1
|
Thorp EB, Ananthakrishnan A, Lantz CW. Decoding immune cell interactions during cardiac allograft vasculopathy: insights derived from bioinformatic strategies. Front Cardiovasc Med 2025; 12:1568528. [PMID: 40342971 PMCID: PMC12058854 DOI: 10.3389/fcvm.2025.1568528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/04/2025] [Indexed: 05/11/2025] Open
Abstract
Chronic allograft vasculopathy (CAV) is a major cause of late graft failure in heart transplant recipients, characterized by progressive intimal thickening and diffuse narrowing of the coronary arteries. Unlike atherosclerosis, CAV exhibits a distinct cellular composition and lesion distribution, yet its pathogenesis remains incompletely understood. A major challenge in CAV research has been the limited application of advanced "-omics" technologies, which have revolutionized the study of other vascular diseases. Recent advancements in single-cell and spatial transcriptomics, proteomics, and metabolomics have begun to uncover the complex immune-endothelial-stromal interactions driving CAV progression. Notably, single-cell RNA sequencing has identified previously unrecognized immune cell populations and signaling pathways implicated in endothelial injury and vascular remodeling after heart transplantation. Despite these breakthroughs, studies applying these technologies to CAV remain sparse, limiting the translation of these insights into clinical practice. This review aims to bridge this gap by summarizing recent findings from single-cell and multi-omic approaches, highlighting key discoveries, and discussing their implications for understanding CAV pathogenesis.
Collapse
Affiliation(s)
- Edward B. Thorp
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Aparnaa Ananthakrishnan
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Connor W. Lantz
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
2
|
Guo Y, Zhu M, Yu Z, Li Q, Chen Y, Ci L, Sun R, Shen R. Generation and characterization of a tamoxifen-inducible lineage tracing tool Cd2-P2A-CreERT2 knock-in mice. Front Immunol 2025; 16:1482070. [PMID: 40129982 PMCID: PMC11931051 DOI: 10.3389/fimmu.2025.1482070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 02/17/2025] [Indexed: 03/26/2025] Open
Abstract
Introduction The new targeted gene editing technologies, such as the CRISPR/Cas system, enable researchers to insert or delete genes at targeted loci efficiently. The Cre-loxp recombination system is widely used to activate or inactivate genes with high spatial and temporal specificity. Methods Using the CRISPR/Cas9 system, we inserted the CreERT2 transgene expression cassette into the Cd2 gene locus to generate conditional Cre-driver line Cd2-CreERT2 knock-in mice, which drove the expression of CreERT2 by the endogenous Cd2 promoter. By mating the Cd2-CreERT2 strain with a Rosa26-LSL-tdTomato reporter mouse strain which contains a tdTomato expression fragment blocked with a loxP-flanked STOP cassette (LSL) driven by a CAG promoter, a Cd2-CreERT2;Rosa26-LSL-tdTomato reporter strain was obtained to evaluate the expression pattern of CD2 in different cell types. Results After treatment with tamoxifen, the Cd2-CreERT2 knock-in mice were induced to perform efficient recombination at the loxP site following CreERT2 activation and cause the expression of tdTomato fluorescence. The tdTomato and CD2 were expressed in the T cells of peripheral blood, spleen and mesenteric lymph nodes, whereas detected in a low proportion in the B cells. While about 20% of cells labeled with tamoxifen-induced tdTomato were CD2+ monocytes in peripheral blood, 10% of dendritic cells were tdTomato+/CD2+ cells. Tamoxifen-independent expression of tdTomato occurred in approximately 3% of CD2+ macrophages, but in negligible (~0.5%) in CD2+ granulocytes. Discussion This work supplied a new transgenic mouse as a valuable tool for lineage tracing in CD2-expressing cells, for conditional mutant studies of immune modulatory effects in a time-dependent manner, and analysis of the potential therapeutic effect of CD2-targeting biologics.
Collapse
Affiliation(s)
- Yang Guo
- Model Organism R&D Department, Shanghai Laboratory Animal Research Center, Shanghai, China
| | - Mengyan Zhu
- Model Organism R&D Department, Shanghai Laboratory Animal Research Center, Shanghai, China
| | - Zhilan Yu
- Model Organism R&D Department, Shanghai Laboratory Animal Research Center, Shanghai, China
| | - Qing Li
- Shanghai Engineering Research Center for Model Organizations, Shanghai Model Organisms Center, Inc., Shanghai, China
| | - Yanjuan Chen
- Model Organism R&D Department, Shanghai Laboratory Animal Research Center, Shanghai, China
| | - Lei Ci
- Shanghai Engineering Research Center for Model Organizations, Shanghai Model Organisms Center, Inc., Shanghai, China
| | - Ruilin Sun
- Shanghai Engineering Research Center for Model Organizations, Shanghai Model Organisms Center, Inc., Shanghai, China
| | - Ruling Shen
- Model Organism R&D Department, Shanghai Laboratory Animal Research Center, Shanghai, China
| |
Collapse
|
3
|
Stagaard R, Jensen A, Schauer T, Bay ML, Tavanez AR, Wielsøe S, Peletier M, Strøbech JE, Oria VO, Zornhagen KW, Albrechtsen R, Christensen JF, Erler JT. Exercise boost after surgery improves survival in model of metastatic breast cancer. Front Immunol 2025; 16:1533798. [PMID: 40066446 PMCID: PMC11891249 DOI: 10.3389/fimmu.2025.1533798] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 01/31/2025] [Indexed: 05/13/2025] Open
Abstract
Introduction Despite advances in breast cancer diagnosis and treatment of the primary tumor, metastatic breast cancer tumors remain largely incurable, and their growth is responsible for the majority of breast cancer-related deaths. There is therefore a critical need to identify ways to reduce metastatic tumor burden and increase breast cancer patient survival. While surgery and pharmacological treatments are the cornerstones of breast cancer intervention, epidemiological data suggests that physical activity can lower the risk of breast cancer development, improve adjuvant treatment tolerance, reduce the risk of disease recurrence and lower breast cancer-related death. Methods In this preclinical study, we set out to examine the impact of exercise on metastatic development in triple negative breast cancer (TNBC), using different 4T1 metastasis models, voluntary wheel running and surgical interventions. Tumors were analyzed for hypoxia and immune cell infiltration. Results Voluntary wheel running was observed to significantly increase metastasis-free survival, doubling the median survival time. However, these improvements were only observed when a boost in physical exercise occurred following surgery. To investigate this, we performed mock surgeries and confirmed surgical stress was needed to enable the positive effects of the boost in exercise on reducing metastatic tumor burden in mice with either spontaneous metastasis or experimentally-induced metastasis. These changes occurred in the absence of alterations in tumor growth, hypoxia and immune cell infiltration. Discussion Taken together, our results suggest that having a boost of physical activity following surgery may be beneficial to delay breast cancer metastatic development.
Collapse
Affiliation(s)
- Rikke Stagaard
- Biotech Research and Innovation Center (BRIC), University of Copenhagen (UCPH), Copenhagen, Denmark
- The Centre for Physical Activity Research (CFAS), Rigshospitalet, Copenhagen, Denmark
| | - Adina Jensen
- Biotech Research and Innovation Center (BRIC), University of Copenhagen (UCPH), Copenhagen, Denmark
| | - Tim Schauer
- The Centre for Physical Activity Research (CFAS), Rigshospitalet, Copenhagen, Denmark
| | - Marie Lund Bay
- The Centre for Physical Activity Research (CFAS), Rigshospitalet, Copenhagen, Denmark
| | - Ana Rita Tavanez
- The Centre for Physical Activity Research (CFAS), Rigshospitalet, Copenhagen, Denmark
| | - Sabrina Wielsøe
- The Centre for Physical Activity Research (CFAS), Rigshospitalet, Copenhagen, Denmark
| | - Merel Peletier
- The Centre for Physical Activity Research (CFAS), Rigshospitalet, Copenhagen, Denmark
| | - Jan Erik Strøbech
- Biotech Research and Innovation Center (BRIC), University of Copenhagen (UCPH), Copenhagen, Denmark
| | - Victor Oginga Oria
- Biotech Research and Innovation Center (BRIC), University of Copenhagen (UCPH), Copenhagen, Denmark
| | | | - Reidar Albrechtsen
- Biotech Research and Innovation Center (BRIC), University of Copenhagen (UCPH), Copenhagen, Denmark
| | | | - Janine Terra Erler
- Biotech Research and Innovation Center (BRIC), University of Copenhagen (UCPH), Copenhagen, Denmark
| |
Collapse
|
4
|
Coënon L, Geindreau M, Ghiringhelli F, Villalba M, Bruchard M. Natural Killer cells at the frontline in the fight against cancer. Cell Death Dis 2024; 15:614. [PMID: 39179536 PMCID: PMC11343846 DOI: 10.1038/s41419-024-06976-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024]
Abstract
Natural Killer (NK) cells are innate immune cells that play a pivotal role as first line defenders in the anti-tumor response. To prevent tumor development, NK cells are searching for abnormal cells within the body and appear to be key players in immunosurveillance. Upon recognition of abnormal cells, NK cells will become activated to destroy them. In order to fulfill their anti-tumoral function, they rely on the secretion of lytic granules, expression of death receptors and production of cytokines. Additionally, NK cells interact with other cells in the tumor microenvironment. In this review, we will first focus on NK cells' activation and cytotoxicity mechanisms as well as NK cells behavior during serial killing. Lastly, we will review NK cells' crosstalk with the other immune cells present in the tumor microenvironment.
Collapse
Affiliation(s)
- Loïs Coënon
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Mannon Geindreau
- Equipe TIRECs, Labellisée Ligue Contre le Cancer, Centre de Recherche INSERM CTM-UMR1231, Dijon, France
- University of Bourgogne Franche-Comté, Dijon, France
| | - François Ghiringhelli
- Equipe TIRECs, Labellisée Ligue Contre le Cancer, Centre de Recherche INSERM CTM-UMR1231, Dijon, France
- University of Bourgogne Franche-Comté, Dijon, France
- Platform of Transfer in Biological Oncology, Georges-François Leclerc Cancer Center, Dijon, France
| | - Martin Villalba
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
- Institut du Cancer Avignon-Provence Sainte Catherine, Avignon, France
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France
| | - Mélanie Bruchard
- Equipe TIRECs, Labellisée Ligue Contre le Cancer, Centre de Recherche INSERM CTM-UMR1231, Dijon, France.
- University of Bourgogne Franche-Comté, Dijon, France.
- Platform of Transfer in Biological Oncology, Georges-François Leclerc Cancer Center, Dijon, France.
| |
Collapse
|
5
|
Szentkereszty M, Ladányi A, Gálffy G, Tóvári J, Losonczy G. Density of tumor-infiltrating NK and Treg cells is associated with 5 years progression-free and overall survival in resected lung adenocarcinoma. Lung Cancer 2024; 192:107824. [PMID: 38761665 DOI: 10.1016/j.lungcan.2024.107824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Surgical resection of pulmonary adenocarcinoma is considered to be curative but progression-free survival (PFS) has remained highly variable. Antitumor immune response may be important, however, the prognostic significance of tumor-infiltrating natural killer (NK) and regulatory T (Treg) lymphocytes is uncertain. Resected pulmonary adenocarcinoma tissues (n = 115) were studied by immunohistochemical detection of NKp46 and FoxP3 positivity to identify NK and Treg cells, respectively. Association of cell densities with clinicopathological features and progression-free survival (PFS) as well as overall survival (OS) were analyzed with a follow-up time of 60 months. Both types of immune cells were accumulated predominantly in tumor stroma. NK cell density showed association with female gender, non-smoking and KRAS wild-type status. According to Kaplan-Meier analysis, PFS and OS proved to be longer in patients with high NK or Treg cell densities (p = 0.0293 and p = 0.0375 for PFS, p = 0.0310 and p = 0.0448 for OS, respectively). Evaluating the prognostic effect of the combination of NK and Treg cell density values revealed that PFS and OS were significantly longer in NKhigh/Treghigh cases compared to the other groups combined (p = 0.0223 and p = 0.0325, respectively). Multivariate Cox regression analysis indicated that high NK cell density was independent predictor of longer PFS while high NK and high Treg cell densities both proved significant predictors of longer OS. The NKhigh/Treghigh combination also proved to be an independent prognostic factor for both PFS and OS. In conclusion, NK and Treg cells can be components of the innate and adaptive immune response at action against progression of pulmonary adenocarcinoma.
