1
|
Mo Y, Chen K, Ahmed MK, Gu H, Ou D, Li W, Huang H, Wang L. Spatial phytoplankton community structure revealed by photosynthetic pigments in the tropical estuarine-coastal zone (Bangladesh). MARINE ENVIRONMENTAL RESEARCH 2024; 201:106696. [PMID: 39163655 DOI: 10.1016/j.marenvres.2024.106696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/16/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024]
Abstract
To explore the variation of phytoplankton community along the Bakkhali river estuary and its adjacent coastal water in the north of the Bay of Bengal, total Chl-a (TChl-a) concentrations and group-specific photosynthetic pigments were investigated during April 2017. Distinct spatial distribution was observed in temperature, turbidity and nutrient concentrations as well as in TChl-a concentrations, showing a seaward decreasing pattern. The different distribution of phytoplankton pigments and functional groups along the gradients was also observed. Chlorophyll-b and zeaxanthin showed their highest abundance in the turbid riverine water, while alloxanthin and prasinoxanthin dominated in the coastal water. High concentrations of fucoxanthin, peridinin and hex-fucoxanthin were associated with high-light availability and showed a seaward increasing trend. Three phytoplankton groups can be classified: the riverine group (chlorophytes and cyanobacteria), the coastal group (cryptophytes and prasinophytes) and the offshore group (diatoms, dinoflagellate and haptophytes_type 6). The predominance of cryptophytes (avg. 48%) over diatoms (avg. 28%) was basically influenced by the scarcity of nitrogen and silicate relative to phosphate. Not only availability of nutrients, the photosynthetically active radiation also plays a key role in regulating TChl-a, photosynthetic pigments and functional groups in this tropical estuarine-coastal zone.
Collapse
Affiliation(s)
- Yu Mo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources P.R.C., Xiamen, 361005, China; Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, 530008, China
| | - Keliang Chen
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources P.R.C., Xiamen, 361005, China; Xiamen Ocean Vocational College, Xiamen, Fujian, 361100, China
| | | | - Haifeng Gu
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources P.R.C., Xiamen, 361005, China
| | - Danyun Ou
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources P.R.C., Xiamen, 361005, China
| | - Weiwen Li
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources P.R.C., Xiamen, 361005, China
| | - Hao Huang
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources P.R.C., Xiamen, 361005, China
| | - Lei Wang
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources P.R.C., Xiamen, 361005, China.
| |
Collapse
|
2
|
Waggoner EM, Djaoudi K, Diaz JM, Duhamel S. Dissolved organic phosphorus bond-class utilization by Synechococcus. FEMS Microbiol Ecol 2024; 100:fiae099. [PMID: 39003239 PMCID: PMC11319936 DOI: 10.1093/femsec/fiae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/14/2024] [Accepted: 07/12/2024] [Indexed: 07/15/2024] Open
Abstract
Dissolved organic phosphorus (DOP) contains compounds with phosphoester, phosphoanhydride, and phosphorus-carbon bonds. While DOP holds significant nutritional value for marine microorganisms, the bioavailability of each bond-class to the widespread cyanobacterium Synechococcus remains largely unknown. This study evaluates bond-class specific DOP utilization by Synechococcus strains from open and coastal oceans. Both strains exhibited comparable growth rates when provided phosphate, a phosphoanhydride [3-polyphosphate and 45-polyphosphate], or a DOP compound with both phosphoanhydride and phosphoester bonds (adenosine 5'-triphosphate). Growth rates on phosphoesters [glucose-6-phosphate, adenosine 5'-monophosphate, bis(4-methylumbelliferyl) phosphate] were variable, and neither strain grew on selected phosphorus-carbon compounds. Both strains hydrolyzed 3-polyphosphate, then adenosine 5'-triphosphate, and lastly adenosine 5'-monophosphate, exhibiting preferential enzymatic hydrolysis of phosphoanhydride bonds. The strains' exoproteomes contained phosphorus hydrolases, which combined with enhanced cell-free hydrolysis of 3-polyphosphate and adenosine 5'-triphosphate under phosphate deficiency, suggests active mineralization of phosphoanhydride bonds by these exoproteins. Synechococcus alkaline phosphatases presented broad substrate specificities, including activity toward the phosphoanhydride 3-polyphosphate, with varying affinities between strains. Collectively, these findings underscore the potentially significant role of compounds with phosphoanhydride bonds in Synechococcus phosphorus nutrition and highlight varied growth and enzymatic responses to molecular diversity within DOP bond-classes, thereby expanding our understanding of microbially mediated DOP cycling in marine ecosystems.
