1
|
Bing XL, Wan YY, Liu HH, Ji R, Zhao DS, Niu YD, Li TP, Hong XY. Characterization of Pantoea ananatis from rice planthoppers reveals a clade of rice-associated P. ananatis undergoing genome reduction. Microb Genom 2022; 8:mgen000907. [PMID: 36748509 PMCID: PMC9837560 DOI: 10.1099/mgen.0.000907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Pantoea ananatis is a bacterium that is found in many agronomic crops and agricultural pests. Here, we isolated a P. ananatis strain (Lstr) from the rice planthopper Laodelphax striatellus, a notorious pest that feeds on rice plant sap and transmits rice viruses, in order to examine its genome and biology. P. ananatis Lstr is an insect symbiont that is pathogenic to the host insect and appears to mostly inhabit the gut. Its pathogenicity thus raises the possibility of using the Lstr strain as a biological agent. To this end, we analysed the genome of the Lstr strain and compared it with the genomes of other Pantoea species. Our analysis of these genomes shows that P. ananatis can be divided into two mono-phylogenetic clades (clades one and two). The Lstr strain belongs to clade two and is grouped with P. ananatis strains that were isolated from rice or rice-associated samples. A comparative genomic analysis shows that clade two differs from clade one in many genomic characteristics including genome structures, mobile elements, and categories of coding proteins. The genomes of clade two P. ananatis are significantly smaller, have much fewer coding sequences but more pseudogenes than those of clade one, suggesting that clade two species are at the early stage of genome reduction. On the other hand, P. ananatis has a type VI secretion system that is highly variable but cannot be separated by clades. These results clarify our understanding of P. ananatis' phylogenetic diversity and provide clues to the interactions between P. ananatis, host insect, and plant that may lead to advances in rice protection and pest control.
Collapse
Affiliation(s)
- Xiao-Li Bing
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yu-Ying Wan
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Huan-Huan Liu
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Rui Ji
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, PR China
| | - Dian-Shu Zhao
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yue-Di Niu
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Tong-Pu Li
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China,*Correspondence: Xiao-Yue Hong,
| |
Collapse
|
2
|
Dahlberg T, Baker JL, Bullitt E, Andersson M. Unveiling molecular interactions that stabilize bacterial adhesion pili. Biophys J 2022; 121:2096-2106. [PMID: 35491503 PMCID: PMC9247471 DOI: 10.1016/j.bpj.2022.04.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/09/2022] [Accepted: 04/27/2022] [Indexed: 11/29/2022] Open
Abstract
Adhesion pili assembled by the chaperone-usher pathway are superelastic helical filaments on the surface of bacteria, optimized for attachment to target cells. Here, we investigate the biophysical function and structural interactions that stabilize P pili from uropathogenic bacteria. Using optical tweezers, we measure P pilus subunit-subunit interaction dynamics and show that pilus compliance is contour-length dependent. Atomic details of subunit-subunit interactions of pili under tension are shown using steered molecular dynamics (sMD) simulations. sMD results also indicate that the N-terminal "staple" region of P pili, which provides interactions with pilins that are four and five subunits away, significantly stabilizes the helical filament structure. These data are consistent with previous structural data, and suggest that more layer-to-layer interactions could compensate for the lack of a staple in type 1 pili. This study informs our understanding of essential structural and dynamic features of adhesion pili, supporting the hypothesis that the function of pili is critically dependent on their structure and biophysical properties.
Collapse
Affiliation(s)
| | - Joseph L Baker
- Department of Chemistry, The College of New Jersey, Ewing, New Jersey
| | - Esther Bullitt
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts.
| | - Magnus Andersson
- Department of Physics, Umeå University, Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), Umeå, Sweden.
| |
Collapse
|
3
|
Chatterjee S, Basak AJ, Nair AV, Duraivelan K, Samanta D. Immunoglobulin-fold containing bacterial adhesins: molecular and structural perspectives in host tissue colonization and infection. FEMS Microbiol Lett 2021; 368:6045506. [PMID: 33355339 DOI: 10.1093/femsle/fnaa220] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Immunoglobulin (Ig) domains are one of the most widespread protein domains encoded by the human genome and are present in a large array of proteins with diverse biological functions. These Ig domains possess a central structure, the immunoglobulin-fold, which is a sandwich of two β sheets, each made up of anti-parallel β strands, surrounding a central hydrophobic core. Apart from humans, proteins containing Ig-like domains are also distributed in a vast selection of organisms including vertebrates, invertebrates, plants, viruses and bacteria where they execute a wide array of discrete cellular functions. In this review, we have described the key structural deviations of bacterial Ig-folds when compared to the classical eukaryotic Ig-fold. Further, we have comprehensively grouped all the Ig-domain containing adhesins present in both Gram-negative and Gram-positive bacteria. Additionally, we describe the role of these particular adhesins in host tissue attachment, colonization and subsequent infection by both pathogenic and non-pathogenic Escherichia coli as well as other bacterial species. The structural properties of these Ig-domain containing adhesins, along with their interactions with specific Ig-like and non Ig-like binding partners present on the host cell surface have been discussed in detail.
Collapse
Affiliation(s)
- Shruti Chatterjee
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| | - Aditya J Basak
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| | - Asha V Nair
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| | - Kheerthana Duraivelan
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| | - Dibyendu Samanta
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| |
Collapse
|
4
|
Qiao J, Tan X, Ren H, Wu Z, Hu X, Wang X. Construction of an Escherichia coli Strain Lacking Fimbriae by Deleting 64 Genes and Its Application for Efficient Production of Poly(3-Hydroxybutyrate) and l-Threonine. Appl Environ Microbiol 2021; 87:e0038121. [PMID: 33863704 PMCID: PMC8174762 DOI: 10.1128/aem.00381-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/03/2021] [Indexed: 12/28/2022] Open
Abstract
Escherichia coli contains 12 chaperone-usher operons for biosynthesis and assembly of various fimbriae. In this study, each of the 12 operons was deleted in E. coli MG1655, and the resulting 12 deletion mutants all grew better than the wild type, especially in the nutrient-deficient M9 medium. When the plasmid pBHR68 containing the key genes for polyhydroxyalkanoate production was introduced into these 12 mutants, each mutant synthesized more polyhydroxyalkanoate than the wild-type control. These results indicate that the fimbria removal in E. coli benefits cell growth and polyhydroxyalkanoate production. Therefore, all 12 chaperone-usher operons, including 64 genes, were deleted in MG1655, resulting in the fimbria-lacking strain WQM026. WQM026 grew better than MG1655, and no fimbria structures were observed on the surface of WQM026 cells. Transcriptomic analysis showed that in WQM026 cells, the genes related to glucose consumption, glycolysis, flagellar synthesis, and biosynthetic pathways of some key amino acids were upregulated, while the tricarboxylic acid cycle-related genes were downregulated. When pBHR68 was introduced into WQM026, huge amounts of poly-3-hydroxybutyrate were produced; when the plasmid pFW01-thrA*BC-rhtC, containing the key genes for l-threonine biosynthesis and transport, was transferred into WQM026, more l-threonine was synthesized than with the control. These results suggest that this fimbria-lacking E. coli WQM026 is a good host for efficient production of polyhydroxyalkanoate and l-threonine and has the potential to be developed into a valuable chassis microorganism. IMPORTANCE In this study, we investigated the interaction between the biosynthesis and assembly of fimbriae and intracellular metabolic networks in E. coli. We found that eliminating fimbriae could effectively improve the production of polyhydroxyalkanoate and l-threonine in E. coli MG1655. These results contribute to understanding the necessity of fimbriae and the advantages of fimbria removal for industrial microorganisms. The knowledge gathered from this study may be applied to the development of superior chassis microorganisms.
Collapse
Affiliation(s)
- Jun Qiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Xin Tan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Hongyu Ren
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Zheng Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Xiaoqing Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu Province, China
| |
Collapse
|
5
|
Microscale communication between bacterial pathogens and the host epithelium. Genes Immun 2021; 22:247-254. [PMID: 34588625 PMCID: PMC8497271 DOI: 10.1038/s41435-021-00149-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 02/01/2023]
Abstract
Pathogenic bacteria have evolved a variety of highly selective adhesins allowing these microbes to engage specific surface determinants of their eukaryotic host cells. Receptor clustering induced by the multivalent microorganisms will not only anchor the bacteria to the tissue, but will inevitably trigger host cell signaling. It has become clear, that these bacteria-initiated signaling events can be seen as a form of localized communication with host epithelial cells. Such a microscale communication can have immediate consequences in the form of changes in host cell membrane morphology or cytoskeletal organization, but can also lead to transcriptional responses and medium- and long-term alterations in cellular physiology. In this review, we will discuss several examples of this form of microscale communication between bacterial pathogens and mammalian host cells and try to delineate their downstream ramifications in the infection process. Furthermore, we will highlight recent findings that specialized pathogenic bacteria utilize the adhesin-based interaction to diffuse the short-range messenger molecule nitric oxide into the host tissue. While anti-adhesive strategies to disrupt the initial bacterial attachment have not yet translated into medical applications, the ability to interfere with the microscale communication emanating on the host side provides an unconventional approach for preventing infectious diseases.