Collapse
Affiliation(s)
- Márton Szentkereszty
- Department of Pulmonology, Semmelweis University Clinical Center, Budapest, Hungary; Tumor Pathology Center, National Institute of Oncology, Budapest, Hungary
| | - Andrea Ladányi
- Tumor Pathology Center, National Institute of Oncology, Budapest, Hungary; National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Gabriella Gálffy
- Department of Pulmonology, Semmelweis University Clinical Center, Budapest, Hungary; Pulmonology Hospital of Törökbálint, Törökbálint, Hungary
| | - József Tóvári
- National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary; Department of Experimental Pharmacology, National Institute of Oncology, Budapest, Hungary
| | - György Losonczy
- Department of Pulmonology, Semmelweis University Clinical Center, Budapest, Hungary.
| |
Collapse
|
6
|
Hagan CE, Snyder AG, Headley M, Oberst A. Apoptotic cells promote circulating tumor cell survival and metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595217. [PMID: 38826267 PMCID: PMC11142129 DOI: 10.1101/2024.05.21.595217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
During tumor progression and especially following cytotoxic therapy, cell death of both tumor and stromal cells is widespread. Despite clinical observations that high levels of apoptotic cells correlate with poorer patient outcomes, the physiological effects of dying cells on tumor progression remain incompletely understood. Here, we report that circulating apoptotic cells robustly enhance tumor cell metastasis to the lungs. Using intravenous metastasis models, we observed that the presence of apoptotic cells, but not cells dying by other mechanisms, supports circulating tumor cell (CTC) survival following arrest in the lung vasculature. Apoptotic cells promote CTC survival by recruiting platelets to the forming metastatic niche. Apoptotic cells externalize the phospholipid phosphatidylserine to the outer leaflet of the plasma membrane, which we found increased the activity of the coagulation initiator Tissue Factor, thereby triggering the formation of platelet clots that protect proximal CTCs. Inhibiting the ability of apoptotic cells to induce coagulation by knocking out Tissue Factor, blocking phosphatidylserine, or administering the anticoagulant heparin abrogated the pro-metastatic effect of apoptotic cells. This work demonstrates a previously unappreciated role for apoptotic cells in facilitating metastasis by establishing CTC-supportive emboli, and suggests points of intervention that may reduce the pro-metastatic effect of apoptotic cells. GRAPHICAL ABSTRACT
Collapse
|
7
|
Dean I, Lee CYC, Tuong ZK, Li Z, Tibbitt CA, Willis C, Gaspal F, Kennedy BC, Matei-Rascu V, Fiancette R, Nordenvall C, Lindforss U, Baker SM, Stockmann C, Sexl V, Hammond SA, Dovedi SJ, Mjösberg J, Hepworth MR, Carlesso G, Clatworthy MR, Withers DR. Rapid functional impairment of natural killer cells following tumor entry limits anti-tumor immunity. Nat Commun 2024; 15:683. [PMID: 38267402 PMCID: PMC10808449 DOI: 10.1038/s41467-024-44789-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/02/2024] [Indexed: 01/26/2024] Open
Abstract
Immune cell dysfunction within the tumor microenvironment (TME) undermines the control of cancer progression. Established tumors contain phenotypically distinct, tumor-specific natural killer (NK) cells; however, the temporal dynamics, mechanistic underpinning and functional significance of the NK cell compartment remains incompletely understood. Here, we use photo-labeling, combined with longitudinal transcriptomic and cellular analyses, to interrogate the fate of intratumoral NK cells. We reveal that NK cells rapidly lose effector functions and adopt a distinct phenotypic state with features associated with tissue residency. NK cell depletion from established tumors did not alter tumor growth, indicating that intratumoral NK cells cease to actively contribute to anti-tumor responses. IL-15 administration prevented loss of function and improved tumor control, generating intratumoral NK cells with both tissue-residency characteristics and enhanced effector function. Collectively, our data reveals the fate of NK cells after recruitment into tumors and provides insight into how their function may be revived.
Collapse
Affiliation(s)
- Isaac Dean
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Colin Y C Lee
- Department of Medicine, Molecular Immunity Unit, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
- Cellular Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Zewen K Tuong
- Department of Medicine, Molecular Immunity Unit, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
- Cellular Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Zhi Li
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Christopher A Tibbitt
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Claire Willis
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Fabrina Gaspal
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Bethany C Kennedy
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Veronika Matei-Rascu
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Rémi Fiancette
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Caroline Nordenvall
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Department of Pelvic Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Ulrik Lindforss
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Department of Pelvic Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Syed Murtuza Baker
- Division of Informatics, Imaging & Data Science, Faculty of Biology, Medicine and Health, the University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | | | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | | | | | - Jenny Mjösberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Clinical Lung and Allergy Research, Medical unit for Lung and Allergy Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Matthew R Hepworth
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, the University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | | | - Menna R Clatworthy
- Department of Medicine, Molecular Immunity Unit, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK.
- Cellular Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| | - David R Withers
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
8
|
Nakamura T, Sasaki S, Sato Y, Harashima H. Cancer Immunotherapy with Lipid Nanoparticles Loaded with a Stimulator of Interferon Genes Agonist against Renal Tumor Lung Metastasis. Pharmaceutics 2023; 16:31. [PMID: 38258042 PMCID: PMC10819482 DOI: 10.3390/pharmaceutics16010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Metastatic renal cell carcinoma (RCC) has a poor prognosis, and the major organ of metastasis is the lung. Immunotherapy with immune checkpoint inhibitors (ICIs) is the first-line therapy, but the response rates are low. Thus, the development of a more effective immunotherapy against metastatic RCC would be highly desirable. We previously demonstrated how a stimulator of an interferon gene (STING) agonist-loaded lipid nanoparticles (STING-LNPs) significantly activates natural killer (NK) cells and induces an antitumor effect against cases of melanoma lung metastasis that have shown ICI resistance. In this study, we evaluated the potential of using STING-LNPs in the treatment of lung metastatic RCC (Renca). An intravenous injection of STING-LNPs drastically decreased the amount of Renca tumor colonies. In contrast, monotherapies using ICIs showed no antitumor effect, and even a combination of ICI and STING-LNP therapies failed to enhance the antitumor effects. The main effector cells would be NK cells, and the activation of NK cells by the STING-LNPs may avoid the increased expression of immune checkpoint molecules. These findings provide useful insights into the development of an effective immunotherapy against metastatic RCC.
Collapse
Affiliation(s)
- Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | | | | | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
9
|
Lepretre F, Gras D, Chanez P, Duez C. Natural killer cells in the lung: potential role in asthma and virus-induced exacerbation? Eur Respir Rev 2023; 32:230036. [PMID: 37437915 DOI: 10.1183/16000617.0036-2023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/23/2023] [Indexed: 07/14/2023] Open
Abstract
Asthma is a chronic inflammatory airway disorder whose pathophysiological and immunological mechanisms are not completely understood. Asthma exacerbations are mostly driven by respiratory viral infections and characterised by worsening of symptoms. Despite current therapies, asthma exacerbations can still be life-threatening. Natural killer (NK) cells are innate lymphoid cells well known for their antiviral activity and are present in the lung as circulating and resident cells. However, their functions in asthma and its exacerbations are still unclear. In this review, we will address NK cell activation and functions, which are particularly relevant for asthma and virus-induced asthma exacerbations. Then, the role of NK cells in the lungs at homeostasis in healthy individuals will be described, as well as their functions during pulmonary viral infections, with an emphasis on those associated with asthma exacerbations. Finally, we will discuss the involvement of NK cells in asthma and virus-induced exacerbations and examine the effect of asthma treatments on NK cells.
Collapse
Affiliation(s)
- Florian Lepretre
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
| | - Delphine Gras
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
| | - Pascal Chanez
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
- APHM, Hôpital Nord, Clinique des Bronches, de l'allergie et du sommeil, Marseille, France
| | - Catherine Duez
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
| |
Collapse
|
10
|
Wang Y, Xu Y, Liu C, Yuan C, Zhang Y. Identification of disulfidptosis-related subgroups and prognostic signatures in lung adenocarcinoma using machine learning and experimental validation. Front Immunol 2023; 14:1233260. [PMID: 37799714 PMCID: PMC10548142 DOI: 10.3389/fimmu.2023.1233260] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/04/2023] [Indexed: 10/07/2023] Open
Abstract
Background Disulfidptosis is a newly identified variant of cell death characterized by disulfide accumulation, which is independent of ATP depletion. Accordingly, the latent influence of disulfidptosis on the prognosis of lung adenocarcinoma (LUAD) patients and the progression of tumors remains poorly understood. Methods We conducted a multifaceted analysis of the transcriptional and genetic modifications in disulfidptosis regulators (DRs) specific to LUAD, followed by an evaluation of their expression configurations to define DR clusters. Harnessing the differentially expressed genes (DEGs) identified from these clusters, we formulated an optimal predictive model by amalgamating 10 distinct machine learning algorithms across 101 unique combinations to compute the disulfidptosis score (DS). Patients were subsequently stratified into high and low DS cohorts based on median DS values. We then performed an exhaustive comparison between these cohorts, focusing on somatic mutations, clinical attributes, tumor microenvironment, and treatment responsiveness. Finally, we empirically validated the biological implications of a critical gene, KYNU, through assays in LUAD cell lines. Results We identified two DR clusters and there were great differences in overall survival (OS) and tumor microenvironment. We selected the "Least Absolute Shrinkage and Selection Operator (LASSO) + Random Survival Forest (RFS)" algorithm to develop a DS based on the average C-index across different cohorts. Our model effectively stratified LUAD patients into high- and low-DS subgroups, with this latter demonstrating superior OS, a reduced mutational landscape, enhanced immune status, and increased sensitivity to immunotherapy. Notably, the predictive accuracy of DS outperformed the published LUAD signature and clinical features. Finally, we validated the DS expression using clinical samples and found that inhibiting KYNU suppressed LUAD cells proliferation, invasiveness, and migration in vitro. Conclusions The DR-based scoring system that we developed enabled accurate prognostic stratification of LUAD patients and provides important insights into the molecular mechanisms and treatment strategies for LUAD.
Collapse
Affiliation(s)
- Yuzhi Wang
- Department of Laboratory Medicine, Deyang People’s Hospital, Deyang, Sichuan, China
| | - Yunfei Xu
- Department of Laboratory Medicine, Chengdu Women’s and Children’s Central Hospital, Chengdu, Sichuan, China
| | - Chunyang Liu
- Department of Ultrasound, The First People’s Hospital of Yibin, Yibin, Sichuan, China
| | - Chengliang Yuan
- Department of Laboratory Medicine, Deyang People’s Hospital, Deyang, Sichuan, China
| | - Yi Zhang
- Department of Blood Transfusion, Deyang People’s Hospital, Deyang, Sichuan, China
| |
Collapse
|
11
|
Lee SC, Shen CY, Wang WH, Lee YP, Liang KW, Chou YH, Tyan YS, Hwang JJ. Synergistic Effect of Ginsenoside Rh2 Combines with Ionizing Radiation on CT26/ luc Colon Carcinoma Cells and Tumor-Bearing Animal Model. Pharmaceuticals (Basel) 2023; 16:1188. [PMID: 37764996 PMCID: PMC10535731 DOI: 10.3390/ph16091188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/01/2023] [Accepted: 08/11/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND The local tumor control rate of colon cancer by radiotherapy is unsatisfactory due to recurrence and radioresistance. Ginsenoside Rh2 (Rh2), a panoxadiol saponin, possesses various antitumor effects. METHODS CT26/luc murine colon carcinoma cells and a CT26/luc tumor-bearing animal model were used to investigate the therapeutic efficacy of Rh2 combined with ionizing radiation and the underlying mechanisms. RESULTS Rh2 caused cell cycle arrest at the G1 phase in CT26/luc cells; however, when combined with ionizing radiation, the cells were arrested at the G2/M phase. Rh2 was found to suppress the activity of NF-κB induced by radiation by inhibiting the MAPK pathway, consequently affecting the expression of effector proteins. In an in vivo study, the combination treatment significantly increased tumor growth delay time and overall survival. Furthermore, the combination treatment significantly reduced NF-κB and NF-κB-related effector proteins, along with PD-1 receptor expression. Additionally, Rh2 administration led to increased levels of interleukin-12, -18, and interferon-γ in the mice's sera. Importantly, biochemical analysis revealed no toxicities associated with Rh2 alone or combined with radiation. CONCLUSIONS The combination of Rh2 with radiation may have potential as an alternative to improve the therapeutic efficacy of colorectal cancer.
Collapse
Affiliation(s)
- Shan-Chih Lee
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung 40201, Taiwan; (S.-C.L.); (Y.-H.C.)
| | - Chao-Yu Shen
- Department of Medical Imaging, Chung Shan Medical University Hospital, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (C.-Y.S.); (K.-W.L.)
| | - Wei-Hsun Wang
- Department of Orthopedic Surgery, Changhua Christian Hospital, Changhua 50044, Taiwan;
| | - Yen-Po Lee
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei Branch, Hsinchu City 30010, Taiwan;
| | - Keng-Wei Liang
- Department of Medical Imaging, Chung Shan Medical University Hospital, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (C.-Y.S.); (K.-W.L.)
| | - Ying-Hsiang Chou
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung 40201, Taiwan; (S.-C.L.); (Y.-H.C.)
- Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Yeu-Sheng Tyan
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung 40201, Taiwan; (S.-C.L.); (Y.-H.C.)
- Department of Medical Imaging, Chung Shan Medical University Hospital, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (C.-Y.S.); (K.-W.L.)
| | - Jeng-Jong Hwang
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung 40201, Taiwan; (S.-C.L.); (Y.-H.C.)
- Department of Medical Imaging, Chung Shan Medical University Hospital, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (C.-Y.S.); (K.-W.L.)
| |
Collapse
|
12
|
Abstract
Tumour cells migrate very early from primary sites to distant sites, and yet metastases often take years to manifest themselves clinically or never even surface within a patient's lifetime. This pause in cancer progression emphasizes the existence of barriers that constrain the growth of disseminated tumour cells (DTCs) at distant sites. Although the nature of these barriers to metastasis might include DTC-intrinsic traits, recent studies have established that the local microenvironment also controls the formation of metastases. In this Perspective, I discuss how site-specific differences of the immune system might be a major selective growth restraint on DTCs, and argue that harnessing tissue immunity will be essential for the next stage in immunotherapy development that reliably prevents the establishment of metastases.
Collapse
|
13
|
Ye W, Li M, Luo K. Therapies Targeting Immune Cells in Tumor Microenvironment for Non-Small Cell Lung Cancer. Pharmaceutics 2023; 15:1788. [PMID: 37513975 PMCID: PMC10384189 DOI: 10.3390/pharmaceutics15071788] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/02/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
The tumor microenvironment (TME) plays critical roles in immune modulation and tumor malignancies in the process of cancer development. Immune cells constitute a significant component of the TME and influence the migration and metastasis of tumor cells. Recently, a number of therapeutic approaches targeting immune cells have proven promising and have already been used to treat different types of cancer. In particular, PD-1 and PD-L1 inhibitors have been used in the first-line setting in non-small cell lung cancer (NSCLC) with PD-L1 expression ≥1%, as approved by the FDA. In this review, we provide an introduction to the immune cells in the TME and their efficacies, and then we discuss current immunotherapies in NSCLC and scientific research progress in this field.