Collapse
Affiliation(s)
- Emily M Waggoner
- Department of Molecular and Cellular Biology, University of Arizona, 1007 East Lowell Street, Tucson, Arizona, AZ 85721, United States
| | - Kahina Djaoudi
- Department of Molecular and Cellular Biology, University of Arizona, 1007 East Lowell Street, Tucson, Arizona, AZ 85721, United States
| | - Julia M Diaz
- Geosciences Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, United States
| | - Solange Duhamel
- Department of Molecular and Cellular Biology, University of Arizona, 1007 East Lowell Street, Tucson, Arizona, AZ 85721, United States
| |
Collapse
|
3
|
Harcourt R, Garcia NS, Martiny AC. Intraspecific trait variation modulates the temperature effect on elemental quotas and stoichiometry in marine Synechococcus. PLoS One 2024; 19:e0292337. [PMID: 38498438 PMCID: PMC10947687 DOI: 10.1371/journal.pone.0292337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/26/2024] [Indexed: 03/20/2024] Open
Abstract
Diverse phytoplankton modulate the coupling between the ocean carbon and nutrient cycles through life-history traits such as cell size, elemental quotas, and ratios. Biodiversity is mostly considered at broad functional levels, but major phytoplankton lineages are themselves highly diverse. As an example, Synechococcus is found in nearly all ocean regions, and we demonstrate contains extensive intraspecific variation. Here, we grew four closely related Synechococcus isolates in serially transferred cultures across a range of temperatures (16-25°C) to quantify for the relative role of intraspecific trait variation vs. environmental change. We report differences in cell size (p<0.01) as a function of strain and clade (p<0.01). The carbon (QC), nitrogen (QN), and phosphorus (QP) cell quotas all increased with cell size. Furthermore, cell size has an inverse relationship to growth rate. Within our experimental design, temperature alone had a weak physiological effect on cell quota and elemental ratios. Instead, we find systemic intraspecific variance of C:N:P, with cell size and N:P having an inverse relationship. Our results suggest a key role for intraspecific life history traits in determining elemental quotas and stoichiometry. Thus, the extensive biodiversity harbored within many lineages may modulate the impact of environmental change on ocean biogeochemical cycles.
Collapse
Affiliation(s)
- Renne Harcourt
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, United States of America
| | - Nathan S. Garcia
- Department of Earth System Science, University of California, Irvine, California, United States of America
| | - Adam C. Martiny
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, United States of America
- Department of Earth System Science, University of California, Irvine, California, United States of America
| |
Collapse
|
4
|
Prasoodanan P K V, Kumar S, Dhakan DB, Waiker P, Saxena R, Sharma VK. Metagenomic exploration of Andaman region of the Indian Ocean. Sci Rep 2024; 14:2717. [PMID: 38302544 PMCID: PMC10834444 DOI: 10.1038/s41598-024-53190-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/28/2024] [Indexed: 02/03/2024] Open
Abstract
Ocean microbiome is crucial for global biogeochemical cycles and primary productivity. Despite numerous studies investigating the global ocean microbiomes, the microbiome composition of the Andaman region of the Indian Ocean remains largely unexplored. While this region harbors pristine biological diversity, the escalating anthropogenic activities along coastal habitats exert an influence on the microbial ecology and impact the aquatic ecosystems. We investigated the microbiome composition in the coastal waters of the Andaman Islands by 16S rRNA gene amplicon and metagenomic shotgun sequencing approaches and compared it with the Tara Oceans Consortium. In the coastal waters of the Andaman Islands, a significantly higher abundance and diversity of Synechococcus species was observed with a higher abundance of photosynthesis pigment-related genes to adapt to variable light conditions and nutrition. In contrast, Prochlorococcus species showed higher abundance in open ocean water samples of the Indian Ocean region, with a relatively limited functional diversity. A higher abundance of antibiotic-resistance genes was also noted in the coastal waters region. We also updated the ocean microbiome gene catalog with 93,172 unique genes from the Andaman coastal water microbiome. This study provides valuable insights into the Indian Ocean microbiome and supplements the global marine microbial ecosystem studies.
Collapse
Affiliation(s)
- Vishnu Prasoodanan P K
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Sudhir Kumar
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Darshan B Dhakan
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Prashant Waiker
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Rituja Saxena
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Vineet K Sharma
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India.
| |
Collapse
|
5
|
Zhang T, Zhou K, Wang Y, Xu J, Zheng Q, Luo T, Jiao N. Genomic insights into the adaptation of Synechococcus to the coastal environment on Xiamen. Front Microbiol 2023; 14:1292150. [PMID: 38059125 PMCID: PMC10696648 DOI: 10.3389/fmicb.2023.1292150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/01/2023] [Indexed: 12/08/2023] Open
Abstract
Synechococcus are widely distributed in the global ocean, from the pelagic zone to coastal waters. However, little is known about Synechococcus in coastal seawater due to limitations in isolation and culture conditions. In this study, a combination of metagenomic sequencing technology, flow cytometry sorting, and multiple displacement amplification was used to investigate Synechococcus in the coastal seawater of Xiamen Island. The results revealed 18 clades of Synechococcus and diverse metabolic genes that appear to contribute to their adaptation to the coastal environment. Intriguingly, some metabolic genes related to the metabolism of carbohydrates, energy, nucleotides, and amino acids were found in 89 prophage regions that were detected in 16,258 Synechococcus sequences. The detected metabolic genes can enable prophages to contribute to the adaptation of Synechococcus hosts to the coastal marine environment. The detection of prophages also suggests that the cyanophages have infected Synechococcus. On the other hand, the identification of 773 genes associated with antiviral defense systems indicates that Synechococcus in Xiamen have evolved genetic traits in response to cyanophage infection. Studying the community diversity and functional genes of Synechococcus provides insights into their role in environmental adaptation and marine ecosystems.