Collapse
|
6
|
Ligowska-Marzęta M, Hancock V, Ingmer H, M Aarestrup F. Comparison of Gene Expression Profiles of Uropathogenic Escherichia Coli CFT073 after Prolonged Exposure to Subinhibitory Concentrations of Different Biocides. Antibiotics (Basel) 2019; 8:antibiotics8040167. [PMID: 31569631 PMCID: PMC6963283 DOI: 10.3390/antibiotics8040167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 01/24/2023] Open
Abstract
Biocides are chemical compounds widely used for sterilization and disinfection. The aim of this study was to examine whether exposure to subinhibitory biocide concentrations influenced transcriptional expression of genes that could improve a pathogen’s drug resistance or fitness. We used DNA microarrays to investigate the transcriptome of the uropathogenic Escherichia coli strain CFT073 in response to prolonged exposure to subinhibitory concentrations of four biocides: benzalkonium chloride, chlorhexidine, hydrogen peroxide and triclosan. Transcription of a gene involved in polymyxin resistance, arnT, was increased after treatment with benzalkonium chloride. However, pretreatment of the bacteria with this biocide did not result in cross-resistance to polymyxin in vitro. Genes encoding products related to transport formed the functional group that was most affected by biocides, as 110 out of 884 genes in this category displayed altered transcription. Transcripts of genes involved in cysteine uptake, sulfate assimilation, dipeptide transport, as well as cryptic phage genes were also more abundant in response to several biocides. Additionally, we identified groups of genes with transcription changes unique to single biocides that might include potential targets for the biocides. The biocides did not increase the resistance potential of the pathogen to other antimicrobials.
Collapse
Affiliation(s)
- Małgorzata Ligowska-Marzęta
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, 2300 Copenhagen, Denmark.
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Viktoria Hancock
- Renal Research & Innovation, Baxter International Inc., SE-220 10 Lund, Sweden.
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark.
| | - Frank M Aarestrup
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
7
|
Nandwani N, Surana P, Negi H, Mascarenhas NM, Udgaonkar JB, Das R, Gosavi S. A five-residue motif for the design of domain swapping in proteins. Nat Commun 2019; 10:452. [PMID: 30692525 PMCID: PMC6349918 DOI: 10.1038/s41467-019-08295-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 12/28/2018] [Indexed: 11/09/2022] Open
Abstract
Domain swapping is the process by which identical monomeric proteins exchange structural elements to generate dimers/oligomers. Although engineered domain swapping is a compelling strategy for protein assembly, its application has been limited due to the lack of simple and reliable design approaches. Here, we demonstrate that the hydrophobic five-residue 'cystatin motif' (QVVAG) from the domain-swapping protein Stefin B, when engineered into a solvent-exposed, tight surface loop between two β-strands prevents the loop from folding back upon itself, and drives domain swapping in non-domain-swapping proteins. High-resolution structural studies demonstrate that engineering the QVVAG stretch independently into various surface loops of four structurally distinct non-domain-swapping proteins enabled the design of different modes of domain swapping in these proteins, including single, double and open-ended domain swapping. These results suggest that the introduction of the QVVAG motif can be used as a mutational approach for engineering domain swapping in diverse β-hairpin proteins.
Collapse
Affiliation(s)
- Neha Nandwani
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, 560065, India
| | - Parag Surana
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, 560065, India
| | - Hitendra Negi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, 560065, India.,Sastra University, Thanjavur, 613402, India
| | - Nahren M Mascarenhas
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, 560065, India.,Sacred Heart College, Tirupattur, Tamil Nadu, 635601, India
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, 560065, India. .,Indian Institute of Science Education and Research, Pune, 411008, India.
| | - Ranabir Das
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, 560065, India.
| | - Shachi Gosavi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, 560065, India.
| |
Collapse
|
8
|
Hospenthal MK, Waksman G. The Remarkable Biomechanical Properties of the Type 1 Chaperone-Usher Pilus: A Structural and Molecular Perspective. Microbiol Spectr 2019; 7. [PMID: 30681068 DOI: 10.1128/microbiolspec.psib-0010-2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Indexed: 01/02/2023] Open
Abstract
Chaperone-usher (CU) pili are long, supramolecular protein fibers tethered to the surface of numerous bacterial pathogens. These virulence factors function primarily in bacterial adhesion to host tissues, but they also mediate biofilm formation. Type 1 and P pili of uropathogenic Escherichia coli (UPEC) are the two best-studied CU pilus examples, and here we primarily focus on the former. UPEC can be transmitted to the urinary tract by fecal shedding. It can then ascend up the urinary tract and cause disease by invading and colonizing host tissues of the bladder, causing cystitis, and the kidneys, causing pyelonephritis. FimH is the subunit displayed at the tip of type 1 pili and mediates adhesion to mannosylated host cells via a unique catch-bond mechanism. In response to shear forces caused by urine flow, FimH can transition from a low-affinity to high-affinity binding mode. This clever allosteric mechanism allows UPEC cells to remain tightly attached during periods of urine flow, while loosening their grip to allow dissemination through the urinary tract during urine stasis. Moreover, the bulk of a CU pilus is made up of the rod, which can reversibly uncoil in response to urine flow to evenly spread the tensile forces over the entire pilus length. We here explore the novel structural and mechanistic findings relating to the type 1 pilus FimH catch-bond and rod uncoiling and explain how they function together to enable successful attachment, spread, and persistence in the hostile urinary tract.
Collapse
Affiliation(s)
- Manuela K Hospenthal
- Institute of Structural and Molecular Biology, University College London and Birkbeck, London WC1E 7HX, United Kingdom
- Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology, University College London and Birkbeck, London WC1E 7HX, United Kingdom
| |
Collapse
|
9
|
Egelman EH. Cryo-EM of bacterial pili and archaeal flagellar filaments. Curr Opin Struct Biol 2017; 46:31-37. [PMID: 28609682 DOI: 10.1016/j.sbi.2017.05.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 05/07/2017] [Accepted: 05/25/2017] [Indexed: 01/24/2023]
Abstract
Recent advances in cryo-electron microscopy (cryo-EM) have opened up the possibility that a large class of biological structures, helical polymers, may now be readily reconstructed at near-atomic resolution. This will have a huge impact, since most of these structures are unlikely to be crystallized. This review focuses on new cryo-EM studies involving three classes of bacterial pili (chaperone-usher, mating, and Type IV) as well as on archaeal flagellar filaments. While it has long been known that one domain within archaeal flagellar filaments is homologous to a domain within bacterial Type IV pilins, the new studies shed light on how homologous and even highly conserved subunits can pack together in different ways with only small changes in sequence.
Collapse
Affiliation(s)
- Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908-0733, United States.
| |
Collapse
|
10
|
Naidoo N, Pillay M. Bacterial pili, with emphasis on Mycobacterium tuberculosis curli pili: potential biomarkers for point-of care tests and therapeutics. Biomarkers 2016; 22:93-105. [PMID: 27797276 DOI: 10.1080/1354750x.2016.1252960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
CONTEXT Novel biomarkers are essential for developing rapid diagnostics and therapeutic interventions Objective: This review aimed to highlight biomarker characterisation and assessment of unique bacterial pili. METHODS A PubMed search for bacterial pili, diagnostics, vaccine and therapeutics was performed, with emphasis on the well characterised pili. RESULTS In total, 46 papers were identified and reviewed. CONCLUSION Extensive analyses of pili enabled by advanced nanotechnology and whole genome sequencing provide evidence that they are strong biomarker candidates. Mycobacterium tuberculosis curli pili are emphasised as important epitopes for the development of much needed point-of-care diagnostics and therapeutics.
Collapse
Affiliation(s)
- Natasha Naidoo
- a Medical Microbiology and Infection Control , School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, Congella , Durban , South Africa
| | - Manormoney Pillay
- a Medical Microbiology and Infection Control , School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, Congella , Durban , South Africa
| |
Collapse
|
11
|
Li Y, Wang H, Ren J, Chen L, Zhuge X, Hu L, Li D, Tang F, Dai J. The YfcO fimbriae gene enhances adherence and colonization abilities of avian pathogenic Escherichia coli in vivo and in vitro. Microb Pathog 2016; 100:56-61. [PMID: 27616446 DOI: 10.1016/j.micpath.2016.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 11/27/2022]
Abstract
Chaperone-usher (CU) fimbriae, which are adhesive surface organelles found in many Gram-negative bacteria, mediate tissue tropism through the interaction of fimbrial adhesins with specific receptors expressed on the host cell surface. A CU fimbrial gene yfcO, was identified in avian pathogenic E. coli (APEC) strain DE205B via gene functional analysis. In this study, yfcO was found in 13.41% (11/82) of E. coli strains, including phylogenetic groups A, B1, B2 and D, with the highest percentage in group B2. The expression of yfcO in biofilm forming bacteria was significantly higher (P < 0.05) than that in the planktonic bacteria. A yfcO deletion mutant was constructed, and adherence to DF-1 chicken embryo fibroblast cells was analyzed in vitro. Compared to the wild-type (WT), adherence of the mutant to DF-1 cells was significantly decreased (P < 0.01). The mutant bacterial loads in the heart, brain and liver were significantly lower (P < 0.05) than those of the WT strain. Resistance of the mutant to acidic (acetic, pH 4.0, 20 min) and high osmolarity (2.5 M NaCl, 1 h) stress conditions decreased by 51.28% (P < 0.001) and 80.34% (P < 0.01), respectively. These results suggest that yfcO contributes to APEC virulence through bacterial adherence to host tissues.