Collapse
Affiliation(s)
- Wei Ye
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510091, China
| | - Meiye Li
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510091, China
| | - Kewang Luo
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510091, China
- People's Hospital of Longhua, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen 518109, China
| |
Collapse
|
14
|
Seok J, Cho SD, Seo SJ, Park SH. Roles of Virtual Memory T Cells in Diseases. Immune Netw 2023; 23:e11. [PMID: 36911806 PMCID: PMC9995991 DOI: 10.4110/in.2023.23.e11] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 03/07/2023] Open
Abstract
Memory T cells that mediate fast and effective protection against reinfections are usually generated upon recognition on foreign Ags. However, a "memory-like" T-cell population, termed virtual memory T (TVM) cells that acquire a memory phenotype in the absence of foreign Ag, has been reported. Although, like innate cells, TVM cells reportedly play a role in first-line defense to bacterial or viral infections, their protective or pathological roles in immune-related diseases are largely unknown. In this review, we discuss the current understanding of TVM cells, focusing on their distinct characteristics, immunological properties, and roles in various immune-related diseases, such as infections and cancers.
Collapse
Affiliation(s)
- Joon Seok
- Department of Dermatology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Sung-Dong Cho
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Seong Jun Seo
- Department of Dermatology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
- The Center for Epidemic Preparedness, KAIST Institute, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
15
|
Deng X, Terunuma H. Harnessing NK Cells to Control Metastasis. Vaccines (Basel) 2022; 10:vaccines10122018. [PMID: 36560427 PMCID: PMC9781233 DOI: 10.3390/vaccines10122018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
In recent years, tumor immunotherapy has produced remarkable results in tumor treatment. Nevertheless, its effects are severely limited in patients with low or absent pre-existing T cell immunity. Accordingly, metastasis remains the major cause of tumor-associated death. On the other hand, natural killer (NK) cells have the unique ability to recognize and rapidly act against tumor cells and surveil tumor cell dissemination. The role of NK cells in metastasis prevention is undisputable as an increase in the number of these cells mostly leads to a favorable prognosis. Hence, it is reasonable to consider that successful metastasis involves evasion of NK-cell-mediated immunosurveillance. Therefore, harnessing NK cells to control metastasis is promising. Circulating tumor cells (CTCs) are the seeds for distant metastasis, and the number of CTCs detected in the blood of patients with tumor is associated with a worse prognosis, whereas NK cells can eliminate highly motile CTCs especially in the blood. Here, we review the role of NK cells during metastasis, particularly the specific interactions of NK cells with CTCs, which may provide essential clues on how to harness the power of NK cells against tumor metastasis. As a result, a new way to prevent or treat metastatic tumor may be developed.
Collapse
Affiliation(s)
- Xuewen Deng
- Biotherapy Institute of Japan Inc., 2-4-8 Edagawa, Koto-ku, Tokyo 135-0051, Japan
- Correspondence: ; Tel.: +81-3-5632-6080; Fax: +81-3-5632-6083
| | - Hiroshi Terunuma
- Biotherapy Institute of Japan Inc., 2-4-8 Edagawa, Koto-ku, Tokyo 135-0051, Japan
- N2 Clinic Yotsuya, 5F 2-6 Samon-cho, Shinjuku-ku, Tokyo 160-0017, Japan
| |
Collapse
|
16
|
Jerigova V, Zeman M, Okuliarova M. Circadian Disruption and Consequences on Innate Immunity and Inflammatory Response. Int J Mol Sci 2022; 23:ijms232213722. [PMID: 36430199 PMCID: PMC9690954 DOI: 10.3390/ijms232213722] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Circadian rhythms control almost all aspects of physiology and behavior, allowing temporal synchrony of these processes between each other, as well as with the external environment. In the immune system, daily rhythms of leukocyte functions can determine the strength of the immune response, thereby regulating the efficiency of defense mechanisms to cope with infections or tissue injury. The natural light/dark cycle is the prominent synchronizing agent perceived by the circadian clock, but this role of light is highly compromised by irregular working schedules and unintentional exposure to artificial light at night (ALAN). The primary concern is disrupted circadian control of important physiological processes, underlying potential links to adverse health effects. Here, we first discuss the immune consequences of genetic circadian disruption induced by mutation or deletion of specific clock genes. Next, we evaluate experimental research into the effects of disruptive light/dark regimes, particularly light-phase shifts, dim ALAN, and constant light on the innate immune mechanisms under steady state and acute inflammation, and in the pathogenesis of common lifestyle diseases. We suggest that a better understanding of the mechanisms by which circadian disruption influences immune status can be of importance in the search for strategies to minimize the negative consequences of chronodisruption on health.
Collapse
|
17
|
Torregrosa C, Chorin F, Beltran EEM, Neuzillet C, Cardot-Ruffino V. Physical Activity as the Best Supportive Care in Cancer: The Clinician's and the Researcher's Perspectives. Cancers (Basel) 2022; 14:5402. [PMID: 36358820 PMCID: PMC9655932 DOI: 10.3390/cancers14215402] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 08/11/2023] Open
Abstract
Multidisciplinary supportive care, integrating the dimensions of exercise alongside oncological treatments, is now regarded as a new paradigm to improve patient survival and quality of life. Its impact is important on the factors that control tumor development, such as the immune system, inflammation, tissue perfusion, hypoxia, insulin resistance, metabolism, glucocorticoid levels, and cachexia. An increasing amount of research has been published in the last years on the effects of physical activity within the framework of oncology, marking the appearance of a new medical field, commonly known as "exercise oncology". This emerging research field is trying to determine the biological mechanisms by which, aerobic exercise affects the incidence of cancer, the progression and/or the appearance of metastases. We propose an overview of the current state of the art physical exercise interventions in the management of cancer patients, including a pragmatic perspective with tips for routine practice. We then develop the emerging mechanistic views about physical exercise and their potential clinical applications. Moving toward a more personalized, integrated, patient-centered, and multidisciplinary management, by trying to understand the different interactions between the cancer and the host, as well as the impact of the disease and the treatments on the different organs, this seems to be the most promising method to improve the care of cancer patients.
Collapse
Affiliation(s)
- Cécile Torregrosa
- Oncologie Digestive, Département d’Oncologie Médicale Institut Curie, Université Versailles Saint-Quentin—Université Paris Saclay, 35, rue Dailly, 92210 Saint-Cloud, France
- Département de Chirurgie Digestive et Oncologique, Hôpital Universitaire Ambroise Paré, Assistance Publique-Hôpitaux de Paris, 9 avenue Charles de Gaulle, 92100 Boulogne Billancourt, France
| | - Frédéric Chorin
- Laboratoire Motricité Humaine, Expertise, Sport, Santé (LAMHESS), HEALTHY Graduate School, Université Côte d’Azur, 06205 Nice, France
- Clinique Gériatrique du Cerveau et du Mouvement, Centre Hospitalier Universitaire de Nice, Université Côte d’Azur, 06205 Nice, France
| | - Eva Ester Molina Beltran
- Oncologie Digestive, Département d’Oncologie Médicale Institut Curie, Université Versailles Saint-Quentin—Université Paris Saclay, 35, rue Dailly, 92210 Saint-Cloud, France
| | - Cindy Neuzillet
- Oncologie Digestive, Département d’Oncologie Médicale Institut Curie, Université Versailles Saint-Quentin—Université Paris Saclay, 35, rue Dailly, 92210 Saint-Cloud, France
- GERCOR, 151 rue du Faubourg Saint-Antoine, 75011 Paris, France
| | - Victoire Cardot-Ruffino
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
18
|
Li Y, Lv H, Liang D, Jiang T, Zhao W, Zhou F, Jiao C, Zhou Y, Yu H. Effects of Low-dose Splenic Irradiation on T lymphocyte Immune Function. HEALTH PHYSICS 2022; 123:00004032-990000000-00041. [PMID: 36223337 DOI: 10.1097/hp.0000000000001615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
ABSTRACT Relevant studies have confirmed that the stimulation of spleen function caused by low-dose splenic irradiation can have positive effects on tumors and other diseases. This study aimed to determine radiation-induced changes in spleen index, lymphocyte subsets, spleen cell apoptosis, and pathological features of the spleen in mice. The mouse model was established by irradiating the spleen at different doses. The mice were divided into the following groups: blank control, low-dose, low-dose fractionated irradiation, and challenge dose irradiation. The mice were sacrificed under humanitarian conditions, and spleen tissue and peripheral blood were collected. The spleen index was calculated, and flow cytometry was used to analyze spleen T lymphocyte subsets and spleen apoptosis. The pathological changes in the spleen were determined by hematoxylin and eosin (H&E) staining. The spleen index of mice in the low-dose fractionated irradiation group was significantly increased compared with that in the blank control group. The spleen indexes of the low-dose irradiation and low-dose fractionated irradiation groups were much higher than that of the challenge dose irradiation group. Compared with the blank control group, the percentage of CD3+ and CD4+ T lymphocytes in the peripheral blood and spleen tissues in the low-dose irradiation and low-dose fractionated irradiation groups was significantly increased, whereas that from the challenge dose irradiation group was obviously decreased. CD8+ T lymphocytes in the peripheral blood and spleen tissues in the low-dose irradiation, low-dose fractionated irradiation, and challenge dose irradiation groups were significantly lower than those in the blank control group. The apoptosis rate of the spleen in the challenge dose irradiation group was significantly higher than that in the blank control, low-dose irradiation, and low-dose fractionated irradiation groups. H&E staining analysis of the spleen showed pathological changes in the different irradiation groups compared with the blank control group. Low-dose irradiation and low-dose fractionated irradiation can change the T lymphocyte subsets in the peripheral blood and spleen of mice, which can promote immune excitation and improve immune effects.
Collapse
Affiliation(s)
- Yanzi Li
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Hongying Lv
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Donghai Liang
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Tao Jiang
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Wei Zhao
- Department of Radiation Oncology, Huangdao District Hospital of Traditional Chinese Medicine, Qingdao 266000, China
| | - Fei Zhou
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Chenchen Jiao
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Yuyuan Zhou
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Hongsheng Yu
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| |
Collapse
|
19
|
Wu J, He B, Miao M, Han X, Dai H, Dou H, Li Y, Zhang X, Wang G. Enhancing Natural Killer Cell-Mediated Cancer Immunotherapy by the Biological Macromolecule Nocardia rubra Cell-Wall Skeleton. Pathol Oncol Res 2022; 28:1610555. [PMID: 36110249 PMCID: PMC9468226 DOI: 10.3389/pore.2022.1610555] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022]
Abstract
The biological macromolecule Nocardia rubra cell-wall skeleton (Nr-CWS) has well-established immune-stimulating and anti-tumor activities. However, the role of Nr-CWS on natural killer (NK) cells remains unclear. Here, we explore the function and related mechanisms of Nr-CWS on NK cells. Using a tumor-bearing model, we show that Nr-CWS has slightly effect on solid tumor. In addition, using a tumor metastasis model, we show that Nr-CWS suppresses the lung metastasis induced by B16F10 melanoma cells in mice, which indicates that Nr-CWS may up-regulate the function of NK cells. Further investigation demonstrated that Nr-CWS can increase the expression of TRAIL and FasL on spleen NK cells from Nr-CWS treated B16F10 tumor metastasis mice. The spleen index and serum levels of TNF-α, IFN-γ, and IL-2 in B16F10 tumor metastasis mice treated with Nr-CWS were significantly increased. In vitro, the studies using purified or sorted NK cells revealed that Nr-CWS increases the expression of CD69, TRAIL, and FasL, decreases the expression of CD27, and enhances NK cell cytotoxicity. The intracellular expression of IFN-γ, TNF-α, perforin (prf), granzyme-B (GrzB), and secreted TNF-α, IFN-γ, IL-6 of the cultured NK cells were significantly increased after treatment with Nr-CWS. Overall, the findings indicate that Nr-CWS could suppress the lung metastasis induced by B16F10 melanoma cells, which may be exerted through its effect on NK cells by promoting NK cell terminal differentiation (CD27lowCD11bhigh), and up-regulating the production of cytokines and cytotoxic molecules.
Collapse
Affiliation(s)
- Jie Wu
- Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Baojun He
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Miao Miao
- Department of Immunology, School of Basic Medical Science, Jinzhou Medical University, Jinzhou, China
| | - Xibin Han
- Laboratory Animal Center, Jinzhou Medical University, Jinzhou, China
| | - Hongyan Dai
- Department of Outpatient PICC, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Heng Dou
- Greatest Biopharma Limited Company, Benxi, China
| | - Yanqiu Li
- Greatest Biopharma Limited Company, Benxi, China
| | - Xiaoqing Zhang
- Teaching Center for Basic Medical Experiment, China Medical University, Shenyang, China
- *Correspondence: Xiaoqing Zhang, ; Guangchuan Wang,
| | - Guangchuan Wang
- Department of Immunology, School of Basic Medical Science, Jinzhou Medical University, Jinzhou, China
- *Correspondence: Xiaoqing Zhang, ; Guangchuan Wang,
| |
Collapse
|
20
|
Park SJ, Yoon HJ, Gu EY, Lee BS, Kim Y, Jung J, Kim J, Moon KS. A general toxicity and biodistribution study of human natural killer cells by single or repeated intravenous dose in severe combined immune deficient mice. Toxicol Res 2022; 38:545-555. [PMID: 36277368 PMCID: PMC9532477 DOI: 10.1007/s43188-022-00138-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/10/2022] [Accepted: 05/11/2022] [Indexed: 11/28/2022] Open
Abstract
AbstractNatural killer (NK) cells are a part of the innate immune system and represent the first line of defense against infections and tumors. NK cells can eliminate tumor cells without major histocompatibility restriction and are independent of the expression of tumor-associated antigens. Therefore, they are considered an emerging tool for cancer immunotherapy. However, the general toxicity and biodistribution of NK cells after transplantation remain to be understood. This study was conducted to evaluate the general toxicity and biodistribution of human NK cells after single or repeated intravenous dosing in severely combined immunodeficient (SCID) mice. There were no test item-related toxicological changes in single and repeated administration groups. The no observed adverse effect level of human NK cells was 2 × 107 cells/head for both male and female SCID mice. Results from the biodistribution study showed that human NK cells were mainly distributed in the lungs, and a small number of the cells were detected in the liver, heart, spleen, and kidney of SCID mice, in both the single and repeated dose groups. Additionally, human NK cells were completely eliminated from all organs of the mice in the single dose group on day 7, while the cells persisted in mice in the repeated dose group until day 64. In conclusion, transplantation of human NK cells in SCID mice had no toxic effects. The cells were mainly distributed in the lungs and completely disappeared from the body over time after single or repeated intravenous administration.
