1
|
Chakraborty D, Singh O, Parameswaran D. Study of Correlated Motions to Detect the Conformational Transitions of the Intrinsically Disordered Sheep Prion Peptide. J Chem Inf Model 2024; 64:5590-5603. [PMID: 38569130 DOI: 10.1021/acs.jcim.4c00300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Intrinsically disordered proteins (IDPs) are known for their random structural changes throughout their sequence based on the environment. The mechanism underlying these structural changes is difficult to explain. All biological processes are known to follow the direction through which they act. A study of the correlated motion can help to understand the direction of the change. Herein, we introduced the multivariate statistical analysis (MSA) technique to study the correlated motion of the peptide. The correlated motion of the sheep prion peptide was studied with the change in the temperature and solvent. These techniques helped to identify the contributing residual motions that helped to form the different secondary structures of the protein and also the triggering factors that drive these sorts of residual motions. The structural details match the experimentally reported data. It was found that the direction of the change of the secondary structure for this peptide shifted from the C-terminal to the N-terminal with an increase in the temperature. It was found that the involvement of the hydrophobic residues present at the C-terminal and the middle residues (residues 12-17) is responsible for forming a β-sheet at the normal temperature. Hydration water was found to play an important role in this change. Insights gained from this study can be used to design strategies for desirable structural changes in the IDPs.
Collapse
Affiliation(s)
- Debashree Chakraborty
- Biophysical and Computational Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore 575 025, Karnataka, India
| | - Omkar Singh
- Biophysical and Computational Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore 575 025, Karnataka, India
| | - Divya Parameswaran
- Biophysical and Computational Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore 575 025, Karnataka, India
| |
Collapse
|
2
|
Waudby C, Christodoulou J. Analysis of conformational exchange processes using methyl-TROSY-based Hahn echo measurements of quadruple-quantum relaxation. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:777-793. [PMID: 37905227 PMCID: PMC10583286 DOI: 10.5194/mr-2-777-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/14/2021] [Indexed: 11/02/2023]
Abstract
Transverse nuclear spin relaxation is a sensitive probe of chemical exchange on timescales on the order of microseconds to milliseconds. Here we present an experiment for the simultaneous measurement of the relaxation rates of two quadruple-quantum transitions in 13 CH3 -labelled methyl groups. These coherences are protected against relaxation by intra-methyl dipolar interactions and so have unexpectedly long lifetimes within perdeuterated biomacromolecules. However, these coherences also have an order of magnitude higher sensitivity to chemical exchange broadening than lower order coherences and therefore provide ideal probes of dynamic processes. We show that analysis of the static magnetic field dependence of zero-, double- and quadruple-quantum Hahn echo relaxation rates provides a robust indication of chemical exchange and can determine the signed relative magnitudes of proton and carbon chemical shift differences between ground and excited states. We also demonstrate that this analysis can be combined with established Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion measurements, providing improved precision in parameter estimates, particularly in the determination of 1 H chemical shift differences.
Collapse
Affiliation(s)
- Christopher A. Waudby
- Institute of Structural and Molecular Biology, University College
London, London, WC1E 6BT, UK
| | - John Christodoulou
- Institute of Structural and Molecular Biology, University College
London, London, WC1E 6BT, UK
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, WC1E 7HX, UK
| |
Collapse
|
3
|
Dreydoppel M, Raum HN, Weininger U. Slow ring flips in aromatic cluster of GB1 studied by aromatic 13C relaxation dispersion methods. JOURNAL OF BIOMOLECULAR NMR 2020; 74:183-191. [PMID: 32016706 PMCID: PMC7080667 DOI: 10.1007/s10858-020-00303-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
Ring flips of phenylalanine and tyrosine are a hallmark of protein dynamics. They report on transient breathing motions of proteins. In addition, flip rates also depend on stabilizing interactions in the ground state, like aromatic stacking or cation-π interaction. So far, experimental studies of ring flips have almost exclusively been performed on aromatic rings without stabilizing interactions. Here we investigate ring flip dynamics of Phe and Tyr in the aromatic cluster in GB1. We found that all four residues of the cluster, Y3, F30, Y45 and F52, display slow ring flips. Interestingly, F52, the central residue of the cluster, which makes aromatic contacts with all three others, is flipping significantly faster, while the other rings are flipping with the same rates within margin of error. Determined activation enthalpies and activation volumes of these processes are in the same range of other reported ring flips of single aromatic rings. There is no correlation of the number of aromatic stacking interactions to the activation enthalpy, and no correlation of the ring's extent of burying to the activation volume. Because of these findings, we speculate that F52 is undergoing concerted ring flips with each of the other rings.
Collapse
Affiliation(s)
- Matthias Dreydoppel
- Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Heiner N Raum
- Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Ulrich Weininger
- Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany.
| |
Collapse
|
4
|
Schanda P. Relaxing with liquids and solids - A perspective on biomolecular dynamics. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 306:180-186. [PMID: 31350165 PMCID: PMC7302934 DOI: 10.1016/j.jmr.2019.07.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/05/2019] [Accepted: 07/08/2019] [Indexed: 05/05/2023]
Affiliation(s)
- Paul Schanda
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71 Avenue des Martyrs, 38000 Grenoble, France.
| |
Collapse
|
5
|
Ishima R, Kurt Yilmaz N, Schiffer CA. NMR and MD studies combined to elucidate inhibitor and water interactions of HIV-1 protease and their modulations with resistance mutations. JOURNAL OF BIOMOLECULAR NMR 2019; 73:365-374. [PMID: 31243634 PMCID: PMC6941145 DOI: 10.1007/s10858-019-00260-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/19/2019] [Indexed: 06/09/2023]
Abstract
Over the last two decades, both the sensitivity of NMR and the time scale of molecular dynamics (MD) simulation have increased tremendously and have advanced the field of protein dynamics. HIV-1 protease has been extensively studied using these two methods, and has presented a framework for cross-evaluation of structural ensembles and internal dynamics by integrating the two methods. Here, we review studies from our laboratories over the last several years, to understand the mechanistic basis of protease drug-resistance mutations and inhibitor responses, using NMR and crystal structure-based parallel MD simulations. Our studies demonstrate that NMR relaxation experiments, together with crystal structures and MD simulations, significantly contributed to the current understanding of structural/dynamic changes due to HIV-1 protease drug resistance mutations.