Collapse
Affiliation(s)
- Yaxin Li
- Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Haojin Wang
- Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianluan Ren
- Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ling Chen
- Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangkai Zhuge
- Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Lin Hu
- Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Dezhi Li
- Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang Tang
- Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jianjun Dai
- Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
12
|
Kayukov IG. [The etiopathogenetic bases for antibacterial therapy and prevention of urinary tract infections]. TERAPEVT ARKH 2016; 87:123-133. [PMID: 26821430 DOI: 10.17116/terarkh20158711123-133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The paper discusses the pathogenesis of urinary tract infections, the mechanisms of resistance in their pathogens to antimicrobials and uroseptics, and approaches to defining patient management tactics.
Collapse
Affiliation(s)
- I G Kayukov
- Acad. I.P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia, Saint Petersburg, Russia
| |
Collapse
|
13
|
Hospenthal MK, Redzej A, Dodson K, Ukleja M, Frenz B, Rodrigues C, Hultgren SJ, DiMaio F, Egelman EH, Waksman G. Structure of a Chaperone-Usher Pilus Reveals the Molecular Basis of Rod Uncoiling. Cell 2016; 164:269-278. [PMID: 26724865 PMCID: PMC4715182 DOI: 10.1016/j.cell.2015.11.049] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/01/2015] [Accepted: 11/16/2015] [Indexed: 11/24/2022]
Abstract
Types 1 and P pili are prototypical bacterial cell-surface appendages playing essential roles in mediating adhesion of bacteria to the urinary tract. These pili, assembled by the chaperone-usher pathway, are polymers of pilus subunits assembling into two parts: a thin, short tip fibrillum at the top, mounted on a long pilus rod. The rod adopts a helical quaternary structure and is thought to play essential roles: its formation may drive pilus extrusion by preventing backsliding of the nascent growing pilus within the secretion pore; the rod also has striking spring-like properties, being able to uncoil and recoil depending on the intensity of shear forces generated by urine flow. Here, we present an atomic model of the P pilus generated from a 3.8 Å resolution cryo-electron microscopy reconstruction. This structure provides the molecular basis for the rod's remarkable mechanical properties and illuminates its role in pilus secretion.
Collapse
Affiliation(s)
- Manuela K Hospenthal
- Institute of Structural and Molecular Biology, University College London and Birkbeck, Malet Street, London, WC1E 7HX, UK
| | - Adam Redzej
- Institute of Structural and Molecular Biology, University College London and Birkbeck, Malet Street, London, WC1E 7HX, UK
| | - Karen Dodson
- Center for Women's Infectious Disease Research and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63011, USA
| | - Marta Ukleja
- Institute of Structural and Molecular Biology, University College London and Birkbeck, Malet Street, London, WC1E 7HX, UK
| | - Brandon Frenz
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
| | - Catarina Rodrigues
- Institute of Structural and Molecular Biology, University College London and Birkbeck, Malet Street, London, WC1E 7HX, UK
| | - Scott J Hultgren
- Center for Women's Infectious Disease Research and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63011, USA
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22901, USA.
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology, University College London and Birkbeck, Malet Street, London, WC1E 7HX, UK.
| |
Collapse
|
14
|
Abstract
Proteinaceous, nonflagellar surface appendages constitute a variety of structures, including those known variably as fimbriae or pili. Constructed by distinct assembly pathways resulting in diverse morphologies, fimbriae have been described to mediate functions including adhesion, motility, and DNA transfer. As these structures can represent major diversifying elements among Escherichia and Salmonella isolates, multiple fimbrial classification schemes have been proposed and a number of mechanistic insights into fimbrial assembly and function have been made. Herein we describe the classifications and biochemistry of fimbriae assembled by the chaperone/usher, curli, and type IV pathways.
Collapse
|
15
|
Chahales P, Thanassi DG. Structure, Function, and Assembly of Adhesive Organelles by Uropathogenic Bacteria. Microbiol Spectr 2015; 3:10.1128/microbiolspec.UTI-0018-2013. [PMID: 26542038 PMCID: PMC4638162 DOI: 10.1128/microbiolspec.uti-0018-2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Indexed: 01/02/2023] Open
Abstract
Bacteria assemble a wide range of adhesive proteins, termed adhesins, to mediate binding to receptors and colonization of surfaces. For pathogenic bacteria, adhesins are critical for early stages of infection, allowing the bacteria to initiate contact with host cells, colonize different tissues, and establish a foothold within the host. The adhesins expressed by a pathogen are also critical for bacterial-bacterial interactions and the formation of bacterial communities, including biofilms. The ability to adhere to host tissues is particularly important for bacteria that colonize sites such as the urinary tract, where the flow of urine functions to maintain sterility by washing away non-adherent pathogens. Adhesins vary from monomeric proteins that are directly anchored to the bacterial surface to polymeric, hair-like fibers that extend out from the cell surface. These latter fibers are termed pili or fimbriae, and were among the first identified virulence factors of uropathogenic Escherichia coli. Studies since then have identified a range of both pilus and non-pilus adhesins that contribute to bacterial colonization of the urinary tract, and have revealed molecular details of the structures, assembly pathways, and functions of these adhesive organelles. In this review, we describe the different types of adhesins expressed by both Gram-negative and Gram-positive uropathogens, what is known about their structures, how they are assembled on the bacterial surface, and the functions of specific adhesins in the pathogenesis of urinary tract infections.
Collapse
Affiliation(s)
- Peter Chahales
- Center for Infectious Diseases and Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794
| | - David G Thanassi
- Center for Infectious Diseases and Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794
| |
Collapse
|
16
|
Costa TRD, Felisberto-Rodrigues C, Meir A, Prevost MS, Redzej A, Trokter M, Waksman G. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat Rev Microbiol 2015; 13:343-59. [DOI: 10.1038/nrmicro3456] [Citation(s) in RCA: 655] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Zakrisson J, Wiklund K, Servin M, Axner O, Lacoursière C, Andersson M. Rigid multibody simulation of a helix-like structure: the dynamics of bacterial adhesion pili. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 44:291-300. [PMID: 25851543 DOI: 10.1007/s00249-015-1021-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 03/13/2015] [Accepted: 03/17/2015] [Indexed: 12/23/2022]
Abstract
We present a coarse-grained rigid multibody model of a subunit assembled helix-like polymer, e.g., adhesion pili expressed by bacteria, that is capable of describing the polymer's force-extension response. With building blocks representing individual subunits, the model appropriately describes the complex behavior of pili expressed by the gram-negative uropathogenic Escherichia coli bacteria under the action of an external force. Numerical simulations show that the dynamics of the model, which include the effects of both unwinding and rewinding, are in good quantitative agreement with the characteristic force-extension response as observed experimentally for type 1 and P pili. By tuning the model, it is also possible to reproduce the force-extension response in the presence of anti-shaft antibodies, which dramatically changes the mechanical properties. Thus, the model and results in this work give enhanced understanding of how a pilus unwinds under the action of external forces and provide a new perspective of the complex bacterial adhesion processes.
Collapse
Affiliation(s)
- Johan Zakrisson
- Department of Physics, Umeå University, 901 87, Umeå, Sweden
| | | | | | | | | | | |
Collapse
|
18
|
Busch A, Phan G, Waksman G. Molecular mechanism of bacterial type 1 and P pili assembly. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2015; 373:rsta.2013.0153. [PMID: 25624519 DOI: 10.1098/rsta.2013.0153] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The formation of adhesive surface structures called pili or fimbriae ('bacterial hair') is an important contributor towards bacterial pathogenicity and persistence. To fight often chronic or recurrent bacterial infections such as urinary tract infections, it is necessary to understand the molecular mechanism of the nanomachines assembling such pili. Here, we focus on the so far best-known pilus assembly machinery: the chaperone-usher pathway producing the type 1 and P pili, and highlight the most recently acquired structural knowledge. First, we describe the subunits' structure and the molecular role of the periplasmic chaperone. Second, we focus on the outer-membrane usher structure and the catalytic mechanism of usher-mediated pilus biogenesis. Finally, we describe how the detailed understanding of the chaperone-usher pathway at a molecular level has paved the way for the design of a new generation of bacterial inhibitors called 'pilicides'.
Collapse
Affiliation(s)
- Andreas Busch
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, Malet Street, London WC1E 7HX, UK
| | - Gilles Phan
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, Malet Street, London WC1E 7HX, UK
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, Malet Street, London WC1E 7HX, UK
| |
Collapse
|
19
|
Cabezón E, Ripoll-Rozada J, Peña A, de la Cruz F, Arechaga I. Towards an integrated model of bacterial conjugation. FEMS Microbiol Rev 2014; 39:81-95. [PMID: 25154632 DOI: 10.1111/1574-6976.12085] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bacterial conjugation is one of the main mechanisms for horizontal gene transfer. It constitutes a key element in the dissemination of antibiotic resistance and virulence genes to human pathogenic bacteria. DNA transfer is mediated by a membrane-associated macromolecular machinery called Type IV secretion system (T4SS). T4SSs are involved not only in bacterial conjugation but also in the transport of virulence factors by pathogenic bacteria. Thus, the search for specific inhibitors of different T4SS components opens a novel approach to restrict plasmid dissemination. This review highlights recent biochemical and structural findings that shed new light on the molecular mechanisms of DNA and protein transport by T4SS. Based on these data, a model for pilus biogenesis and substrate transfer in conjugative systems is proposed. This model provides a renewed view of the mechanism that might help to envisage new strategies to curb the threating expansion of antibiotic resistance.
