1
|
Zhang F, Woods TJ, Rauchfuss TB. Hybrids of [FeFe]- and [NiFe]-H 2ase Active Site Models. Organometallics 2023; 42:1607-1614. [PMID: 37928214 PMCID: PMC10624399 DOI: 10.1021/acs.organomet.3c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Complexes of the type (diphosphine)Ni(μ-SR)2Fe(CO)3 are investigated with azadithiolate (adt, HN(CH2S-)2) as the dithiolate. The resulting complexes are hybrid models for the active sites of the [NiFe]- and [FeFe]-hydrogenases. The key complex (dppv)Ni(μ-adt)Fe(CO)3 (3) was prepared from the complex Ni[(SCH2)2NCbz](dppv), which contains a Cbz-protected adt ligand (Cbz = C(O)OCH2Ph, dppv = cis-1,2-(Ph2P)2C2H2). This complex combines with Fe2(CO)9 to give (dppv)Ni[(μ-SCH2)2NCbz]Fe(CO)3, which is readily deprotected to give 3. Complex 3 undergoes protonation at both Fe and N to give successively [(dppv)Ni(μ-adt)FeH(CO)3]+ ([H3]+) and [(dppv)Ni(μ-adtH)FeH(CO)3]2+ ([H3H]2+). The redox properties and dynamics of these complexes resemble previously reported analogues with propanedithiolate. Solutions of [H3]+ readily degrade to [(dppv)Ni[(μ-SCH2)2NCH2]Fe(CO)3]+ ([4]+), which features a methylene group linking N and Fe. Complex [4]+ can be made in high yield by reaction of [H3]+ with CH2O, and this conversion was also demonstrated with 13CH2O. Complex [4]+ undergoes hydrogenolysis by photochemical reaction with H2 to give [(dppv)Ni[(μ-SCH2)2NMe]FeH(CO)3]+, the N-methylated analogue of [H3]+. Upon treatment ith Me3O+, [4]+ undergoes quaternization, giving [(dppv)Ni[(μ-SCH2)2N(Me)CH2]Fe(CO)3]2+. In contrast with the lability of [H3]+, the phosphine-substituted derivative [(dppv)Ni(μ-adt)FeH(CO)2(PPh3)]+ did not degrade. Most complexes were characterized by X-ray crystallography.
Collapse
Affiliation(s)
- Fanjun Zhang
- School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801, United States; Present Address: School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China (F.Z.)
| | - Toby J Woods
- School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801, United States
| | - Thomas B Rauchfuss
- School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
2
|
Synthesis and Photocatalytic Activity of Two Different Hydrogenase Models based on DMAEMA Copolymer Structure. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Chen FY, Li JR, Liu XF, Zhao PH. Structural and electrochemical investigations of new mononuclear nickel(II) dithiolate complexes bearing a pendant amine. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2036981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Fei-Yan Chen
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, PR China
| | - Jian-Rong Li
- School of Materials Science and Engineering, North University of China, Taiyuan, PR China
| | - Xu-Feng Liu
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, PR China
| | - Pei-Hua Zhao
- School of Materials Science and Engineering, North University of China, Taiyuan, PR China
| |
Collapse
|
4
|
Gu XL, Li JR, Li QL, Guo Y, Jing XB, Chen ZB, Zhao PH. Mononuclear nickel(II) dithiolate complexes with chelating diphosphines: Insight into protonation and electrochemical proton reduction. J Inorg Biochem 2021; 219:111449. [PMID: 33798827 DOI: 10.1016/j.jinorgbio.2021.111449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 11/25/2022]
Abstract
Inspired by the metal active sites of [FeFe]- and [NiFe]‑hydrogenases, a series of mononuclear Ni(II) ethanedithiolate complexes [{(Ph2PCH2)2×}Ni(SCH2CH2S)] (X = NCH2C5H4N-p (2a), NCH2C6H5 (2b), NCH2CHMe2 (2c), and CH2 (2d)) with chelating diphosphines were readily synthesized through the room-temperature treatments of mononuclear Ni(II) dichlorides [{(Ph2PCH2)2×}NiCl2] (1a-1d) with ethanedithiol (HSCH2CH2SH) in the presence of triethylamine (Et3N) as acid-binding agent. All the as-prepared complexes 1a-1d and 2a-2d are fully characterized through elemental analysis, nuclear magnetic resonance (NMR) spectrum, and by X-ray crystallography for 1b, 2a-2d. To further explore proton-trapping behaviors of this type of mononuclear Ni(II) complexes for catalytic hydrogen (H2) evolution, the protonation and electrochemical proton reduction of 2a-2c with aminodiphosphines (labeled PCNCP = (Ph2PCH2)2NR) and reference analogue 2d with nitrogen-free diphosphine (dppp = (Ph2PCH2)2CH2) are studied and compared under trifluoroacetic acid (TFA) as a proton source. Interestingly, the treatments of 2a-2d with excess TFA resulted in the unexpected formation of dinuclear Ni(II)-Ni(II) dication complexes [{(Ph2PCH2)2×}2Ni2(μ-SCH2CH2S)](CF3CO2)2 (3a-3d) and mononuclear Ni(II) N-protonated complexes [{(Ph2PCH2)2N(H)R}Ni(SCH2CH2S)](CF3CO2) (4a-4c), which has been well supported by high-resolution electrospray ionization mass spectroscopy (HRESI-MS), NMR (31P, 1H) as well as fourier transform infrared spectroscopy (FT-IR) techniques, and especially by X-ray crystallography for 3d. Additionally, the electrochemical properties of 2a-2d are investigated in the absence and presence of strong acid (TFA) by using cyclic voltammetry (CV), showing that the complete protonation of 2a-2d gave rise to dinuclear Ni2S2 species 3a-3d for electrocatalytic proton reduction to H2.
Collapse
Affiliation(s)
- Xiao-Li Gu
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China
| | - Jian-Rong Li
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China
| | - Qian-Li Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, PR China
| | - Yang Guo
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China
| | - Xing-Bin Jing
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China
| | - Zi-Bing Chen
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China
| | - Pei-Hua Zhao
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China.
| |
Collapse
|
5
|
Song LC, Feng L, Lu Y, Yang XY. Synthesis, Structures, and Reactivity of [NiFe]-H 2ase Mimics Containing One Square-Planar N 2S 2 Ligand Bridged between Their Ni/Fe Centers through One or Two S Atoms. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00778] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Li-Cheng Song
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Li Feng
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu Lu
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xi-Yue Yang
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Amanullah S, Saha P, Nayek A, Ahmed ME, Dey A. Biochemical and artificial pathways for the reduction of carbon dioxide, nitrite and the competing proton reduction: effect of 2nd sphere interactions in catalysis. Chem Soc Rev 2021; 50:3755-3823. [DOI: 10.1039/d0cs01405b] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Reduction of oxides and oxoanions of carbon and nitrogen are of great contemporary importance as they are crucial for a sustainable environment.
Collapse
Affiliation(s)
- Sk Amanullah
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Paramita Saha
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Abhijit Nayek
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Md Estak Ahmed
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Abhishek Dey
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| |
Collapse
|
7
|
Wang XZ, Meng SL, Xiao H, Feng K, Wang Y, Jian JX, Li XB, Tung CH, Wu LZ. Identifying a Real Catalyst of [NiFe]-Hydrogenase Mimic for Exceptional H 2 Photogeneration. Angew Chem Int Ed Engl 2020; 59:18400-18404. [PMID: 32667116 DOI: 10.1002/anie.202006593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/22/2020] [Indexed: 11/09/2022]
Abstract
Inspired by the natural [NiFe]-H2 ase, we designed mimic 1, (dppe)Ni(μ-pdt)(μ-Cl)Ru(CO)2 Cl to realize effective H2 evolution under photocatalytic conditions. However, a new species 2 was captured in the course of photo-, electro-, and chemo- one-electron reduction. Experimental studies of in situ IR spectroscopy, EPR, NMR, X-ray absorption spectroscopy, and DFT calculations corroborated a dimeric structure of 2 as a closed-shell, symmetric structure with a RuI center. The isolated dimer 2 showed the real catalytic role in photocatalysis with a benchmark turnover frequency (TOF) of 1936 h-1 for H2 evolution, while mimic 1 worked as a pre-catalyst and evolved H2 only after being reduced to 2. The remarkably catalytic activity and unique dimer structure of 2 operated in photocatalysis unveiled a broad research prospect in hydrogenases mimics for advanced H2 evolution.