Collapse
Affiliation(s)
- Rieko Ishima
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
6
|
Lu S, He X, Ni D, Zhang J. Allosteric Modulator Discovery: From Serendipity to Structure-Based Design. J Med Chem 2019; 62:6405-6421. [PMID: 30817889 DOI: 10.1021/acs.jmedchem.8b01749] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shaoyong Lu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
- Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Xinheng He
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Duan Ni
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Jian Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
- Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
7
|
Vögeli B, Vugmeyster L. Distance-independent Cross-correlated Relaxation and Isotropic Chemical Shift Modulation in Protein Dynamics Studies. Chemphyschem 2019; 20:178-196. [PMID: 30110510 PMCID: PMC9206835 DOI: 10.1002/cphc.201800602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Indexed: 01/09/2023]
Abstract
Cross-correlated relaxation (CCR) in multiple-quantum coherences differs from other relaxation phenomena in its theoretical ability to be mediated across an infinite distance. The two interfering relaxation mechanisms may be dipolar interactions, chemical shift anisotropies, chemical shift modulations or quadrupolar interactions. These properties make multiple-quantum CCR an attractive probe for structure and dynamics of biomacromolecules not accessible from other measurements. Here, we review the use of multiple-quantum CCR measurements in dynamics studies of proteins. We compile a list of all experiments proposed for CCR rate measurements, provide an overview of the theory with a focus on protein dynamics, and present applications to various protein systems.
Collapse
Affiliation(s)
- Beat Vögeli
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver, 12801 East 17 Avenue, Aurora, CO 80045, United States
| | - Liliya Vugmeyster
- Department of Chemistry, University of Colorado at Denver, 1201 Laurimer Street Denver, CO 80204, United States
| |
Collapse
|
8
|
Zhao L, Lai L, Zhang Z. How calcium ion binding induces the conformational transition of the calmodulin N-terminal domain—an atomic level characterization. Phys Chem Chem Phys 2019; 21:19795-19804. [DOI: 10.1039/c9cp03917a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Ca2+binding and triggering conformation transition of nCaM were detected in unbiased molecular dynamics simulations.
Collapse
Affiliation(s)
- Likun Zhao
- College of Life Science
- University of Chinese Academy of Sciences
- Beijing
- China
| | - Luhua Lai
- BNLMS, and Peking-Tsinghua Center for Life Sciences at the College of Chemistry and Molecular Engineering
- Peking University
- Beijing
- China
- Center for Quantitative Biology
| | - Zhuqing Zhang
- College of Life Science
- University of Chinese Academy of Sciences
- Beijing
- China
| |
Collapse
|
9
|
Vugmeyster L, Griffin A, Ostrovsky D, Bhattacharya S, Nichols PJ, McKnight CJ, Vögeli B. Correlated motions of C'-N and C α-C β pairs in protonated and per-deuterated GB3. JOURNAL OF BIOMOLECULAR NMR 2018; 72:39-54. [PMID: 30121872 PMCID: PMC6218248 DOI: 10.1007/s10858-018-0205-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/09/2018] [Indexed: 06/08/2023]
Abstract
We investigated correlated µs-ms time scale motions of neighboring 13C'-15N and 13Cα-13Cβ nuclei in both protonated and perdeuterated samples of GB3. The techniques employed, NMR relaxation due to cross-correlated chemical shift modulations, specifically target concerted changes in the isotropic chemical shifts of the two nuclei associated with spatial fluctuations. Field-dependence of the relaxation rates permits identification of the parameters defining the chemical exchange rate constant under the assumption of a two-site exchange. The time scale of motions falls into the intermediate to fast regime (with respect to the chemical shift time scale, 100-400 s-1 range) for the 13C'-15N pairs and into the slow to intermediate regime for the 13Cα-13Cβ pairs (about 150 s-1). Comparison of the results obtained for protonated and deuterated GB3 suggests that deuteration has a tendency to reduce these slow scale correlated motions, especially for the 13Cα-13Cβ pairs.
Collapse
Affiliation(s)
- Liliya Vugmeyster
- Department of Chemistry, University of Colorado at Denver, 1201 Larimer Street, Denver, CO, 80204, USA.
| | - Aaron Griffin
- Department of Chemistry, University of Colorado at Denver, 1201 Larimer Street, Denver, CO, 80204, USA
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado at Denver, Denver, CO, 80204, USA
| | | | - Parker J Nichols
- Department of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - C James McKnight
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
10
|
Vögeli B. Cross-correlated relaxation rates between protein backbone H-X dipolar interactions. JOURNAL OF BIOMOLECULAR NMR 2017; 67:211-232. [PMID: 28286915 DOI: 10.1007/s10858-017-0098-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 02/19/2017] [Indexed: 06/06/2023]
Abstract
The relaxation interference between dipole-dipole interactions of two separate spin pairs carries structural and dynamics information. In particular, when compared to individual dynamic behavior of those spin pairs, such cross-correlated relaxation (CCR) rates report on the correlation between the spin pairs. We have recently mapped out correlated motion along the backbone of the protein GB3, using CCR rates among and between consecutive HN-N and Hα-Cα dipole-dipole interactions. Here, we provide a detailed account of the measurement of the four types of CCR rates. All rates were obtained from at least two different pulse sequences, of which the yet unpublished ones are presented. Detailed comparisons between the different methods and corrections for unwanted pathways demonstrate that the averaged CCR rates are highly accurate and precise with errors of 1.5-3% of the entire value ranges.
Collapse
Affiliation(s)
- Beat Vögeli
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Research Center 1 South, Room 9103, 12801 East 17th Avenue, Aurora, CO, 80045, USA.
| |
Collapse
|
11
|
Nandigrami P, Portman JJ. Comparing allosteric transitions in the domains of calmodulin through coarse-grained simulations. J Chem Phys 2016; 144:105102. [PMID: 26979706 DOI: 10.1063/1.4943130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Calmodulin (CaM) is a ubiquitous Ca(2+)-binding protein consisting of two structurally similar domains with distinct stabilities, binding affinities, and flexibilities. We present coarse grained simulations that suggest that the mechanism for the domain's allosteric transitions between the open and closed conformations depends on subtle differences in the folded state topology of the two domains. Throughout a wide temperature range, the simulated transition mechanism of the N-terminal domain (nCaM) follows a two-state transition mechanism while domain opening in the C-terminal domain (cCaM) involves unfolding and refolding of the tertiary structure. The appearance of the unfolded intermediate occurs at a higher temperature in nCaM than it does in cCaM consistent with nCaM's higher thermal stability. Under approximate physiological conditions, the simulated unfolded state population of cCaM accounts for 10% of the population with nearly all of the sampled transitions (approximately 95%) unfolding and refolding during the conformational change. Transient unfolding significantly slows the domain opening and closing rates of cCaM, which can potentially influence its Ca(2+)-binding mechanism.