Collapse
Affiliation(s)
- Elena Cabezón
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC, (Universidad de Cantabria, CSIC) Santander, Spain
| | - Jorge Ripoll-Rozada
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC, (Universidad de Cantabria, CSIC) Santander, Spain
| | - Alejandro Peña
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC, (Universidad de Cantabria, CSIC) Santander, Spain
| | - Fernando de la Cruz
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC, (Universidad de Cantabria, CSIC) Santander, Spain
| | - Ignacio Arechaga
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC, (Universidad de Cantabria, CSIC) Santander, Spain
| |
Collapse
|
20
|
Mortezaei N, Epler CR, Shao PP, Shirdel M, Singh B, McVeigh A, Uhlin BE, Savarino SJ, Andersson M, Bullitt E. Structure and function of enterotoxigenic Escherichia coli fimbriae from differing assembly pathways. Mol Microbiol 2014; 95:116-26. [PMID: 25355550 DOI: 10.1111/mmi.12847] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2014] [Indexed: 12/19/2022]
Abstract
Pathogenic enterotoxigenic Escherichia coli (ETEC) are the major bacterial cause of diarrhea in young children in developing countries and in travelers, causing significant mortality in children. Adhesive fimbriae are a prime virulence factor for ETEC, initiating colonization of the small intestinal epithelium. Similar to other Gram-negative bacteria, ETEC express one or more diverse fimbriae, some assembled by the chaperone-usher pathway and others by the alternate chaperone pathway. Here, we elucidate structural and biophysical aspects and adaptations of each fimbrial type to its respective host niche. CS20 fimbriae are compared with colonization factor antigen I (CFA/I) fimbriae, which are two ETEC fimbriae assembled via different pathways, and with P-fimbriae from uropathogenic E. coli. Many fimbriae unwind from their native helical filament to an extended linear conformation under force, thereby sustaining adhesion by reducing load at the point of contact between the bacterium and the target cell. CFA/I fimbriae require the least force to unwind, followed by CS20 fimbriae and then P-fimbriae, which require the highest unwinding force. We conclude from our electron microscopy reconstructions, modeling and force spectroscopy data that the target niche plays a central role in the biophysical properties of fimbriae that are critical for bacterial pathophysiology.
Collapse
|
21
|
Geibel S, Waksman G. The molecular dissection of the chaperone–usher pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1559-67. [DOI: 10.1016/j.bbamcr.2013.09.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/25/2013] [Accepted: 09/30/2013] [Indexed: 01/11/2023]
|
22
|
Lillington J, Geibel S, Waksman G. Reprint of "Biogenesis and adhesion of type 1 and P pili". Biochim Biophys Acta Gen Subj 2014; 1850:554-64. [PMID: 25063559 DOI: 10.1016/j.bbagen.2014.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 04/22/2014] [Accepted: 04/24/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND Uropathogenic Escherichia coli (UPEC) cause urinary tract infections (UTIs) in approximately 50% of women. These bacteria use type 1 and P pili for host recognition and attachment. These pili are assembled by the chaperone-usher pathway of pilus biogenesis. SCOPE OF REVIEW The review examines the biogenesis and adhesion of the UPEC type 1 and P pili. Particular emphasis is drawn to the role of the outer membrane usher protein. The structural properties of the complete pilus are also examined to highlight the strength and functionality of the final assembly. MAJOR CONCLUSIONS The usher orchestrates the sequential addition of pilus subunits in a defined order. This process follows a subunit-incorporation cycle which consists of four steps: recruitment at the usher N-terminal domain, donor-strand exchange with the previously assembled subunit, transfer to the usher C-terminal domains and translocation of the nascent pilus. Adhesion by the type 1 and P pili is strengthened by the quaternary structure of their rod sections. The rod is endowed with spring-like properties which provide mechanical resistance against urine flow. The distal adhesins operate differently from one another, targeting receptors in a specific manner. The biogenesis and adhesion of type 1 and P pili are being therapeutically targeted, and efforts to prevent pilus growth or adherence are described. GENERAL SIGNIFICANCE The combination of structural and biochemical study has led to the detailed mechanistic understanding of this membrane spanning nano-machine. This can now be exploited to design novel drugs able to inhibit virulence. This is vital in the present era of resurgent antibiotic resistance. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins.
Collapse
Affiliation(s)
- James Lillington
- Institute of Structural and Molecular Biology (ISMB), University College London and Birkbeck College, Malet Street, London WC1E 7HX, UK
| | - Sebastian Geibel
- Institute of Structural and Molecular Biology (ISMB), University College London and Birkbeck College, Malet Street, London WC1E 7HX, UK
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology (ISMB), University College London and Birkbeck College, Malet Street, London WC1E 7HX, UK.
| |
Collapse
|
23
|
Laverty G, Gorman SP, Gilmore BF. Biomolecular Mechanisms of Pseudomonas aeruginosa and Escherichia coli Biofilm Formation. Pathogens 2014; 3:596-632. [PMID: 25438014 PMCID: PMC4243431 DOI: 10.3390/pathogens3030596] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/10/2014] [Accepted: 07/14/2014] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa and Escherichia coli are the most prevalent Gram-negative biofilm forming medical device associated pathogens, particularly with respect to catheter associated urinary tract infections. In a similar manner to Gram-positive bacteria, Gram-negative biofilm formation is fundamentally determined by a series of steps outlined more fully in this review, namely adhesion, cellular aggregation, and the production of an extracellular polymeric matrix. More specifically this review will explore the biosynthesis and role of pili and flagella in Gram-negative adhesion and accumulation on surfaces in Pseudomonas aeruginosa and Escherichia coli. The process of biofilm maturation is compared and contrasted in both species, namely the production of the exopolysaccharides via the polysaccharide synthesis locus (Psl), pellicle Formation (Pel) and alginic acid synthesis in Pseudomonas aeruginosa, and UDP-4-amino-4-deoxy-l-arabinose and colonic acid synthesis in Escherichia coli. An emphasis is placed on the importance of the LuxR homologue sdiA; the luxS/autoinducer-II; an autoinducer-III/epinephrine/norepinephrine and indole mediated Quorum sensing systems in enabling Gram-negative bacteria to adapt to their environments. The majority of Gram-negative biofilms consist of polysaccharides of a simple sugar structure (either homo- or heteropolysaccharides) that provide an optimum environment for the survival and maturation of bacteria, allowing them to display increased resistance to antibiotics and predation.
Collapse
Affiliation(s)
- Garry Laverty
- Biomaterials, Biofilm and Infection Control Research Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Sean P Gorman
- Biomaterials, Biofilm and Infection Control Research Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Brendan F Gilmore
- Biomaterials, Biofilm and Infection Control Research Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
24
|
Wang Y, Narain R, Liu Y. Study of bacterial adhesion on different glycopolymer surfaces by quartz crystal microbalance with dissipation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:7377-7387. [PMID: 24885262 DOI: 10.1021/la5016115] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Protein-carbohydrate interactions are involved in a wide variety of cellular recognition processes including cell growth regulation, differentiation and adhesion, the immune response, and viral or bacterial infections. A common way for bacteria to achieve adhesion is through their fimbriae which possess cellular lectins that can bind to complementary carbohydrates on the surface of the host tissues. In this work, we synthesized glycopolymers using reversible addition-fragmentation chain transfer (RAFT) polymerization which were subsequently immobilized on a sensor surface for studies of bacterial adhesion by quartz crystal microbalance with dissipation (QCM-D). Ricinus communis Agglutinin (RCA120), a galactose specific lectin, was first studied by QCM-D to determine the specific lectin interactions to the different glycopolymers-treated surfaces. Subsequently, Pseudomonas aeruginosa PAO1 (a Gram-negative bacterium with galactose-specific binding C-type lectin (PA-IL)) and Escherichia coli K-12 (a Gram-negative bacterium with mannose-specific binding lectin) were then used as model bacteria to study bacterial adhesion mechanisms on different polymer-treated sensor surfaces by the coupled resonance theory. Our results showed that lectin-carbohydrate interactions play significant roles in comparison to the nonspecific interactions, such as electrostatic interactions. A significantly higher amount of P. aeruginosa PAO1 could adhere on the glycopolymer surface with strong contact point stiffness as compared to E. coli K-12 on the same surface. Furthermore, in comparison to E. coli K-12, the adhesion of P. aeruginosa PAO1 to the glycopolymers was found to be highly dependent on the presence of calcium ions due to the specific C-type lectin interactions of PA-IL, and also the enhanced bacterial adhesion is attributed to the stiffer glycopolymer surface in higher ionic strength condition.
