WY, Hu D, Swanson SM, Griend DV, Abern M, Prins GS. The role of WNT10B in normal prostate gland development and prostate cancer. Prostate 2019; 79:1692-1704. [PMID: 31433503 PMCID: PMC9639854 DOI: 10.1002/pros.23894] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/22/2019] [Indexed: 11/09/2022]
Abstract
BACKGROUND WNT signaling is implicated in embryonic development, and in adult tissue homeostasis, while its deregulation is evident in disease. This study investigates the unique roles of canonical WNT10B in both normal prostate development and prostate cancer (PCa) progression. METHODS Organ culture and rat ventral prostates (VPs) were used to study Wnt10b ontogeny and growth effect of WNT10B protein. PB-SV40 LTag rat VPs were utilized for Wnt expression polymerase chain reaction (PCR) array and immunohistochemistry. Human localized PCa tissue microarrays (TMAs) were investigated for differential WNT10B expression. Human RNA-seq data sets were queried for differential expression of WNT10B in metastatic and localized PCa. Knockdown of WNT10B in PC3 cells was utilized to study its effects on proliferation, stemness, epithelial to mesenchymal transition (EMT), and xenograft propagation. RESULTS Wnt10b expression was highest at birth and rapidly declined in the postnatal rat VP. Exogenous WNT10B addition to culture developing VPs decreased growth suggesting an antiproliferative role. VPs from PB-SV40 LTag rats with localized PCa showed a 25-fold reduction in Wnt10b messenger RNA (mRNA) expession, confirmed at the protein level. Human PCa TMAs revealed elevated WNT10B protein in prostate intraepithelial neoplasia compared with normal prostates but reduced levels in localized PCa specimens. In contrast, RNA-seq data set of annotated human PCa metastasis found a significant increase in WNT10B mRNA expression compared with localized tumors suggesting stage-specific functions of WNT10B. Similarly, WNT10B mRNA levels were increased in metastatic cell lines PC3, PC3M, as well as in HuSLC, a PCa stem-like cell line, as compared with disease-free primary prostate epithelial cells. WNT10B knockdown in PC3 cells reduced expression of EMT genes, MMP9 and stemness genes NANOG and SOX2 and markedly reduced the stem cell-like side population. Furthermore, loss of WNT10B abrogated the ability of PC3 cells to propagate tumors via serial transplantation. CONCLUSIONS Taken together, these results suggest a dual role for WNT10B in normal development and in PCa progression with opposing functions depending on disease stage. We propose that decreased WNT10B levels in localized cancer allow for a hyperproliferative state, whereas increased levels in advanced disease confer a stemness and malignant propensity which is mitigated by knocking down WNT10B levels. This raises the potential for WNT10B as a novel target for therapeutic intervention in metastatic PCa.
Collapse
Affiliation(s)
- Ikenna Madueke
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Wen-Yang Hu
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Danping Hu
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Steven M. Swanson
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin
| | - Donald Vander Griend
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
- University of Illinois Cancer Center, Chicago, Illinois
| | - Michael Abern
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
- University of Illinois Cancer Center, Chicago, Illinois
| | - Gail S. Prins
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
- University of Illinois Cancer Center, Chicago, Illinois
| |
Collapse
|
35
|
Peng D, Yuan H, Liu T, Wang T, Reed-Maldonado AB, Kang N, Banie L, Wang G, Tang Y, He L, Lin G, Lue TF. Smooth Muscle Differentiation of Penile Stem/Progenitor Cells Induced by Microenergy Acoustic Pulses In Vitro. J Sex Med 2019; 16:1874-1884. [PMID: 31585805 DOI: 10.1016/j.jsxm.2019.08.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/08/2019] [Accepted: 08/19/2019] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Modulating tissue-resident stem and progenitor cells with a non-invasive, mechanobiological intervention is an optimal approach for tissue regeneration. Stem cell antigen-1 (Sca-1) has been identified as a stem cell marker within many organs but never within the penis. AIM To localize and isolate penile stem/progenitor cells (PSPCs) and to evaluate cellular differentiation after exposure to induction medium and microenergy acoustic pulse (MAP) therapy. METHODS Six male Sprague-Dawley rats were used to isolate PSPCs. Isolation was followed by stem cell characterization and differentiation assays. The PSPCs were then treated with MAP (0.033 mJ/mm2, 1 Hz) at various dosages (25, 50, 100, and 200 pulses) and for different durations (1, 2, 