Collapse
Affiliation(s)
- Xu-Zhe Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shu-Lin Meng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongyan Xiao
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ke Feng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing-Xin Jian
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xu-Bing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Song D, Gao X, Li B, Li J, Sun X, Li C, Zhao J, Chen L, Wang N. Synthesis, structure and electrocatalytic H2-evoluting activity of a dinickel model complex related to the active site of [NiFe]-hydrogenases. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.01.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Wang X, Meng S, Xiao H, Feng K, Wang Y, Jian J, Li X, Tung C, Wu L. Identifying a Real Catalyst of [NiFe]‐Hydrogenase Mimic for Exceptional H
2
Photogeneration. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Xu‐Zhe Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Shu‐Lin Meng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Hongyan Xiao
- Key Laboratory of Bio-inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Ke Feng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Yang Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Jing‐Xin Jian
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Xu‐Bing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Chen‐Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
10
|
Song LC, Liu WB, Liu BB. Nickel(II)–Nickel(II) Azadithiolates: Synthesis, Structural Characterization, and Electrocatalytic H 2 Production. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Li-Cheng Song
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People’s Republic of China
| | - Wen-Bo Liu
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Bei-Bei Liu
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| |
Collapse
|
11
|
Wang L, Gennari M, Barrozo A, Fize J, Philouze C, Demeshko S, Meyer F, Orio M, Artero V, Duboc C. Role of the Metal Ion in Bio-Inspired Hydrogenase Models: Investigation of a Homodinuclear FeFe Complex vs Its Heterodinuclear NiFe Analogue. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03212] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Lianke Wang
- Institutes of Physical Science and Information Technology, Anhui University, 230601 Hefei, Anhui, P. R. China
- Univ. Grenoble Alpes, UMR CNRS 5250, 38000 Grenoble, France
| | | | - Alexandre Barrozo
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | - Jennifer Fize
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 38000 Grenoble, France
| | | | - Serhiy Demeshko
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Franc Meyer
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Maylis Orio
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | - Vincent Artero
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 38000 Grenoble, France
| | - Carole Duboc
- Univ. Grenoble Alpes, UMR CNRS 5250, 38000 Grenoble, France
| |
Collapse
|
12
|
New insights into Fe–H$$_{2}$$ and Fe–H$$^{-}$$ bonding of a [NiFe] hydrogenase mimic: a local vibrational mode study. Theor Chem Acc 2019. [DOI: 10.1007/s00214-019-2463-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Sutthirat N, Ziller JW, Yang JY, Thammavongsy Z. Crystal structure of NiFe(CO) 5[tris(pyridyl-meth-yl)aza-phosphatrane]: a synthetic mimic of the NiFe hydrogenase active site incorporating a pendant pyridine base. Acta Crystallogr E Crystallogr Commun 2019; 75:438-442. [PMID: 31161052 PMCID: PMC6509684 DOI: 10.1107/s2056989019003256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 03/06/2019] [Indexed: 11/22/2022]
Abstract
The reaction of Ni(TPAP)(COD) {where TPAP = [(NC5H4)CH2]3P(NC2H4)3N} with Fe(CO)5 resulted in the isolation of the title heterobimetallic NiFe(TPAP)(CO)5 complex di-μ-carbonyl-tricarbon-yl[2,8,9-tris-(pyridin-2-yl-meth-yl)-2,5,8,9-tetra-aza-1-phosphabi-cyclo-[3.3.3]undeca-ne]ironnickel, [FeNi(C24H30N7P)(CO)5]. Characterization of the complex by 1H and 31P NMR as well as IR spectroscopy are presented. The structure of NiFe(TPAP)(CO)5 reveals three terminally bound CO mol-ecules on Fe0, two bridging CO mol-ecules between Ni0 and Fe0, and TPAP coordinated to Ni0. The Ni-Fe bond length is 2.4828 (4) Å, similar to that of the reduced form of the active site of NiFe hydrogenase (∼2.5 Å). Additionally, a proximal pendant base from one of the non-coordinating pyridine groups of TPAP is also present. Although involvement of a pendant base has been cited in the mechanism of NiFe hydrogenase, this moiety has yet to be incorporated in a structurally characterized synthetic mimic with key structural motifs (terminally bound CO or CN ligands on Fe). Thus, the title complex NiFe(TPAP)(CO)5 is an unique synthetic model for NiFe hydrogenase. In the crystal, the complex mol-ecules are linked by C-H⋯O hydrogen bonds, forming undulating layers parallel to (100). Within the layers, there are offset π-π [inter-centroid distance = 3.2739 (5) Å] and C-H⋯π inter-actions present. The layers are linked by further C-H⋯π inter-actions, forming a supra-molecular framework.
Collapse
Affiliation(s)
- Natwara Sutthirat
- Department of Chemistry, University of California, Irvine, Natural Sciences II, Irvine, CA 92697, USA
| | - Joseph W. Ziller
- Department of Chemistry, University of California, Irvine, Natural Sciences II, Irvine, CA 92697, USA
| | - Jenny Y. Yang
- Department of Chemistry, University of California, Irvine, Natural Sciences II, Irvine, CA 92697, USA
| | - Zachary Thammavongsy
- Department of Chemistry, University of California, Irvine, Natural Sciences II, Irvine, CA 92697, USA
| |
Collapse
|
14
|
Basu D, Bailey TS, Lalaoui N, Richers CP, Woods TJ, Rauchfuss TB, Arrigoni F, Zampella G. Synthetic Designs and Structural Investigations of Biomimetic Ni-Fe Thiolates. Inorg Chem 2019; 58:2430-2443. [PMID: 30707014 DOI: 10.1021/acs.inorgchem.8b02991] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Described are the syntheses of several Ni(μ-SR)2Fe complexes, including hydride derivatives, in a search for improved models for the active site of [NiFe]-hydrogenases. The nickel(II) precursors include (i) nickel with tripodal ligands: Ni(PS3)- and Ni(NS3)- (PS33- = tris(phenyl-2-thiolato)phosphine, NS33- = tris(benzyl-2-thiolato)amine), (ii) traditional diphosphine-dithiolates, including chiral diphosphine R,R-DIPAMP, (iii) cationic Ni(phosphine-imine/amine) complexes, and (iv) organonickel precursors Ni( o-tolyl)Cl(tmeda) and Ni(C6F5)2. The following new nickel precursor complexes were characterized: PPh4[Ni(NS3)] and the dimeric imino/amino-phosphine complexes [NiCl2(PCH═NAn)]2 and [NiCl2(PCH2NHAn)]2 (P = Ph2PC6H4-2-). The iron(II) reagents include [CpFe(CO)2(thf)]BF4, [Cp*Fe(CO)(MeCN)2]BF4, FeI2(CO)4, FeCl2(diphos)(CO)2, and Fe(pdt)(CO)2(diphos) (diphos = chelating diphosphines). Reactions of the nickel and iron complexes gave the following new Ni-Fe compounds: Cp*Fe(CO)Ni(NS3), [Cp(CO)Fe(μ-pdt)Ni(dppbz)]BF4, [( R,R-DIPAMP)Ni(μ-pdt)(H)Fe(CO)3]BArF4, [(PCH═NAn)Ni(μ-pdt)(Cl)Fe(dppbz)(CO)]BF4, [(PCH2NHAn)Ni(μ-pdt)(Cl)Fe(dppbz)(CO)]BF4, [(PCH═NAn)Ni(μ-pdt)(H)Fe(dppbz)(CO)]BF4, [(dppv)(CO)Fe(μ-pdt)]2Ni, {H[(dppv)(CO)Fe(μ-pdt)]2Ni]}BF4, and (C6F5)2Ni(μ-pdt)Fe(CO)2(dppv) (DIPAMP = (CH2P(C6H4-2-OMe)2)2; BArF4- = [B(C6H3-3,5-(CF3)2]4-)) Within the context of Ni-(SR)2-Fe complexes, these new complexes feature new microenvironments for the nickel center: tetrahedral Ni, chirality, imine, and amine coligands, and Ni-C bonds. In the case of {H[(dppv)(CO)Fe(μ-pdt)]2Ni}+, four low-energy isomers are separated by ≤3 kcal/mol, one of which features a biomimetic HNi(SR)4 site, as supported by density functional theory calculations.