Collapse
Affiliation(s)
| | - John J Portman
- Department of Physics, Kent State University, Kent, Ohio 44242, USA
| |
Collapse
|
12
|
Abstract
It is well-established that dynamics are central to protein function; their importance is implicitly acknowledged in the principles of the Monod, Wyman and Changeux model of binding cooperativity, which was originally proposed in 1965. Nowadays the concept of protein dynamics is formulated in terms of the energy landscape theory, which can be used to understand protein folding and conformational changes in proteins. Because protein dynamics are so important, a key to understanding protein function at the molecular level is to design experiments that allow their quantitative analysis. Nuclear magnetic resonance (NMR) spectroscopy is uniquely suited for this purpose because major advances in theory, hardware, and experimental methods have made it possible to characterize protein dynamics at an unprecedented level of detail. Unique features of NMR include the ability to quantify dynamics (i) under equilibrium conditions without external perturbations, (ii) using many probes simultaneously, and (iii) over large time intervals. Here we review NMR techniques for quantifying protein dynamics on fast (ps-ns), slow (μs-ms), and very slow (s-min) time scales. These techniques are discussed with reference to some major discoveries in protein science that have been made possible by NMR spectroscopy.
Collapse
|
13
|
Fenwick RB, Schwieters CD, Vögeli B. Direct Investigation of Slow Correlated Dynamics in Proteins via Dipolar Interactions. J Am Chem Soc 2016; 138:8412-21. [PMID: 27331619 PMCID: PMC5055379 DOI: 10.1021/jacs.6b01447] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synchronization of native state motions as they transition between microstates influences catalysis kinetics, mediates allosteric interactions, and reduces the conformational entropy of proteins. However, it has proven difficult to describe native microstates because they are usually minimally frustrated and may interconvert on the micro- to millisecond time scale. Direct observation of concerted equilibrium fluctuations would therefore be an important tool for describing protein native states. Here we propose a strategy that relates NMR cross-correlated relaxation (CCR) rates between dipolar interactions to residual dipolar couplings (RDCs) of individual consecutive H(N)-N and H(α)-C(α) bonds, which act as a proxy for the peptide planes and the side chains, respectively. Using Xplor-NIH ensemble structure calculations restrained with the RDC and CCR data, we observe collective motions on time scales slower than nanoseconds in the backbone for GB3. To directly access the correlations from CCR, we develop a structure-free data analysis. The resulting dynamic correlation map is consistent with the ensemble-restrained simulations and reveals a complex network. In general, we find that the bond motions are on average slightly correlated and that the local environment dominates many observations. Despite this, some patterns are typical over entire secondary structure elements. In the β-sheet, nearly all bonds are weakly correlated, and there is an approximately binary alternation in correlation intensity corresponding to the solvent exposure/shielding alternation of the side chains. For α-helices, there is also a weak correlation in the H(N)-N bonds. The degree of correlation involving H(α)-C(α) bonds is directly affected by side-chain fluctuations, whereas loops show complex and nonuniform behavior.
Collapse
Affiliation(s)
- R. Bryn Fenwick
- Institute for Research in Biomedicine (IRB Barcelona), Parc Científic de Barcelona, C/Baldiri Reixac 10, 08028 Barcelona, Spain
- The Scripps Research Institute (TSRI), 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Charles D. Schwieters
- Division of Computational Bioscience, Building 12A Center for Information Technology, National Institutes of Health, Bethesda, MD 20892-5624, USA
| | - Beat Vögeli
- Laboratory of Physical Chemistry, Vladimir-Prelog-Weg 2, Swiss Federal Institute of Technology, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
| |
Collapse
|
14
|
Jones EM, Balakrishnan G, Squier TC, Spiro TG. Distinguishing unfolding and functional conformational transitions of calmodulin using ultraviolet resonance Raman spectroscopy. Protein Sci 2014; 23:1094-101. [PMID: 24895328 DOI: 10.1002/pro.2495] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 01/09/2023]
Abstract
Calmodulin (CaM) is a ubiquitous moderator protein for calcium signaling in all eukaryotic cells. This small calcium-binding protein exhibits a broad range of structural transitions, including domain opening and folding-unfolding, that allow it to recognize a wide variety of binding partners in vivo. While the static structures of CaM associated with its various binding activities are fairly well-known, it has been challenging to examine the dynamics of transition between these structures in real-time, due to a lack of suitable spectroscopic probes of CaM structure. In this article, we examine the potential of ultraviolet resonance Raman (UVRR) spectroscopy for clarifying the nature of structural transitions in CaM. We find that the UVRR spectral change (with 229 nm excitation) due to thermal unfolding of CaM is qualitatively different from that associated with opening of the C-terminal domain in response to Ca(2+) binding. This spectral difference is entirely due to differences in tertiary contacts at the interdomain tyrosine residue Tyr138, toward which other spectroscopic methods are not sensitive. We conclude that UVRR is ideally suited to identifying the different types of structural transitions in CaM and other proteins with conformation-sensitive tyrosine residues, opening a path to time-resolved studies of CaM dynamics using Raman spectroscopy.
Collapse
Affiliation(s)
- Eric M Jones
- Department of Chemistry, University of Washington, Seattle, Washington, 98195-1700
| | | | | | | |
Collapse
|
15
|
NMR spectroscopy on domain dynamics in biomacromolecules. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2013; 112:58-117. [DOI: 10.1016/j.pbiomolbio.2013.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 12/22/2022]
|
16
|
Qi Y, Im W. Quantification of Drive-Response Relationships Between Residues During Protein Folding. J Chem Theory Comput 2013; 9. [PMID: 24223527 DOI: 10.1021/ct4002784] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mutual correlation and cooperativity are commonly used to describe residue-residue interactions in protein folding/function. However, these metrics do not provide any information on the causality relationships between residues. Such drive-response relationships are poorly studied in protein folding/function and difficult to measure experimentally due to technical limitations. In this study, using the information theory transfer entropy (TE) that provides a direct measurement of causality between two times series, we have quantified the drive-response relationships between residues in the folding/unfolding processes of four small proteins generated by molecular dynamics simulations. Instead of using a time-averaged single TE value, the time-dependent TE is measured with the Q-scores based on residue-residue contacts and with the statistical significance analysis along the folding/unfolding processes. The TE analysis is able to identify the driving and responding residues that are different from the highly correlated residues revealed by the mutual information analysis. In general, the driving residues have more regular secondary structures, are more buried, and show greater effects on the protein stability as well as folding and unfolding rates. In addition, the dominant driving and responding residues from the TE analysis on the whole trajectory agree with those on a single folding event, demonstrating that the drive-response relationships are preserved in the non-equilibrium process. Our study provides detailed insights into the protein folding process and has potential applications in protein engineering and interpretation of time-dependent residue-based experimental observables for protein function.