Collapse
Affiliation(s)
- Yinan Wang
- Department of Chemical and Materials Engineering and ‡Department of Civil and Environmental Engineering, University of Alberta , 116 Street and 85 Avenue, Edmonton, Alberta T6G 2G6, Canada
| | | | | |
Collapse
|
25
|
Lillington J, Geibel S, Waksman G. Biogenesis and adhesion of type 1 and P pili. Biochim Biophys Acta Gen Subj 2014; 1840:2783-93. [PMID: 24797039 DOI: 10.1016/j.bbagen.2014.04.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 04/22/2014] [Accepted: 04/24/2014] [Indexed: 01/22/2023]
Abstract
BACKGROUND Uropathogenic Escherichia coli (UPEC) cause urinary tract infections (UTIs) in approximately 50% of women. These bacteria use type 1 and P pili for host recognition and attachment. These pili are assembled by the chaperone-usher pathway of pilus biogenesis. SCOPE OF REVIEW The review examines the biogenesis and adhesion of the UPEC type 1 and P pili. Particular emphasis is drawn to the role of the outer membrane usher protein. The structural properties of the complete pilus are also examined to highlight the strength and functionality of the final assembly. MAJOR CONCLUSIONS The usher orchestrates the sequential addition of pilus subunits in a defined order. This process follows a subunit-incorporation cycle which consists of four steps: recruitment at the usher N-terminal domain, donor-strand exchange with the previously assembled subunit, transfer to the usher C-terminal domains and translocation of the nascent pilus. Adhesion by the type 1 and P pili is strengthened by the quaternary structure of their rod sections. The rod is endowed with spring-like properties which provide mechanical resistance against urine flow. The distal adhesins operate differently from one another, targeting receptors in a specific manner. The biogenesis and adhesion of type 1 and P pili are being therapeutically targeted, and efforts to prevent pilus growth or adherence are described. GENERAL SIGNIFICANCE The combination of structural and biochemical study has led to the detailed mechanistic understanding of this membrane spanning nano-machine. This can now be exploited to design novel drugs able to inhibit virulence. This is vital in the present era of resurgent antibiotic resistance. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins.
Collapse
Affiliation(s)
- James Lillington
- Institute of Structural and Molecular Biology (ISMB), University College London and Birkbeck College, Malet Street, London WC1E 7HX, UK
| | - Sebastian Geibel
- Institute of Structural and Molecular Biology (ISMB), University College London and Birkbeck College, Malet Street, London WC1E 7HX, UK
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology (ISMB), University College London and Birkbeck College, Malet Street, London WC1E 7HX, UK.
| |
Collapse
|
26
|
P-fimbriae in the presence of anti-PapA antibodies: new insight of antibodies action against pathogens. Sci Rep 2013; 3:3393. [PMID: 24292100 PMCID: PMC3848023 DOI: 10.1038/srep03393] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 11/13/2013] [Indexed: 12/11/2022] Open
Abstract
Uropathogenic strains of Escherichia coli establish urinary tract infections by attaching to host epithelial cells using adhesive organelles called fimbriae. Fimbriae are helix-like structures with a remarkable adaptability, offering safeguarding for bacteria exposed to changing fluid forces in the urinary tract. We challenged this property of P-fimbriae by cross-linking their subunits with shaft-specific antibodies and measuring the corresponding force response at a single organelle level. Our data show compromised extension and rewinding of P-fimbriae in the presence of antibodies and reduced fimbrial elasticity, which are important properties of fimbriae contributing to the ability of bacteria to cause urinary tract infections. The reduced elasticity found by cross-linking fimbrial subunits could thus be another assignment for antibodies; in addition to marking bacteria as foreign, antibodies physically compromise fimbrial function. We suggest that our assay and results will be a starting point for further investigations aimed at inhibiting sustained bacterial adhesion by antibodies.
Collapse
|
27
|
Ordered and ushered; the assembly and translocation of the adhesive type I and p pili. BIOLOGY 2013; 2:841-60. [PMID: 24833049 PMCID: PMC3960871 DOI: 10.3390/biology2030841] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/21/2013] [Accepted: 05/24/2013] [Indexed: 11/17/2022]
Abstract
Type I and P pili are chaperone-usher pili of uropathogenic Escherichia coli, which allow bacteria to adhere to host cell receptors. Pilus formation and secretion are orchestrated by two accessory proteins, a chaperone, which catalyses pilus subunit folding and maintains them in a polymerization-competent state, and an outer membrane-spanning nanomachine, the usher, which choreographs their assembly into a pilus and drives their secretion through the membrane. In this review, recent structures and kinetic studies are combined to examine the mechanism of type I and P pili assembly, as it is currently known. We also investigate how the knowledge of pilus biogenesis mechanisms has been exploited to design selective inhibitors of the process.
Collapse
|
28
|
Wurpel DJ, Beatson SA, Totsika M, Petty NK, Schembri MA. Chaperone-usher fimbriae of Escherichia coli. PLoS One 2013; 8:e52835. [PMID: 23382825 PMCID: PMC3559732 DOI: 10.1371/journal.pone.0052835] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 11/22/2012] [Indexed: 11/29/2022] Open
Abstract
Chaperone-usher (CU) fimbriae are adhesive surface organelles common to many Gram-negative bacteria. Escherichia coli genomes contain a large variety of characterised and putative CU fimbrial operons, however, the classification and annotation of individual loci remains problematic. Here we describe a classification model based on usher phylogeny and genomic locus position to categorise the CU fimbrial types of E. coli. Using the BLASTp algorithm, an iterative usher protein search was performed to identify CU fimbrial operons from 35 E. coli (and one Escherichia fergusonnii) genomes representing different pathogenic and phylogenic lineages, as well as 132 Escherichia spp. plasmids. A total of 458 CU fimbrial operons were identified, which represent 38 distinct fimbrial types based on genomic locus position and usher phylogeny. The majority of fimbrial operon types occupied a specific locus position on the E. coli chromosome; exceptions were associated with mobile genetic elements. A group of core-associated E. coli CU fimbriae were defined and include the Type 1, Yad, Yeh, Yfc, Mat, F9 and Ybg fimbriae. These genes were present as intact or disrupted operons at the same genetic locus in almost all genomes examined. Evaluation of the distribution and prevalence of CU fimbrial types among different pathogenic and phylogenic groups provides an overview of group specific fimbrial profiles and insight into the ancestry and evolution of CU fimbriae in E. coli.
Collapse
Affiliation(s)
- Daniël J. Wurpel
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Scott A. Beatson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Makrina Totsika
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Nicola K. Petty
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Mark A. Schembri
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
29
|
The structure of the CS1 pilus of enterotoxigenic Escherichia coli reveals structural polymorphism. J Bacteriol 2012; 195:1360-70. [PMID: 23175654 DOI: 10.1128/jb.01989-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a bacterial pathogen that causes diarrhea in children and travelers in developing countries. ETEC adheres to host epithelial cells in the small intestine via a variety of different pili. The CS1 pilus is a prototype for a family of related pili, including the CFA/I pili, present on ETEC and other Gram-negative bacterial pathogens. These pili are assembled by an outer membrane usher protein that catalyzes subunit polymerization via donor strand complementation, in which the N terminus of each incoming pilin subunit fits into a hydrophobic groove in the terminal subunit, completing a β-sheet in the Ig fold. Here we determined a crystal structure of the CS1 major pilin subunit, CooA, to a 1.6-Å resolution. CooA is a globular protein with an Ig fold and is similar in structure to the CFA/I major pilin CfaB. We determined three distinct negative-stain electron microscopic reconstructions of the CS1 pilus and generated pseudoatomic-resolution pilus structures using the CooA crystal structure. CS1 pili adopt multiple structural states with differences in subunit orientations and packing. We propose that the structural perturbations are accommodated by flexibility in the N-terminal donor strand of CooA and by plasticity in interactions between exposed flexible loops on adjacent subunits. Our results suggest that CS1 and other pili of this class are extensible filaments that can be stretched in response to mechanical stress encountered during colonization.
Collapse
|
30
|
Thanassi DG, Bliska JB, Christie PJ. Surface organelles assembled by secretion systems of Gram-negative bacteria: diversity in structure and function. FEMS Microbiol Rev 2012; 36:1046-82. [PMID: 22545799 PMCID: PMC3421059 DOI: 10.1111/j.1574-6976.2012.00342.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 03/08/2012] [Accepted: 04/13/2012] [Indexed: 11/29/2022] Open
Abstract
Gram-negative bacteria express a wide variety of organelles on their cell surface. These surface structures may be the end products of secretion systems, such as the hair-like fibers assembled by the chaperone/usher (CU) and type IV pilus pathways, which generally function in adhesion to surfaces and bacterial-bacterial and bacterial-host interactions. Alternatively, the surface organelles may be integral components of the secretion machinery itself, such as the needle complex and pilus extensions formed by the type III and type IV secretion systems, which function in the delivery of bacterial effectors inside host cells. Bacterial surface structures perform functions critical for pathogenesis and have evolved to withstand forces exerted by the external environment and cope with defenses mounted by the host immune system. Given their essential roles in pathogenesis and exposed nature, bacterial surface structures also make attractive targets for therapeutic intervention. This review will describe the structure and function of surface organelles assembled by four different Gram-negative bacterial secretion systems: the CU pathway, the type IV pilus pathway, and the type III and type IV secretion systems.