Collapse
Affiliation(s)
- Debashis Basu
- School of Chemical Sciences , University of Illinois , Urbana , Illinois 61801 , United States
| | - T Spencer Bailey
- School of Chemical Sciences , University of Illinois , Urbana , Illinois 61801 , United States
| | - Noémie Lalaoui
- School of Chemical Sciences , University of Illinois , Urbana , Illinois 61801 , United States
| | - Casseday P Richers
- School of Chemical Sciences , University of Illinois , Urbana , Illinois 61801 , United States
| | - Toby J Woods
- School of Chemical Sciences , University of Illinois , Urbana , Illinois 61801 , United States
| | - Thomas B Rauchfuss
- School of Chemical Sciences , University of Illinois , Urbana , Illinois 61801 , United States
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences , University of Milano-Bicocca , Piazza della Scienza 2 20126 Milan , Italy
| | - Giuseppe Zampella
- Department of Biotechnology and Biosciences , University of Milano-Bicocca , Piazza della Scienza 2 20126 Milan , Italy
| |
Collapse
|
15
|
Chu X, Jin J, Ming B, Pang M, Yu X, Tung CH, Wang W. Bimetallic nickel-cobalt hydrides in H 2 activation and catalytic proton reduction. Chem Sci 2019; 10:761-767. [PMID: 30746109 PMCID: PMC6340403 DOI: 10.1039/c8sc04346a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 10/26/2018] [Indexed: 12/18/2022] Open
Abstract
The synergism of the electronic properties of nickel and cobalt enables bimetallic NiCo complexes to process H2. The nickel-cobalt hydride [(dppe)Ni(pdt)(H)CoCp*]+ ([1H]+ ) arising from protonation of the reduced state 1 was found to be an efficient electrocatalyst for H2 evolution with Cl2CHCOOH, and the oxidized [Ni(ii)Co(iii)]2+ form is capable of activating H2 to produce [1H]+ . The features of stereodynamics, acid-base properties, redox chemistry and reactivity of these bimetallic NiCo complexes in processing H2 are potentially related to the active site of [NiFe]-H2ases.
Collapse
Affiliation(s)
- Xiaoxiao Chu
- Key Lab for Colloid and Interface Chemistry of Education Ministry , School of Chemistry and Chemical Engineering , Shandong University , 250100 , China .
- School of Chemistry and Materials Science , Ludong University , Yantai , 264025 , China
| | - Jihao Jin
- Key Lab for Colloid and Interface Chemistry of Education Ministry , School of Chemistry and Chemical Engineering , Shandong University , 250100 , China .
| | - Bangrong Ming
- Key Lab for Colloid and Interface Chemistry of Education Ministry , School of Chemistry and Chemical Engineering , Shandong University , 250100 , China .
| | - Maofu Pang
- Key Lab for Colloid and Interface Chemistry of Education Ministry , School of Chemistry and Chemical Engineering , Shandong University , 250100 , China .
| | - Xin Yu
- Key Lab for Colloid and Interface Chemistry of Education Ministry , School of Chemistry and Chemical Engineering , Shandong University , 250100 , China .
| | - Chen-Ho Tung
- Key Lab for Colloid and Interface Chemistry of Education Ministry , School of Chemistry and Chemical Engineering , Shandong University , 250100 , China .
| | - Wenguang Wang
- Key Lab for Colloid and Interface Chemistry of Education Ministry , School of Chemistry and Chemical Engineering , Shandong University , 250100 , China .
| |
Collapse
|
16
|
Brazzolotto D, Wang L, Tang H, Gennari M, Queyriaux N, Philouze C, Demeshko S, Meyer F, Orio M, Artero V, Hall MB, Duboc C. Tuning Reactivity of Bioinspired [NiFe]-Hydrogenase Models by Ligand Design and Modeling the CO Inhibition Process. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02830] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Deborah Brazzolotto
- Université Grenoble Alpes, UMR CNRS 5250, Département de Chimie Moléculaire, F-38000 Grenoble, France
- Université Grenoble Alpes, UMR CNRS 5249, CEA, Laboratoire de Chimie et Biologie des Métaux, F-38000 Grenoble, France
| | - Lianke Wang
- Université Grenoble Alpes, UMR CNRS 5250, Département de Chimie Moléculaire, F-38000 Grenoble, France
| | - Hao Tang
- Department of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | - Marcello Gennari
- Université Grenoble Alpes, UMR CNRS 5250, Département de Chimie Moléculaire, F-38000 Grenoble, France
| | - Nicolas Queyriaux
- Université Grenoble Alpes, UMR CNRS 5249, CEA, Laboratoire de Chimie et Biologie des Métaux, F-38000 Grenoble, France
| | - Christian Philouze
- Université Grenoble Alpes, UMR CNRS 5250, Département de Chimie Moléculaire, F-38000 Grenoble, France
| | - Serhiy Demeshko
- University of Göttingen, Insitute für Anorganische Chemie, Tammannstrasse 4, D- 37077 Göttingen, Germany
| | - Franc Meyer
- University of Göttingen, Insitute für Anorganische Chemie, Tammannstrasse 4, D- 37077 Göttingen, Germany
| | - Maylis Orio
- Institut des Sciences Moléculaires de Marseille, Aix Marseille Université, CNRS, Centrale Marseille, ISM2 UMR 7313, 13397 Marseille, France
| | - Vincent Artero
- Université Grenoble Alpes, UMR CNRS 5249, CEA, Laboratoire de Chimie et Biologie des Métaux, F-38000 Grenoble, France
| | - Michael B. Hall
- Department of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | - Carole Duboc
- Université Grenoble Alpes, UMR CNRS 5250, Département de Chimie Moléculaire, F-38000 Grenoble, France
| |
Collapse
|
17
|
Harrison DJ, Lough AJ, Fekl U. A new structural model for NiFe hydrogenases: an unsaturated analogue of a classic hydrogenase model leads to more enzyme-like Ni-Fe distance and inter-planar fold. Acta Crystallogr E Crystallogr Commun 2018; 74:1222-1226. [PMID: 30225104 PMCID: PMC6127701 DOI: 10.1107/s2056989018010939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 07/30/2018] [Indexed: 11/26/2022]
Abstract
The complex cation in the title compound, (carbonyl-1κC)(1η5-penta-methyl-cyclo-penta-dien-yl)(μ-2,3,9,10-tetra-methyl-1,4,8,11-tetra-thia-undeca-2,9-diene-1,11-diido-1κ2S,S''':2κ4S,S',S'',S''')ironnickel(Fe-Ni) hexa-fluoro-phosphate, [FeNi(C10H15)(C11H18S4)(CO)]PF6 or [Ni(L')FeCp*(CO)]PF6, is composed of the nickel complex fragment [Ni(L')] coordinated as a metalloligand (using S1 and S4) to the [FeCp*(CO)]+ fragment, where (L')2- is [S-C(Me)=C(Me)-S-(CH2)3-S-C(Me)=C(Me)-S]2- and where Cp*- is cyclo-C5(Me)5- (penta-methyl-cyclo-penta-dien-yl). The ratio of hexa-fluoro-phosphate anion per complex cation is 1:1. The structure at 150 K has ortho-rhom-bic (Pbcn) symmetry. The atoms of the complex cation are located on general positions (multiplicity = 8), whereas there are two independent hexa-fluoro-phosphate anions, each located on a twofold axis (Wyckoff position 4c; multiplicity = 4). The structure of the new dimetallic cation [Ni(L')FeCp*(CO)]+ can be described as containing a three-legged piano-stool environment for iron [Cp*Fe(CO)'S2'] and an approximately square-planar 'S4' environment for Ni. The NiS2Fe diamond-shaped substructure is notably folded at the S-S hinge: the angle between the NiS2 plane and the FeS2 plane normals is 64.85 (6)°. Largely because of this fold, the nickel-iron distance is relatively short, at 2.9195 (8) Å. The structural data for the complex cation, which contains a new unsaturated 'S4' ligand (two C=C double bonds), provide an inter-esting comparison with the known NiFe hydrogenase models containing a saturated 'S4'-ligand analogue having the same number of carbon atoms in the ligand backbone, namely with the structures of [Ni(L)FeCp(CO)]+ (as the PF6- salt, CH2Cl2 solvate) and [Ni(L)FeCp*(CO)]+ (as the PF6- salt), where (L)2- is [S-CH2-CH2-S-(CH2)3-S-CH2-CH2-S]2- and Cp- is cyclo-penta-dienyl. The saturated analogues [Ni(L)FeCp(CO)]+ and [Ni(L)FeCp*(CO)]+ have similar Ni-Fe distances: 3.1727 (6), 3.1529 (7) Å (two independent mol-ecules in the unit cell) and 3.111 (5) Å, respectively, for the two complexes, whereas [Ni(L')FeCp*(CO)]+ described here stands out with a much shorter Ni-Fe distance [2.9196 (8) Å]. Also, [Ni(L)FeCp(CO)]+ and [Ni(L)FeCp*(CO)]+ show inter-planar fold angles that are similar between the two: 39.56 (5), 41.99 (5) (independent mol-ecules in the unit cell) and 47.22 (9) °, respectively, whereas [Ni(L')FeCp*(CO)]+ possesses a much more pronounced fold [64.85 (6)°]. Given that larger fold angles and shorter Ni-Fe distances are considered to be structurally closer to the enzyme, unsaturation in an 'S4'-ligand of the type (S-C2-S-C3-S-C2-S)2- seems to increase structural resemblance to the enzyme for structural models of the type [Ni('S4')FeCp R (CO)]+ (Cp R = Cp or Cp*).