Collapse
Affiliation(s)
- Yifei Qi
- Department of Molecular Biosciences and Center for Bioinformatics, The University of Kansas, 2030 Becker Drive Lawrence, Kansas 66047, United States
| | | |
Collapse
|
17
|
Guanidine-HCl dependent structural unfolding of M-crystallin: fluctuating native state like topologies and intermolecular association. PLoS One 2012; 7:e42948. [PMID: 23284604 PMCID: PMC3524170 DOI: 10.1371/journal.pone.0042948] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 07/16/2012] [Indexed: 11/19/2022] Open
Abstract
Numerous experimental techniques and computational studies, proposed in recent times, have revolutionized the understanding of protein-folding paradigm. The complete understanding of protein folding and intermediates are of medical relevance, as the aggregation of misfolding proteins underlies various diseases, including some neurodegenerative disorders. Here, we describe the unfolding of M-crystallin, a βγ-crystallin homologue protein from archaea, from its native state to its denatured state using multidimensional NMR and other biophysical techniques. The protein, which was earlier characterized to be a predominantly β-sheet protein in its native state, shows different structural propensities (α and β), under different denaturing conditions. In 2 M GdmCl, the protein starts showing two distinct sets of peaks, with one arising from a partially unfolded state and the other from a completely folded state. The native secondary structural elements start disappearing as the denaturant concentration approaches 4 M. Subsequently, the protein is completely unfolded when the denaturant concentration is 6 M. The (15)N relaxation data (T(1)/T(2)), heteronuclear (1)H-(15)N Overhauser effects (nOes), NOESY data, and other biophysical data taken together indicate that the protein shows a consistent, gradual change in its structural and motional preferences with increasing GdmCl concentration.
Collapse
|
18
|
Titz A, Marra A, Cutting B, Smieško M, Papandreou G, Dondoni A, Ernst B. Conformational Constraints: Nature Does It Best with Sialyl Lewisx. European J Org Chem 2012. [DOI: 10.1002/ejoc.201200744] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Abstract
Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful tool for investigating the dynamics of biomolecules since it provides a description of motion that is comprehensive, site-specific, and relatively non-invasive. In particular, the study of protein dynamics has benefited from sustained methodological advances in NMR that have expanded the scope and time scales of accessible motion. Yet, many of these advances may not be well known to the more general physical chemistry community. Accordingly, this Perspective provides a glimpse of some of the more powerful methods in liquid state NMR that are helping reshape our understanding of functional motions of proteins.
Collapse
Affiliation(s)
- J W Peng
- Department of Chemistry and Biochemistry & Department of Physics University of Notre Dame, Notre Dame, IN 46556
| |
Collapse
|
20
|
Salvi N, Ulzega S, Ferrage F, Bodenhausen G. Time Scales of Slow Motions in Ubiquitin Explored by Heteronuclear Double Resonance. J Am Chem Soc 2012; 134:2481-4. [DOI: 10.1021/ja210238g] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Nicola Salvi
- Ecole Polytechnique Fédérale de Lausanne, Institut des Sciences
et Ingénierie Chimiques, BCH, 1015 Lausanne, Switzerland
| | - Simone Ulzega
- Ecole Polytechnique Fédérale de Lausanne, Institut des Sciences
et Ingénierie Chimiques, BCH, 1015 Lausanne, Switzerland
| | - Fabien Ferrage
- Département de Chimie, Ecole Normale Supérieure, 24 rue Lhomond, 75231
Paris Cedex 05, France
- Université Pierre et Marie Curie, Paris, France
- UMR 7203 Laboratoire des Biomolécules CNRS-UPMC-ENS, Paris, France
| | - Geoffrey Bodenhausen
- Ecole Polytechnique Fédérale de Lausanne, Institut des Sciences
et Ingénierie Chimiques, BCH, 1015 Lausanne, Switzerland
- Département de Chimie, Ecole Normale Supérieure, 24 rue Lhomond, 75231
Paris Cedex 05, France
- Université Pierre et Marie Curie, Paris, France
- UMR 7203 Laboratoire des Biomolécules CNRS-UPMC-ENS, Paris, France
| |
Collapse
|
21
|
Tripathi S, Portman JJ. Conformational flexibility and the mechanisms of allosteric transitions in topologically similar proteins. J Chem Phys 2011; 135:075104. [PMID: 21861587 DOI: 10.1063/1.3625636] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Conformational flexibility plays a central role in allosteric transition of proteins. In this paper, we extend the analysis of our previous study [S. Tripathi and J. J. Portman, Proc. Natl. Acad. Sci. U.S.A. 106, 2104 (2009)] to investigate how relatively minor structural changes of the meta-stable states can significantly influence the conformational flexibility and allosteric transition mechanism. We use the allosteric transitions of the domains of calmodulin as an example system to highlight the relationship between the transition mechanism and the inter-residue contacts present in the meta-stable states. In particular, we focus on the origin of transient local unfolding (cracking), a mechanism that can lower free energy barriers of allosteric transitions, in terms of the inter-residue contacts of the meta-stable states and the pattern of local strain that develops during the transition. We find that the magnitude of the local strain in the protein is not the sole factor determining whether a region will ultimately crack during the transition. These results emphasize that the residue interactions found exclusively in one of the two meta-stable states is the key in understanding the mechanism of allosteric conformational change.
Collapse
|
22
|
Fenwick RB, Esteban-Martín S, Richter B, Lee D, Walter KFA, Milovanovic D, Becker S, Lakomek NA, Griesinger C, Salvatella X. Weak long-range correlated motions in a surface patch of ubiquitin involved in molecular recognition. J Am Chem Soc 2011; 133:10336-9. [PMID: 21634390 PMCID: PMC3686050 DOI: 10.1021/ja200461n] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Indexed: 11/29/2022]
Abstract
Long-range correlated motions in proteins are candidate mechanisms for processes that require information transfer across protein structures, such as allostery and signal transduction. However, the observation of backbone correlations between distant residues has remained elusive, and only local correlations have been revealed using residual dipolar couplings measured by NMR spectroscopy. In this work, we experimentally identified and characterized collective motions spanning four β-strands separated by up to 15 Å in ubiquitin. The observed correlations link molecular recognition sites and result from concerted conformational changes that are in part mediated by the hydrogen-bonding network.