Collapse
Affiliation(s)
- David G Thanassi
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY 11794-5120, USA.
| | | | | |
Collapse
|
31
|
Busch A, Waksman G. Chaperone-usher pathways: diversity and pilus assembly mechanism. Philos Trans R Soc Lond B Biol Sci 2012; 367:1112-22. [PMID: 22411982 DOI: 10.1098/rstb.2011.0206] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Up to eight different types of secretion systems, and several more subtypes, have been described in Gram-negative bacteria. Here, we focus on the diversity and assembly mechanism of one of the best-studied secretion systems, the widespread chaperone-usher pathway known to assemble and secrete adhesive surface structures, called pili or fimbriae, which play essential roles in targeting bacterial pathogens to the host.
Collapse
Affiliation(s)
- Andreas Busch
- Institute of Structural and Molecular Biology, University College London, Malet Street, WC1E 7HX London, UK
| | | |
Collapse
|
32
|
Chan CH, Chen FJ, Huang YJ, Chen SY, Liu KL, Wang ZC, Peng HL, Yew TR, Liu CH, Liou GG, Hsu KY, Chang HY, Hsu L. Identification of protein domains on major pilin MrkA that affects the mechanical properties of Klebsiella pneumoniae type 3 fimbriae. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:7428-7435. [PMID: 22524463 DOI: 10.1021/la300224w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The Klebsiella pneumoniae type 3 fimbriae are mainly composed of MrkA pilins that assemble into a helixlike filament. This study determined the biomechanical properties of the fimbriae and analyzed 11 site-directed MrkA mutants to identify domains that are critical for the properties. Escherichia coli strains expressing type 3 fimbriae with an Ala substitution at either F34, V45, C87, G189, T196, or Y197 resulted in a significant reduction in biofilm formation. The E. coli strain expressing MrkAG189A remained capable of producing a normal number of fimbriae. Although F34A, V45A, T196A, and Y197A substitutions expressed on E. coli strains produced sparse quantities of fimbriae, no fimbriae were observed on the cells expressing MrkAC87A. Further investigations of the mechanical properties of the MrkAG189A fimbriae with optical tweezers revealed that, unlike the wild-type fimbriae, the uncoiling force for MrkAG189A fimbriae was not constant. The MrkAG189A fimbriae also exhibited a lower enthalpy in the differential scanning calorimetry analysis. Together, these findings indicate that the mutant fimbriae are less stable than the wild-type. This study has demonstrated that the C-terminal β strands of MrkA are required for the assembly and structural stability of fimbriae.
Collapse
Affiliation(s)
- Chia-Han Chan
- Institute and Department of Electrophysics, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
A structural basis for sustained bacterial adhesion: biomechanical properties of CFA/I pili. J Mol Biol 2011; 415:918-28. [PMID: 22178477 DOI: 10.1016/j.jmb.2011.12.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 12/02/2011] [Accepted: 12/05/2011] [Indexed: 12/14/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) are a major cause of diarrheal disease worldwide. Adhesion pili (or fimbriae), such as the CFA/I (colonization factor antigen I) organelles that enable ETEC to attach efficiently to the host intestinal tract epithelium, are critical virulence factors for initiation of infection. We characterized the intrinsic biomechanical properties and kinetics of individual CFA/I pili at the single-organelle level, demonstrating that weak external forces (7.5 pN) are sufficient to unwind the intact helical filament of this prototypical ETEC pilus and that it quickly regains its original structure when the force is removed. While the general relationship between exertion of force and an increase in the filament length for CFA/I pili associated with diarrheal disease is analogous to that of P pili and type 1 pili, associated with urinary tract and other infections, the biomechanical properties of these different pili differ in key quantitative details. Unique features of CFA/I pili, including the significantly lower force required for unwinding, the higher extension speed at which the pili enter a dynamic range of unwinding, and the appearance of sudden force drops during unwinding, can be attributed to morphological features of CFA/I pili including weak layer-to-layer interactions between subunits on adjacent turns of the helix and the approximately horizontal orientation of pilin subunits with respect to the filament axis. Our results indicate that ETEC CFA/I pili are flexible organelles optimized to withstand harsh motion without breaking, resulting in continued attachment to the intestinal epithelium by the pathogenic bacteria that express these pili.
Collapse
|
34
|
Biofilm formation and virulence of uropathogenic Escherichia coli in urine after consumption of cranberry-lingonberry juice. Eur J Clin Microbiol Infect Dis 2011; 31:655-62. [PMID: 21822564 DOI: 10.1007/s10096-011-1355-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 07/11/2011] [Indexed: 10/17/2022]
Abstract
Cranberry-lingonberry juice (CLJ) was effective in preventing urinary tract infections (UTIs) in our earlier randomized clinical trial. We aimed to test whether consumption of CLJ at a similar dose to earlier reduces the biofilm formation and virulence of uropathogenic Escherichia coli in urine. Twenty healthy women drank 100 ml of CLJ daily for two weeks. Urine samples were obtained 2-4 hours after the last dose. Control samples were taken after a one-week period without berry consumption. Biofilm formation of 20 E. coli strains was measured at 72 hours by the polystyrene microtitre plate method. Quantitative real-time PCR analyses were performed for selected genes. Four of the 20 clinical strains produced more biofilm in urine after CLJ consumption (P < 0.05) and one produced less. Expression levels of the pga, cpxA, fimA and papF genes did not differ between bacteria grown in control urine and urine obtained after CLJ consumption, except for pga gene expression, which was reduced in one strain after CLJ (P = 0.04). It appears that the effect of CLJ in preventing UTIs is not explained by mechanisms that reduce biofilm formation or the expression of selected virulence genes of Escherichia coli in urine.
Collapse
|
35
|
Evidence for a biogenic, microorganismal origin of rock varnish from the Gangdese Belt of Tibet. Micron 2011; 42:401-11. [DOI: 10.1016/j.micron.2010.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 12/02/2010] [Accepted: 12/02/2010] [Indexed: 11/22/2022]
|
36
|
Chen FJ, Chan CH, Huang YJ, Liu KL, Peng HL, Chang HY, Liou GG, Yew TR, Liu CH, Hsu KY, Hsu L. Structural and mechanical properties of Klebsiella pneumoniae type 3 Fimbriae. J Bacteriol 2011; 193:1718-25. [PMID: 21239584 PMCID: PMC3067671 DOI: 10.1128/jb.01395-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 01/06/2011] [Indexed: 11/20/2022] Open
Abstract
This study investigated the structural and mechanical properties of Klebsiella pneumoniae type 3 fimbriae, which constitute a known virulence factor for the bacterium. Transmission electron microscopy and optical tweezers were used to understand the ability of the bacterium to survive flushes. An individual K. pneumoniae type 3 fimbria exhibited a helix-like structure with a pitch of 4.1 nm and a three-phase force-extension curve. The fimbria was first nonlinearly stretched with increasing force. Then, it started to uncoil and extended several micrometers at a fixed force of 66 ± 4 pN (n = 22). Finally, the extension of the fimbria shifted to the third phase, with a characteristic force of 102 ± 9 pN (n = 14) at the inflection point. Compared with the P fimbriae and type 1 fimbriae of uropathogenic Escherichia coli, K. pneumoniae type 3 fimbriae have a larger pitch in the helix-like structure and stronger uncoiling and characteristic forces.