4, 6, or 8 hours) in vitro. MAIN OUTCOME MEASURE The PSPCs (Sca-1-positive cells) were isolated using the magnetic-activated cell sorting system. PSPC cellular differentiation was assessed after induction with induction medium and with MAP in vitro. Wnt/β-catenin signaling was also assayed. RESULTS The PSPCs were successfully localized within the penile subtunic and perisinusoidal spaces, and they were successfully isolated using magnetic-activated cell sorting. The stemness of the cells was confirmed by stem cell marker characterization and by multiple differentiation into smooth muscle cells, endothelial cells, adipocytes, and neurons. MAP-induced PSPCs differentiated into smooth muscle cells by activating the Wnt/β-catenin signaling pathway in a time- and dosage-dependent manner. CLINICAL IMPLICATIONS By modulating resident PSPCs, MAP may have utility in the treatment of erectile dysfunction (ED). STRENGTHS & LIMITATIONS This study provides solid evidence in support of microenergy therapies, including both MAP and low-intensity extracorporeal shock wave therapy, for the treatment of ED. Additional studies are needed and should include additional stem cells markers. Furthermore, studies exploring the underling mechanisms for PSPC activation and differentiation are required. CONCLUSION PSPCs were successfully identified, localized, and isolated. Additionally, MAP provoked PSPCs to differentiate into smooth muscle cells via the Wnt/β-catenin signaling pathway. As such, MAP provides a novel method for activating endogenous tissue-resident stem/progenitor cells and might facilitate stem cell regenerative therapy targeting ED. Peng D, Yuan H, Liu T, et al. Smooth Muscle Differentiation of Penile Stem/Progenitor Cells Induced by Microenergy Acoustic Pulses In Vitro. J Sex Med 2019; 16:1874-1884.
Collapse
Affiliation(s)
- Dongyi Peng
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA; Department of Urology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Huixing Yuan
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Tianshu Liu
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Tianyu Wang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Amanda B Reed-Maldonado
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Ning Kang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Lia Banie
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Guifang Wang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Yuxin Tang
- Department of Urology, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Leye He
- Department of Urology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Guiting Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Tom F Lue
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA.
| |
Collapse
|
36
|
Wu HJ, Chu PY. Role of Cancer Stem Cells in Cholangiocarcinoma and Therapeutic Implications. Int J Mol Sci 2019; 20:ijms20174154. [PMID: 31450710 PMCID: PMC6747544 DOI: 10.3390/ijms20174154] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/12/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinoma (CCA) is the second most common type of liver cancer, and is highly aggressive with very poor prognosis. CCA is classified into intrahepatic cholangiocarcinoma (iCCA) and extra-hepatic cholangiocarcinoma (eCCA), which is further stratified into perihilar (pCCA) and distal (dCCA). Cancer stem cells (CSCs) are a subpopulation of cancer cells capable of tumor initiation and malignant growth, and are also responsible for chemoresistance. Thus, CSCs play an important role in CCA carcinogenesis. Surface markers such as CD133, CD24, CD44, EpCAM, Sox2, CD49f, and CD117 are important for identifying and isolating CCA CSCs. CSCs are present in the tumor microenvironment (TME), termed ‘CSC niche’, where cellular components and soluble factors interact to promote tumor initiation. Epithelial-to-mesenchymal transition (EMT) is another important mechanism underlying carcinogenesis, involved in the invasiveness, metastasis and chemoresistance of cancer. It has been demonstrated that EMT plays a critical role in generating CSCs. Therapies targeting the surface markers and signaling pathways of CCA CSCs, proteins involved in TME, and immune checkpoint proteins are currently under investigation. Therefore, this review focuses on recent studies on the roles of CSCs in CCA; the possible therapeutic strategies targeting CSCs of CCA are also discussed.
Collapse
Affiliation(s)
- Hsing-Ju Wu
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan
- Department of Medical Research, Chang Bing Show Chwan Memorial Hospital, Lukang Town, Changhua County 505, Taiwan
| | - Pei-Yi Chu
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan.
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 231, Taiwan.
- Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
- Department of Health Food, Chung Chou University of Science and Technology, Changhua 510, Taiwan.
| |
Collapse
|
37
|
Jiao M, Qi M, Zhang F, Hu J, Feng T, Zhao M, Li X, Liu H, Teng W, Zhang J, Liu Z, Zhang L, Wu Z, Han B. CUL4B regulates cancer stem-like traits of prostate cancer cells by targeting BMI1 via miR200b/c. Prostate 2019; 79:1294-1303. [PMID: 31111526 DOI: 10.1002/pros.23835] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 05/03/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Cancer stem-like traits contribute to prostate cancer (PCa) progression and metastasis. Cullin 4B (CUL4B) is a member of the ubiquitin E3 ligase family and overexpressed in several solid malignancies including PCa. CUL4B has been suggested to be an oncogene through epigenetic repression of tumor suppressors. However, the link between CUL4B expression and cancer stem-like phenotype remains unclear. METHODS Western blot analysis, sphere formation, and colony formation assays were used to examine the effect of CUL4B on cancer stem-like traits in PCa cells. Mechanically, bioinformatic analysis was utilized to evaluate whether BMI1 was a target of CUL4B. Moreover, real-time polymerase chain reaction, chromatin immunoprecipitation, and luciferase reporter assays were performed to identify microRNAs regulated by CUL4B. Finally, Western blot assay was used to validate the regulation of CUL4B, miR200b, and miR200c (miR200b/c) on the stem-like characteristics of PCa cells. RESULTS CUL4B promotes PCa pluripotency-associated markers expression, sphere formation, and anchorage-independent growth ability in vitro. Mechanically, CUL4B upregulates BMI1 expression via epigenetically repressing miR200b/c expression. In addition, miR200b/c could partially reverse CUL4B-induced BMI1 and pluripotency-associated marker expression. CONCLUSIONS Our study revealed that CUL4B regulates cancer stem-like traits of prostate cancer cells by targeting BMI1 via miR200b/c, which might give novel insight into how CUL4B promotes PCa progression through regulating cancer stem-like traits.
Collapse
Affiliation(s)
- Meng Jiao
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, China
- Department of Pathology, Second Hospital of Shandong University, Jinan, China
| | - Mei Qi
- Department of Pathology, Shandong University Qilu Hospital, Jinan, China
| | - Facai Zhang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Jing Hu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Tingting Feng
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Mingfeng Zhao
- Department of Pathology, Binzhou Medical University, Binzhou, China
| | - Xinjun Li
- Department of Pathology, Binzhou People's Hospital, Binzhou, China
| | - Hui Liu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Wei Teng
- Education Quality Management Office, Institute of Continuing Education, Shandong University, Jinan, China
| | - Jing Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Zhiyan Liu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, China
- Department of Pathology, Shandong University Qilu Hospital, Jinan, China
| | - Lili Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zhen Wu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Bo Han
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, China
- Department of Pathology, Shandong University Qilu Hospital, Jinan, China
| |
Collapse
|
38
|
Abstract
Since the introduction of the cancer stem cell (CSC) hypothesis, accumulating evidence shows that most cancers present stem-like niches. However, therapies aimed at targeting this niche have not been as successful as expected. New evidence regarding CSCs hierarchy, similarities with normal tissue stem cells and cell plasticity might be key in understanding their role in cancer biology and how to efficiently eliminate them. In this Chapter, we discuss what is known in breast and prostate CSCs from their initial discoveries to the current therapeutic efforts in the field. Future challenges towards better CSC identification and isolation strategies will be key to shed light into how CSCs could accurately be targeted in combination to traditional therapies to ultimately prolong patient survival.
Collapse
Affiliation(s)
- Rocío G Sampayo
- Department of Chemical and Biomolecular Engineering, University of California at Berkeley, Berkeley, CA, United States
| | - Mina J Bissell
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
| |
Collapse
|
39
|
Abstract
Cancer stem cells (CSCs) are a subpopulation of cancer cells with self-renewal capacity, that fuel tumor growth and contribute to the heterogeneous nature of tumors. First identified in hematological malignancies, CSC populations have to date been proposed in solid tumors in various organs. In vitro and in vivo assays, mouse genetic models, and more recently single-cell sequencing technologies and other '-omics' methodologies have not only facilitated the identification of novel CSC populations but also revealed and clarified novel properties of CSCs. Increasingly, both cell-autonomous and CSC niche factors are recognized as important contributors of CSC properties. The deepened understanding of CSC properties and characteristics would enable and facilitate the rational design of CSC-specific therapeutics that would, ideally, have high selectivity for cancer cells, eliminate tumor bulk, and prevent tumor recurrence. Addressing these issues would form some of the key challenges of the CSC research field in the coming years.