Collapse
Affiliation(s)
- Ting Zhang
- Fujian Key Laboratory of Marine Carbon Sequestration, Carbon Neutral Innovation Research Center, Xiamen University, Xiamen, Fujian, China
| | - Kun Zhou
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, United States
| | - Yanhui Wang
- Fujian Key Laboratory of Marine Carbon Sequestration, Carbon Neutral Innovation Research Center, Xiamen University, Xiamen, Fujian, China
| | - Jinxin Xu
- Fujian Key Laboratory of Marine Carbon Sequestration, Carbon Neutral Innovation Research Center, Xiamen University, Xiamen, Fujian, China
| | - Qiang Zheng
- Fujian Key Laboratory of Marine Carbon Sequestration, Carbon Neutral Innovation Research Center, Xiamen University, Xiamen, Fujian, China
| | - Tingwei Luo
- Fujian Key Laboratory of Marine Carbon Sequestration, Carbon Neutral Innovation Research Center, Xiamen University, Xiamen, Fujian, China
| | - Nianzhi Jiao
- Fujian Key Laboratory of Marine Carbon Sequestration, Carbon Neutral Innovation Research Center, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
6
|
Díez J, López-Lozano A, Domínguez-Martín MA, Gómez-Baena G, Muñoz-Marín MC, Melero-Rubio Y, García-Fernández JM. Regulatory and metabolic adaptations in the nitrogen assimilation of marine picocyanobacteria. FEMS Microbiol Rev 2023; 47:6794272. [PMID: 36323406 DOI: 10.1093/femsre/fuac043] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/17/2022] Open
Abstract
Prochlorococcus and Synechococcus are the two most abundant photosynthetic organisms on Earth, with a strong influence on the biogeochemical carbon and nitrogen cycles. Early reports demonstrated the streamlining of regulatory mechanisms in nitrogen metabolism and the removal of genes not strictly essential. The availability of a large series of genomes, and the utilization of latest generation molecular techniques have allowed elucidating the main mechanisms developed by marine picocyanobacteria to adapt to the environments where they thrive, with a particular interest in the strains inhabiting oligotrophic oceans. Given that nitrogen is often limited in those environments, a series of studies have explored the strategies utilized by Prochlorococcus and Synechococcus to exploit the low concentrations of nitrogen-containing molecules available in large areas of the oceans. These strategies include the reduction in the GC and the cellular protein contents; the utilization of truncated proteins; a reduced average amount of N in the proteome; the development of metabolic mechanisms to perceive and utilize nanomolar nitrate concentrations; and the reduced responsiveness of key molecular regulatory systems such as NtcA to 2-oxoglutarate. These findings are in sharp contrast with the large body of knowledge obtained in freshwater cyanobacteria. We will outline the main discoveries, stressing their relevance to the ecological success of these important microorganisms.
Collapse
Affiliation(s)
- J Díez
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba,14001, Spain
| | - A López-Lozano
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba,14001, Spain
| | - M A Domínguez-Martín
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba,14001, Spain
| | - G Gómez-Baena
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba,14001, Spain
| | - M C Muñoz-Marín
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba,14001, Spain
| | - Y Melero-Rubio
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba,14001, Spain
| | - J M García-Fernández
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba,14001, Spain
| |
Collapse
|
7
|
Cabello-Yeves PJ, Callieri C, Picazo A, Schallenberg L, Huber P, Roda-Garcia JJ, Bartosiewicz M, Belykh OI, Tikhonova IV, Torcello-Requena A, De Prado PM, Puxty RJ, Millard AD, Camacho A, Rodriguez-Valera F, Scanlan DJ. Elucidating the picocyanobacteria salinity divide through ecogenomics of new freshwater isolates. BMC Biol 2022; 20:175. [PMID: 35941649 PMCID: PMC9361551 DOI: 10.1186/s12915-022-01379-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cyanobacteria are the major prokaryotic primary producers occupying a range of aquatic habitats worldwide that differ in levels of salinity, making them a group of interest to study one of the major unresolved conundrums in aquatic microbiology which is what distinguishes a marine microbe from a freshwater one? We address this question using ecogenomics of a group of picocyanobacteria (cluster 5) that have recently evolved to inhabit geographically disparate salinity niches. Our analysis is made possible by the sequencing of 58 new genomes from freshwater representatives of this group that are presented here, representing a 6-fold increase in the available genomic data. RESULTS Overall, freshwater strains had larger genomes (≈2.9 Mb) and %GC content (≈64%) compared to brackish (2.69 Mb and 64%) and marine (2.5 Mb and 58.5%) isolates. Genomic novelties/differences across the salinity divide highlighted acidic proteomes and specific salt adaptation pathways in marine isolates (e.g., osmolytes/compatible solutes - glycine betaine/ggp/gpg/gmg clusters and glycerolipids glpK/glpA), while freshwater strains possessed distinct ion/potassium channels, permeases (aquaporin Z), fatty acid desaturases, and more neutral/basic proteomes. Sulfur, nitrogen, phosphorus, carbon (photosynthesis), or stress tolerance metabolism while showing distinct genomic footprints between habitats, e.g., different types of transporters, did not obviously translate into major functionality differences between environments. Brackish microbes show a mixture of marine (salt adaptation pathways) and freshwater features, highlighting their transitional nature. CONCLUSIONS The plethora of freshwater isolates provided here, in terms of trophic status preference and genetic diversity, exemplifies their ability to colonize ecologically diverse waters across the globe. Moreover, a trend towards larger and more flexible/adaptive genomes in freshwater picocyanobacteria may hint at a wider number of ecological niches in this environment compared to the relatively homogeneous marine system.