Collapse
Affiliation(s)
- Feng-Jung Chen
- Institute and Department of Electrophysics, Department of Photonics and Institute of Electro-Optical Engineering, Department of Biological Science and Technology, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan, Republic of China, Department of Materials Science and Engineering, Institute of Molecular Medicine and Department of Life Sciences, Department of Power Mechanical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300, Taiwan, Republic of China, Division of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Jhunan, Miaoli County 350, Taiwan, Republic of China
| | - Chia-Han Chan
- Institute and Department of Electrophysics, Department of Photonics and Institute of Electro-Optical Engineering, Department of Biological Science and Technology, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan, Republic of China, Department of Materials Science and Engineering, Institute of Molecular Medicine and Department of Life Sciences, Department of Power Mechanical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300, Taiwan, Republic of China, Division of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Jhunan, Miaoli County 350, Taiwan, Republic of China
| | - Ying-Jung Huang
- Institute and Department of Electrophysics, Department of Photonics and Institute of Electro-Optical Engineering, Department of Biological Science and Technology, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan, Republic of China, Department of Materials Science and Engineering, Institute of Molecular Medicine and Department of Life Sciences, Department of Power Mechanical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300, Taiwan, Republic of China, Division of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Jhunan, Miaoli County 350, Taiwan, Republic of China
| | - Kuo-Liang Liu
- Institute and Department of Electrophysics, Department of Photonics and Institute of Electro-Optical Engineering, Department of Biological Science and Technology, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan, Republic of China, Department of Materials Science and Engineering, Institute of Molecular Medicine and Department of Life Sciences, Department of Power Mechanical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300, Taiwan, Republic of China, Division of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Jhunan, Miaoli County 350, Taiwan, Republic of China
| | - Hwei-Ling Peng
- Institute and Department of Electrophysics, Department of Photonics and Institute of Electro-Optical Engineering, Department of Biological Science and Technology, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan, Republic of China, Department of Materials Science and Engineering, Institute of Molecular Medicine and Department of Life Sciences, Department of Power Mechanical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300, Taiwan, Republic of China, Division of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Jhunan, Miaoli County 350, Taiwan, Republic of China
| | - Hwan-You Chang
- Institute and Department of Electrophysics, Department of Photonics and Institute of Electro-Optical Engineering, Department of Biological Science and Technology, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan, Republic of China, Department of Materials Science and Engineering, Institute of Molecular Medicine and Department of Life Sciences, Department of Power Mechanical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300, Taiwan, Republic of China, Division of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Jhunan, Miaoli County 350, Taiwan, Republic of China
| | - Gunn-Guang Liou
- Institute and Department of Electrophysics, Department of Photonics and Institute of Electro-Optical Engineering, Department of Biological Science and Technology, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan, Republic of China, Department of Materials Science and Engineering, Institute of Molecular Medicine and Department of Life Sciences, Department of Power Mechanical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300, Taiwan, Republic of China, Division of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Jhunan, Miaoli County 350, Taiwan, Republic of China
| | - Tri-Rung Yew
- Institute and Department of Electrophysics, Department of Photonics and Institute of Electro-Optical Engineering, Department of Biological Science and Technology, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan, Republic of China, Department of Materials Science and Engineering, Institute of Molecular Medicine and Department of Life Sciences, Department of Power Mechanical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300, Taiwan, Republic of China, Division of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Jhunan, Miaoli County 350, Taiwan, Republic of China
| | - Cheng-Hsien Liu
- Institute and Department of Electrophysics, Department of Photonics and Institute of Electro-Optical Engineering, Department of Biological Science and Technology, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan, Republic of China, Department of Materials Science and Engineering, Institute of Molecular Medicine and Department of Life Sciences, Department of Power Mechanical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300, Taiwan, Republic of China, Division of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Jhunan, Miaoli County 350, Taiwan, Republic of China
| | - Ken Y. Hsu
- Institute and Department of Electrophysics, Department of Photonics and Institute of Electro-Optical Engineering, Department of Biological Science and Technology, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan, Republic of China, Department of Materials Science and Engineering, Institute of Molecular Medicine and Department of Life Sciences, Department of Power Mechanical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300, Taiwan, Republic of China, Division of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Jhunan, Miaoli County 350, Taiwan, Republic of China
| | - Long Hsu
- Institute and Department of Electrophysics, Department of Photonics and Institute of Electro-Optical Engineering, Department of Biological Science and Technology, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan, Republic of China, Department of Materials Science and Engineering, Institute of Molecular Medicine and Department of Life Sciences, Department of Power Mechanical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300, Taiwan, Republic of China, Division of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Jhunan, Miaoli County 350, Taiwan, Republic of China
| |
Collapse
|
37
|
EM reconstruction of adhesins: future prospects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 715:271-84. [PMID: 21557070 DOI: 10.1007/978-94-007-0940-9_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Both Gram-negative and Gram-positive pathogenic bacteria present a remarkable number of surface-exposed organelles and secreted toxins that allow them to control the primary stages of infection, bacterial attachment to host cell receptors and colonization. The mediators of these processes, called adhesins, form a heterogeneous group that varies in architecture, domain content and mechanism of binding. A full understanding of how adhesins mediate cellular adhesion and colonization requires quantitative functional assays to evaluate the strength of the binding interactions, as well as determination of the high-resolution three-dimensional structures of the molecules to provide the atomic details of the interactions. The combination of classical imaging techniques like X-ray crystallography and Nuclear Magnetic Resonance (NMR) with the emerging technique of single-particle electron cryomicroscopy has become a tremendously helpful tool to understand the three-dimensional structure at near atomic-level resolution of newly discovered adhesins and their complexes. A detailed study of the structure of these molecules, both isolated and expressed on bacterial surface is a fundamental requirement for understanding the adhesion mechanism to host cells. This chapter will focus on the structure determination of such surface-exposed protein structures in both Gram-negative and Gram-positive bacterial adhesins.
Collapse
|
38
|
Shewmaker F. The application of NMR techniques to bacterial adhesins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 715:241-56. [PMID: 21557068 DOI: 10.1007/978-94-007-0940-9_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Extracellular adhesins frequently compose large, highly-ordered structural assemblies that project away from the bacterial surface. These assemblies, known as pili or fimbriae, are rod-like polymeric structures that in some cases can extend up to several micrometers from the cell surface. Because these adhesin structures are critical to bacterial colonization of host cell surfaces, there is an incentive to understand their structure, assembly and mechanism of host cell attachment. Various methods in Nuclear Magnetic Resonance (NMR) spectroscopy have been used to address these topics, yielding structural information at the atomic level. Also, new methods in solid-state NMR spectroscopy have thus far been under-utilized in the study of large adhesin structures and offer a powerful approach to overcoming problems with crystallization to better understand the structures of these complexes. The following is a brief overview of the contributions of NMR to the study of bacterial adhesins with an emphasis on the future potential of solid-state NMR.
Collapse
Affiliation(s)
- Frank Shewmaker
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| |
Collapse
|
39
|
Castelain M, Ehlers S, Klinth J, Lindberg S, Andersson M, Uhlin BE, Axner O. Fast uncoiling kinetics of F1C pili expressed by uropathogenic Escherichia coli are revealed on a single pilus level using force-measuring optical tweezers. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2010; 40:305-16. [PMID: 21161524 DOI: 10.1007/s00249-010-0648-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 11/19/2010] [Accepted: 11/22/2010] [Indexed: 10/24/2022]
Abstract
Uropathogenic Escherichia coli (UPEC) express various kinds of organelles, so-called pili or fimbriae, that mediate adhesion to host tissue in the urinary tract through specific receptor-adhesin interactions. The biomechanical properties of these pili have been considered important for the ability of bacteria to withstand shear forces from rinsing urine flows. Force-measuring optical tweezers have been used to characterize individual organelles of F1C type expressed by UPEC bacteria with respect to such properties. Qualitatively, the force-versus-elongation response was found to be similar to that of other types of helix-like pili expressed by UPEC, i.e., type 1, P, and S, with force-induced elongation in three regions, one of which represents the important uncoiling mechanism of the helix-like quaternary structure. Quantitatively, the steady-state uncoiling force was assessed as 26.4 ±1.4 pN, which is similar to those of other pili (which range from 21 pN for S(I) to 30 pN for type 1). The corner velocity for dynamic response (1,400 nm/s) was found to be larger than those of the other pili (400-700 nm/s for S and P pili, and 6 nm/s for type 1). The kinetics were found to be faster, with a thermal opening rate of 17 Hz, a few times higher than S and P pili, and three orders of magnitude higher than type 1. These data suggest that F1C pili are, like P and S pili, evolutionarily selected to primarily withstand the conditions expressed in the upper urinary tract.
Collapse
|
40
|
The structure of Yersinia pestis Caf1 polymer in free and adjuvant bound states. Vaccine 2010; 28:5746-54. [DOI: 10.1016/j.vaccine.2010.05.074] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 05/24/2010] [Accepted: 05/28/2010] [Indexed: 12/14/2022]
|
41
|
Li Q, Ng TW, Dodson KW, So SSK, Bayle KM, Pinkner JS, Scarlata S, Hultgren SJ, Thanassi DG. The differential affinity of the usher for chaperone-subunit complexes is required for assembly of complete pili. Mol Microbiol 2010; 76:159-72. [PMID: 20199591 DOI: 10.1111/j.1365-2958.2010.07089.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Attachment to host cells via adhesive surface structures is a prerequisite for the pathogenesis of many bacteria. Uropathogenic Escherichia coli assemble P and type 1 pili for attachment to the host urothelium. Assembly of these pili requires the conserved chaperone/usher pathway, in which a periplasmic chaperone controls the folding of pilus subunits and an outer membrane usher provides a platform for pilus assembly and secretion. The usher has differential affinity for pilus subunits, with highest affinity for the tip-localized adhesin. Here, we identify residues F21 and R652 of the P pilus usher PapC as functioning in the differential affinity of the usher. R652 is important for high-affinity binding to the adhesin whereas F21 is important for limiting affinity for the PapA major rod subunit. PapC mutants in these residues are specifically defective for pilus assembly in the presence of PapA, demonstrating that differential affinity of the usher is required for assembly of complete pili. Analysis of PapG deletion mutants demonstrated that the adhesin is not required to initiate P pilus biogenesis. Thus, the differential affinity of the usher may be critical to ensure assembly of functional pilus fibres.