Collapse
Affiliation(s)
- R. Bryn Fenwick
- Joint BSC−IRB Research Programme in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), Parc Científic de Barcelona, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Santi Esteban-Martín
- Joint BSC−IRB Research Programme in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), Parc Científic de Barcelona, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Barbara Richter
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Donghan Lee
- Max Planck Institut fur Biophysikalische Chemie, Am Fassberg 11, 37077 Göttingen, Germany
| | - Korvin F. A. Walter
- Max Planck Institut fur Biophysikalische Chemie, Am Fassberg 11, 37077 Göttingen, Germany
| | - Dragomir Milovanovic
- Max Planck Institut fur Biophysikalische Chemie, Am Fassberg 11, 37077 Göttingen, Germany
| | - Stefan Becker
- Max Planck Institut fur Biophysikalische Chemie, Am Fassberg 11, 37077 Göttingen, Germany
| | - Nils A. Lakomek
- Max Planck Institut fur Biophysikalische Chemie, Am Fassberg 11, 37077 Göttingen, Germany
| | - Christian Griesinger
- Max Planck Institut fur Biophysikalische Chemie, Am Fassberg 11, 37077 Göttingen, Germany
| | - Xavier Salvatella
- Joint BSC−IRB Research Programme in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), Parc Científic de Barcelona, Baldiri Reixac 10, 08028 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
23
|
Price ES, Aleksiejew M, Johnson CK. FRET-FCS detection of intralobe dynamics in calmodulin. J Phys Chem B 2011; 115:9320-6. [PMID: 21688835 DOI: 10.1021/jp203743m] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fluorescence correlation spectroscopy (FCS) can be coupled with Förster resonance energy transfer (FRET) to detect intramolecular dynamics of proteins on the microsecond time scale. Here we describe application of FRET-FCS to detect fluctuations within the N-terminal and C-terminal domains of the Ca(2+)-signaling protein calmodulin. Intramolecular fluctuations were resolved by global fitting of the two fluorescence autocorrelation functions (green-green and red-red) together with the two cross-correlation functions (green-red and red-green). To match the Förster radius for FRET to the dimensions of the N-terminal and C-terminal domains, a near-infrared acceptor fluorophore (Atto 740) was coupled with a green-emitting donor (Alexa Fluor 488). Fluctuations were detected in both domains on the time scale of 30 to 40 μs. In the N-terminal domain, the amplitude of the fluctuations was dependent on occupancy of Ca(2+) binding sites. A high amplitude of dynamics in apo-calmodulin (in the absence of Ca(2+)) was nearly abolished at a high Ca(2+) concentration. For the C-terminal domain, the dynamic amplitude changed little with Ca(2+) concentration. The Ca(2+) dependence of dynamics for the N-terminal domain suggests that the fluctuations detected by FCS in the N-terminal domain are coupled to the opening and closing of the EF-hand Ca(2+)-binding loops.
Collapse
Affiliation(s)
- E Shane Price
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| | | | | |
Collapse
|
24
|
Vugmeyster L, Ostrovsky D, Li Y. Comparison of fast backbone dynamics at amide nitrogen and carbonyl sites in dematin headpiece C-terminal domain and its S74E mutant. JOURNAL OF BIOMOLECULAR NMR 2010; 47:155-162. [PMID: 20396930 DOI: 10.1007/s10858-010-9417-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 03/29/2010] [Indexed: 05/29/2023]
Abstract
We perform a detailed comparison of fast backbone dynamics probed at amide nitrogen versus carbonyl carbon sites for dematin headpiece C-terminal domain (DHP) and its S74E mutant (DHPS74E). Carbonyl dynamics is probed via auto-correlated longitudinal rates and transverse C'/C'-C(alpha) CSA/dipolar and C'/C'-N CSA/dipolar cross-correlated rates, while (15)N data are taken from a previous study. Resulting values of effective order parameters and internal correlation times support the conclusion that C' relaxation reports on a different subset of fast motions compared to those probed at N-H bond vectors in the same peptide planes. (13)C' order parameters are on the average 0.08 lower than (15)N order parameters with the exception of the flexible loop region in DHP. The reduction of mobility in the loop region upon the S74E mutation can be seen from the (15)N order parameters but not from the (13)C order parameters. Internal correlation times at (13)C' sites are on the average an order of magnitude longer than those at (15)N sites for the well-structured C-terminal subdomains, while the more flexible N-terminal subdomains have more comparable average internal correlation times.
Collapse
Affiliation(s)
- Liliya Vugmeyster
- Department of Chemistry and Environment and Natural Resources Institute, University of Alaska at Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA.
| | | | | |
Collapse
|
25
|
Xiong LW, Kleerekoper QK, Wang X, Putkey JA. Intra- and interdomain effects due to mutation of calcium-binding sites in calmodulin. J Biol Chem 2010; 285:8094-103. [PMID: 20048169 DOI: 10.1074/jbc.m109.065243] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The IQ-motif protein PEP-19, binds to the C-domain of calmodulin (CaM) with significantly different k(on) and k(off) rates in the presence and absence of Ca(2+), which could play a role in defining the levels of free CaM during Ca(2+) transients. The initial goal of the current study was to determine whether Ca(2+) binding to sites III or IV in the C-domain of CaM was responsible for affecting the kinetics of binding PEP-19. EF-hand Ca(2+)-binding sites were selectively inactivated by the common strategy of changing Asp to Ala at the X-coordination position. Although Ca(2+) binding to both sites III and IV appeared necessary for native-like interactions with PEP-19, the data also indicated that the mutations caused undesirable structural alterations as evidenced by significant changes in amide chemical shifts for apoCaM. Mutations in the C-domain also affected chemical shifts in the unmodified N-domain, and altered the Ca(2+) binding properties of the N-domain. Conversion of Asp(93) to Ala caused the greatest structural perturbations, possibly due to the loss of stabilizing hydrogen bonds between the side chain of Asp(93) and backbone amides in apo loop III. Thus, although these mutations inhibit binding of Ca(2+), the mutated CaM may not be able to support potentially important native-like activity of the apoprotein. This should be taken into account when designing CaM mutants for expression in cell culture.