Collapse
Affiliation(s)
- Sang-Jin Park
- Department of Toxicological Evaluation and Research, Korea Institute of Toxicology, 141 Gaejeongro, Yuseong gu, Daejeon, Republic of Korea
| | - Hae-Jin Yoon
- Department of Toxicological Evaluation and Research, Korea Institute of Toxicology, 141 Gaejeongro, Yuseong gu, Daejeon, Republic of Korea
| | - Eun-Young Gu
- Department of Toxicological Evaluation and Research, Korea Institute of Toxicology, 141 Gaejeongro, Yuseong gu, Daejeon, Republic of Korea
| | - Byoung-Seok Lee
- Department of Toxicological Evaluation and Research, Korea Institute of Toxicology, 141 Gaejeongro, Yuseong gu, Daejeon, Republic of Korea
| | - Yongman Kim
- NKMAX Co., Ltd, SNUH Healthcare Innovation Park, Seongnam, Gyeonggi-do Republic of Korea
| | - Jaeseob Jung
- NKMAX Co., Ltd, SNUH Healthcare Innovation Park, Seongnam, Gyeonggi-do Republic of Korea
| | - Jinmoon Kim
- NKMAX Co., Ltd, SNUH Healthcare Innovation Park, Seongnam, Gyeonggi-do Republic of Korea
| | - Kyoung-Sik Moon
- Department of Toxicological Evaluation and Research, Korea Institute of Toxicology, 141 Gaejeongro, Yuseong gu, Daejeon, Republic of Korea
| |
Collapse
|
21
|
Cortés-Kaplan S, Kurdieh R, Hasim MS, Kaczmarek S, Taha Z, Maznyi G, McComb S, Lee SH, Diallo JS, Ardolino M. A New Functional Screening Platform Identifies Colistin Sulfate as an Enhancer of Natural Killer Cell Cytotoxicity. Cancers (Basel) 2022; 14:cancers14122832. [PMID: 35740500 PMCID: PMC9221353 DOI: 10.3390/cancers14122832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/07/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary The use of small compounds in cancer immunotherapy has been limited so far. Her we screen for drugs that enhanced the ability of immune cells to kill tumor cells and identified the molecule Colistin Sulfate as a booster of immune activity. Abstract Due to their crucial role in tumor immunity, NK cells have quickly became a prime target for immunotherapies, with the adoptive transfer of NK cells and the use of NK cell engagers quickly moving to the clinical stage. On the other hand, only a few studies have focused on small molecule drugs capable of unleashing NK cells against cancer. In this context, repurposing small molecules is an attractive strategy to identify new immunotherapies from already approved drugs. Here, we developed a new platform to screen small molecule compounds based on a high-throughput luciferase-release cytotoxicity assay. We tested 1200 FDA approved drugs from the Prestwick Chemical Library, to identify compounds that increase NK cells’ cytotoxic potential. We found that the antibiotic colistin sulfate increased the cytotoxicity of human NK cells towards cancer cells. The effect of colistin was short lived and was not observed when NK cells were pretreated with the drug, showing how NK cell activity was potentiated only when the compound was present at the time of recognition of cancer cells. Further studies are needed to uncover the mechanism of action and the pre-clinical efficacy of colistin sulfate in mouse cancer models.
Collapse
Affiliation(s)
- Serena Cortés-Kaplan
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (S.C.-K.); (R.K.); (M.S.H.); (Z.T.); (G.M.); (J.-S.D.)
- CI3, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (S.K.); (S.M.); (S.-H.L.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Reem Kurdieh
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (S.C.-K.); (R.K.); (M.S.H.); (Z.T.); (G.M.); (J.-S.D.)
- CI3, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (S.K.); (S.M.); (S.-H.L.)
| | - Mohamed S. Hasim
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (S.C.-K.); (R.K.); (M.S.H.); (Z.T.); (G.M.); (J.-S.D.)
- CI3, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (S.K.); (S.M.); (S.-H.L.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Shelby Kaczmarek
- CI3, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (S.K.); (S.M.); (S.-H.L.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Zaid Taha
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (S.C.-K.); (R.K.); (M.S.H.); (Z.T.); (G.M.); (J.-S.D.)
- CI3, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (S.K.); (S.M.); (S.-H.L.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Glib Maznyi
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (S.C.-K.); (R.K.); (M.S.H.); (Z.T.); (G.M.); (J.-S.D.)
- CI3, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (S.K.); (S.M.); (S.-H.L.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Scott McComb
- CI3, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (S.K.); (S.M.); (S.-H.L.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON K1A 0R6, Canada
| | - Seung-Hwan Lee
- CI3, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (S.K.); (S.M.); (S.-H.L.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Jean-Simon Diallo
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (S.C.-K.); (R.K.); (M.S.H.); (Z.T.); (G.M.); (J.-S.D.)
- CI3, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (S.K.); (S.M.); (S.-H.L.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Michele Ardolino
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (S.C.-K.); (R.K.); (M.S.H.); (Z.T.); (G.M.); (J.-S.D.)
- CI3, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (S.K.); (S.M.); (S.-H.L.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Correspondence: ; Tel.: +1-613-737-8899 (ext. 77257)
| |
Collapse
|
22
|
Coënon L, Villalba M. From CD16a Biology to Antibody-Dependent Cell-Mediated Cytotoxicity Improvement. Front Immunol 2022; 13:913215. [PMID: 35720368 PMCID: PMC9203678 DOI: 10.3389/fimmu.2022.913215] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Antibody-dependent cell-mediated cytotoxicity (ADCC) is a potent cytotoxic mechanism that is mainly mediated in humans by natural killer (NK) cells. ADCC mediates the clinical benefit of several widely used cytolytic monoclonal antibodies (mAbs), and increasing its efficacy would improve cancer immunotherapy. CD16a is a receptor for the Fc portion of IgGs and is responsible to trigger NK cell-mediated ADCC. The knowledge of the mechanism of action of CD16a gave rise to several strategies to improve ADCC, by working on either the mAbs or the NK cell. In this review, we give an overview of CD16a biology and describe the latest strategies employed to improve antibody-dependent NK cell cytotoxicity.
Collapse
Affiliation(s)
- Loïs Coënon
- Institute for Regenerative Medicine and Biotherapy (IRMB), Univ Montpellier, Institut national de la santé et de la recherche médicale (INSERM), Montpellier, France
- Institut du Cancer Avignon-Provence Sainte Catherine, Avignon, France
- *Correspondence: Loïs Coënon,
| | - Martin Villalba
- Institut du Cancer Avignon-Provence Sainte Catherine, Avignon, France
- Institute for Regenerative Medicine and Biotherapy, Univ Montpellier, Institut national de la santé et de la recherche médicale (INSERM), Centre national de la recherche scientifique (CNRS), Centre hospitalier universitaire (CHU) Montpellier, Montpellier, France
| |
Collapse
|
23
|
Nour J, Moregola A, Molgora M, Mantovani A, Uboldi P, Catapano A, Garlanda C, Bonacina F, Norata GD. Interleukin 1 receptor 8 deficiency does not impact atherosclerosis. Thromb Haemost 2022; 122:1833-1836. [PMID: 35436796 DOI: 10.1055/a-1827-7205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
No abstract.
Collapse
Affiliation(s)
- Jasmine Nour
- Department of Excellence of Pharmacological and Biomolecular sciences, University of Milan, Milano, Italy
| | - Annalisa Moregola
- Department of Excellence of Pharmacological and Biomolecular sciences, University of Milan, Milano, Italy
| | | | - Alberto Mantovani
- IRCCS Humanitas Clinical and Research Center, Milan, Italy.,William Harvey Research Institute, Queen Mary University of London, London, United Kingdom of Great Britain and Northern Ireland.,Humanitas University, Milan, Italy
| | | | - Alberico Catapano
- IRCCS MultiMedica, Sesto San Giovanni, Italy.,University of Milan, Milan, Italy
| | - Cecilia Garlanda
- IRCCS Humanitas Clinical and Research Center, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Fabrizia Bonacina
- Pharmacological and Biomolecular sciences, Università degli Studi di Milano, Milano, Italy
| | - Giuseppe Danilo Norata
- Department of Pharmacological Sciences, University of Milan, Milan, Italy.,Centro SISA per lo Studio dell'Aterosclerosi, Hospital Bassini, Cinisello Balsamo, Italy
| |
Collapse
|
24
|
Reina-Ortiz C, Giraldos D, Azaceta G, Palomera L, Marzo I, Naval J, Villalba M, Anel A. Harnessing the Potential of NK Cell-Based Immunotherapies against Multiple Myeloma. Cells 2022; 11:cells11030392. [PMID: 35159200 PMCID: PMC8834301 DOI: 10.3390/cells11030392] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 12/14/2022] Open
Abstract
Natural killer (NK) cell-based therapies have emerged as promising anticancer treatments due to their potency as cytolytic effectors and synergy with concurrent treatments. Multiple myeloma (MM) is an aggressive B-cell malignancy that, despite development of novel therapeutic agents, remains incurable with a high rate of relapse. In MM, the inhospitable tumor microenvironment prevents host NK cells from exerting their cytolytic function. The development of NK cell immunotherapy works to overcome this altered immune landscape and can be classified in two major groups based on the origin of the cell: autologous or allogeneic. In this review, we compare the treatments in each group, such as autologous chimeric antigen receptor (CAR) NKs and allogeneic off-the-shelf NK cell infusions, and their combinatorial effect with existing MM therapies including monoclonal antibodies and proteasome inhibitors. We also discuss their placement in clinical treatment regimens based on the immune profile of each patient. Through this examination, we would like to discover precisely when each NK cell-based treatment will produce the maximum benefit to the MM patient.
Collapse
Affiliation(s)
- Chantal Reina-Ortiz
- Apoptosis, Immunity & Cancer Group, Department Biochemistry and Molecular and Cell Biology, Faculty of Sciences, University of Zaragoza and Aragón Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (D.G.); (I.M.); (J.N.)
- Correspondence: (C.R.-O.); (A.A.)
| | - David Giraldos
- Apoptosis, Immunity & Cancer Group, Department Biochemistry and Molecular and Cell Biology, Faculty of Sciences, University of Zaragoza and Aragón Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (D.G.); (I.M.); (J.N.)
| | - Gemma Azaceta
- Hematology Department, Lozano Blesa Hospital, 50009 Zaragoza, Spain; (G.A.); (L.P.)
| | - Luis Palomera
- Hematology Department, Lozano Blesa Hospital, 50009 Zaragoza, Spain; (G.A.); (L.P.)
| | - Isabel Marzo
- Apoptosis, Immunity & Cancer Group, Department Biochemistry and Molecular and Cell Biology, Faculty of Sciences, University of Zaragoza and Aragón Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (D.G.); (I.M.); (J.N.)
| | - Javier Naval
- Apoptosis, Immunity & Cancer Group, Department Biochemistry and Molecular and Cell Biology, Faculty of Sciences, University of Zaragoza and Aragón Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (D.G.); (I.M.); (J.N.)
| | - Martín Villalba
- Institut of Regenerative Medicine and Biotherapy, University of Montpellier, INSERM, CNRS, University Hospital Center Montpellier, 34000 Montpellier, France;
- Institut Sainte-Catherine, 84918 Avignon, France
| | - Alberto Anel
- Apoptosis, Immunity & Cancer Group, Department Biochemistry and Molecular and Cell Biology, Faculty of Sciences, University of Zaragoza and Aragón Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (D.G.); (I.M.); (J.N.)
- Correspondence: (C.R.-O.); (A.A.)
| |
Collapse
|
25
|
Lutz CT, Livas L, Presnell SR, Sexton M, Wang P. Gender Differences in Urothelial Bladder Cancer: Effects of Natural Killer Lymphocyte Immunity. J Clin Med 2021; 10:5163. [PMID: 34768683 PMCID: PMC8584838 DOI: 10.3390/jcm10215163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/13/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023] Open
Abstract
Men are more likely to develop cancer than women. In fact, male predominance is one of the most consistent cancer epidemiology findings. Additionally, men have a poorer prognosis and an increased risk of secondary malignancies compared to women. These differences have been investigated in order to better understand cancer and to better treat both men and women. In this review, we discuss factors that may cause this gender difference, focusing on urothelial bladder cancer (UBC) pathogenesis. We consider physiological factors that may cause higher male cancer rates, including differences in X chromosome gene expression. We discuss how androgens may promote bladder cancer development directly by stimulating bladder urothelium and indirectly by suppressing immunity. We are particularly interested in the role of natural killer (NK) cells in anti-cancer immunity.
Collapse
Affiliation(s)
- Charles T. Lutz
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40536, USA; (L.L.); (S.R.P.); (M.S.)