Collapse
|
40
|
Abstract
Stem/progenitor cells play central roles in processes of organogenesis and tissue maintenance, whereas cancer stem cells (CSCs) are thought to drive tumor malignancy. Here, we review recent progress in the identification and analysis of normal prostate stem/progenitor cells as well as putative CSCs in both genetically engineered mouse models as well as in human tissue. We also discuss studies that have investigated the cell type of origin for prostate cancer. In addition, we provide a critical assessment of methodologies used in stem cell analyses and outline directions for future research.
Collapse
Affiliation(s)
- Jia J Li
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032
- Department Genetics and Development, Columbia University College of Physicians and Surgeons, New York, New York 10032
- Department of Urology, Columbia University College of Physicians and Surgeons, New York, New York 10032
- Department of Systems Biology, Columbia University College of Physicians and Surgeons, New York, New York 10032
- Herbert Irving Comprehensive Cancer Center, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Michael M Shen
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032
- Department Genetics and Development, Columbia University College of Physicians and Surgeons, New York, New York 10032
- Department of Urology, Columbia University College of Physicians and Surgeons, New York, New York 10032
- Department of Systems Biology, Columbia University College of Physicians and Surgeons, New York, New York 10032
- Herbert Irving Comprehensive Cancer Center, Columbia University College of Physicians and Surgeons, New York, New York 10032
| |
Collapse
|
41
|
Lee IC. Cancer-on-a-chip for Drug Screening. Curr Pharm Des 2019; 24:5407-5418. [DOI: 10.2174/1381612825666190206235233] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/02/2019] [Indexed: 12/24/2022]
Abstract
:
The oncology pharmaceutical research spent a shocking amount of money on target validation and
drug optimization in preclinical models because many oncology drugs fail during clinical trial phase III. One of
the most important reasons for oncology drug failures in clinical trials may due to the poor predictive tool of
existing preclinical models. Therefore, in cancer research and personalized medicine field, it is critical to improve
the effectiveness of preclinical predictions of the drug response of patients to therapies and to reduce costly failures
in clinical trials. Three dimensional (3D) tumor models combine micro-manufacturing technologies mimic
critical physiologic parameters present in vivo, including complex multicellular architecture with multicellular
arrangement and extracellular matrix deposition, packed 3D structures with cell–cell interactions, such as tight
junctions, barriers to mass transport of drugs, nutrients and other factors, which are similar to in vivo tumor tissues.
These systems provide a solution to mimic the physiological environment for improving predictive accuracy
in oncology drug discovery.
:
his review gives an overview of the innovations, development and limitations of different types of tumor-like
construction techniques such as self-assemble spheroid formation, spheroids formation by micro-manufacturing
technologies, micro-dissected tumor tissues and tumor organoid. Combination of 3D tumor-like construction and
microfluidic techniques to achieve tumor on a chip for in vitro tumor environment modeling and drug screening
were all included. Eventually, developmental directions and technical challenges in the research field are also
discussed. We believe tumor on chip models have provided better sufficient clinical predictive power and will
bridge the gap between proof-of-concept studies and a wider implementation within the oncology drug development
for pathophysiological applications.
Collapse
Affiliation(s)
- I-Chi Lee
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
42
|
Taniguchi H, Suzuki Y, Natori Y. The Evolving Landscape of Cancer Stem Cells and Ways to Overcome Cancer Heterogeneity. Cancers (Basel) 2019; 11:cancers11040532. [PMID: 31013960 PMCID: PMC6520864 DOI: 10.3390/cancers11040532] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 12/18/2022] Open
Abstract
Cancer stem cells (CSCs) with therapeutic resistance and plasticity can be found in various types of tumors and are recognized as attractive targets for treatments. As CSCs are derived from tissue stem or progenitor cells, and/or dedifferentiated mature cells, their signal transduction pathways are critical in the regulation of CSCs; chronic inflammation causes the accumulation of genetic mutations and aberrant epigenetic changes in these cells, potentially leading to the production of CSCs. However, the nature of CSCs appears to be stronger than the treatments of the past. To improve the treatments targeting CSCs, it is important to inhibit several molecules on the signaling cascades in CSCs simultaneously, and to overcome cancer heterogeneity caused by the plasticity. To select suitable target molecules for CSCs, we have to explore the landscape of CSCs from the perspective of cancer stemness and signaling systems, based on the curated databases of cancer-related genes. We have been studying the integration of a broad range of knowledge and experiences from cancer biology, and also from other interdisciplinary basic sciences. In this review, we have introduced the concept of developing novel strategies targeting CSCs.