Collapse
Affiliation(s)
- Liang-Wen Xiong
- Department of Biochemistry and Molecular Biology and the Structural Biology Center, University of Texas, Houston Medical School, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
26
|
Ulzega S, Verde M, Ferrage F, Bodenhausen G. Heteronuclear double resonance in nuclear magnetic resonance spectroscopy: Relaxation of multiple-quantum coherences. J Chem Phys 2009; 131:224503. [DOI: 10.1063/1.3269044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
27
|
Kamberaj H, van der Vaart A. Extracting the causality of correlated motions from molecular dynamics simulations. Biophys J 2009; 97:1747-55. [PMID: 19751680 DOI: 10.1016/j.bpj.2009.07.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 06/21/2009] [Accepted: 07/07/2009] [Indexed: 11/18/2022] Open
Abstract
The information theory measure of transfer entropy is used to extract the causality of correlated motions from molecular dynamics simulations. For each pair of correlated residues, the method quantifies which residue drives the correlated motions, and which residue responds. The measure reveals how correlated motions are used to transmit information through the system, and helps to clarify the link between correlated motions and biological function in biomolecular systems. The method is illustrated by its application to the Ets-1 transcription factor, which partially unfolds upon binding DNA. The calculations show dramatic changes in the direction of information flow upon DNA binding, and elucidate how the presence of DNA is communicated from the DNA binding H1 and H3 helices to inhibitory helix HI-1. Helix H4 is shown to act as a relay, which is attenuated in the apo state.
Collapse
Affiliation(s)
- Hiqmet Kamberaj
- Center for Biological Physics, Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona, USA
| | | |
Collapse
|
28
|
Friedland GD, Lakomek NA, Griesinger C, Meiler J, Kortemme T. A correspondence between solution-state dynamics of an individual protein and the sequence and conformational diversity of its family. PLoS Comput Biol 2009; 5:e1000393. [PMID: 19478996 PMCID: PMC2682763 DOI: 10.1371/journal.pcbi.1000393] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 04/27/2009] [Indexed: 12/03/2022] Open
Abstract
Conformational ensembles are increasingly recognized as a useful representation to describe fundamental relationships between protein structure, dynamics and function. Here we present an ensemble of ubiquitin in solution that is created by sampling conformational space without experimental information using “Backrub” motions inspired by alternative conformations observed in sub-Angstrom resolution crystal structures. Backrub-generated structures are then selected to produce an ensemble that optimizes agreement with nuclear magnetic resonance (NMR) Residual Dipolar Couplings (RDCs). Using this ensemble, we probe two proposed relationships between properties of protein ensembles: (i) a link between native-state dynamics and the conformational heterogeneity observed in crystal structures, and (ii) a relation between dynamics of an individual protein and the conformational variability explored by its natural family. We show that the Backrub motional mechanism can simultaneously explore protein native-state dynamics measured by RDCs, encompass the conformational variability present in ubiquitin complex structures and facilitate sampling of conformational and sequence variability matching those occurring in the ubiquitin protein family. Our results thus support an overall relation between protein dynamics and conformational changes enabling sequence changes in evolution. More practically, the presented method can be applied to improve protein design predictions by accounting for intrinsic native-state dynamics. Knowledge of protein properties is essential for enhancing the understanding and engineering of biological functions. One key property of proteins is their flexibility—their intrinsic ability to adopt different conformations. This flexibility can be measured experimentally but the measurements are indirect and computational models are required to interpret them. Here we develop a new computational method for interpreting these measurements of flexibility and use it to create a model of flexibility of the protein ubiquitin. We apply our results to show relationships between the flexibility of one protein and the diversity of structures and amino acid sequences of the protein's evolutionary family. Thus, our results show that more accurate computational modeling of protein flexibility is useful for improving prediction of a broader range of amino acid sequences compatible with a given protein. Our method will be helpful for advancing methods to rationally engineer protein functions by enabling sampling of conformational and sequence diversity similar to that of a protein's evolutionary family.
Collapse
Affiliation(s)
- Gregory D. Friedland
- Graduate Group in Biophysics, University of California San Francisco, San Francisco, California, United States of America
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America
- California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, California, United States of America
| | - Nils-Alexander Lakomek
- Department for NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Christian Griesinger
- Department for NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail: (JM); (TK)
| | - Tanja Kortemme
- Graduate Group in Biophysics, University of California San Francisco, San Francisco, California, United States of America
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America
- California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (JM); (TK)
| |
Collapse
|
29
|
Kleerekoper QK, Putkey JA. PEP-19, an intrinsically disordered regulator of calmodulin signaling. J Biol Chem 2009; 284:7455-64. [PMID: 19106096 PMCID: PMC2658041 DOI: 10.1074/jbc.m808067200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 12/18/2008] [Indexed: 11/06/2022] Open
Abstract
PEP-19 is a small calmodulin (CaM)-binding protein that greatly increases the rates of association and dissociation of Ca(2+) from the C-domain of CaM, an effect that is mediated by an acidic/IQ sequence in PEP-19. We show here using NMR that PEP-19 is an intrinsically disordered protein, but with residual structure localized to its acidic/IQ motif. We also show that the k(on) and k(off) rates for binding PEP-19 to apo-CaM are at least 50-fold slower than for binding to Ca(2+)-CaM. These data indicate that intrinsic disorder confers plasticity that allows PEP-19 to bind to either apo- or Ca(2+)-CaM via different structural modes, and that complex formation may be facilitated by conformational selection of residual structure in the acidic/IQ sequence.
Collapse
Affiliation(s)
- Quinn K Kleerekoper
- Department of Biochemistry and Molecular Biology and the Structural Biology Center, University of Texas, Houston Medical School, Houston, Texas 77030, USA
| | | |
Collapse
|
30
|
Gardeniers HJGE. Chemistry in nanochannel confinement. Anal Bioanal Chem 2009; 394:385-97. [DOI: 10.1007/s00216-009-2672-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 01/29/2009] [Accepted: 02/02/2009] [Indexed: 11/24/2022]
|
31
|
Inherent flexibility determines the transition mechanisms of the EF-hands of calmodulin. Proc Natl Acad Sci U S A 2009; 106:2104-9. [PMID: 19190183 DOI: 10.1073/pnas.0806872106] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We explore how inherent flexibility of a protein molecule influences the mechanism controlling allosteric transitions by using a variational model inspired from work in protein folding. The striking differences in the predicted transition mechanism for the opening of the two domains of calmodulin (CaM) emphasize that inherent flexibility is key to understanding the complex conformational changes that occur in proteins. In particular, the C-terminal domain of CaM (cCaM), which is inherently less flexible than its N-terminal domain (nCaM), reveals "cracking" or local partial unfolding during the open/closed transition. This result is in harmony with the picture that cracking relieves local stresses caused by conformational deformations of a sufficiently rigid protein. We also compare the conformational transition in a recently studied even-odd paired fragment of CaM. Our results rationalize the different relative binding affinities of the EF-hands in the engineered fragment compared with the intact odd-even paired EF-hands (nCaM and cCaM) in terms of changes in flexibility along the transition route. Aside from elucidating general theoretical ideas about the cracking mechanism, these studies also emphasize how the remarkable intrinsic plasticity of CaM underlies conformational dynamics essential for its diverse functions.