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA;
| | - Lydia Livas
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40536, USA; (L.L.); (S.R.P.); (M.S.)
| | - Steven R. Presnell
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40536, USA; (L.L.); (S.R.P.); (M.S.)
| | - Morgan Sexton
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40536, USA; (L.L.); (S.R.P.); (M.S.)
| | - Peng Wang
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA;
- Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
26
|
Zhao W, Liu Y, Liu K, Tu F, Zhang C, Wang H. Synovial fibroblasts regulate the cytotoxicity and osteoclastogenic activity of synovial natural killer cells through the RANKL‐RANK axis in osteoarthritis. Scand J Immunol 2021. [DOI: 10.1111/sji.13069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wenbin Zhao
- Department of Orthopedic Surgery Wuhan No. 1 Hospital Qiaokou District, Wuhan China
| | - Yuanfeng Liu
- Department of Orthopedic Surgery Wuhan No. 1 Hospital Qiaokou District, Wuhan China
| | - Kang Liu
- Department of Orthopedic Surgery Wuhan No. 1 Hospital Qiaokou District, Wuhan China
| | - Feng Tu
- Department of Orthopedic Surgery Wuhan No. 1 Hospital Qiaokou District, Wuhan China
| | - Chen Zhang
- Department of Orthopedic Surgery Wuhan No. 1 Hospital Qiaokou District, Wuhan China
| | - Hao Wang
- Department of Orthopedic Surgery Wuhan No. 1 Hospital Qiaokou District, Wuhan China
| |
Collapse
|
27
|
Mishra HK, Dixon KJ, Pore N, Felices M, Miller JS, Walcheck B. Activation of ADAM17 by IL-15 Limits Human NK Cell Proliferation. Front Immunol 2021; 12:711621. [PMID: 34367174 PMCID: PMC8339566 DOI: 10.3389/fimmu.2021.711621] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/07/2021] [Indexed: 01/19/2023] Open
Abstract
Natural killer (NK) cells are innate cytotoxic lymphocytes that can recognize assorted determinants on tumor cells and rapidly kill these cells. Due to their anti-tumor effector functions and potential for allogeneic use, various NK cell platforms are being examined for adoptive cell therapies. However, their limited in vivo persistence is a current challenge. Cytokine-mediated activation of these cells is under extensive investigation and interleukin-15 (IL-15) is a particular focus since it drives their activation and proliferation. IL-15 efficacy though is limited in part by its induction of regulatory checkpoints. A disintegrin and metalloproteinase-17 (ADAM17) is broadly expressed by leukocytes, including NK cells, and it plays a central role in cleaving cell surface receptors, a process that regulates cell activation and cell-cell interactions. We report that ADAM17 blockade with a monoclonal antibody markedly increased human NK cell proliferation by IL-15 both in vitro and in a xenograft mouse model. Blocking ADAM17 resulted in a significant increase in surface levels of the homing receptor CD62L on proliferating NK cells. We show that NK cell proliferation in vivo by IL-15 and the augmentation of this process upon blocking ADAM17 are dependent on CD62L. Hence, our findings reveal for the first time that ADAM17 activation in NK cells by IL-15 limits their proliferation, presumably functioning as a feedback system, and that its substrate CD62L has a key role in this process in vivo. ADAM17 blockade in combination with IL-15 may provide a new approach to improve NK cell persistence and function in cancer patients.
Collapse
Affiliation(s)
- Hemant K Mishra
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Kate J Dixon
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Nabendu Pore
- Early Oncology Clinical Science, AstraZeneca, Gaithersburg, MD, United States
| | - Martin Felices
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | - Jeffrey S Miller
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | - Bruce Walcheck
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
28
|
Hamilton G, Plangger A. The Impact of NK Cell-Based Therapeutics for the Treatment of Lung Cancer for Biologics: Targets and Therapy. Biologics 2021; 15:265-277. [PMID: 34262255 PMCID: PMC8273903 DOI: 10.2147/btt.s290305] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022]
Abstract
Lung cancer has a dismal prognosis and novel targeted therapies leave still room for major improvements and better outcomes. Immunotherapy targeting immune checkpoint (IC) proteins, either as single agents or in combination with chemotherapy, is active but responders constitute only approximately 10-15% of non-small cell lung cancer (NSCLC) patients. Other effector immune cells such as CAR-T cells or NK cells may help to overcome the limitations of the IC inhibitor therapies for lung cancer. NK cells can kill tumor cells without previous priming and are present in the circulatory system and lymphoid organs. Tissue-residing NK cells differ from peripheral effector cells and, in case of the lung, comprise CD56bright CD16-negative populations showing high cytokine release but low cytotoxicity in contrast to the circulating CD56dim CD16-positive NK cells exhibiting high cytotoxic efficacy. This local attenuation of NK cell killing potency seems due to a specific stage of NK differentiation, immunosuppressive factors as well as presence of myeloid-derived suppressor cells (MDSCs) and regulatory T cells (TREGs). Improved NK cell-based immunotherapies involve IL-2-stimulated effector cells, NK cells expanded with the help of cytokines, permanent NK cell lines, induced pluripotent stem cell-derived NK cells and NK cells armed with chimeric antigen receptors. Compared to CAR T cell therapy, NK cells administration is devoid of graft-versus-host disease (GvHD) and cytokine-release syndrome. Although NK cells are clearly active against lung cancer cells, the low-cytotoxicity differentiation state in lung tumors, the presence of immunosuppressive leucocyte populations, limited infiltration and adverse conditions of the microenvironment need to be overcome. This goal may be achieved in the future using large numbers of activated and armed NK cells as provided by novel methods in NK cell isolation, expansion and stimulation of cytotoxic activity, including combinations with monoclonal antibodies in antibody-dependent cytotoxicity (ADCC). This review discusses the basic characteristics of NK cells and the potential of NK cell preparations in cancer therapy.
Collapse
Affiliation(s)
- Gerhard Hamilton
- Department of Vascular Surgery, Medical University of Vienna, Vienna, Austria
| | - Adelina Plangger
- Department of Vascular Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
29
|
Marofi F, Abdul-Rasheed OF, Rahman HS, Budi HS, Jalil AT, Yumashev AV, Hassanzadeh A, Yazdanifar M, Motavalli R, Chartrand MS, Ahmadi M, Cid-Arreguid A, Jarahian M. CAR-NK cell in cancer immunotherapy; A promising frontier. Cancer Sci 2021; 112:3427-3436. [PMID: 34050690 PMCID: PMC8409419 DOI: 10.1111/cas.14993] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/12/2021] [Accepted: 05/23/2021] [Indexed: 02/06/2023] Open
Abstract
Chimeric antigen receptors (CARs) have a unique facet of synthetic biology and offer a paradigm shift in personalized medicine as they can use and redirect the patient's immune cells to attack cancer cells. CAR‐natural killer (NK) cells combine the targeted specificity of antigens with the subsequent intracellular signaling ability of the receptors to increase their anti‐cancer functions. Importantly, CAR‐NK cells can be utilized as universal cell‐based therapy without requiring human leukocyte antigen (HLA) matching or earlier contact with tumor‐associated antigens (TAAs). Indeed, CAR‐NK cells can be adapted to recognize various antigens, hold higher proliferation capacity, and in vivo persistence, show improved infiltration into the tumors, and the ability to overcome the resistant tumor microenvironment leading to sustained cytotoxicity against tumors. Accumulating evidence from recent in vivo studies rendering CAR‐NK cell anti‐cancer competencies renewed the attention in the context of cancer immunotherapy, as these redirected effector cells can be used in the development of the “off‐the‐shelf” anti‐cancer immunotherapeutic products. In the current review, we focus on the therapeutic efficacy of CAR‐NK cell therapies for treating various human malignancies, including hematological malignancies and solid tumors, and will discuss the recent findings in this regard, with a special focus on animal studies.
Collapse
Affiliation(s)
- Faroogh Marofi
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Omar F Abdul-Rasheed
- Department of Chemistry and Biochemistry, College of Medicine, Al-Nahrain University, Baghdad, Iraq
| | - Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Suleimanyah, Suleimanyah, Iraq
| | - Hendrik Setia Budi
- Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | | | - Ali Hassanzadeh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Yazdanifar
- Department of Pediatrics, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Roza Motavalli
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Angel Cid-Arreguid
- Targeted Tumor Vaccines Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit (G401), Heidelberg, Germany
| |
Collapse
|
30
|
Murakami K, Kamimura D, Hasebe R, Uchida M, Abe N, Yamamoto R, Jiang JJ, Hidaka Y, Nakanishi Y, Fujita S, Toda Y, Toda N, Tanaka H, Akira S, Tanaka Y, Murakami M. Rhodobacter azotoformans LPS (RAP99-LPS) Is a TLR4 Agonist That Inhibits Lung Metastasis and Enhances TLR3-Mediated Chemokine Expression. Front Immunol 2021; 12:675909. [PMID: 34113349 PMCID: PMC8185171 DOI: 10.3389/fimmu.2021.675909] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/21/2021] [Indexed: 01/14/2023] Open
Abstract
The lipopolysaccharides (LPSs) of Rhodobacter are reported to be TLR4 antagonists. Accordingly, the extract of Rhodobacter azotoformans (RAP99) is used as a health supplement for humans and animals in Japan to regulate immune responses in vivo. We previously analyzed the LPS structure of RAP99 (RAP99-LPS) and found it is different from that of E. coli-LPS but similar to lipid A from Rhodobacter sphaeroides (RSLA), a known antagonist of TLR4, with both having three C14 fatty acyl groups, two C10 fatty acyl groups, and two phosphates. Here we show that RAP99-LPS has an immune stimulatory activity and acts as a TLR4 agonist. Pretreatment of RAP99-LPS suppressed E. coli-LPS-mediated weight loss, suggesting it is an antagonist against E. coli-LPS like other LPS isolated from Rhodobacter. However, injections of RAP99-LPS caused splenomegaly and increased immune cell numbers in C57BL/6 mice but not in C3H/HeJ mice, suggesting that RAP99-LPS stimulates immune cells via TLR4. Consistently, RAP99-LPS suppressed the lung metastasis of B16F1 tumor cells and enhanced the expression of TLR3-mediated chemokines. These results suggest that RAP99-LPS is a TLR4 agonist that enhances the activation status of the immune system to promote anti-viral and anti-tumor activity in vivo.
Collapse
Affiliation(s)
- Kaoru Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Daisuke Kamimura
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Rie Hasebe
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Mona Uchida
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Nobuya Abe
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Reiji Yamamoto
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Jing-Jing Jiang
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, China
| | | | | | | | | | | | - Hiroki Tanaka
- Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yuki Tanaka
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaaki Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
31
|
Horowitz NB, Mohammad I, Moreno-Nieves UY, Koliesnik I, Tran Q, Sunwoo JB. Humanized Mouse Models for the Advancement of Innate Lymphoid Cell-Based Cancer Immunotherapies. Front Immunol 2021; 12:648580. [PMID: 33968039 PMCID: PMC8100438 DOI: 10.3389/fimmu.2021.648580] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Innate lymphoid cells (ILCs) are a branch of the immune system that consists of diverse circulating and tissue-resident cells, which carry out functions including homeostasis and antitumor immunity. The development and behavior of human natural killer (NK) cells and other ILCs in the context of cancer is still incompletely understood. Since NK cells and Group 1 and 2 ILCs are known to be important for mediating antitumor immune responses, a clearer understanding of these processes is critical for improving cancer treatments and understanding tumor immunology as a whole. Unfortunately, there are some major differences in ILC differentiation and effector function pathways between humans and mice. To this end, mice bearing patient-derived xenografts or human cell line-derived tumors alongside human genes or human immune cells represent an excellent tool for studying these pathways in vivo. Recent advancements in humanized mice enable unparalleled insights into complex tumor-ILC interactions. In this review, we discuss ILC behavior in the context of cancer, the humanized mouse models that are most commonly employed in cancer research and their optimization for studying ILCs, current approaches to manipulating human ILCs for antitumor activity, and the relative utility of various mouse models for the development and assessment of these ILC-related immunotherapies.
Collapse
Affiliation(s)
- Nina B Horowitz
- Department of Otolaryngology-Head and Neck Surgery, Stanford Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States.,Department of Bioengineering, Stanford University School of Medicine and School of Engineering, Stanford, CA, United States
| | - Imran Mohammad
- Department of Otolaryngology-Head and Neck Surgery, Stanford Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Uriel Y Moreno-Nieves
- Department of Otolaryngology-Head and Neck Surgery, Stanford Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Ievgen Koliesnik
- Department of Otolaryngology-Head and Neck Surgery, Stanford Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Quan Tran
- Department of Otolaryngology-Head and Neck Surgery, Stanford Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - John B Sunwoo
- Department of Otolaryngology-Head and Neck Surgery, Stanford Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
32
|
Carnevalli LS, Ghadially H, Barry ST. Therapeutic Approaches Targeting the Natural Killer-Myeloid Cell Axis in the Tumor Microenvironment. Front Immunol 2021; 12:633685. [PMID: 33953710 PMCID: PMC8092119 DOI: 10.3389/fimmu.2021.633685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/29/2021] [Indexed: 01/21/2023] Open
Abstract
Immunotherapy has transformed cancer treatment by promoting durable clinical responses in a proportion of patients; however, treatment still fails in many patients. Innate immune cells play a key role in the response to immunotherapy. Crosstalk between innate and adaptive immune systems drives T-cell activation but also limits immunotherapy response, as myeloid cells are commonly associated with resistance. Hence, innate cells have both negative and positive effects within the tumor microenvironment (TME), and despite investment in early clinical trials targeting innate cells, they have seen limited success. Suppressive myeloid cells facilitate metastasis and immunotherapy resistance through TME remodeling and inhibition of adaptive immune cells. Natural killer (NK) cells, in contrast, secrete inflammatory cytokines and directly kill transformed cells, playing a key immunosurveillance role in early tumor development. Myeloid and NK cells show reciprocal crosstalk, influencing myeloid cell functional status or antigen presentation and NK effector function, respectively. Crosstalk between myeloid cells and the NK immune network in the TME is especially important in the context of therapeutic intervention. Here we discuss how myeloid and NK cell interactions shape anti-tumor responses by influencing an immunosuppressive TME and how this may influence outcomes of treatment strategies involving drugs that target myeloid and NK cells.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Immunological/adverse effects
- Antineoplastic Agents, Immunological/therapeutic use
- Cell Communication/drug effects
- Humans
- Immune Checkpoint Inhibitors/adverse effects
- Immune Checkpoint Inhibitors/therapeutic use
- Immunity, Cellular/drug effects
- Immunity, Humoral/drug effects
- Immunotherapy
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Myeloid-Derived Suppressor Cells/drug effects
- Myeloid-Derived Suppressor Cells/immunology
- Myeloid-Derived Suppressor Cells/metabolism
- Neoplasms/immunology
- Neoplasms/metabolism
- Neoplasms/pathology
- Neoplasms/therapy
- Tumor Escape/drug effects
- Tumor Microenvironment/drug effects
Collapse
Affiliation(s)
| | | | - Simon T. Barry
- Early Oncology, Research and Development, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
33
|
Human NK Cells in Autologous Hematopoietic Stem Cell Transplantation for Cancer Treatment. Cancers (Basel) 2021; 13:cancers13071589. [PMID: 33808201 PMCID: PMC8037172 DOI: 10.3390/cancers13071589] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Natural killer (NK) cells are key elements of the innate immune system that have the ability to kill transformed (tumor and virus-infected) cells without prior sensitization. Hematopoietic stem cell transplantation (HSCT) is a medical procedure used in the treatment of a variety of cancers. The early reconstitution of NK cells after HSCT and their functions support the therapeutic potential of these cells in allogenic HSCT. However, the role of NK cells in autologous HSCT is less clear. In this review, we have summarized general aspects of NK cell biology. In addition, we have also reviewed factors that affect autologous HSCT outcome, with particular attention to the role played by NK cells. Abstract Natural killer (NK) cells are phenotypically and functionally diverse lymphocytes with the ability to recognize and kill malignant cells without prior sensitization, and therefore, they have a relevant role in tumor immunosurveillance. NK cells constitute the main lymphocyte subset in peripheral blood in the first week after hematopoietic stem cell transplantation (HSCT). Although the role that NK cells play in allogenic HSCT settings has been documented for years, their significance and beneficial effects associated with the outcome after autologous HSCT are less recognized. In this review, we have summarized fundamental aspects of NK cell biology, such as, NK cell subset diversity, their effector functions, and differentiation. Moreover, we have reviewed the factors that affect autologous HSCT outcome, with particular attention to the role played by NK cells and their receptor repertoire in this regard.