Collapse
Affiliation(s)
- Pedro J Cabello-Yeves
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel, Hernández, San Juan de Alicante, Alicante, Spain.
| | - Cristiana Callieri
- National Research Council (CNR), Institute of Water Research (IRSA), Verbania, Italy
| | - Antonio Picazo
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, E-46980, Paterna, Valencia, Spain
| | | | - Paula Huber
- Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET, Av. Intendente Marino Km 8,200, (7130) Chascomús, Buenos Aires, Argentina.,Instituto Nacional de Limnología (INALI), CONICET-UNL, Ciudad Universitaria - Paraje el Pozo s/n, (3000), Santa Fé, Argentina
| | - Juan J Roda-Garcia
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel, Hernández, San Juan de Alicante, Alicante, Spain
| | - Maciej Bartosiewicz
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Olga I Belykh
- Limnological Institute, Russian Academy of Sciences, P.O. Box 278, 664033, Irkutsk, Russia
| | - Irina V Tikhonova
- Limnological Institute, Russian Academy of Sciences, P.O. Box 278, 664033, Irkutsk, Russia
| | | | | | - Richard J Puxty
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Andrew D Millard
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
| | - Antonio Camacho
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, E-46980, Paterna, Valencia, Spain
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel, Hernández, San Juan de Alicante, Alicante, Spain.,Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
| | - David J Scanlan
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
8
|
Novel functional insights into a modified sugar-binding protein from Synechococcus MITS9220. Sci Rep 2022; 12:4805. [PMID: 35314715 PMCID: PMC8938411 DOI: 10.1038/s41598-022-08459-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/07/2022] [Indexed: 11/17/2022] Open
Abstract
Paradigms of metabolic strategies employed by photoautotrophic marine picocyanobacteria have been challenged in recent years. Based on genomic annotations, picocyanobacteria are predicted to assimilate organic nutrients via ATP-binding cassette importers, a process mediated by substrate-binding proteins. We report the functional characterisation of a modified sugar-binding protein, MsBP, from a marine Synechococcus strain, MITS9220. Ligand screening of MsBP shows a specific affinity for zinc (KD ~ 1.3 μM) and a preference for phosphate-modified sugars, such as fructose-1,6-biphosphate, in the presence of zinc (KD ~ 5.8 μM). Our crystal structures of apo MsBP (no zinc or substrate-bound) and Zn-MsBP (with zinc-bound) show that the presence of zinc induces structural differences, leading to a partially-closed substrate-binding cavity. The Zn-MsBP structure also sequesters several sulphate ions from the crystallisation condition, including two in the binding cleft, appropriately placed to mimic the orientation of adducts of a biphosphate hexose. Combined with a previously unseen positively charged binding cleft in our two structures and our binding affinity data, these observations highlight novel molecular variations on the sugar-binding SBP scaffold. Our findings lend further evidence to a proposed sugar acquisition mechanism in picocyanobacteria alluding to a mixotrophic strategy within these ubiquitous photosynthetic bacteria.
Collapse
|
9
|
Wang T, Xia X, Chen J, Liu H, Jing H. Spatio-Temporal Variation of Synechococcus Assemblages at DNA and cDNA Levels in the Tropical Estuarine and Coastal Waters. Front Microbiol 2022; 13:837037. [PMID: 35308375 PMCID: PMC8928118 DOI: 10.3389/fmicb.2022.837037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
Synechococcus is a major contributor to global marine primary production. Here, its spatio-temporal variations in abundance and phylogenetic structure were studied at three stations of the South China Sea at both DNA and cDNA levels. Synechococcus cell abundance was lowest in March, but highest in October at two coastal stations. Its abundance was higher at the estuarine station, which reached a peak value of 1.36 × 105 cells/ml in April, owing to the nitrogen nutrients discharged from the Sanya River. Gene and gene transcript abundances of four Synechococcus lineages, clades II, III, VIII, and S5.3, were studied by quantitative PCR, which showed that clade II was the most abundant lineage at both DNA and cDNA levels. High-throughput sequencing revealed that, at the DNA level, Synechococcus assemblage was dominated by clade SY4 (a novel clade defined in this study), S5.2, and clade II in the coastal waters and was dominated by freshwater/S5.2 Synechococcus, reaching a value up to 88.61% in June, in estuarine waters. Changes in salinity and nutrient concentration caused by seasonal monsoonal forcing and river discharge were the key determinants of the spatio-temporal variation in Synechococcus assemblages at the DNA level. In comparison, high dissimilation among samples at the same stations and in the same seasons leads to the imperceptible spatio-temporal variation pattern of Synechococcus assemblages at the cDNA level. Furthermore, co-occurrence networks disclosed that Synechococcus community had closer and more complex internal interactions at the cDNA level. These discrepancies highlighted the necessity to study Synechococcus assemblages at both DNA and cDNA levels.
Collapse
Affiliation(s)
- Ting Wang
- CAS Key Laboratory for Experimental Study Under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Xiaomin Xia
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Jiawei Chen
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Hongmei Jing
- CAS Key Laboratory for Experimental Study Under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| |
Collapse
|
10
|
Ford BA, Sullivan GJ, Moore L, Varkey D, Zhu H, Ostrowski M, Mabbutt BC, Paulsen IT, Shah BS. Functional characterisation of substrate-binding proteins to address nutrient uptake in marine picocyanobacteria. Biochem Soc Trans 2021; 49:2465-2481. [PMID: 34882230 PMCID: PMC8786288 DOI: 10.1042/bst20200244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 12/05/2022]
Abstract
Marine cyanobacteria are key primary producers, contributing significantly to the microbial food web and biogeochemical cycles by releasing and importing many essential nutrients cycled through the environment. A subgroup of these, the picocyanobacteria (Synechococcus and Prochlorococcus), have colonised almost all marine ecosystems, covering a range of distinct light and temperature conditions, and nutrient profiles. The intra-clade diversities displayed by this monophyletic branch of cyanobacteria is indicative of their success across a broad range of environments. Part of this diversity is due to nutrient acquisition mechanisms, such as the use of high-affinity ATP-binding cassette (ABC) transporters to competitively acquire nutrients, particularly in oligotrophic (nutrient scarce) marine environments. The specificity of nutrient uptake in ABC transporters is primarily determined by the peripheral substrate-binding protein (SBP), a receptor protein that mediates ligand recognition and initiates translocation into the cell. The recent availability of large numbers of sequenced picocyanobacterial genomes indicates both Synechococcus and Prochlorococcus apportion >50% of their transport capacity to ABC transport systems. However, the low degree of sequence homology among the SBP family limits the reliability of functional assignments using sequence annotation and prediction tools. This review highlights the use of known SBP structural representatives for the uptake of key nutrient classes by cyanobacteria to compare with predicted SBP functionalities within sequenced marine picocyanobacteria genomes. This review shows the broad range of conserved biochemical functions of picocyanobacteria and the range of novel and hypothetical ABC transport systems that require further functional characterisation.