Collapse
Affiliation(s)
- Daniel J. Harrison
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga, Ontario, L5L 1C6, Canada
| | - Alan J. Lough
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Ulrich Fekl
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga, Ontario, L5L 1C6, Canada
| |
Collapse
|
18
|
Song LC, Zhang LD, Zhang WW, Liu BB. Heterodinuclear Ni/M (M = Mo, W) Complexes Relevant to the Active Site of [NiFe]-Hydrogenases: Synthesis, Characterization, and Electrocatalytic H 2 Evolution. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Li-Cheng Song
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Long-Duo Zhang
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wei-Wei Zhang
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Bei-Bei Liu
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
19
|
Isegawa M, Sharma AK, Ogo S, Morokuma K. DFT Study on Fe(IV)-Peroxo Formation and H Atom Transfer Triggered O2 Activation by NiFe Complex. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00098] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Miho Isegawa
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University 744 Moto-oka, Nishi-ku, Fukuoka 819-0385, Japan
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| | - Akhilesh K. Sharma
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| | - Seiji Ogo
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University 744 Moto-oka, Nishi-ku, Fukuoka 819-0385, Japan
| | - Keiji Morokuma
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| |
Collapse
|
20
|
Deng C, Wang Z, Xie Y, He J, Wei J, Zou L, Xie B, Jiang J, Wu Y, Ma Z, Hu M, Li Y, Zhao P, Liu X. Synthesis, Structure, and Electrochemical Properties of O
-Alkyldithiophosphato Nickel Complexes with Chelating Aminodiphosphine Ligands. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chenglong Deng
- College of Chemistry and Environmental Engineering; Sichuan University of Science & Engineering; 643000 Zigong P. R. China
| | - Zheng Wang
- College of Chemistry and Environmental Engineering; Sichuan University of Science & Engineering; 643000 Zigong P. R. China
| | - Ying Xie
- College of Chemistry and Environmental Engineering; Sichuan University of Science & Engineering; 643000 Zigong P. R. China
| | - Jiao He
- College of Chemistry and Environmental Engineering; Sichuan University of Science & Engineering; 643000 Zigong P. R. China
| | - Juan Wei
- College of Chemistry and Environmental Engineering; Sichuan University of Science & Engineering; 643000 Zigong P. R. China
| | - Like Zou
- College of Chemistry and Environmental Engineering; Sichuan University of Science & Engineering; 643000 Zigong P. R. China
| | - Bin Xie
- College of Chemistry and Environmental Engineering; Sichuan University of Science & Engineering; 643000 Zigong P. R. China
| | - Jin Jiang
- College of Chemistry and Environmental Engineering; Sichuan University of Science & Engineering; 643000 Zigong P. R. China
| | - Yu Wu
- College of Chemistry and Environmental Engineering; Sichuan University of Science & Engineering; 643000 Zigong P. R. China
| | - Zhongyi Ma
- School of Materials Science and Engineering; North University of China; 030051 Taiyuan P. R. China
| | - Mengyuan Hu
- School of Materials Science and Engineering; North University of China; 030051 Taiyuan P. R. China
| | - Yulong Li
- College of Chemistry and Environmental Engineering; Sichuan University of Science & Engineering; 643000 Zigong P. R. China
| | - Peihua Zhao
- School of Materials Science and Engineering; North University of China; 030051 Taiyuan P. R. China
| | - Xufeng Liu
- School of Materials and Chemical Engineering; Ningbo University of Technology; 315211 Ningbo P. R. China
| |
Collapse
|
21
|
Song LC, Gao XY, Liu WB, Zhang HT, Cao M. Synthesis, Characterization, and Reactions of Functionalized Nickel–Iron Dithiolates Related to the Active Site of [NiFe]-Hydrogenases. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
22
|
Perotto CU, Sodipo CL, Jones GJ, Tidey JP, Blake AJ, Lewis W, Davies ES, McMaster J, Schröder M. Heterobimetallic [NiFe] Complexes Containing Mixed CO/CN - Ligands: Analogs of the Active Site of the [NiFe] Hydrogenases. Inorg Chem 2018; 57:2558-2569. [PMID: 29465237 DOI: 10.1021/acs.inorgchem.7b02905] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of synthetic analogs of the active sites of [NiFe] hydrogenases remains challenging, and, in spite of the number of complexes featuring a [NiFe] center, those featuring CO and CN- ligands at the Fe center are under-represented. We report herein the synthesis of three bimetallic [NiFe] complexes [Ni( N2 S2)Fe(CO)2(CN)2], [Ni( S4)Fe(CO)2(CN)2], and [Ni( N2 S3)Fe(CO)2(CN)2] that each contain a Ni center that bridges through two thiolato S donors to a {Fe(CO)2(CN)2} unit. X-ray crystallographic studies on [Ni( N2 S3)Fe(CO)2(CN)2], supported by DFT calculations, are consistent with a solid-state structure containing distinct molecules in the singlet ( S = 0) and triplet ( S = 1) states. Each cluster exhibits irreversible reduction processes between -1.45 and -1.67 V vs Fc+/Fc and [Ni( N2 S3)Fe(CO)2(CN)2] possesses a reversible oxidation process at 0.17 V vs Fc+/Fc. Spectroelectrochemical infrared (IR) and electron paramagnetic resonance (EPR) studies, supported by density functional theory (DFT) calculations, are consistent with a NiIIIFeII formulation for [Ni( N2 S3)Fe(CO)2(CN)2]+. The singly occupied molecular orbital (SOMO) in [Ni( N2 S3)Fe(CO)2(CN)2]+ is based on Ni 3dz2 and 3p S with the S contributions deriving principally from the apical S-donor. The nature of the SOMO corresponds to that proposed for the Ni-C state of the [NiFe] hydrogenases for which a NiIIIFeII formulation has also been proposed. A comparison of the experimental structures, and the electrochemical and spectroscopic properties of [Ni( N2 S3)Fe(CO)2(CN)2] and its [Ni( N2 S3)] precursor, together with calculations on the oxidized [Ni( N2 S3)Fe(CO)2(CN)2]+ and [Ni( N2 S3)]+ forms suggests that the binding of the {Fe(CO)(CN)2} unit to the {Ni(CysS)4} center at the active site of the [NiFe] hydrogenases suppresses thiolate-based oxidative chemistry involving the bridging thiolate S donors. This is in addition to the role of the Fe center in modulating the redox potential and geometry and supporting a bridging hydride species between the Ni and Fe centers in the Ni-C state.