Collapse
|
34
|
De Pasquale C, Campana S, Bonaccorsi I, Carrega P, Ferlazzo G. ILC in chronic inflammation, cancer and targeting with biologicals. Mol Aspects Med 2021; 80:100963. [PMID: 33726947 DOI: 10.1016/j.mam.2021.100963] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/11/2020] [Accepted: 03/04/2021] [Indexed: 12/14/2022]
Abstract
Since their discovery, Innate Lymphoid Cells (ILC) have emerged as important effector cells, serving multiple roles in maintaining tissue homeostasis and responding to tissue insults. As such, dysregulations of their function and distribution have been observed in a variety of immune-mediated diseases, suggesting a specific role for ILC in the pathophysiology of several disorders including chronic inflammation and cancer. Here, we provide an updated view on ILC biology dissecting their pathological or protective contribution in chronic inflammatory diseases such as multiple sclerosis, inflammatory bowel diseases, psoriasis, rheumatoid arthritis, asthma and COPD, atherosclerosis, also exploring ILC role in tumor surveillance and progression. Throughout the review, we will also highlight how the potential dual role of these cells for protective or pathogenic immunity in many inflammatory diseases makes them interesting targets for the development of novel therapeutic strategies, particularly promising.
Collapse
Affiliation(s)
- Claudia De Pasquale
- Laboratory of Immunology and Biotherapy, Department of Human Pathology, University of Messina, Messina, Italy
| | - Stefania Campana
- Laboratory of Immunology and Biotherapy, Department of Human Pathology, University of Messina, Messina, Italy
| | - Irene Bonaccorsi
- Laboratory of Immunology and Biotherapy, Department of Human Pathology, University of Messina, Messina, Italy; Cell Factory Center and Division of Clinical Pathology, University Hospital Policlinico G.Martino, Messina, Italy
| | - Paolo Carrega
- Laboratory of Immunology and Biotherapy, Department of Human Pathology, University of Messina, Messina, Italy
| | - Guido Ferlazzo
- Laboratory of Immunology and Biotherapy, Department of Human Pathology, University of Messina, Messina, Italy; Cell Factory Center and Division of Clinical Pathology, University Hospital Policlinico G.Martino, Messina, Italy.
| |
Collapse
|
35
|
Dhatchinamoorthy K, Colbert JD, Rock KL. Cancer Immune Evasion Through Loss of MHC Class I Antigen Presentation. Front Immunol 2021; 12:636568. [PMID: 33767702 PMCID: PMC7986854 DOI: 10.3389/fimmu.2021.636568] [Citation(s) in RCA: 566] [Impact Index Per Article: 141.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/05/2021] [Indexed: 02/03/2023] Open
Abstract
Major histocompatibility class I (MHC I) molecules bind peptides derived from a cell's expressed genes and then transport and display this antigenic information on the cell surface. This allows CD8 T cells to identify pathological cells that are synthesizing abnormal proteins, such as cancers that are expressing mutated proteins. In order for many cancers to arise and progress, they need to evolve mechanisms to avoid elimination by CD8 T cells. MHC I molecules are not essential for cell survival and therefore one mechanism by which cancers can evade immune control is by losing MHC I antigen presentation machinery (APM). Not only will this impair the ability of natural immune responses to control cancers, but also frustrate immunotherapies that work by re-invigorating anti-tumor CD8 T cells, such as checkpoint blockade. Here we review the evidence that loss of MHC I antigen presentation is a frequent occurrence in many cancers. We discuss new insights into some common underlying mechanisms through which some cancers inactivate the MHC I pathway and consider some possible strategies to overcome this limitation in ways that could restore immune control of tumors and improve immunotherapy.
Collapse
|
36
|
Gauthier M, Laroye C, Bensoussan D, Boura C, Decot V. Natural Killer cells and monoclonal antibodies: Two partners for successful antibody dependent cytotoxicity against tumor cells. Crit Rev Oncol Hematol 2021; 160:103261. [PMID: 33607229 DOI: 10.1016/j.critrevonc.2021.103261] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 01/27/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023] Open
Abstract
Monoclonal antibodies targeting tumors are one of the most important discoveries in the field of cancer. Although several effective antibodies have been developed, a relapse may occur. One of their mechanisms of action is Antibody Dependent Cell Cytotoxicity (ADCC), by engaging the Fc γ receptor CD16 expressing Natural Killer cells, innate lymphoid cells involved in cancer immunosurveillance and able to kill tumor cells. A lack of NK cells observed in many cancers may therefore be a cause of the low efficacy of antibodies observed in some clinical situations. Here we review clear evidences of the essential partnership between NK cells and antibodies showed in vitro, in vivo, and in clinical trials in different indications, describe the hurdles and ways to enhance ADCC and the evolution of monoclonal antibody therapy. NK cell adoptive immunotherapy combined with monoclonal antibodies may overcome the resistance to the treatment and enhance their efficacy.
Collapse
Affiliation(s)
- Mélanie Gauthier
- Lorraine University, CNRS UMR 7365, Team 6, Campus Santé, Vandoeuvre-les-Nancy, France; CHRU Nancy, Cell Therapy and Tissue Bank Unit, Vandoeuvre-Les-Nancy, France
| | - Caroline Laroye
- Lorraine University, CNRS UMR 7365, Team 6, Campus Santé, Vandoeuvre-les-Nancy, France; CHRU Nancy, Cell Therapy and Tissue Bank Unit, Vandoeuvre-Les-Nancy, France
| | - Danièle Bensoussan
- Lorraine University, CNRS UMR 7365, Team 6, Campus Santé, Vandoeuvre-les-Nancy, France; CHRU Nancy, Cell Therapy and Tissue Bank Unit, Vandoeuvre-Les-Nancy, France
| | - Cédric Boura
- Lorraine University, CNRS UMR7039, Team BioSIS, Campus Santé, Vandoeuvre-Les-Nancy, France
| | - Véronique Decot
- Lorraine University, CNRS UMR 7365, Team 6, Campus Santé, Vandoeuvre-les-Nancy, France; CHRU Nancy, Cell Therapy and Tissue Bank Unit, Vandoeuvre-Les-Nancy, France.
| |
Collapse
|
37
|
Zhao D, Yang X, Zhang J, Zhang Y. Tim-3 associated with apoptotic NK cells and disease activity in SLE. EUR J INFLAMM 2021. [DOI: 10.1177/20587392211000570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
T cell immunoglobulin and mucin domain-containing molecule-3 (Tim-3) has been found to play important roles in systemic lupus erythematosus (SLE), however, whether Tim-3 is involved in apoptosis of NK cells in SLE remains unknown. The proportion of CD3−CD56+ NK cells and the percentage of AnnexinV+ NK cells were analyzed by flow cytometry in SLE patients and healthy controls. Tim-3 expression on NK cells was also evaluated by flow cytometry. We firstly observed a decreased proportion of NK cells and an increased proportion of apoptotic NK cells in SLE patients. The proportion of apoptotic NK cells was positively correlated with anti-dsDNA and SLEDAI. Tim-3 expression on NK cells was up-regulated in SLE patients. Further analysis showed that Tim-3 expression on NK cells was negatively correlated with the proportion of apoptotic NK cells, anti-dsDNA and SLEDAI, while positively correlated with the proportion of NK cells. The present results suggest that Tim-3 might play roles in SLE by regulating the apoptosis of NK cells and Tim-3 might serve as a potential target for the treatment of SLE.
Collapse
Affiliation(s)
- Di Zhao
- Department of Clinical laboratory, Qilu Hospital of Shandong University, Ji’nan, China
- Key Laboratory of Tumor Marker Translational Medicine, Shandong Provincial Medicine and Health, Ji’nan, China
| | - Xiao Yang
- Department of Clinical laboratory, Qilu Hospital of Shandong University, Ji’nan, China
- Key Laboratory of Tumor Marker Translational Medicine, Shandong Provincial Medicine and Health, Ji’nan, China
| | - Jie Zhang
- Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University School of Medicine, Jinan, Shandong, China
| | - Yi Zhang
- Department of Clinical laboratory, Qilu Hospital of Shandong University, Ji’nan, China
- Key Laboratory of Tumor Marker Translational Medicine, Shandong Provincial Medicine and Health, Ji’nan, China
| |
Collapse
|
38
|
Brownlie D, Doughty-Shenton D, Yh Soong D, Nixon C, O Carragher N, M Carlin L, Kitamura T. Metastasis-associated macrophages constrain antitumor capability of natural killer cells in the metastatic site at least partially by membrane bound transforming growth factor β. J Immunother Cancer 2021; 9:e001740. [PMID: 33472858 PMCID: PMC7818844 DOI: 10.1136/jitc-2020-001740] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Metastatic breast cancer is a leading cause of cancer-related death in women worldwide. Infusion of natural killer (NK) cells is an emerging immunotherapy for such malignant tumors, although elimination of the immunosuppressive tumor environment is required to improve its efficacy. The effects of this "metastatic" tumor environment on NK cells, however, remain largely unknown. Previous studies, including our own, have demonstrated that metastasis-associated macrophages (MAMs) are one of the most abundant immune cell types in the metastatic tumor niche in mouse models of metastatic breast cancer. We thus investigated the effects of MAMs on antitumor functions of NK cells in the metastatic tumor microenvironment. METHODS MAMs were isolated from the tumor-bearing lung of C57BL/6 mice intravenously injected with E0771-LG mouse mammary tumor cells. The effects of MAMs on NK cell cytotoxicity towards E0771-LG cells were evaluated in vitro by real-time fluorescence microscopy. The effects of MAM depletion on NK cell activation, maturation, and accumulation in the metastatic lung were evaluated by flow cytometry (CD69, CD11b, CD27) and in situ hybridization (Ncr1) using colony-stimulating factor 1 (CSF-1) receptor conditional knockout (Csf1r-cKO) mice. Finally, metastatic tumor loads in the chest region of mice were determined by bioluminescence imaging in order to evaluate the effect of MAM depletion on therapeutic efficacy of endogenous and adoptively transferred NK cells in suppressing metastatic tumor growth. RESULTS MAMs isolated from the metastatic lung suppressed NK cell-induced tumor cell apoptosis in vitro via membrane-bound transforming growth factor β (TGF-β) dependent mechanisms. In the tumor-challenged mice, depletion of MAMs increased the percentage of activated (CD69+) and mature (CD11b+CD27-) NK cells and the number of Ncr1+ NK cells as well as NK cell-mediated tumor rejection in the metastatic site. Moreover, MAM depletion or TGF-β receptor antagonist treatment significantly enhanced the therapeutic efficacy of NK cell infusion in suppressing early metastatic tumor outgrowth. CONCLUSION This study demonstrates that MAMs are a main negative regulator of NK cell function within the metastatic tumor niche, and MAM targeting is an attractive strategy to improve NK cell-based immunotherapy for metastatic breast cancer.