Collapse
Affiliation(s)
- Benjamin A. Ford
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | | | - Lisa Moore
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Deepa Varkey
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Hannah Zhu
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Martin Ostrowski
- Climate Change Cluster (C3), University of Technology Sydney, Sydney, Australia
| | - Bridget C. Mabbutt
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Ian T. Paulsen
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Bhumika S. Shah
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| |
Collapse
|
11
|
Abstract
Characterizing the cell-level metabolic trade-offs that phytoplankton exhibit in response to changing environmental conditions is important for predicting the impact of these changes on marine food web dynamics and biogeochemical cycling. The time-selective proteome-labeling approach, bioorthogonal noncanonical amino acid tagging (BONCAT), has potential to provide insight into differential allocation of resources at the cellular level, especially when coupled with proteomics. However, the application of this technique in marine phytoplankton remains limited. We demonstrate that the marine cyanobacteria Synechococcus sp. and two groups of eukaryotic algae take up the modified amino acid l-homopropargylglycine (HPG), suggesting that BONCAT can be used to detect translationally active phytoplankton. However, the impact of HPG addition on growth dynamics varied between groups of phytoplankton. In addition, proteomic analysis of Synechococcus cells grown with HPG revealed a physiological shift in nitrogen metabolism, general protein stress, and energy production, indicating a potential limitation for the use of BONCAT in understanding the cell-level response of Synechococcus sp. to environmental change. Variability in HPG sensitivity between algal groups and the impact of HPG on Synechococcus physiology indicates that particular considerations should be taken when applying this technique to other marine taxa or mixed marine microbial communities. IMPORTANCE Phytoplankton form the base of the marine food web and substantially impact global energy and nutrient flow. Marine picocyanobacteria of the genus Synechococcus comprise a large portion of phytoplankton biomass in the ocean and therefore are important model organisms. The technical challenges of environmental proteomics in mixed microbial communities have limited our ability to detect the cell-level adaptations of phytoplankton communities to a changing environment. The proteome labeling technique, bioorthogonal noncanonical amino acid tagging (BONCAT), has potential to address some of these challenges by simplifying proteomic analyses. This study explores the ability of marine phytoplankton to take up the modified amino acid, l-homopropargylglycine (HPG), required for BONCAT, and investigates the proteomic response of Synechococcus to HPG. We not only demonstrate that cyanobacteria can take up HPG but also highlight the physiological impact of HPG on Synechococcus, which has implications for future applications of this technique in the marine environment.
Collapse
|
12
|
Sarker I, Moore LR, Tetu SG. Investigating zinc toxicity responses in marine Prochlorococcus and Synechococcus. MICROBIOLOGY-SGM 2021; 167. [PMID: 34170816 PMCID: PMC8374608 DOI: 10.1099/mic.0.001064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Marine plastic pollution is a growing concern worldwide and has the potential to impact marine life via leaching of chemicals, with zinc (Zn), a common plastic additive, observed at particularly high levels in plastic leachates in previous studies. At this time, however, little is known regarding how elevated Zn affects key groups of marine primary producers. Marine cyanobacterial genera Prochlorococcus and Synechococcus are considered to be some of the most abundant oxygenic phototrophs on earth, and together contribute significantly to oceanic primary productivity. Here we set out to investigate how two Prochlorococcus (MIT9312 and NATL2A) and two Synechococcus (CC9311 and WH8102) strains, representative of diverse ecological niches, respond to exposure to high Zn concentrations. The two genera showed differences in the timing and degree of growth and physiological responses to elevated Zn levels, with Prochlorococcus strains showing declines in their growth rate and photophysiology following exposure to 27 µg l-1 Zn, while Synechococcus CC9311 and WH8102 growth rates declined significantly on exposure to 52 and 152 µg l-1 Zn, respectively. Differences were also observed in each strain's capacity to maintain cell wall integrity on exposure to different levels of Zn. Our results indicate that excess Zn has the potential to pose a challenge to some marine picocyanobacteria and highlights the need to better understand how different marine Prochlorococcus and Synechococcus strains may respond to increasing concentrations of Zn in some marine regions.