Collapse
Affiliation(s)
- Carlo U Perotto
- School of Chemistry , University of Nottingham , Nottingham , NG7 2RD , United Kingdom
| | - Charlene L Sodipo
- School of Chemistry , University of Nottingham , Nottingham , NG7 2RD , United Kingdom
| | - Graham J Jones
- School of Chemistry , University of Nottingham , Nottingham , NG7 2RD , United Kingdom
| | - Jeremiah P Tidey
- School of Chemistry , University of Nottingham , Nottingham , NG7 2RD , United Kingdom
| | - Alexander J Blake
- School of Chemistry , University of Nottingham , Nottingham , NG7 2RD , United Kingdom
| | - William Lewis
- School of Chemistry , University of Nottingham , Nottingham , NG7 2RD , United Kingdom
| | - E Stephen Davies
- School of Chemistry , University of Nottingham , Nottingham , NG7 2RD , United Kingdom
| | - Jonathan McMaster
- School of Chemistry , University of Nottingham , Nottingham , NG7 2RD , United Kingdom
| | - Martin Schröder
- The University of Manchester , Oxford Road , Manchester , M13 9PL , United Kingdom
| |
Collapse
|
23
|
Ghosh P, Quiroz M, Wang N, Bhuvanesh N, Darensbourg MY. Complexes of MN 2S 2·Fe(η 5-C 5R 5)(CO) as platform for exploring cooperative heterobimetallic effects in HER electrocatalysis. Dalton Trans 2018; 46:5617-5624. [PMID: 28174781 DOI: 10.1039/c6dt04666e] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The control of aggregation at sulfur by metallodithiolates (MN2S2) has made them prime candidates as building blocks for the synthesis of biomimetics of various bimetallic enzyme active sites, with reactivity consequences implicating redox control by both metal centers. Recent studies of MN2S2 (M = Ni2+, Fe(NO)2+) bound to [(η5-C5H5)Fe(CO)]+ as electrocatalysts for proton reduction, the hydrogen evolution reaction, demonstrated reduction-induced hemi-lability of the bridging cis-dithiolates as a key step in the electrochemical proton reduction process (Ding, et al., J. Am. Chem. Soc., 2016, 138, 12920-12927). The MN2S2·Fe(η5-C5R5)(CO) platform offers numerous possibilities for tuning the electronic character of the M(μ-S2)Fe core. As well as modifying M within the metallodithiolate ligand, replacing H by CH3 at the η5-C5R5 moiety increases the electron density at the Fe center, which might facilitate the reductive Fe-S bond cleavage. Although release of a free thiolate in these hemi-labile ligands creates a needed internal pendant base, this benefit might be countered by the increase in over-potential for addition of the first electron. Herein we report the preparation and characterization of four bimetallic aggregates with the (η5-C5R5)Fe(CO) (R = H, CH3; Fe' or Fe*', respectively) or the dicarbonyl (η5-C5R5)Fe(CO)2 scaffold (R = H, CH3; Fe'' or Fe*'', respectively) bound to redox active MN2S2 ligands (M = Ni2+, Co(NO)2+; N2S2 = bismercaptoethane diazacycloheptane) Co-Fe*', Ni-Fe*', Co-Fe' and Co-Fe*'' complexes. The bidentate complexes were found to be electrocatalysts for proton reduction, although at high over-potential, especially for the derivatives of the electron-rich (η5-C5(CH3)5)Fe(CO)+. The turnover (TON) and turnover frequencies (TOF) were determined and found to be comparable to the previously reported MN2S2·Fe(η5-C5H5)(CO)+ analogues.
Collapse
Affiliation(s)
- Pokhraj Ghosh
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, USA.
| | | | | | | | | |
Collapse
|
24
|
Wojnar MK, Ziller JW, Heyduk AF. Heterobimetallic and Heterotrimetallic Clusters Containing a Redox‐Active Metalloligand. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201701222] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- M. K. Wojnar
- Department of Chemistry University of California, Irvine 1102 Natural Sciences 2 92697‐2025 Irvine California U.S.A
| | - Joseph W. Ziller
- Department of Chemistry University of California, Irvine 1102 Natural Sciences 2 92697‐2025 Irvine California U.S.A
| | - Alan F. Heyduk
- Department of Chemistry University of California, Irvine 1102 Natural Sciences 2 92697‐2025 Irvine California U.S.A
| |
Collapse
|
25
|
Ghosh P, Ding S, Chupik RB, Quiroz M, Hsieh CH, Bhuvanesh N, Hall MB, Darensbourg MY. A matrix of heterobimetallic complexes for interrogation of hydrogen evolution reaction electrocatalysts. Chem Sci 2017; 8:8291-8300. [PMID: 29619175 PMCID: PMC5858031 DOI: 10.1039/c7sc03378h] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/11/2017] [Indexed: 11/21/2022] Open
Abstract
Experimental and computational studies address key questions in a structure-function analysis of bioinspired electrocatalysts for the HER. Combinations of NiN2S2 or [(NO)Fe]N2S2 as donors to (η5-C5H5)Fe(CO)+ or [Fe(NO)2]+/0 generate a series of four bimetallics, gradually "softened" by increasing nitrosylation, from 0 to 3, by the non-innocent NO ligands. The nitrosylated NiFe complexes are isolated and structurally characterized in two redox levels, demonstrating required features of electrocatalysis. Computational modeling of experimental structures and likely transient intermediates that connect the electrochemical events find roles for electron delocalization by NO, as well as Fe-S bond dissociation that produce a terminal thiolate as pendant base well positioned to facilitate proton uptake and transfer. Dihydrogen formation is via proton/hydride coupling by internal S-H+···-H-Fe units of the "harder" bimetallic arrangements with more localized electron density, while softer units convert H-···H-via reductive elimination from two Fe-H deriving from the highly delocalized, doubly reduced [Fe2(NO)3]- derivative. Computational studies also account for the inactivity of a Ni2Fe complex resulting from entanglement of added H+ in a pinched -S δ-···H+··· δ-S- arrangement.
Collapse
Affiliation(s)
- Pokhraj Ghosh
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | - Shengda Ding
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | - Rachel B Chupik
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | - Manuel Quiroz
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | - Chung-Hung Hsieh
- Department of Chemistry , Tamkang University , New Taipei City , Taiwan 25157
| | - Nattami Bhuvanesh
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | - Michael B Hall
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | | |
Collapse
|
26
|
Stevenson MJ, Marguet SC, Schneider CR, Shafaat HS. Light-Driven Hydrogen Evolution by Nickel-Substituted Rubredoxin. CHEMSUSCHEM 2017; 10:4424-4429. [PMID: 28948691 DOI: 10.1002/cssc.201701627] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 09/21/2017] [Indexed: 06/07/2023]
Abstract
An enzymatic system for light-driven hydrogen generation has been developed through covalent attachment of a ruthenium chromophore to nickel-substituted rubredoxin (NiRd). The photoinduced activity of the hybrid enzyme is significantly greater than that of a two-component system and is strongly dependent on the position of the ruthenium phototrigger relative to the active site, indicating a role for intramolecular electron transfer in catalysis. Steady-state and time-resolved emission spectra reveal a pathway for rapid, direct quenching of the ruthenium excited state by nickel, but low overall turnover numbers suggest initial electron transfer is not the rate-limiting step. This approach is ideally suited for detailed mechanistic investigations of catalysis by NiRd and other molecular systems, with implications for generation of solar fuels.
Collapse
Affiliation(s)
- Michael J Stevenson
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Street, Columbus, OH, 43210, USA
- Current address: Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Sean C Marguet
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Street, Columbus, OH, 43210, USA
| | - Camille R Schneider
- Ohio State Biochemistry Program, The Ohio State University, 484 W. 12th Ave, Columbus, OH, 43210, USA
| | - Hannah S Shafaat
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Street, Columbus, OH, 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, 484 W. 12th Ave, Columbus, OH, 43210, USA
| |
Collapse
|
27
|
Lepetit C, Fau P, Fajerwerg K, Kahn ML, Silvi B. Topological analysis of the metal-metal bond: A tutorial review. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.04.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Quantum chemical approaches to [NiFe] hydrogenase. Essays Biochem 2017; 61:293-303. [PMID: 28487405 DOI: 10.1042/ebc20160079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/22/2017] [Accepted: 03/01/2017] [Indexed: 11/17/2022]
Abstract
The mechanism by which [NiFe] hydrogenase catalyses the oxidation of molecular hydrogen is a significant yet challenging topic in bioinorganic chemistry. With far-reaching applications in renewable energy and carbon mitigation, significant effort has been invested in the study of these complexes. In particular, computational approaches offer a unique perspective on how this enzyme functions at an electronic and atomistic level. In this article, we discuss state-of-the art quantum chemical methods and how they have helped deepen our comprehension of [NiFe] hydrogenase. We outline the key strategies that can be used to compute the (i) geometry, (ii) electronic structure, (iii) thermodynamics and (iv) kinetic properties associated with the enzymatic activity of [NiFe] hydrogenase and other bioinorganic complexes.