Collapse
|
32
|
Vugmeyster L, McKnight CJ. Phosphorylation-induced changes in backbone dynamics of the dematin headpiece C-terminal domain. JOURNAL OF BIOMOLECULAR NMR 2009; 43:39-50. [PMID: 19030997 PMCID: PMC2796552 DOI: 10.1007/s10858-008-9289-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Accepted: 10/20/2008] [Indexed: 05/27/2023]
Abstract
Dematin is an actin-binding protein abundant in red blood cells and other tissues. It contains a villin-type 'headpiece' F-actin-binding domain at its extreme C-terminus. The isolated dematin headpiece domain (DHP) undergoes a significant conformational change upon phosphorylation. The mutation of Ser74 to Glu closely mimics the phosphorylation of DHP. We investigated motions in the backbone of DHP and its mutant DHPS74E using several complementary NMR relaxation techniques: laboratory frame (15)N NMR relaxation, which is sensitive primarily to the ps-ns time scale, cross-correlated chemical shift modulation NMR relaxation detecting correlated mus-ms time scale motions of neighboring (13)C' and (15)N nuclei, and cross-correlated relaxation of two (15)N-(1)H dipole-dipole interactions detecting slow motions of backbone NH vectors in successive amino acid residues. The results indicate a reduction in mobility upon the mutation in several regions of the protein. The additional salt bridge formed in DHPS74E that links the N- and C-terminal subdomains is likely to be responsible for these changes.
Collapse
Affiliation(s)
- Liliya Vugmeyster
- Department of Chemistry, University of Alaska at Anchorage, 99508, USA.
| | | |
Collapse
|
33
|
Modig K, Poulsen FM. Model-independent interpretation of NMR relaxation data for unfolded proteins: the acid-denatured state of ACBP. JOURNAL OF BIOMOLECULAR NMR 2008; 42:163-177. [PMID: 18850278 DOI: 10.1007/s10858-008-9280-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Accepted: 07/10/2008] [Indexed: 05/26/2023]
Abstract
We have investigated the acid-unfolded state of acyl-coenzyme A binding protein (ACBP) using 15N laboratory frame nuclear magnetic resonance (NMR) relaxation experiments at three magnetic field strengths. The data have been analyzed using standard model-free fitting and models involving distribution of correlation times. In particular, a model-independent method of analysis that does not assume any analytical form for the correlation time distribution is proposed. This method explains correlations between model-free parameters and the analytical distribution parameters found by other authors. The analysis also shows that the relaxation data are consistent with and complementary to information obtained from other parameters, especially secondary chemical shifts and residual dipolar couplings, and strengthens the conclusions of previous observations that three out of the four regions that form helices in the native structure appear to contain residual secondary structure also in the acid-denatured state.
Collapse
Affiliation(s)
- Kristofer Modig
- Structural Biology and NMR Laboratory, Department of Molecular Biology, University of Copenhagen, Copenhagen Biocenter, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark.
| | | |
Collapse
|
34
|
Slow motions in chicken villin headpiece subdomain probed by cross-correlated NMR relaxation of amide NH bonds in successive residues. Biophys J 2008; 95:5941-50. [PMID: 18820237 DOI: 10.1529/biophysj.108.134320] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The villin headpiece subdomain (HP36) is a widely used system for protein-folding studies. Nuclear magnetic resonance cross-correlated relaxation rates arising from correlated fluctuations of two N-H(N) dipole-dipole interactions involving successive residues were measured at two temperatures at which HP36 is at least 99% folded. The experiment revealed the presence of motions slower than overall tumbling of the molecule. Based on the theoretical analysis of the spectral densities we show that the structural and dynamic contributions to the experimental cross-correlated relaxation rate can be separated under certain conditions. As a result, dynamic cross-correlated order parameters describing slow microsecond-to-millisecond motions of N-H bonds in neighboring residues can be introduced for any extent of correlations in the fluctuations of the two bond vectors. These dynamic cross-correlated order parameters have been extracted for HP36. The comparison of their values at two different temperatures indicates that when the temperature is raised, slow motions increase in amplitude. The increased amplitude of these fluctuations may reflect the presence of processes directly preceding the unfolding of the protein.
Collapse
|
35
|
Kamerzell TJ, Russell Middaugh C. The Complex Inter-Relationships Between Protein Flexibility and Stability. J Pharm Sci 2008; 97:3494-517. [DOI: 10.1002/jps.21269] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Tripathi S, Portman JJ. Inherent flexibility and protein function: The open/closed conformational transition in the N-terminal domain of calmodulin. J Chem Phys 2008; 128:205104. [DOI: 10.1063/1.2928634] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
37
|
Wang X, Srisailam S, Yee AA, Lemak A, Arrowsmith C, Prestegard JH, Tian F. Domain-domain motions in proteins from time-modulated pseudocontact shifts. JOURNAL OF BIOMOLECULAR NMR 2007; 39:53-61. [PMID: 17657568 DOI: 10.1007/s10858-007-9174-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Revised: 06/18/2007] [Accepted: 06/19/2007] [Indexed: 05/14/2023]
Abstract
In recent years paramagnetic NMR derived structural constraints have become increasingly popular for the study of biomolecules. Some of these are based on the distance and angular dependences of pseudo contact shifts (PCSs). When modulated by internal motions PCSs also become sensitive reporters on molecular dynamics. We present here an investigation of the domain-domain motion in a two domain protein (PA0128) through time-modulation of PCSs. PA0128 is a protein of unknown function from Pseudomonas aeruginosa (PA) and contains a Zn(2+) binding site in the N-terminal domain. When substituted with Co(2+) in the binding site, several resonances from the C-terminal domain showed severe line broadening along the (15)N dimension. Relaxation compensated CPMG experiments revealed that the dramatic increase in the (15)N linewidth came from contributions of chemical exchange. Since several sites with perturbed relaxation are localized to a single beta-strand region, and since extracted timescales of motion for the perturbed sites are identical, and since the magnitude of the chemical exchange contributions is consistent with PCSs, the observed rate enhancements are interpreted as the result of concerted domain motion on the timescale of a few milliseconds. Given the predictability of PCS differences and the easy interpretation of the experimental results, we suggest that these effects might be useful in the study of molecular processes occurring on the millisecond to microsecond timescale.