Collapse
Affiliation(s)
- Indrani Sarker
- Department of Molecular Sciences, Macquarie University, Sydney, Australia.,MQ Biomolecular Discovery Research Centre, Macquarie University, Sydney, Australia
| | - Lisa R Moore
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Sasha G Tetu
- Department of Molecular Sciences, Macquarie University, Sydney, Australia.,MQ Biomolecular Discovery Research Centre, Macquarie University, Sydney, Australia
| |
Collapse
|
13
|
Hirakawa Y, Senda M, Fukuda K, Yu HY, Ishida M, Taira M, Kinbara K, Senda T. Characterization of a novel type of carbonic anhydrase that acts without metal cofactors. BMC Biol 2021; 19:105. [PMID: 34006275 PMCID: PMC8132391 DOI: 10.1186/s12915-021-01039-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/28/2021] [Indexed: 12/14/2022] Open
Abstract
Background Carbonic anhydrases (CAs) are universal metalloenzymes that catalyze the reversible conversion of carbon dioxide (CO2) and bicarbonate (HCO3-). They are involved in various biological processes, including pH control, respiration, and photosynthesis. To date, eight evolutionarily unrelated classes of CA families (α, β, γ, δ, ζ, η, θ, and ι) have been identified. All are characterized by an active site accommodating the binding of a metal cofactor, which is assumed to play a central role in catalysis. This feature is thought to be the result of convergent evolution. Results Here, we report that a previously uncharacterized protein group, named “COG4337,” constitutes metal-independent CAs from the newly discovered ι-class. Genes coding for COG4337 proteins are found in various bacteria and photosynthetic eukaryotic algae. Biochemical assays demonstrated that recombinant COG4337 proteins from a cyanobacterium (Anabaena sp. PCC7120) and a chlorarachniophyte alga (Bigelowiella natans) accelerated CO2 hydration. Unexpectedly, these proteins exhibited their activity under metal-free conditions. Based on X-ray crystallography and point mutation analysis, we identified a metal-free active site within the cone-shaped α+β barrel structure. Furthermore, subcellular localization experiments revealed that COG4337 proteins are targeted into plastids and mitochondria of B. natans, implicating their involvement in CO2 metabolism in these organelles. Conclusions COG4337 proteins shared a short sequence motif and overall structure with ι-class CAs, whereas they were characterized by metal independence, unlike any known CAs. Therefore, COG4337 proteins could be treated as a variant type of ι-class CAs. Our findings suggested that this novel type of ι-CAs can function even in metal-poor environments (e.g., the open ocean) without competition with other metalloproteins for trace metals. Considering the widespread prevalence of ι-CAs across microalgae, this class of CAs may play a role in the global carbon cycle. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01039-8.
Collapse
Affiliation(s)
- Yoshihisa Hirakawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
| | - Miki Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Kodai Fukuda
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Hong Yang Yu
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan.,School of High Energy Accelerator Science, SOKENDAI, 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Masaki Ishida
- Applied Research Laboratory, Radiation Science Center, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Masafumi Taira
- Support Center for Accelerator Science and Technology, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Kazushi Kinbara
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan. .,School of High Energy Accelerator Science, SOKENDAI, 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan. .,Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
14
|
Chen Z, Shang JL, Hou S, Li T, Li Q, Yang YW, Hess WR, Qiu BS. Genomic and transcriptomic insights into the habitat adaptation of the diazotrophic paddy-field cyanobacterium Nostoc sphaeroides. Environ Microbiol 2021; 23:5802-5822. [PMID: 33848055 DOI: 10.1111/1462-2920.15521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 03/25/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022]
Abstract
Nitrogen-fixing cyanobacteria are common in paddy fields, one of the most productive wetland ecosystems. Here, we present the complete genome of Nostoc sphaeroides, a paddy-field diazotroph used for food and medicine for more than 1700 years and deciphered the transcriptional regulation during the developmental transition from hormogonia to vegetative filaments with heterocysts. The genome of N. sphaeroides consists of one circular chromosome (6.48 Mb), one of the largest ever reported megaplasmids (2.34 Mb), and seven plasmids. Multiple gene families involved in the adaption to high solar radiation and water fluctuation conditions were found expanded, while genes involved in anoxic adaptation and phosphonate utilization are located on the megaplasmid, suggesting its indispensable role in environmental adaptation. Distinct gene expression patterns were observed during the light-intensity-regulated transition from hormogonia to vegetative filaments, specifically, genes encoding proteins involved in photosynthetic light reaction, carbon fixation, nitrogen metabolism and heterocyst differentiation were significantly upregulated, whereas genes related to cell motility were down-regulated. Our results provide genomic and transcriptomic insights into the adaptation of a filamentous nitrogen-fixing cyanobacterium to the highly dynamic paddy-field habitat, suggesting N. sphaeroides as an excellent system to understand the transition from aquatic to terrestrial habitats and to support sustainable rice production.