Collapse
Affiliation(s)
- Hiroaki Taniguchi
- The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-0071, Japan.
- Clinical and Translational Research Center Keio University Hospital, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Yasunori Suzuki
- Clinical and Translational Research Center Keio University Hospital, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Yukikazu Natori
- BioThinkTank Co. Ltd. 4-10-1-E1706 Minatomirai, Nishi-ku Yokohama, Kanagawa 220-0012, Japan.
| |
Collapse
|
43
|
Wei X, Zhang L, Zhou Z, Kwon OJ, Zhang Y, Nguyen H, Dumpit R, True L, Nelson P, Dong B, Xue W, Birchmeier W, Taketo MM, Xu F, Creighton CJ, Ittmann MM, Xin L. Spatially Restricted Stromal Wnt Signaling Restrains Prostate Epithelial Progenitor Growth through Direct and Indirect Mechanisms. Cell Stem Cell 2019; 24:753-768.e6. [PMID: 30982770 DOI: 10.1016/j.stem.2019.03.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 12/11/2018] [Accepted: 03/10/2019] [Indexed: 12/31/2022]
Abstract
Cell-autonomous Wnt signaling has well-characterized functions in controlling stem cell activity, including in the prostate. While niche cells secrete Wnt ligands, the effects of Wnt signaling in niche cells per se are less understood. Here, we show that stromal cells in the proximal prostatic duct near the urethra, a mouse prostate stem cell niche, not only produce multiple Wnt ligands but also exhibit strong Wnt/β-catenin activity. The non-canonical Wnt ligand Wnt5a, secreted by proximal stromal cells, directly inhibits proliefration of prostate epithelial stem or progenitor cells whereas stromal cell-autonomous canonical Wnt/β-catenin signaling indirectly suppresses prostate stem or progenitor activity via the transforming growth factor β (TGFβ) pathway. Collectively, these pathways restrain the proliferative potential of epithelial cells in the proximal prostatic ducts. Human prostate likewise exhibits spatially restricted distribution of stromal Wnt/β-catenin activity, suggesting a conserved mechanism for tissue patterning. Thus, this study shows how distinct stromal signaling mechanisms within the prostate cooperate to regulate tissue homeostasis.
Collapse
Affiliation(s)
- Xing Wei
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA; Department of Urology, University of Washington, Seattle, WA 98109, USA
| | - Li Zhang
- Department of Urology, University of Washington, Seattle, WA 98109, USA
| | - Zhicheng Zhou
- Department of Urology, University of Washington, Seattle, WA 98109, USA
| | - Oh-Joon Kwon
- Department of Urology, University of Washington, Seattle, WA 98109, USA
| | - Yiqun Zhang
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hoang Nguyen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Center of Stem Cell and Regenerative Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ruth Dumpit
- Human Biology Division, Fred Hutch Cancer Research Center, Seattle, WA 98109, USA
| | - Lawrence True
- Department of Pathology, University of Washington, Seattle, WA 98109, USA
| | - Peter Nelson
- Human Biology Division, Fred Hutch Cancer Research Center, Seattle, WA 98109, USA
| | - Baijun Dong
- Department of Urology, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Xue
- Department of Urology, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Walter Birchmeier
- Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Makoto M Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Feng Xu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Chad J Creighton
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael M Ittmann
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, TX 77030, USA
| | - Li Xin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Urology, University of Washington, Seattle, WA 98109, USA; Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
44
|
The Contributions of Prostate Cancer Stem Cells in Prostate Cancer Initiation and Metastasis. Cancers (Basel) 2019; 11:cancers11040434. [PMID: 30934773 PMCID: PMC6521153 DOI: 10.3390/cancers11040434] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/15/2019] [Accepted: 03/21/2019] [Indexed: 12/13/2022] Open
Abstract
Research in the last decade has clearly revealed a critical role of prostate cancer stem cells (PCSCs) in prostate cancer (PC). Prostate stem cells (PSCs) reside in both basal and luminal layers, and are the target cells of oncogenic transformation, suggesting a role of PCSCs in PC initiation. Mutations in PTEN, TP53, and RB1 commonly occur in PC, particularly in metastasis and castration-resistant PC. The loss of PTEN together with Ras activation induces partial epithelial–mesenchymal transition (EMT), which is a major mechanism that confers plasticity to cancer stem cells (CSCs) and PCSCs, which contributes to metastasis. While PTEN inactivation leads to PC, it is not sufficient for metastasis, the loss of PTEN concurrently with the inactivation of both TP53 and RB1 empower lineage plasticity in PC cells, which substantially promotes PC metastasis and the conversion to PC adenocarcinoma to neuroendocrine PC (NEPC), demonstrating the essential function of TP53 and RB1 in the suppression of PCSCs. TP53 and RB1 suppress lineage plasticity through the inhibition of SOX2 expression. In this review, we will discuss the current evidence supporting a major role of PCSCs in PC initiation and metastasis, as well as the underlying mechanisms regulating PCSCs. These discussions will be developed along with the cancer stem cell (CSC) knowledge in other cancer types.