Collapse
Affiliation(s)
- X Wang
- Southeast Collaboratory for Biomolecular NMR, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Hansen DF, Yang D, Feng H, Zhou Z, Wiesner S, Bai Y, Kay LE. An exchange-free measure of 15N transverse relaxation: an NMR spectroscopy application to the study of a folding intermediate with pervasive chemical exchange. J Am Chem Soc 2007; 129:11468-79. [PMID: 17722922 DOI: 10.1021/ja072717t] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of experiments are presented that provide an exchange-free measure of dipole-dipole (15)N transverse relaxation, R(dd), that can then be substituted for (15)N R(1rho) or R(2) rates in the study of internal protein dynamics. The method is predicated on the measurement of a series of relaxation rates involving (1)H-(15)N longitudinal order, anti-phase (1)H and (15)N single-quantum coherences, and (1)H-(15)N multiple quantum coherences; the relaxation rates of all coherences are measured under conditions of spin-locking. Results from detailed simulations and experiments on a number of protein systems establish that R(dd) values are independent of exchange and systematic errors from dipolar interactions with proximal protons are calculated to be less than 1-2%, on average, for applications to perdeuterated proteins. Simulations further indicate that the methodology is rather insensitive to the exact level of deuteration so long as proteins are reasonably highly deuterated (>50%). The utility of the methodology is demonstrated with applications involving protein L, ubiquitin, and a stabilized folding intermediate of apocytochrome b(562) that shows large contributions to (15)N R(1rho) relaxation from chemical exchange.
Collapse
Affiliation(s)
- D Flemming Hansen
- Department of Medical Genetics, The University of Toronto, Toronto, Ontario, Canada, M5S 1A8
| | | | | | | | | | | | | |
Collapse
|
39
|
Gifford JL, Walsh MP, Vogel HJ. Structures and metal-ion-binding properties of the Ca2+-binding helix–loop–helix EF-hand motifs. Biochem J 2007; 405:199-221. [PMID: 17590154 DOI: 10.1042/bj20070255] [Citation(s) in RCA: 633] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The ‘EF-hand’ Ca2+-binding motif plays an essential role in eukaryotic cellular signalling, and the proteins containing this motif constitute a large and functionally diverse family. The EF-hand is defined by its helix–loop–helix secondary structure as well as the ligands presented by the loop to bind the Ca2+ ion. The identity of these ligands is semi-conserved in the most common (the ‘canonical’) EF-hand; however, several non-canonical EF-hands exist that bind Ca2+ by a different co-ordination mechanism. EF-hands tend to occur in pairs, which form a discrete domain so that most family members have two, four or six EF-hands. This pairing also enables communication, and many EF-hands display positive co-operativity, thereby minimizing the Ca2+ signal required to reach protein saturation. The conformational effects of Ca2+ binding are varied, function-dependent and, in some cases, minimal, but can lead to the creation of a protein target interaction site or structure formation from a molten-globule apo state. EF-hand proteins exhibit various sensitivities to Ca2+, reflecting the intrinsic binding ability of the EF-hand as well as the degree of co-operativity in Ca2+ binding to paired EF-hands. Two additional factors can influence the ability of an EF-hand to bind Ca2+: selectivity over Mg2+ (a cation with very similar chemical properties to Ca2+ and with a cytoplasmic concentration several orders of magnitude higher) and interaction with a protein target. A structural approach is used in this review to examine the diversity of family members, and a biophysical perspective provides insight into the ability of the EF-hand motif to bind Ca2+ with a wide range of affinities.
Collapse
Affiliation(s)
- Jessica L Gifford
- Structural Biology Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | | | | |
Collapse
|
40
|
Chen YG, Hummer G. Slow conformational dynamics and unfolding of the calmodulin C-terminal domain. J Am Chem Soc 2007; 129:2414-5. [PMID: 17290995 DOI: 10.1021/ja067791a] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yng-Gwei Chen
- Laboratory of Chemical Physics, Building 5, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | | |
Collapse
|
41
|
Vendruscolo M. Determination of conformationally heterogeneous states of proteins. Curr Opin Struct Biol 2007; 17:15-20. [PMID: 17239581 DOI: 10.1016/j.sbi.2007.01.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Revised: 12/08/2006] [Accepted: 01/05/2007] [Indexed: 10/23/2022]
Abstract
Although conformationally heterogeneous states of proteins are involved in a range of important biological processes, including protein folding and misfolding, and signal transduction, detailed knowledge of their structure and dynamics is still largely missing. Proteins in many of these states are constantly changing shape, such that they are better described as ensembles of conformations rather than in terms of well-defined structures, as is normally the case for native states. Methods in which molecular simulations are combined with experimental measurements are emerging as a powerful route to the accurate determination of the conformational properties of these states of proteins.
Collapse
Affiliation(s)
- Michele Vendruscolo
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
42
|
Piszczek G. Luminescent metal-ligand complexes as probes of macromolecular interactions and biopolymer dynamics. Arch Biochem Biophys 2006; 453:54-62. [PMID: 16603119 DOI: 10.1016/j.abb.2006.03.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Accepted: 03/05/2006] [Indexed: 11/26/2022]
Abstract
The knowledge of microsecond dynamics is important for an understanding of the mechanism and function of biological systems. Fluorescent techniques are well established in biophysical studies, but their applicability to probe microsecond timescale processes is limited. Luminescent metal-ligand complexes (MLCs) have created interest mainly due to their unique luminescent properties, such as the exceptionally long decay times and large fundamental anisotropy values, allowing examination of microsecond dynamics by fluorescence methods. MLC properties also greatly simplify instrumentation requirements and enable the use of light emitting diode excitation for time-resolved measurements. Recent literature illustrates how MLC labels take full advantage of well developed fluorescence techniques and how those methods can be extended to timescales not easily accessible with nanosecond probes. MLCs are now commercially available as reactive labels which give researchers access to methods that previously required more complex approaches. The present paper gives an overview of the applications of MLC probes to studies of molecular dynamics and interactions of proteins, membranes and nucleic acids.
Collapse
Affiliation(s)
- Grzegorz Piszczek
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
43
|
Abstract
There is growing evidence that structural flexibility plays a central role in the function of protein molecules. Many of the experimental data come from nuclear magnetic resonance (NMR) spectroscopy, a technique that allows internal motions to be probed with exquisite time and spatial resolution. Recent methodological advancements in NMR have extended our ability to characterize protein dynamics and promise to shed new light on the mechanisms by which these molecules function. Here, we present a brief overview of some of the new methods, together with applications that illustrate the level of detail at which protein motions can now be observed.
Collapse
Affiliation(s)
- Anthony Mittermaier
- Department of Chemistry, McGill University, Montreal, Quebec H3A 2K6, Canada.
| | | |
Collapse
|