Collapse
Affiliation(s)
- Zhen Chen
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China.,Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, 435002, China
| | - Jin-Long Shang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Shengwei Hou
- Department of Biological Sciences, University of Southern California, CA, Los Angeles, 90089, USA
| | - Tao Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Science, Wuhan, Hubei, 430072, China
| | - Qi Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Science, Wuhan, Hubei, 430072, China
| | - Yi-Wen Yang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Wolfgang R Hess
- Genetics and Experimental Bioinformatics, Institute of Biology III, Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
| | - Bao-Sheng Qiu
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China
| |
Collapse
|
15
|
Discovery of Euryhaline Phycoerythrobilin-Containing Synechococcus and Its Mechanisms for Adaptation to Estuarine Environments. mSystems 2020; 5:5/6/e00842-20. [PMID: 33323414 PMCID: PMC7771541 DOI: 10.1128/msystems.00842-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Understanding the strategies developed by different microbial groups to adapt to specific niches is critical. Through genome and transcriptome analyses of two newly isolated novel euryhaline Synechococcus strains, this study revealed that cluster 5 phycoerythrobilin-containing Synechococcus, which are thought to be strictly marine strains, could be abundant in low-salinity waters of the Pearl River estuary (salinity <15 ppt) and explained the molecular mechanisms that enabled them to adapt the low and fluctuating salinity in the estuarine environment. Synechococcus are among the most abundant and widely distributed picocyanobacteria on earth. Cluster 5 phycoerythrobilin-containing (PEB-containing) Synechococcus, the major marine Synechococcus, were considered to prefer high salinity, and they are absent in estuarine ecosystems. However, we have detected PEB-containing Synechococcus in some low-salinity (<15-ppt) areas of the Pearl River estuary at an abundance up to 1.0 × 105 cells ml−1. Two PEB-containing Synechococcus strains (HK01 and LTW-R) were isolated, and tests on them revealed their ability to cope with variations in the salinity (from 14 to 44 ppt). Phylogenetic analysis showed that HK01 belonged to a novel Synechococcus clade (HK1), whereas LTW-R was clustered with S5.2 strains. Whole-genome analysis revealed that a membrane channel protein with glycine zipper motifs is unique to euryhaline Synechococcus. The upregulation of this protein, the osmotic sensors, and the heat shock protein HSP20 and the downregulation of the osmolyte biosynthesis enable euryhaline Synechococcus to well adapt to the low and fluctuating salinity in the estuarine environment. In addition, decreasing the salinity in LTW-R strongly downregulated several important metabolic pathways, including photosynthesis, and the Calvin-Benson cycle, whereas its growth was not significantly affected. Moreover, obtaining PEB genes from horizontal gene transfer expands the light niche significantly for euryhaline Synechococcus. These results provided new insights into the life strategies and ecological function of marine PEB-containing Synechococcus under the unique environmental condition of estuarine waters, particularly in response to salinity variations. IMPORTANCE Understanding the strategies developed by different microbial groups to adapt to specific niches is critical. Through genome and transcriptome analyses of two newly isolated novel euryhaline Synechococcus strains, this study revealed that cluster 5 phycoerythrobilin-containing Synechococcus, which are thought to be strictly marine strains, could be abundant in low-salinity waters of the Pearl River estuary (salinity <15 ppt) and explained the molecular mechanisms that enabled them to adapt the low and fluctuating salinity in the estuarine environment. This study expands current understanding on mechanisms involved in niche separation of marine Synechococcus lineages.
Collapse
|
16
|
Co‐culture with
Synechococcus
facilitates growth of
Prochlorococcus
under ocean acidification conditions. Environ Microbiol 2020; 22:4876-4889. [DOI: 10.1111/1462-2920.15277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 12/01/2022]
|
17
|
Schmidt K, Birchill AJ, Atkinson A, Brewin RJW, Clark JR, Hickman AE, Johns DG, Lohan MC, Milne A, Pardo S, Polimene L, Smyth TJ, Tarran GA, Widdicombe CE, Woodward EMS, Ussher SJ. Increasing picocyanobacteria success in shelf waters contributes to long-term food web degradation. GLOBAL CHANGE BIOLOGY 2020; 26:5574-5587. [PMID: 32506810 DOI: 10.1111/gcb.15161] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
Continental margins are disproportionally important for global primary production, fisheries and CO2 uptake. However, across the Northeast Atlantic shelves, there has been an ongoing summertime decline of key biota-large diatoms, dinoflagellates and copepods-that traditionally fuel higher tropic levels such as fish, sea birds and marine mammals. Here, we combine multiple time series with in situ process studies to link these declines to summer nutrient stress and increasing proportions of picophytoplankton that can comprise up to 90% of the combined pico- and nanophytoplankton biomass in coastal areas. Among the pico-fraction, it is the cyanobacterium Synechococcus that flourishes when iron and nitrogen resupply to surface waters are diminished. Our field data show how traits beyond small size give Synechococcus a competitive edge over pico- and nanoeukaryotes. Key is their ability to grow at low irradiances near the nutricline, which is aided by their superior light-harvesting system and high affinity to iron. However, minute size and lack of essential biomolecules (e.g. omega-3 polyunsaturated fatty acids and sterols) render Synechococcus poor primary producers to sustain shelf sea food webs efficiently. The combination of earlier spring blooms and lower summer food quantity and quality creates an increasing period of suboptimal feeding conditions for zooplankton at a time of year when their metabolic demand is highest. We suggest that this nutrition-related mismatch has contributed to the widespread, ~50% decline in summer copepod abundance we observe over the last 60 years. With Synechococcus clades being prominent from the tropics to the Arctic and their abundances increasing worldwide, our study informs projections of future food web dynamics in coastal and shelf areas where droughts and stratification lead to increasing nutrient starvation of surface waters.