Collapse
|
45
|
Functional Heterogeneity of Mouse Prostate Stromal Cells Revealed by Single-Cell RNA-Seq. iScience 2019; 13:328-338. [PMID: 30878879 PMCID: PMC6423355 DOI: 10.1016/j.isci.2019.02.032] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/23/2019] [Accepted: 02/27/2019] [Indexed: 12/26/2022] Open
Abstract
We perform a single-cell RNA sequencing analysis to investigate the phenotypic and functional heterogeneity of the adult mouse prostate stromal cells. Our analysis identifies three major cell populations representing the smooth muscle cells and two types of fibroblast cells enriched by Sca-1 and CD90. The Sca-1+CD90+ fibroblast cells are in direct contact with the epithelial cells and express growth factors and genes associated with cell motility, developmental process, and androgen biosynthesis. This suggests that they may regulate epithelial cell survival and growth. The Sca-1+CD90-/low myofibroblast-like cells highly express genes associated with the extracellular matrix and cytokine-mediated signaling pathways, indicating a role in tissue repair and immune responses. The Sca-1+CD90-/low cells significantly suppress the capacity of the basal cells for bipotent differentiation in the prostate organoid assay. Collectively, we identify the surface markers enabling physical separation of stromal subpopulations and generate the gene expression profiles implying their cellular functions. scRNA-seq reveals three distinct mouse prostate stromal cell populations Sca-1+CD90+ cells produce growth factors mediating developmental process Sca-1+CD90-/low cells express genes mediating immune response and tissue repair Sca-1+CD90-/low cells robustly suppress bipotent differentiation of basal cells
Collapse
|
46
|
Park JW, Lee JK, Sheu KM, Wang L, Balanis NG, Nguyen K, Smith BA, Cheng C, Tsai BL, Cheng D, Huang J, Kurdistani SK, Graeber TG, Witte ON. Reprogramming normal human epithelial tissues to a common, lethal neuroendocrine cancer lineage. Science 2019; 362:91-95. [PMID: 30287662 DOI: 10.1126/science.aat5749] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/03/2018] [Accepted: 08/09/2018] [Indexed: 12/12/2022]
Abstract
The use of potent therapies inhibiting critical oncogenic pathways active in epithelial cancers has led to multiple resistance mechanisms, including the development of highly aggressive, small cell neuroendocrine carcinoma (SCNC). SCNC patients have a dismal prognosis due in part to a limited understanding of the molecular mechanisms driving this malignancy and the lack of effective treatments. Here, we demonstrate that a common set of defined oncogenic drivers reproducibly reprograms normal human prostate and lung epithelial cells to small cell prostate cancer (SCPC) and small cell lung cancer (SCLC), respectively. We identify shared active transcription factor binding regions in the reprogrammed prostate and lung SCNCs by integrative analyses of epigenetic and transcriptional landscapes. These results suggest that neuroendocrine cancers arising from distinct epithelial tissues may share common vulnerabilities that could be exploited for the development of drugs targeting SCNCs.