Collapse
|
29
|
Schilter D, Gray DL, Fuller AL, Rauchfuss TB. Synthetic Models for Nickel-Iron Hydrogenase Featuring Redox-Active Ligands. Aust J Chem 2017; 70:505-515. [PMID: 28819328 PMCID: PMC5555595 DOI: 10.1071/ch16614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The nickel-iron hydrogenase enzymes efficiently and reversibly interconvert protons, electrons, and dihydrogen. These redox proteins feature iron-sulfur clusters that relay electrons to and from their active sites. Reported here are synthetic models for nickel-iron hydrogenase featuring redox-active auxiliaries that mimic the iron-sulfur cofactors. The complexes prepared are NiII(μ-H)FeIIFeII species of formula [(diphosphine)Ni(dithiolate)(μ-H)Fe(CO)2(ferrocenylphosphine)]+ or NiIIFeIFeII complexes [(diphosphine)Ni(dithiolate)Fe(CO)2(ferrocenylphosphine)]+ (diphosphine = Ph2P(CH2)2PPh2 or Cy2P(CH2)2PCy2; dithiolate = -S(CH2)3S-; ferrocenylphosphine = diphenylphosphinoferrocene, diphenylphosphinomethyl(nonamethylferrocene) or 1,1'-bis(diphenylphosphino)ferrocene). The hydride species is a catalyst for hydrogen evolution, while the latter hydride-free complexes can exist in four redox states - a feature made possible by the incorporation of the ferrocenyl groups. Mixed-valent complexes of 1,1'-bis(diphenylphosphino)ferrocene have one of the phosphine groups unbound, with these species representing advanced structural models with both a redox-active moiety (the ferrocene group) and a potential proton relay (the free phosphine) proximal to a nickel-iron dithiolate.
Collapse
Affiliation(s)
- David Schilter
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan 44919, Republic of Korea
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Goodwin Ave., Urbana, IL 61801, USA
| | - Danielle L. Gray
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Goodwin Ave., Urbana, IL 61801, USA
| | - Amy L. Fuller
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Goodwin Ave., Urbana, IL 61801, USA
| | - Thomas B. Rauchfuss
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Goodwin Ave., Urbana, IL 61801, USA
| |
Collapse
|
30
|
Song LC, Lu Y, Zhu L, Li QL. Dithiolato- and Diselenolato-Bridged Nickel–Iron Biomimetics for the Active Site of [NiFe]Hydrogenases. Organometallics 2017. [DOI: 10.1021/acs.organomet.6b00942] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Li-Cheng Song
- Department
of Chemistry, State Key Laboratory of Elemento-Organic
Chemistry and ‡Collaborative Innovation Center of Chemical Science and Engineering
(Tianjin), Nankai University, Tianjin 300071, People’s Republic of China
| | - Yu Lu
- Department
of Chemistry, State Key Laboratory of Elemento-Organic
Chemistry and ‡Collaborative Innovation Center of Chemical Science and Engineering
(Tianjin), Nankai University, Tianjin 300071, People’s Republic of China
| | - Liang Zhu
- Department
of Chemistry, State Key Laboratory of Elemento-Organic
Chemistry and ‡Collaborative Innovation Center of Chemical Science and Engineering
(Tianjin), Nankai University, Tianjin 300071, People’s Republic of China
| | - Qian-Li Li
- Department
of Chemistry, State Key Laboratory of Elemento-Organic
Chemistry and ‡Collaborative Innovation Center of Chemical Science and Engineering
(Tianjin), Nankai University, Tianjin 300071, People’s Republic of China
| |
Collapse
|
31
|
Song LC, Han XF, Chen W, Li JP, Wang XY. Dithiolato- and halogenido-bridged nickel–iron complexes related to the active site of [NiFe]-H2ases: preparation, structures, and electrocatalytic H2 production. Dalton Trans 2017; 46:10003-10013. [DOI: 10.1039/c7dt02203d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new series of [NiFe]-H2ase mimics (5a,b–7a,b) has been prepared and structurally characterized; particularly, they have been found to be pre-catalysts for H2 production from Cl2CHCO2H under CV conditions.
Collapse
Affiliation(s)
- Li-Cheng Song
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Xiao-Feng Han
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Wei Chen
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Jia-Peng Li
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Xu-Yong Wang
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|
32
|
Song LC, Yang XY, Cao M, Gao XY, Liu BB, Zhu L, Jiang F. Dithiolato-bridged nickel–iron complexes as models for the active site of [NiFe]-hydrogenases. Chem Commun (Camb) 2017; 53:3818-3821. [DOI: 10.1039/c7cc00149e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
While the first NiFe-based μ-hydroxo model [3]+ can be prepared by reaction of a dicarbonyl model [1]2+ with Me3NO·2H2O, the functional modeling of H2 activation catalyzed by the Ni-SIa state gives the t-hydride model [2]+ in high yield.
Collapse
Affiliation(s)
- Li-Cheng Song
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Xi-Yue Yang
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Meng Cao
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Xiu-Yun Gao
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Bei-Bei Liu
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Liang Zhu
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Feng Jiang
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- China
| |
Collapse
|
33
|
Gezer G, Durán Jiménez D, Siegler MA, Bouwman E. Electrocatalytic proton reduction by a model for [NiFeSe] hydrogenases. Dalton Trans 2017; 46:7506-7514. [DOI: 10.1039/c7dt00972k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrocatalytic proton reduction was studied using [NiFe] complexes as models of [NiFeSe] hydrogenases.
Collapse
Affiliation(s)
- Gamze Gezer
- Leiden Institute of Chemistry
- Leiden University
- 2300 RA Leiden
- the Netherlands
| | | | | | - Elisabeth Bouwman
- Leiden Institute of Chemistry
- Leiden University
- 2300 RA Leiden
- the Netherlands
| |
Collapse
|
34
|
Lunsford AM, Goldstein KF, Cohan MA, Denny JA, Bhuvanesh N, Ding S, Hall MB, Darensbourg MY. Comparisons of MN2S2vs. bipyridine as redox-active ligands to manganese and rhenium in (L–L)M′(CO)3Cl complexes. Dalton Trans 2017; 46:5175-5182. [DOI: 10.1039/c7dt00600d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Electronic communication was established for a heterobimetallic complex which upon reduction at one metal center modulates ligand loss and subsequent electron uptake at the second metal.
Collapse
Affiliation(s)
| | | | | | - Jason A. Denny
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | | | - Shengda Ding
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | - Michael B. Hall
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | | |
Collapse
|
35
|
Lin CY, Power PP. Complexes of Ni(i): a “rare” oxidation state of growing importance. Chem Soc Rev 2017; 46:5347-5399. [DOI: 10.1039/c7cs00216e] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The synthesis and diverse structures, reactivity (small molecule activation and catalysis) and magnetic properties of Ni(i) complexes are summarized.
Collapse
Affiliation(s)
- Chun-Yi Lin
- Department of Chemistry
- University of California
- Davis
- USA
| | | |
Collapse
|
36
|
Chu X, Yu X, Raje S, Angamuthu R, Ma J, Tung CH, Wang W. Synthetic [NiFe] models with a fluxional CO ligand. Dalton Trans 2017; 46:13681-13685. [DOI: 10.1039/c7dt02892j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A [NiFe] complex [(dppe)Ni(pdt)FeCp*(CO)]BF4 was characterized as two isomers, and their interconversions were established by thermal process and electrochemistry.