Collapse
Affiliation(s)
- Qinyuan Li
- Center for Infectious Diseases, Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-5120, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Björnham O, Axner O. Multipili attachment of bacteria with helixlike pili exposed to stress. J Chem Phys 2009; 130:235102. [PMID: 19548763 DOI: 10.1063/1.3148027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A number of biomechanical properties of various types of pili expressed by Escherichia coli, predominantly their force-versus-elongation behavior, have previously been assessed in detail on a single pilus level. In vivo, however, bacteria bind in general to host cells by a multitude of pili, which presumably provides them with adhesion properties that differs from those of single pili. Based upon the previously assessed biomechanical properties of individual pili, this work presents a theoretical analysis of the adhesion properties of multipili-attaching bacteria expressing helixlike pili exposed to an external force. Expressions for the adhesion lifetime of dual- and multipili-attaching bacteria are derived and their validity is verified by Monte Carlo simulations. It is demonstrated that the adhesion lifetime of a multipili-binding bacterium depends to a large degree on the cooperativity of the attaching pili, which, in turn, depends strongly on their internal biomechanical properties, in particular their helixlike structure and its ability to elongate, which, in turn, depends on the intrinsic properties of the bonds, e.g., their lengths and activation energies. It is shown, for example, that a decrease in the length of a layer-to-layer bond in the rod of P pili, expressed by E. coli, by 50% leads to a decrease in the adhesion lifetime of a bacterium attaching by ten pili and exposed to a force of 500 pN by three orders of magnitude. The results indicate moreover that the intrinsic properties of the rod for this particular type of pili are optimized for multipili attachment under a broad range of external forces and presumably also to its in vivo environment. For example, P pili seems to be optimized to withstand a force exposure during approximately 3 s, which correspond to the time it takes for a bolus to pass a bacterium attached to the ureteral wall. Even though the results presented in this work apply quantitatively to one type of pilus, they are assumed to apply qualitatively to all helixlike pili systems expressing slip bonds.
Collapse
Affiliation(s)
- Oscar Björnham
- Department of Applied Physics and Electronics, Umeå University, SE-901 87 Umeå, Sweden
| | | |
Collapse
|
43
|
Castelain M, Koutris E, Andersson M, Wiklund K, Björnham O, Schedin S, Axner O. Characterization of the Biomechanical Properties of T4 Pili Expressed byStreptococcus pneumoniae-A Comparison between Helix-like and Open Coil-like Pili. Chemphyschem 2009; 10:1533-40. [DOI: 10.1002/cphc.200900195] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
44
|
Li H, Thanassi DG. Use of a combined cryo-EM and X-ray crystallography approach to reveal molecular details of bacterial pilus assembly by the chaperone/usher pathway. Curr Opin Microbiol 2009; 12:326-32. [PMID: 19356973 DOI: 10.1016/j.mib.2009.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 02/25/2009] [Accepted: 03/09/2009] [Indexed: 12/31/2022]
Abstract
Many bacteria assemble hair-like fibers termed pili or fimbriae on their cell surface. These fibers mediate adhesion to various surfaces, including host cells, and play crucial roles in pathogenesis. Pili are polymers composed of thousands of individual subunit proteins. Understanding how these subunit proteins cross the bacterial envelope and correctly assemble at the cell surface is important not only for basic biology but also for the development of novel antimicrobial agents. The chaperone/usher pilus biogenesis pathway is one of the best-understood protein secretion systems, thanks largely to innovative efforts in biophysical techniques such as X-ray crystallography and cryo-electron microscopy. Such a combined approach holds promise for further elucidating remaining questions regarding the multi-step and highly dynamic pilus assembly process, as well as for studying other protein secretion and organelle biogenesis systems.
Collapse
Affiliation(s)
- Huilin Li
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA.
| | | |
Collapse
|
45
|
Architectures and biogenesis of non-flagellar protein appendages in Gram-negative bacteria. EMBO J 2009; 27:2271-80. [PMID: 18668121 PMCID: PMC2500206 DOI: 10.1038/emboj.2008.155] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Accepted: 07/07/2008] [Indexed: 11/22/2022] Open
Abstract
Bacteria commonly expose non-flagellar proteinaceous appendages on their outer surfaces. These extracellular structures, called pili or fimbriae, are employed in attachment and invasion, biofilm formation, cell motility or protein and DNA transport across membranes. Over the past 15 years, the power of molecular and structural techniques has revolutionalized our understanding of the biogenesis, structure, function and mode of action of these bacterial organelles. Here, we review the five known classes of Gram-negative non-flagellar appendages from a biosynthetic and structural point of view.
Collapse
|
46
|
Thoma C, Frank M, Rachel R, Schmid S, Näther D, Wanner G, Wirth R. The Mth60 fimbriae of Methanothermobacter thermoautotrophicus are functional adhesins. Environ Microbiol 2008; 10:2785-95. [DOI: 10.1111/j.1462-2920.2008.01698.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Hilleringmann M, Giusti F, Baudner BC, Masignani V, Covacci A, Rappuoli R, Barocchi MA, Ferlenghi I. Pneumococcal pili are composed of protofilaments exposing adhesive clusters of Rrg A. PLoS Pathog 2008; 4:e1000026. [PMID: 18369475 PMCID: PMC2265430 DOI: 10.1371/journal.ppat.1000026] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2007] [Accepted: 02/15/2008] [Indexed: 11/18/2022] Open
Abstract
Pili have been identified on the cell surface of Streptococcus pneumoniae, a major cause of morbidity and mortality worldwide. In contrast to Gram-negative bacteria, little is known about the structure of native pili in Gram-positive species and their role in pathogenicity. Triple immunoelectron microscopy of the elongated structure showed that purified pili contained RrgB as the major compound, followed by clustered RrgA and individual RrgC molecules on the pilus surface. The arrangement of gold particles displayed a uniform distribution of anti-RrgB antibodies along the whole pilus, forming a backbone structure. Antibodies against RrgA were found along the filament as particulate aggregates of 2-3 units, often co-localised with single RrgC subunits. Structural analysis using cryo electron microscopy and data obtained from freeze drying/metal shadowing technique showed that pili are oligomeric appendages formed by at least two protofilaments arranged in a coiled-coil, compact superstructure of various diameters. Using extracellular matrix proteins in an enzyme-linked immunosorbent assay, ancillary RrgA was identified as the major adhesin of the pilus. Combining the structural and functional data, a model emerges where the pilus RrgB backbone serves as a carrier for surface located adhesive clusters of RrgA that facilitates the interaction with the host.
Collapse
|
48
|
van Aartsen JJ. The Klebsiella pheV tRNA locus: a hotspot for integration of alien genomic islands. ACTA ACUST UNITED AC 2008. [DOI: 10.1093/biohorizons/hzn006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
49
|
Nuccio SP, Bäumler AJ. Evolution of the chaperone/usher assembly pathway: fimbrial classification goes Greek. Microbiol Mol Biol Rev 2007; 71:551-75. [PMID: 18063717 PMCID: PMC2168650 DOI: 10.1128/mmbr.00014-07] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Many Proteobacteria use the chaperone/usher pathway to assemble proteinaceous filaments on the bacterial surface. These filaments can curl into fimbrial or nonfimbrial surface structures (e.g., a capsule or spore coat). This article reviews the phylogeny of operons belonging to the chaperone/usher assembly class to explore the utility of establishing a scheme for subdividing them into clades of phylogenetically related gene clusters. Based on usher amino acid sequence comparisons, our analysis shows that the chaperone/usher assembly class is subdivided into six major phylogenetic clades, which we have termed alpha-, beta-, gamma-, kappa-, pi-, and sigma-fimbriae. Members of each clade share related operon structures and encode fimbrial subunits with similar protein domains. The proposed classification system offers a simple and convenient method for assigning newly discovered chaperone/usher systems to one of the six major phylogenetic groups.
Collapse
Affiliation(s)
- Sean-Paul Nuccio
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave., Davis, CA 95616-8645, USA
| | | |
Collapse
|
50
|
Gossert AD, Bettendorff P, Puorger C, Vetsch M, Herrmann T, Glockshuber R, Wüthrich K. NMR structure of the Escherichia coli type 1 pilus subunit FimF and its interactions with other pilus subunits. J Mol Biol 2007; 375:752-63. [PMID: 18048056 DOI: 10.1016/j.jmb.2007.10.059] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 10/19/2007] [Accepted: 10/23/2007] [Indexed: 10/22/2022]
Abstract
Type 1 pili from uropathogenic Escherichia coli strains mediate bacterial attachment to target receptors on the host tissue. They are composed of up to 3000 copies of the subunit FimA, which form the stiff, helical pilus rod, and the subunits FimF, FimG, and FimH, which form the linear tip fibrillum. All subunits in the pilus interact via donor strand complementation, in which the incomplete immunoglobulin-like fold of each subunit is complemented by insertion of an N-terminal extension from the following subunit. We determined the NMR structure of a monomeric, self-complemented variant of FimF, FimF(F), which has a second FimF donor strand segment fused to its C-terminus that enables intramolecular complementation of the FimF fold. NMR studies on bimolecular complexes between FimF(F) and donor strand-depleted variants of FimF and FimG revealed that the relative orientations of neighboring domains in the tip fibrillum cover a wide range. The data provide strong support for the intrinsic flexibility of the tip fibrillum. They lend further support to the hypothesis that this flexibility would significantly increase the probability that the adhesin at the distal end of the fibrillum successfully targets host cell receptors.
Collapse
Affiliation(s)
- Alvar D Gossert
- Institut für Molekularbiologie und Biophysik, ETH Zurich, CH-8093 Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|