Collapse
Affiliation(s)
- Jung Wook Park
- Department of Microbiology, Immunology, and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - John K Lee
- Division of Hematology and Oncology, Department of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Katherine M Sheu
- Department of Molecular and Medical Pharmacology, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Liang Wang
- Department of Microbiology, Immunology, and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Nikolas G Balanis
- Department of Molecular and Medical Pharmacology, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Kim Nguyen
- Department of Ecology and Evolutionary Biology, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Bryan A Smith
- Department of Microbiology, Immunology, and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Chen Cheng
- Department of Biological Chemistry, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Brandon L Tsai
- Department of Microbiology, Immunology, and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Donghui Cheng
- Department of Microbiology, Immunology, and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Jiaoti Huang
- Department of Pathology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Siavash K Kurdistani
- Department of Biological Chemistry, University of California-Los Angeles, Los Angeles, CA 90095, USA.,Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA.,Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, CA 90095, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Thomas G Graeber
- Department of Molecular and Medical Pharmacology, University of California-Los Angeles, Los Angeles, CA 90095, USA. .,Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA.,Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, CA 90095, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California-Los Angeles, Los Angeles, CA 90095, USA.,Crump Institute for Molecular Imaging, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Owen N Witte
- Department of Microbiology, Immunology, and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA 90095, USA. .,Department of Molecular and Medical Pharmacology, University of California-Los Angeles, Los Angeles, CA 90095, USA.,Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA.,Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, CA 90095, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California-Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
47
|
Abstract
Comprehensive knowledge of the normal prostate epithelial lineage hierarchy is a prerequisite to investigate the identity of the cells of origin for prostate cancer. The basal and luminal cells constitute most of the prostate epithelium and have been the major focuses of the study on the cells of origin for prostate cancer. Much progress has been made during the past few decades, mainly using mouse models, to understand the inter-lineage relationship and intra-lineage heterogeneity in adults as well as the lineage plasticity during conditions of stress. These studies have concluded that the adult mouse prostate basal and luminal cells are largely independently sustained under physiological conditions, but both types of cells possess the capacity for bipotent differentiation under stress or artificial experimental conditions. However, the existence or the identity of the putative progenitors within each lineage warrants further investigation. Whether the human prostate lineage hierarchy is completely the same as that of the mouse remains uncertain. Experiments from independent groups have demonstrated that both types of cells in mice and humans can serve as targets for transformation. But controversies remain whether the disease from distinct cells of origin display different clinical behaviors. Further investigation of the intra-lineage heterogeneity will provide new insights into this issue. Understanding the identity of the cells of origin for prostate cancer will help identify novel prognostic markers for early detection of aggressive prostate cancers, provide insights into the therapeutic vulnerability of these tumors, and inspire novel therapeutic strategies.
Collapse
|
48
|
Li JY, Xiao T, Yi HM, Yi H, Feng J, Zhu JF, Huang W, Lu SS, Zhou YH, Li XH, Xiao ZQ. S897 phosphorylation of EphA2 is indispensable for EphA2-dependent nasopharyngeal carcinoma cell invasion, metastasis and stem properties. Cancer Lett 2018; 444:162-174. [PMID: 30583071 DOI: 10.1016/j.canlet.2018.12.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/04/2018] [Accepted: 12/11/2018] [Indexed: 12/22/2022]
Abstract
Our phosphoproteomics identified that phosphorylation of EphA2 at serine 897 (pS897-EphA2) was significantly upregulated in the high metastatic nasopharyngeal carcinoma (NPC) cells relative to non-metastatic NPC cells. However, the role and underlying mechanism of pS897-EphA2 in cancer metastasis and stem properties maintenance remain poorly understood. In this study, we established NPC cell lines with stable expression of exogenous EphA2 and EphA2-S897A using endogenous EphA2 knockdown cells, and observed that pS897-EphA2 maintained EphA2-dependent NPC cell in vitro migration and invasion, in vivo metastasis and cancer stem properties. Using phospho-kinase antibody array to identify signaling downstream of pS897-EphA2, we found that AKT/Stat3 signaling mediated pS897-EphA2-promoting NPC cell invasion, metastasis and stem properties, and Sox-2 and c-Myc were the effectors of pS897-EphA2. Immunohistochemistry showed that pS897-EphA2 was positively correlated with NPC metastasis and negatively correlated with patient overall survival. Moreover, ERK/RSK signaling controlled serum-induced pS897-EphA2 in NPC cells. Collectively, our results demonstrate that pS897-EphA2 is indispensable for EphA2-dependent NPC cell invasion, metastasis and stem properties by activating AKT/Stat3/Sox-2 and c-Myc signaling pathway, suggesting that pS897-EphA2 can serve as a therapeutic target in NPC and perhaps in other cancers.