Collapse
Affiliation(s)
- Xiaoxiao Chu
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- PR China
| | - Xin Yu
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- PR China
| | - Sakthi Raje
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur
- India
| | - Raja Angamuthu
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur
- India
| | - Jianping Ma
- College of Chemistry
- Chemical Engineering and Materials Science Shandong Normal University
- Jinan 250014
- PR China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- PR China
| | - Wenguang Wang
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- PR China
| |
Collapse
|
37
|
Gezer G, Verbeek S, Siegler MA, Bouwman E. Nickel–ruthenium-based complexes as biomimetic models of [NiFe] and [NiFeSe] hydrogenases for dihydrogen evolution. Dalton Trans 2017; 46:13590-13596. [PMID: 28952642 DOI: 10.1039/c7dt02631e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Electrocatalytic proton reduction was studied using nickel–ruthenium complexes that were developed as models for [NiFe] and [NiFeSe] hydrogenases.
Collapse
Affiliation(s)
- Gamze Gezer
- Leiden Institute of Chemistry
- Leiden University
- 2300 RA Leiden
- the Netherlands
| | - Sjoerd Verbeek
- Leiden Institute of Chemistry
- Leiden University
- 2300 RA Leiden
- the Netherlands
| | | | - Elisabeth Bouwman
- Leiden Institute of Chemistry
- Leiden University
- 2300 RA Leiden
- the Netherlands
| |
Collapse
|
38
|
Chu X, Xu X, Su H, Raje S, Angamuthu R, Tung CH, Wang W. Heteronuclear assembly of Ni–Cu dithiolato complexes: synthesis, structures, and reactivity studies. Inorg Chem Front 2017. [DOI: 10.1039/c6qi00536e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mild route was discovered to synthesize heterometallic [NiIICuI] complexes featuring square-planar Ni(ii) and distorted tetrahedral Cu(i).
Collapse
Affiliation(s)
- Xiaoxiao Chu
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- PR China
| | - Xin Xu
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- PR China
| | - Hao Su
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- PR China
| | - Sakthi Raje
- Laboratory of Inorganic Synthesis and Bioinspired Catalysis (LISBIC)
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Raja Angamuthu
- Laboratory of Inorganic Synthesis and Bioinspired Catalysis (LISBIC)
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- PR China
| | - Wenguang Wang
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- PR China
| |
Collapse
|
39
|
Ding S, Ghosh P, Lunsford AM, Wang N, Bhuvanesh N, Hall MB, Darensbourg MY. Hemilabile Bridging Thiolates as Proton Shuttles in Bioinspired H2 Production Electrocatalysts. J Am Chem Soc 2016; 138:12920-12927. [DOI: 10.1021/jacs.6b06461] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Shengda Ding
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Pokhraj Ghosh
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Allen M. Lunsford
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Ning Wang
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Michael B. Hall
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Marcetta Y. Darensbourg
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| |
Collapse
|
40
|
Koch F, Berkefeld A, Schubert H, Grauer C. Redox and Acid-Base Properties of Binuclear 4-Terphenyldithiophenolate Complexes of Nickel. Chemistry 2016; 22:14640-7. [DOI: 10.1002/chem.201603060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Felix Koch
- Institut für Anorganische Chemie; Eberhard Karls Universität Tübingen; Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Andreas Berkefeld
- Institut für Anorganische Chemie; Eberhard Karls Universität Tübingen; Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Hartmut Schubert
- Institut für Anorganische Chemie; Eberhard Karls Universität Tübingen; Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Claudius Grauer
- Institut für Anorganische Chemie; Eberhard Karls Universität Tübingen; Auf der Morgenstelle 18 72076 Tübingen Germany
| |
Collapse
|
41
|
Schilter D, Camara JM, Huynh MT, Hammes-Schiffer S, Rauchfuss TB. Hydrogenase Enzymes and Their Synthetic Models: The Role of Metal Hydrides. Chem Rev 2016; 116:8693-749. [PMID: 27353631 PMCID: PMC5026416 DOI: 10.1021/acs.chemrev.6b00180] [Citation(s) in RCA: 409] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrogenase enzymes efficiently process H2 and protons at organometallic FeFe, NiFe, or Fe active sites. Synthetic modeling of the many H2ase states has provided insight into H2ase structure and mechanism, as well as afforded catalysts for the H2 energy vector. Particularly important are hydride-bearing states, with synthetic hydride analogues now known for each hydrogenase class. These hydrides are typically prepared by protonation of low-valent cores. Examples of FeFe and NiFe hydrides derived from H2 have also been prepared. Such chemistry is more developed than mimicry of the redox-inactive monoFe enzyme, although functional models of the latter are now emerging. Advances in physical and theoretical characterization of H2ase enzymes and synthetic models have proven key to the study of hydrides in particular, and will guide modeling efforts toward more robust and active species optimized for practical applications.
Collapse
Affiliation(s)
- David Schilter
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - James M. Camara
- Department of Chemistry, Yeshiva University, 500 West 185th Street, New York, New York 10033, United States
| | - Mioy T. Huynh
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Thomas B. Rauchfuss
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
42
|
Affiliation(s)
- Nathan A. Eberhardt
- Department
of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| | - Hairong Guan
- Department
of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| |
Collapse
|
43
|
Liu XF. Synthetic and structural studies of the diiron toluenedithiolate carbonyl complexes with monophosphine ligands. J COORD CHEM 2016. [DOI: 10.1080/00958972.2016.1210799] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Xu-Feng Liu
- College of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, China
| |
Collapse
|
44
|
Brazzolotto D, Gennari M, Queyriaux N, Simmons TR, Pécaut J, Demeshko S, Meyer F, Orio M, Artero V, Duboc C. Nickel-centred proton reduction catalysis in a model of [NiFe] hydrogenase. Nat Chem 2016; 8:1054-1060. [PMID: 27768098 DOI: 10.1038/nchem.2575] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 06/13/2016] [Indexed: 02/07/2023]
Abstract
Hydrogen production through water splitting is one of the most promising solutions for the storage of renewable energy. [NiFe] hydrogenases are organometallic enzymes containing nickel and iron centres that catalyse hydrogen evolution with performances that rival those of platinum. These enzymes provide inspiration for the design of new molecular catalysts that do not require precious metals. However, all heterodinuclear NiFe models reported so far do not reproduce the Ni-centred reactivity found at the active site of [NiFe] hydrogenases. Here, we report a structural and functional NiFe mimic that displays reactivity at the Ni site. This is shown by the detection of two catalytic intermediates that reproduce structural and electronic features of the Ni-L and Ni-R states of the enzyme during catalytic turnover. Under electrocatalytic conditions, this mimic displays high rates for H2 evolution (second-order rate constant of 2.5 × 104 M-1 s-1; turnover frequency of 250 s-1 at 10 mM H+ concentration) from mildly acidic solutions.