Collapse
Affiliation(s)
- Demi Brownlie
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Dahlia Doughty-Shenton
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Daniel Yh Soong
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Colin Nixon
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Neil O Carragher
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Leo M Carlin
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Takanori Kitamura
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
- Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
39
|
Alfarra H, Weir J, Grieve S, Reiman T. Targeting NK Cell Inhibitory Receptors for Precision Multiple Myeloma Immunotherapy. Front Immunol 2020; 11:575609. [PMID: 33304346 PMCID: PMC7693637 DOI: 10.3389/fimmu.2020.575609] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
Innate immune surveillance of cancer involves multiple types of immune cells including the innate lymphoid cells (ILCs). Natural killer (NK) cells are considered the most active ILC subset for tumor elimination because of their ability to target infected and malignant cells without prior sensitization. NK cells are equipped with an array of activating and inhibitory receptors (IRs); hence NK cell activity is controlled by balanced signals between the activating and IRs. Multiple myeloma (MM) is a hematological malignancy that is known for its altered immune landscape. Despite improvements in therapeutic options for MM, this disease remains incurable. An emerging trend to improve clinical outcomes in MM involves harnessing the inherent ability of NK cells to kill malignant cells by recruiting NK cells and enhancing their cytotoxicity toward the malignant MM cells. Following the clinical success of blocking T cell IRs in multiple cancers, targeting NK cell IRs is drawing increasing attention. Relevant NK cell IRs that are attractive candidates for checkpoint blockades include KIRs, NKG2A, LAG-3, TIGIT, PD-1, and TIM-3 receptors. Investigating these NK cell IRs as pathogenic agents and therapeutic targets could lead to promising applications in MM therapy. This review describes the critical role of enhancing NK cell activity in MM and discusses the potential of blocking NK cell IRs as a future MM therapy.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Immunological/adverse effects
- Antineoplastic Agents, Immunological/therapeutic use
- Cytotoxicity, Immunologic/drug effects
- Humans
- Immune Checkpoint Inhibitors/adverse effects
- Immune Checkpoint Inhibitors/therapeutic use
- Immunotherapy, Adoptive/adverse effects
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/transplantation
- Molecular Targeted Therapy
- Multiple Myeloma/drug therapy
- Multiple Myeloma/immunology
- Multiple Myeloma/metabolism
- Multiple Myeloma/pathology
- Receptors, Natural Killer Cell/antagonists & inhibitors
- Receptors, Natural Killer Cell/metabolism
- Signal Transduction
- Tumor Escape
- Tumor Microenvironment
Collapse
Affiliation(s)
- Helmi Alfarra
- Department of Biology, University of New Brunswick, Saint John, NB, Canada
| | - Jackson Weir
- Department of Biology, University of New Brunswick, Saint John, NB, Canada
| | - Stacy Grieve
- Department of Biology, University of New Brunswick, Saint John, NB, Canada
| | - Tony Reiman
- Department of Biology, University of New Brunswick, Saint John, NB, Canada
- Department of Oncology, Saint John Regional Hospital, Saint John, NB, Canada
- Department of Medicine, Dalhousie University, Saint John, NB, Canada
| |
Collapse
|
40
|
Lawrence DW, Willard PA, Cochran AM, Matchett EC, Kornbluth J. Natural Killer Lytic-Associated Molecule (NKLAM): An E3 Ubiquitin Ligase With an Integral Role in Innate Immunity. Front Physiol 2020; 11:573372. [PMID: 33192571 PMCID: PMC7658342 DOI: 10.3389/fphys.2020.573372] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/05/2020] [Indexed: 12/19/2022] Open
Abstract
Natural Killer Lytic-Associated Molecule (NKLAM), also designated RNF19B, is a unique member of a small family of E3 ubiquitin ligases. This 14-member group of ligases has a characteristic cysteine-rich RING-IBR-RING (RBR) domain that mediates the ubiquitination of multiple substrates. The consequence of substrate ubiquitination varies, depending on the type of ubiquitin linkages formed. The most widely studied effect of ubiquitination of proteins is proteasome-mediated substrate degradation; however, ubiquitination can also alter protein localization and function. Since its discovery in 1999, much has been deciphered about the role of NKLAM in innate immune responses. We have discerned that NKLAM has an integral function in both natural killer (NK) cells and macrophages in vitro and in vivo. NKLAM expression is required for each of these cell types to mediate maximal killing activity and cytokine production. However, much remains to be determined. In this review, we summarize what has been learned about NKLAM expression, structure and function, and discuss new directions for investigation. We hope that this will stimulate interest in further exploration of NKLAM.
Collapse
Affiliation(s)
- Donald W Lawrence
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Paul A Willard
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Allyson M Cochran
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Emily C Matchett
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Jacki Kornbluth
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO, United States.,St. Louis VA Health Care System, St. Louis, MO, United States
| |
Collapse
|
41
|
NK Cell Adoptive Immunotherapy of Cancer: Evaluating Recognition Strategies and Overcoming Limitations. Transplant Cell Ther 2020; 27:21-35. [PMID: 33007496 DOI: 10.1016/j.bbmt.2020.09.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/14/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023]
Abstract
Natural killer (NK) cells, the primary effector cells of the innate immune system, utilize multiple strategies to recognize tumor cells by (1) detecting the presence of activating receptor ligands, which are often upregulated in cancer; (2) targeting cells that have a loss of major histocompatibility complex (MHC); and (3) binding to antibodies that bind to tumor-specific antigens on the tumor cell surface. All these strategies have been successfully harnessed in adoptive NK cell immunotherapies targeting cancer. In this review, we review the applications of NK cell therapies across different tumor types. Similar to other forms of immunotherapy, tumor-induced immune escape and immune suppression can limit NK cell therapies' efficacy. Therefore, we also discuss how these limitations can be overcome by conferring NK cells with the ability to redirect their tumor-targeting capabilities and survive the immune-suppressive tumor microenvironment. Finally, we also discuss how future iterations can benefit from combination therapies with other immunotherapeutic agents.
Collapse
|
42
|
Natural Killer Cells Suppress T Cell-Associated Tumor Immune Evasion. Cell Rep 2020; 28:2784-2794.e5. [PMID: 31509742 DOI: 10.1016/j.celrep.2019.08.017] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/05/2019] [Accepted: 08/01/2019] [Indexed: 12/22/2022] Open
Abstract
Despite the clinical success of cancer immunotherapies, the majority of patients fail to respond or develop resistance through disruption of pathways that promote neo-antigen presentation on MHC I molecules. Here, we conducted a series of unbiased, genome-wide CRISPR/Cas9 screens to identify genes that limit natural killer (NK) cell anti-tumor activity. We identified that genes associated with antigen presentation and/or interferon-γ (IFN-γ) signaling protect tumor cells from NK cell killing. Indeed, Jak1-deficient melanoma cells were sensitized to NK cell killing through attenuated NK cell-derived IFN-γ-driven transcriptional events that regulate MHC I expression. Importantly, tumor cells that became resistant to T cell killing through enrichment of MHC I-deficient clones were highly sensitive to NK cell killing. Taken together, we reveal the genes targeted by tumor cells to drive checkpoint blockade resistance but simultaneously increase their vulnerability to NK cells, unveiling NK cell-based immunotherapies as a strategy to antagonize tumor immune escape.
Collapse
|
43
|
Bhat H, Zaun G, Hamdan TA, Lang J, Adomati T, Schmitz R, Friedrich SK, Bergerhausen M, Cham LB, Li F, Ali M, Zhou F, Khairnar V, Duhan V, Brandenburg T, Machlah YM, Schiller M, Berry A, Xu H, Vollmer J, Häussinger D, Thier B, Pandyra AA, Schadendorf D, Paschen A, Schuler M, Lang PA, Lang KS. Arenavirus Induced CCL5 Expression Causes NK Cell-Mediated Melanoma Regression. Front Immunol 2020; 11:1849. [PMID: 32973762 PMCID: PMC7472885 DOI: 10.3389/fimmu.2020.01849] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/09/2020] [Indexed: 01/18/2023] Open
Abstract
Immune activation within the tumor microenvironment is one promising approach to induce tumor regression. Certain viruses including oncolytic viruses such as the herpes simplex virus (HSV) and non-oncolytic viruses such as the lymphocytic choriomeningitis virus (LCMV) are potent tools to induce tumor-specific immune activation. However, not all tumor types respond to viro- and/or immunotherapy and mechanisms accounting for such differences remain to be defined. In our current investigation, we used the non-cytopathic LCMV in different human melanoma models and found that melanoma cell lines produced high levels of CCL5 in response to immunotherapy. In vivo, robust CCL5 production in LCMV infected Ma-Mel-86a tumor bearing mice led to recruitment of NK cells and fast tumor regression. Lack of NK cells or CCL5 abolished the anti-tumoral effects of immunotherapy. In conclusion, we identified CCL5 and NK cell-mediated cytotoxicity as new factors influencing melanoma regression during virotherapy.
Collapse
Affiliation(s)
- Hilal Bhat
- Medical Faculty, Institute of Immunology, University Duisburg-Essen, Essen, Germany
| | - Gregor Zaun
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Thamer A Hamdan
- Medical Faculty, Institute of Immunology, University Duisburg-Essen, Essen, Germany
| | - Judith Lang
- Medical Faculty, Institute of Immunology, University Duisburg-Essen, Essen, Germany
| | - Tom Adomati
- Medical Faculty, Institute of Immunology, University Duisburg-Essen, Essen, Germany
| | - Rosa Schmitz
- Medical Faculty, Institute of Immunology, University Duisburg-Essen, Essen, Germany
| | - Sarah-Kim Friedrich
- Medical Faculty, Institute of Immunology, University Duisburg-Essen, Essen, Germany
| | - Michael Bergerhausen
- Medical Faculty, Institute of Immunology, University Duisburg-Essen, Essen, Germany
| | - Lamin B Cham
- Medical Faculty, Institute of Immunology, University Duisburg-Essen, Essen, Germany
| | - Fanghui Li
- Medical Faculty, Institute of Immunology, University Duisburg-Essen, Essen, Germany
| | - Murtaza Ali
- Medical Faculty, Institute of Immunology, University Duisburg-Essen, Essen, Germany
| | - Fan Zhou
- Medical Faculty, Institute of Immunology, University Duisburg-Essen, Essen, Germany
| | - Vishal Khairnar
- Medical Faculty, Institute of Immunology, University Duisburg-Essen, Essen, Germany.,Department of Systems Biology, Beckman Research Institute, City of Hope, Monrovia, CA, United States
| | - Vikas Duhan
- Medical Faculty, Institute of Immunology, University Duisburg-Essen, Essen, Germany
| | - Tim Brandenburg
- Medical Faculty, Institute of Immunology, University Duisburg-Essen, Essen, Germany
| | - Yara Maria Machlah
- Medical Faculty, Institute of Immunology, University Duisburg-Essen, Essen, Germany
| | - Maximilian Schiller
- Medical Faculty, Institute of Immunology, University Duisburg-Essen, Essen, Germany
| | - Arshia Berry
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Haifeng Xu
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | | | - Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, University of Düsseldorf, Düsseldorf, Germany
| | - Beatrice Thier
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | - Aleksandra A Pandyra
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.,Department of Gastroenterology, Hepatology and Infectious Diseases, University of Düsseldorf, Düsseldorf, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - Annette Paschen
- Department of Dermatology, University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - Martin Schuler
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - Philipp A Lang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Karl S Lang
- Medical Faculty, Institute of Immunology, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
44
|
Rautela J, Surgenor E, Huntington ND. Drug target validation in primary human natural killer cells using CRISPR RNP. J Leukoc Biol 2020; 108:1397-1408. [PMID: 33463756 DOI: 10.1002/jlb.2ma0620-074r] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 12/13/2022] Open
Abstract
The ability to genetically modify CD8 T cells using viral gene delivery has facilitated the development of next generation of cancer immunotherapies such as chimeric Ag receptor (CAR) T cells engineered to specifically kill tumor cells. Development of immunotherapies targeting NK cells have stalled in part by their resistance to traditional viral gene delivery systems. Here, an efficient approach is described to genetically edit human NK cells by electroporation and CRISPR-Cas9 ribonucleoprotein (RNP) complexes. Electroporation pulse codes and buffer optimization for protein uptake by human NK cells and viability, and the efficiency of this approach over other methods are detailed. To highlight the transformative step this technique will have for NK cell immunotherapy drug discovery, NCR1 and CISH are deleted in primary human NK cells and murine findings are validated on their key roles in regulating NK cell antitumor function.
Collapse
Affiliation(s)
- Jai Rautela
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Elliot Surgenor
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Nicholas D Huntington
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
45
|
Lee YE, Ju A, Choi HW, Kim JC, Kim EE, Kim TS, Kang HJ, Kim SY, Jang JY, Ku JL, Kim SC, Jun E, Jang M. Rationally designed redirection of natural killer cells anchoring a cytotoxic ligand for pancreatic cancer treatment. J Control Release 2020; 326:310-323. [PMID: 32682905 DOI: 10.1016/j.jconrel.2020.07.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/23/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023]
Abstract
The emergence of T-cell engineering with chimeric antigen receptors (CARs) has led to attractive therapeutics; however, autologous CAR-T cells are associated with poor clinical outcomes in solid tumors because of low safety and efficacy. Therefore, the aim of our study was to develop a CAR therapy with enhanced cytotoxicity against solid cancer using allogeneic NK cells. In this study, we engineered "off-the-shelf" NK cells to redirect them towards pancreatic ductal adenocarcinoma (PDAC) by improving their target-specific cytotoxic potential. By integrated bioinformatic and clinicopathological analyses, folate receptor alpha (FRα) and death receptor 4 (DR4) were significantly highly expressed in patient-derived tumor cells. The combined expression of FRα and DR4/5 was associated with inferior clinical outcomes, therefore indicating their use as potential targets for biomolecular treatment. Thus, FRα and DR4 expression pattern can be a strong prognostic factor as promising therapeutic targets for the treatment of PDAC. For effective PDAC treatment, allogeneic CAR-NK cells were reprogrammed to carry an apoptosis-inducing ligand and to redirect them towards FRα and initiate DR4/5-mediated cancer-selective cell death in FRα- and DR4/5-positive tumors. As a result, the redirected cytotoxic ligand-loaded NK cells led to a significantly enhanced tumor-selective apoptosis. Accordingly, use of allogeneic CAR-NK cells that respond to FRα and DR4/5 double-positive cancers might improve clinical outcomes based on personal genome profiles. Thus, therapeutic modalities based on allogeneic NK cells can potentially be used to treat large numbers of patients with optimally selective cytotoxicity.