Collapse
Affiliation(s)
- Jiao-Yang Li
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ta Xiao
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, 210042, China
| | - Hong-Mei Yi
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hong Yi
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Juan Feng
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jin-Feng Zhu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Wei Huang
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Shan-Shan Lu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yan-Hong Zhou
- Cancer Research Institute, Xiangya Medical School, Central South University, Changsha, Hunan, 410078, China
| | - Xin-Hui Li
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zhi-Qiang Xiao
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
49
|
Barros-Silva JD, Linn DE, Steiner I, Guo G, Ali A, Pakula H, Ashton G, Peset I, Brown M, Clarke NW, Bronson RT, Yuan GC, Orkin SH, Li Z, Baena E. Single-Cell Analysis Identifies LY6D as a Marker Linking Castration-Resistant Prostate Luminal Cells to Prostate Progenitors and Cancer. Cell Rep 2018; 25:3504-3518.e6. [PMID: 30566873 PMCID: PMC6315111 DOI: 10.1016/j.celrep.2018.11.069] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 09/26/2018] [Accepted: 11/16/2018] [Indexed: 12/13/2022] Open
Abstract
The exact identity of castrate-resistant (CR) cells and their relation to CR prostate cancer (CRPC) is unresolved. We use single-cell gene profiling to analyze the molecular heterogeneity in basal and luminal compartments. Within the luminal compartment, we identify a subset of cells intrinsically resistant to castration with a bi-lineage gene expression pattern. We discover LY6D as a marker of CR prostate progenitors with multipotent differentiation and enriched organoid-forming capacity. Lineage tracing further reveals that LY6D+ CR luminal cells can produce LY6D- luminal cells. In contrast, in luminal cells lacking PTEN, LY6D+ cells predominantly give rise to LY6D+ tumor cells, contributing to high-grade PIN lesions. Gene expression analyses in patients' biopsies indicate that LY6D expression correlates with early disease progression, including progression to CRPC. Our studies thus identify a subpopulation of luminal progenitors characterized by LY6D expression and intrinsic castration resistance. LY6D may serve as a prognostic maker for advanced prostate cancer.
Collapse
Affiliation(s)
- João D Barros-Silva
- Prostate Oncobiology, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK; Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK
| | - Douglas E Linn
- Division of Genetics, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Ivana Steiner
- Prostate Oncobiology, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK; Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK
| | - Guoji Guo
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Adnan Ali
- Prostate Oncobiology, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK; Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK
| | - Hubert Pakula
- Division of Genetics, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Garry Ashton
- Histology Unit, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK
| | - Isabel Peset
- Imaging Unit, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK
| | - Michael Brown
- Genito-Urinary Cancer Research, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK; Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK
| | - Noel W Clarke
- Genito-Urinary Cancer Research, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK; Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK; Department of Surgery, The Christie Hospital, Department of Urology, Salford Royal Hospitals, Manchester, UK
| | | | - Guo-Cheng Yuan
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, MA 02115, USA
| | - Stuart H Orkin
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA.
| | - Zhe Li
- Division of Genetics, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| | - Esther Baena
- Prostate Oncobiology, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK; Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK.
| |
Collapse
|
50
|
Zhang D, Zhao S, Li X, Kirk JS, Tang DG. Prostate Luminal Progenitor Cells in Development and Cancer. Trends Cancer 2018; 4:769-783. [PMID: 30352679 PMCID: PMC6212301 DOI: 10.1016/j.trecan.2018.09.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/28/2018] [Accepted: 09/06/2018] [Indexed: 12/11/2022]
Abstract
Prostate cancer (PCa) has a predominantly luminal phenotype. Basal cells were previously identified as a cell of origin for PCa, but increasing evidence implicates luminal cells as a preferred cell of origin for PCa, as well as key drivers of tumor development and progression. Prostate luminal cells are understudied compared with basal cells. In this review, we describe the contribution of prostate luminal progenitor (LP) cells to luminal cell development and their role in prostate development, androgen-mediated regeneration of castrated prostate, and tumorigenesis. We also discuss the potential value of LP transcriptomics to identify new targets and therapies to treat aggressive PCa. Finally, we propose future research directions focusing on molecular mechanisms underlying LP cell biology and heterogeneity in normal and diseased prostate.
Collapse
Affiliation(s)
- Dingxiao Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Xinyun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Jason S Kirk
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Dean G Tang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Cancer Stem Cell Institute, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| |
Collapse
|