Collapse
Affiliation(s)
- Deborah Brazzolotto
- Univ. Grenoble Alpes, CNRS UMR 5250, DCM, F-38000 Grenoble, France.,Univ. Grenoble Alpes, CNRS UMR 5249, CEA, Laboratoire de Chimie et Biologie des Métaux, F-38000 Grenoble, France
| | - Marcello Gennari
- Univ. Grenoble Alpes, CNRS UMR 5250, DCM, F-38000 Grenoble, France
| | - Nicolas Queyriaux
- Univ. Grenoble Alpes, CNRS UMR 5249, CEA, Laboratoire de Chimie et Biologie des Métaux, F-38000 Grenoble, France
| | - Trevor R Simmons
- Univ. Grenoble Alpes, CNRS UMR 5249, CEA, Laboratoire de Chimie et Biologie des Métaux, F-38000 Grenoble, France
| | - Jacques Pécaut
- Univ. Grenoble Alpes, INAC-LCIB, F-38000 Grenoble, France.,CEA, DRF-INAC-SyMMES, Reconnaissance Ionique et Chimie de Coordination, F-38000 Grenoble, France
| | - Serhiy Demeshko
- Institute of Inorganic Chemistry, Georg-August-University Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Franc Meyer
- Institute of Inorganic Chemistry, Georg-August-University Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany.,International Center for Advanced Studies of Energy Conversion (ICASEC), Georg-August-University, D-37077 Göttingen, Germany
| | - Maylis Orio
- Institut des Sciences Moléculaires de Marseille, Aix Marseille Université, CNRS, Centrale Marseille, ISM2 UMR 7313, 13397, Marseille, France
| | - Vincent Artero
- Univ. Grenoble Alpes, CNRS UMR 5249, CEA, Laboratoire de Chimie et Biologie des Métaux, F-38000 Grenoble, France
| | - Carole Duboc
- Univ. Grenoble Alpes, CNRS UMR 5250, DCM, F-38000 Grenoble, France
| |
Collapse
|
45
|
Ulloa OA, Huynh MT, Richers CP, Bertke JA, Nilges MJ, Hammes-Schiffer S, Rauchfuss TB. Mechanism of H2 Production by Models for the [NiFe]-Hydrogenases: Role of Reduced Hydrides. J Am Chem Soc 2016; 138:9234-45. [PMID: 27328053 DOI: 10.1021/jacs.6b04579] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The intermediacy of a reduced nickel-iron hydride in hydrogen evolution catalyzed by Ni-Fe complexes was verified experimentally and computationally. In addition to catalyzing hydrogen evolution, the highly basic and bulky (dppv)Ni(μ-pdt)Fe(CO)(dppv) ([1](0); dppv = cis-C2H2(PPh2)2) and its hydride derivatives have yielded to detailed characterization in terms of spectroscopy, bonding, and reactivity. The protonation of [1](0) initially produces unsym-[H1](+), which converts by a first-order pathway to sym-[H1](+). These species have C1 (unsym) and Cs (sym) symmetries, respectively, depending on the stereochemistry of the octahedral Fe site. Both experimental and computational studies show that [H1](+) protonates at sulfur. The S = 1/2 hydride [H1](0) was generated by reduction of [H1](+) with Cp*2Co. Density functional theory (DFT) calculations indicate that [H1](0) is best described as a Ni(I)-Fe(II) derivative with significant spin density on Ni and some delocalization on S and Fe. EPR spectroscopy reveals both kinetic and thermodynamic isomers of [H1](0). Whereas [H1](+) does not evolve H2 upon protonation, treatment of [H1](0) with acids gives H2. The redox state of the "remote" metal (Ni) modulates the hydridic character of the Fe(II)-H center. As supported by DFT calculations, H2 evolution proceeds either directly from [H1](0) and external acid or from protonation of the Fe-H bond in [H1](0) to give a labile dihydrogen complex. Stoichiometric tests indicate that protonation-induced hydrogen evolution from [H1](0) initially produces [1](+), which is reduced by [H1](0). Our results reconcile the required reductive activation of a metal hydride and the resistance of metal hydrides toward reduction. This dichotomy is resolved by reduction of the remote (non-hydride) metal of the bimetallic unit.
Collapse
Affiliation(s)
- Olbelina A Ulloa
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Mioy T Huynh
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Casseday P Richers
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Jeffery A Bertke
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Mark J Nilges
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Thomas B Rauchfuss
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|
46
|
Sun P, Yang D, Li Y, Zhang Y, Su L, Wang B, Qu J. Thiolate-Bridged Nickel–Iron and Nickel–Ruthenium Complexes Relevant to the CO-Inhibited State of [NiFe]-Hydrogenase. Organometallics 2016. [DOI: 10.1021/acs.organomet.5b01035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Puhua Sun
- State Key Laboratory of Fine
Chemicals, School of Pharmaceutical Science and Technology, Faculty
of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, People’s Republic of China
| | - Dawei Yang
- State Key Laboratory of Fine
Chemicals, School of Pharmaceutical Science and Technology, Faculty
of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, People’s Republic of China
| | - Ying Li
- State Key Laboratory of Fine
Chemicals, School of Pharmaceutical Science and Technology, Faculty
of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, People’s Republic of China
| | - Yahui Zhang
- State Key Laboratory of Fine
Chemicals, School of Pharmaceutical Science and Technology, Faculty
of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, People’s Republic of China
| | - Linan Su
- State Key Laboratory of Fine
Chemicals, School of Pharmaceutical Science and Technology, Faculty
of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, People’s Republic of China
| | - Baomin Wang
- State Key Laboratory of Fine
Chemicals, School of Pharmaceutical Science and Technology, Faculty
of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, People’s Republic of China
| | - Jingping Qu
- State Key Laboratory of Fine
Chemicals, School of Pharmaceutical Science and Technology, Faculty
of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, People’s Republic of China
| |
Collapse
|
47
|
Chambers GM, Huynh MT, Li Y, Hammes-Schiffer S, Rauchfuss TB, Reijerse E, Lubitz W. Models of the Ni-L and Ni-SIa States of the [NiFe]-Hydrogenase Active Site. Inorg Chem 2016; 55:419-31. [PMID: 26421729 PMCID: PMC4807737 DOI: 10.1021/acs.inorgchem.5b01662] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new class of synthetic models for the active site of [NiFe]-hydrogenases are described. The Ni(I/II)(SCys)2 and Fe(II)(CN)2CO sites are represented with (RC5H4)Ni(I/II) and Fe(II)(diphos)(CO) modules, where diphos = 1,2-C2H4(PPh2)2(dppe) or cis-1,2-C2H2(PPh2)2(dppv). The two bridging thiolate ligands are represented by CH2(CH2S)2(2-) (pdt(2-)), Me2C(CH2S)2(2-) (Me2pdt(2-)), and (C6H5S)2(2-). The reaction of Fe(pdt)(CO)2(dppe) and [(C5H5)3Ni2]BF4 affords [(C5H5)Ni(pdt)Fe(dppe)(CO)]BF4 ([1a]BF4). Monocarbonyl [1a]BF4 features an S = 0 Ni(II)Fe(II) center with five-coordinated iron, as proposed for the Ni-SIa state of the enzyme. One-electron reduction of [1a](+) affords the S = 1/2 derivative [1a](0), which, according to density functional theory (DFT) calculations and electron paramagnetic resonance and Mössbauer spectroscopies, is best described as a Ni(I)Fe(II) compound. The Ni(I)Fe(II) assignment matches that for the Ni-L state in [NiFe]-hydrogenase, unlike recently reported Ni(II)Fe(I)-based models. Compound [1a](0) reacts with strong acids to liberate 0.5 equiv of H2 and regenerate [1a](+), indicating that H2 evolution is catalyzed by [1a](0). DFT calculations were used to investigate the pathway for H2 evolution and revealed that the mechanism can proceed through two isomers of [1a](0) that differ in the stereochemistry of the Fe(dppe)CO center. Calculations suggest that protonation of [1a](0) (both isomers) affords Ni(III)-H-Fe(II) intermediates, which represent mimics of the Ni-C state of the enzyme.
Collapse
|
48
|
Song LC, Lu Y, Cao M, Yang XY. Reactions of dinuclear Ni 2complexes [Ni(RN PyS 4)] 2(RN PyS 4= 2,6-bis(2-mercaptophenylthiomethyl)-4-R-pyridine) with Fe(CO) 3(BDA) (BDA = benzylidene acetone) leading to heterodinuclear NiFe and mononuclear Fe complexes related to the active sites of [NiFe]- and [Fe]-hydrogenases. RSC Adv 2016. [DOI: 10.1039/c6ra07488j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
49
|
Hugenbruch S, Shafaat HS, Krämer T, Delgado-Jaime MU, Weber K, Neese F, Lubitz W, DeBeer S. In search of metal hydrides: an X-ray absorption and emission study of [NiFe] hydrogenase model complexes. Phys Chem Chem Phys 2016; 18:10688-99. [DOI: 10.1039/c5cp07293j] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Insight into the factors that favor metal–hydride interactions in NiFe-hydrogenase models is obtained through X-ray spectroscopic and quantum chemical studies.
Collapse
Affiliation(s)
| | - Hannah S. Shafaat
- Max Planck Institute for Chemical Energy Conversion
- D-45470
- Germany
- The Ohio State University
- Department of Chemistry and Biochemistry
| | - Tobias Krämer
- Max Planck Institute for Chemical Energy Conversion
- D-45470
- Germany
- Heriot-Watt University
- Institute of Chemical Sciences
| | - Mario Ulises Delgado-Jaime
- Max Planck Institute for Chemical Energy Conversion
- D-45470
- Germany
- Inorganic Chemistry and Catalysis Group
- Debye Institute for Nanomaterials Science
| | - Katharina Weber
- Max Planck Institute for Chemical Energy Conversion
- D-45470
- Germany
| | - Frank Neese
- Max Planck Institute for Chemical Energy Conversion
- D-45470
- Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion
- D-45470
- Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion
- D-45470
- Germany
- Cornell University
- Department of Chemistry and Chemical Biology
| |
Collapse
|
50
|
|