Collapse
Affiliation(s)
- Young Eun Lee
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seongbuk-Gu, Seoul 02792, South Korea; Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea
| | - Anna Ju
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seongbuk-Gu, Seoul 02792, South Korea
| | - Hwi Wan Choi
- Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine and Asan Medical Center, Seoul 05505, South Korea
| | - Jin-Chul Kim
- Natural Constituents of Research Center, Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung 25451, South Korea
| | - Eunice EunKyeong Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seongbuk-Gu, Seoul 02792, South Korea
| | - Tae Sung Kim
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea
| | - Hyo Jeong Kang
- Department of Pathology, University of Ulsan College of Medicine and Asan Medical Center, Seoul 05505, South Korea
| | - Sang-Yeob Kim
- Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine and Asan Medical Center, Seoul 05505, South Korea
| | - Jin-Young Jang
- Department of Surgery, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Ja-Lok Ku
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Song Cheol Kim
- Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Eunsung Jun
- Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine and Asan Medical Center, Seoul 05505, South Korea; Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea.
| | - Mihue Jang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seongbuk-Gu, Seoul 02792, South Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
46
|
Dege C, Fegan KH, Creamer JP, Berrien-Elliott MM, Luff SA, Kim D, Wagner JA, Kingsley PD, McGrath KE, Fehniger TA, Palis J, Sturgeon CM. Potently Cytotoxic Natural Killer Cells Initially Emerge from Erythro-Myeloid Progenitors during Mammalian Development. Dev Cell 2020; 53:229-239.e7. [PMID: 32197069 PMCID: PMC7185477 DOI: 10.1016/j.devcel.2020.02.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 12/31/2019] [Accepted: 02/21/2020] [Indexed: 12/21/2022]
Abstract
Natural killer (NK) cells are a critical component of the innate immune system. However, their ontogenic origin has remained unclear. Here, we report that NK cell potential first arises from Hoxaneg/low Kit+CD41+CD16/32+ hematopoietic-stem-cell (HSC)-independent erythro-myeloid progenitors (EMPs) present in the murine yolk sac. EMP-derived NK cells and primary fetal NK cells, unlike their adult counterparts, exhibit robust degranulation in response to stimulation. Parallel studies using human pluripotent stem cells (hPSCs) revealed that HOXAneg/low CD34+ progenitors give rise to NK cells that, similar to murine EMP-derived NK cells, harbor a potent cytotoxic degranulation bias. In contrast, hPSC-derived HOXA+ CD34+ progenitors, as well as human cord blood CD34+ cells, give rise to NK cells that exhibit an attenuated degranulation response but robustly produce inflammatory cytokines. Collectively, our studies identify an extra-embryonic origin of potently cytotoxic NK cells, suggesting that ontogenic origin is a relevant factor in designing hPSC-derived adoptive immunotherapies.
Collapse
Affiliation(s)
- Carissa Dege
- Department of Medicine, Division of Hematology, Washington University in St Louis, St. Louis, MO 63110, USA
| | - Katherine H Fegan
- Center for Pediatric Biomedical Research and Department of Pediatrics, University of Rochester, Rochester, NY 14642, USA
| | - J Philip Creamer
- Department of Medicine, Division of Hematology, Washington University in St Louis, St. Louis, MO 63110, USA
| | - Melissa M Berrien-Elliott
- Department of Medicine, Division of Oncology, Washington University in St Louis, St. Louis, MO 63110, USA
| | - Stephanie A Luff
- Department of Medicine, Division of Hematology, Washington University in St Louis, St. Louis, MO 63110, USA
| | - Darren Kim
- Department of Medicine, Division of Hematology, Washington University in St Louis, St. Louis, MO 63110, USA
| | - Julia A Wagner
- Department of Medicine, Division of Oncology, Washington University in St Louis, St. Louis, MO 63110, USA
| | - Paul D Kingsley
- Center for Pediatric Biomedical Research and Department of Pediatrics, University of Rochester, Rochester, NY 14642, USA
| | - Kathleen E McGrath
- Center for Pediatric Biomedical Research and Department of Pediatrics, University of Rochester, Rochester, NY 14642, USA
| | - Todd A Fehniger
- Department of Medicine, Division of Oncology, Washington University in St Louis, St. Louis, MO 63110, USA
| | - James Palis
- Center for Pediatric Biomedical Research and Department of Pediatrics, University of Rochester, Rochester, NY 14642, USA.
| | - Christopher M Sturgeon
- Department of Medicine, Division of Hematology, Washington University in St Louis, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University in St Louis, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University in St Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
47
|
Jung YS, Park JH, Park DI, Sohn CI, Lee JM, Kim TI. Impact of Smoking on Human Natural Killer Cell Activity: A Large Cohort Study. J Cancer Prev 2020; 25:13-20. [PMID: 32266175 PMCID: PMC7113411 DOI: 10.15430/jcp.2020.25.1.13] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 01/02/2023] Open
Abstract
Some studies have reported a decrease in the natural killer (NK) cell activity in smokers. However, large-scale data on the relationship between NK cell activity and smoking are unavailable. A cross-sectional study was performed on 12,249 asymptomatic examinees who underwent an NK cell activity test, between January 2016 and May 2017. The test quantitated the amount of interferon-γ secreted into the plasma by NK cells, using a patented stimulatory cytokine. The mean age of the study population was 39.1 years, and the proportions of “never”, “former”, and “current” smokers were 65.5%, 20.9%, and 13.6%, respectively. Current smokers (1,422 pg/mL) had a lower median level of NK cell activity than never smokers (1,504 pg/mL, P = 0.039) and former smokers (1,791 pg/mL, P < 0.001). Among current smokers, NK cell activity decreased with increase in the number of cigarettes smoked among current smokers (median, 1,537, 1,429, and 1,175 pg/mL at <10, 10-19, and ≥ 20 pack-years, respectively; P < 0.001). Additionally, it decreased linearly with increasing quartiles of cotinine levels (median, 1,707, 1,636, 1,348, and 1,292 pg/mL at cotinine levels < 292, 292-879, 880-1,509, and ≥ 1,510 ng/mL, respectively; r = –0.122, P < 0.001). NK cell activity was lower in current smokers. It also decreased with an increase in the number of cigarettes smoked, and it was negatively correlated with cotinine levels among current smokers. Our findings indicate a clear relationship between smoking and decreased NK cell activity.
Collapse
Affiliation(s)
- Yoon Suk Jung
- Division of Gastroenterology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jung Ho Park
- Division of Gastroenterology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Dong Il Park
- Division of Gastroenterology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chong Il Sohn
- Division of Gastroenterology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae Myun Lee
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases and Brain Korea 1 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
| | - Tae Il Kim
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei Cancer Prevention Center, Brain Korea 21 PLUS Project for Medical Sciences Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
48
|
Kandell WM, Donatelli SS, Trinh TL, Calescibetta AR, So T, Tu N, Gilvary DL, Chen X, Cheng P, Adams WA, Chen YK, Liu J, Djeu JY, Wei S, Eksioglu EA. MicroRNA-155 governs SHIP-1 expression and localization in NK cells and regulates subsequent infiltration into murine AT3 mammary carcinoma. PLoS One 2020; 15:e0225820. [PMID: 32040476 PMCID: PMC7010306 DOI: 10.1371/journal.pone.0225820] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 11/13/2019] [Indexed: 01/29/2023] Open
Abstract
NK cell migration and activation are crucial elements of tumor immune surveillance. In mammary carcinomas, the number and function of NK cells is diminished, despite being positively associated with clinical outcome. MicroRNA-155 (miR-155) has been shown to be an important regulator of NK cell activation through its interaction with SHIP-1 downstream of inhibitory NK receptor signaling, but has not been explored in regard to NK cell migration. Here, we explored the migratory potential and function of NK cells in subcutaneous AT3 in mice lacking miR-155. Without tumor, these bic/miR-155-/- mice possess similar numbers of NK cells that exhibit comparable surface levels of cytotoxic receptors as NK cells from wild-type (WT) mice. Isolated miR-155-/- NK cells also exhibit equivalent cytotoxicity towards tumor targets in vitro compared to isolated WT control NK cells, despite overexpression of known miR-155 gene targets. NK cells isolated from miR-155-/- mice exhibit impaired F-actin polymerization and migratory capacity in Boyden-chamber assays in response chemokine (C-C motif) ligand 2 (CCL2). This migratory capacity could be normalized in the presence of SHIP-1 inhibitors. Of note, miR-155-/- mice challenged with mammary carcinomas exhibited heightened tumor burden which correlated with a lower number of tumor-infiltrating NK1.1+ cells. Our results support a novel, physiological role for SHIP-1 in the control of NK cell tumor trafficking, and implicate miR-155 in the regulation of NK cell chemotaxis, in the context of mammary carcinoma. This may implicate dysfunctional NK cells in the lack of tumor clearance in mice.
Collapse
Affiliation(s)
- Wendy M. Kandell
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida, United States of America
| | - Sarah S. Donatelli
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Thu Le Trinh
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
- Dong Nai Technology University, Dong Nai Province, Vietnam
| | | | - Tina So
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Nhan Tu
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Danielle L. Gilvary
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Xianghong Chen
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Pingyan Cheng
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | - William A. Adams
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Yin-Kai Chen
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Jinhong Liu
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Julie Y. Djeu
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Sheng Wei
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Erika A. Eksioglu
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
49
|
Wennerberg E, Lhuillier C, Rybstein MD, Dannenberg K, Rudqvist NP, Koelwyn GJ, Jones LW, Demaria S. Exercise reduces immune suppression and breast cancer progression in a preclinical model. Oncotarget 2020; 11:452-461. [PMID: 32064049 PMCID: PMC6996907 DOI: 10.18632/oncotarget.27464] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/13/2020] [Indexed: 02/02/2023] Open
Abstract
Exercise is associated with favorable changes in circulating immune cells and improved survival in early-stage breast cancer patients, but the mechansims remain to be fully elucidated. Preclinical studies indicate that physical activity started before tumor injection reduces tumor incidence and progression. Here we tested whether exercise has anti-tumor effects in mice with established 4T1 mammary carcinoma, a mouse model of triple negative breast cancer. Exercise slowed tumor progression and reduced the tumor-induced accumulation of myeloid-derived suppressor cells (MDSCs). The reduction in MDSCs was accompanied by a relative increase in natural killer and CD8 T cell activation, suggesting that exercise restores a favorable immune environment. Consistently, exercise improved responses to a combination of programmed cell death protein 1 (PD-1) blockade and focal radiotherapy. These data support further investigations of exercise in breast cancer patients treated with combinations of immunotherapy and cytotoxic agents to improve cancer outcomes.
Collapse
Affiliation(s)
- Erik Wennerberg
- Department of Radiation Oncology, Weill Cornell Medical College, Stich Radiation Oncology, New York, NY, USA.,These authors contributed equally to this work
| | - Claire Lhuillier
- Department of Radiation Oncology, Weill Cornell Medical College, Stich Radiation Oncology, New York, NY, USA.,These authors contributed equally to this work
| | - Marissa D Rybstein
- Department of Radiation Oncology, Weill Cornell Medical College, Stich Radiation Oncology, New York, NY, USA
| | | | - Nils-Petter Rudqvist
- Department of Radiation Oncology, Weill Cornell Medical College, Stich Radiation Oncology, New York, NY, USA
| | | | - Lee W Jones
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medical College, Stich Radiation Oncology, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA.,Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
50
|
Abstract
Introduction: Lung cancer is a devastating disease with poor overall survival. Despite significant advances in the treatment of lung cancers using radiochemotherapy, targeted therapies and/or immune therapies prognosis remains poor. The capacity of natural killer (NK) cells to provide a first line of defense that can bridge and orchestrate innate and 'downstream' adaptive immune responses renders them to be an ideal platform on which to base new cancer therapeutics.Areas covered: We provide an overview of the mechanisms controlling the effector functions of NK cells, tumor-directed immune escape, the impact and influence of NK cells on the development of effective, protective anti-tumor immunity and the therapeutic potential of combined cytokine-, complement-dependent- and antibody-dependent cellular cytotoxicity (CDC/ADCC), NK-92-, KIR mismatch- and CAR-NK cell-based therapies.Expert opinion: Despite promising results of immuno-oncological approaches, a relevant proportion of patients do not profit from these therapies, partly due to an ineffective NK cell activation, a lack of tumor-specific NK cells, an upregulated expression of checkpoint pathways, and a low mutational burden, which hinders the development of long-term adaptive immunity. Strategies that re-activate NK cells in combination with other therapies are therefore likely to be beneficial for the clinical outcome of patients with lung cancer.Abbreviations: ADCC: antibody-dependent cell-mediated cytotoxicity; ALK: anaplastic lymphoma kinase; CAR: chimeric antigen receptor; CDC: complement-dependent cytotoxicity; CEACAM-1: carcinoembryonic antigen-related cell adhesion molecule 1; DC: dendritic cell; DNAM: activating, maturation receptor; EGFR, epidermal growth factor receptor; EMT: epithelial-to-mesenchymal transition; EpCAM: epithelial cell adhesion molecule; GM-CSF: granulocyte monocyte colony stimulating factor; HIF: hypoxia inducible factor; IDO, indoleamine 2,3-dioxygenase; IFN: interferon; IL: interleukin; ITIM/ITAM: immune tyrosine-based inhibitory/activatory motif; KIR: killer cell immunoglobulin-like receptor; LAG-3: lymphocyte activation gene 3; MDSC: myeloid derived suppressor cells; MICA/B: MHC class I-related proteins A/B; MHC: major histocompatibility complex; mTOR: mechanistic target of rapamycin; NCAM: neuronal adhesion molecule; NCR: natural cytotoxicity receptor; NK: natural killer; NSCLC: non-small cell lung cancer; PD-1: programmed cell death 1; PS: phosphatidylserine; SCLC: small cell lung cancer; STAT: signal transducer and activator of transcription; TAM: tumor-associated M2 macrophages; TCR: T cell receptor; TIGIT: T cell immunoglobulin and ITIM domain; Tim-3: T cell immunoglobulin- and mucin domain-containing 3; TNF: tumor necrosis factor; ULBP: UL16-binding protein.
Collapse
Affiliation(s)
- A Graham Pockley
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, UK
| | - Peter Vaupel
- Campus Klinikum rechts der Isar, Center for Translational Cancer Research Technische Universität München (TranslaTUM), Munich, Germany
| | - Gabriele Multhoff
- Campus Klinikum rechts der Isar, Center for Translational Cancer Research Technische Universität München (TranslaTUM), Munich, Germany
| |
Collapse
|