Collapse
Affiliation(s)
- Katrin Schmidt
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, UK
| | - Antony J Birchill
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, UK
| | | | - Robert J W Brewin
- Plymouth Marine Laboratory, Plymouth, UK
- College of Life and Environmental Sciences, University of Exeter, Penryn, UK
| | | | - Anna E Hickman
- Ocean and Earth Sciences, University of Southampton, National Oceanography Centre, Southampton, UK
| | | | - Maeve C Lohan
- Ocean and Earth Sciences, University of Southampton, National Oceanography Centre, Southampton, UK
| | - Angela Milne
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, UK
| | | | | | | | | | | | | | - Simon J Ussher
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, UK
| |
Collapse
|
18
|
Doré H, Farrant GK, Guyet U, Haguait J, Humily F, Ratin M, Pitt FD, Ostrowski M, Six C, Brillet-Guéguen L, Hoebeke M, Bisch A, Le Corguillé G, Corre E, Labadie K, Aury JM, Wincker P, Choi DH, Noh JH, Eveillard D, Scanlan DJ, Partensky F, Garczarek L. Evolutionary Mechanisms of Long-Term Genome Diversification Associated With Niche Partitioning in Marine Picocyanobacteria. Front Microbiol 2020; 11:567431. [PMID: 33042072 PMCID: PMC7522525 DOI: 10.3389/fmicb.2020.567431] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/12/2020] [Indexed: 12/14/2022] Open
Abstract
Marine picocyanobacteria of the genera Prochlorococcus and Synechococcus are the most abundant photosynthetic organisms on Earth, an ecological success thought to be linked to the differential partitioning of distinct ecotypes into specific ecological niches. However, the underlying processes that governed the diversification of these microorganisms and the appearance of niche-related phenotypic traits are just starting to be elucidated. Here, by comparing 81 genomes, including 34 new Synechococcus, we explored the evolutionary processes that shaped the genomic diversity of picocyanobacteria. Time-calibration of a core-protein tree showed that gene gain/loss occurred at an unexpectedly low rate between the different lineages, with for instance 5.6 genes gained per million years (My) for the major Synechococcus lineage (sub-cluster 5.1), among which only 0.71/My have been fixed in the long term. Gene content comparisons revealed a number of candidates involved in nutrient adaptation, a large proportion of which are located in genomic islands shared between either closely or more distantly related strains, as identified using an original network construction approach. Interestingly, strains representative of the different ecotypes co-occurring in phosphorus-depleted waters (Synechococcus clades III, WPC1, and sub-cluster 5.3) were shown to display different adaptation strategies to this limitation. In contrast, we found few genes potentially involved in adaptation to temperature when comparing cold and warm thermotypes. Indeed, comparison of core protein sequences highlighted variants specific to cold thermotypes, notably involved in carotenoid biosynthesis and the oxidative stress response, revealing that long-term adaptation to thermal niches relies on amino acid substitutions rather than on gene content variation. Altogether, this study not only deciphers the respective roles of gene gains/losses and sequence variation but also uncovers numerous gene candidates likely involved in niche partitioning of two key members of the marine phytoplankton.
Collapse
Affiliation(s)
- Hugo Doré
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Gregory K Farrant
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Ulysse Guyet
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Julie Haguait
- LS2N, UMR CNRS 6004, IMT Atlantique, ECN, Université de Nantes, Nantes, France
| | - Florian Humily
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Morgane Ratin
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Frances D Pitt
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Martin Ostrowski
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Christophe Six
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Loraine Brillet-Guéguen
- CNRS, FR 2424, ABiMS Platform, Station Biologique de Roscoff (SBR), Roscoff, France.,Sorbonne Université, CNRS, UMR 8227, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Mark Hoebeke
- CNRS, FR 2424, ABiMS Platform, Station Biologique de Roscoff (SBR), Roscoff, France
| | - Antoine Bisch
- CNRS, FR 2424, ABiMS Platform, Station Biologique de Roscoff (SBR), Roscoff, France
| | - Gildas Le Corguillé
- CNRS, FR 2424, ABiMS Platform, Station Biologique de Roscoff (SBR), Roscoff, France
| | - Erwan Corre
- CNRS, FR 2424, ABiMS Platform, Station Biologique de Roscoff (SBR), Roscoff, France
| | - Karine Labadie
- Genoscope, Institut de Biologie François-Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, Évry, France
| | - Jean-Marc Aury
- Genoscope, Institut de Biologie François-Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, Évry, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, Évry, France
| | - Dong Han Choi
- Marine Ecosystem Research Center, Korea Institute of Ocean Science and Technology, Busan, South Korea.,Ocean Science and Technology School, Korea Maritime and Ocean University, Busan, South Korea
| | - Jae Hoon Noh
- Marine Ecosystem Research Center, Korea Institute of Ocean Science and Technology, Busan, South Korea.,Department of Marine Biology, Korea University of Science and Technology, Daejeon, South Korea
| | - Damien Eveillard
- LS2N, UMR CNRS 6004, IMT Atlantique, ECN, Université de Nantes, Nantes, France.,Research Federation (FR2022) Tara Océans GO-SEE, Paris, France
| | - David J Scanlan
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Frédéric Partensky
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Laurence Garczarek
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France.,Research Federation (FR2022) Tara Océans GO-SEE, Paris, France
| |
Collapse
|
19
|
Salazar VW, Tschoeke DA, Swings J, Cosenza CA, Mattoso M, Thompson CC, Thompson FL. A new genomic taxonomy system for the Synechococcus collective. Environ Microbiol 2020; 22:4557-4570. [PMID: 32700350 DOI: 10.1111/1462-2920.15173] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022]
Abstract
Cyanobacteria of the genus Synechococcus are major contributors to global primary productivity and are found in a wide range of aquatic ecosystems. This Synechococcus collective (SC) is metabolically diverse, with some lineages thriving in polar and nutrient-rich locations and others in tropical or riverine waters. Although many studies have discussed the ecology and evolution of the SC, there is a paucity of knowledge on its taxonomic structure. Thus, we present a new taxonomic classification framework for the SC based on recent advances in microbial genomic taxonomy. Phylogenomic analyses of 1085 cyanobacterial genomes demonstrate that organisms classified as Synechococcus are polyphyletic at the order rank. The SC is classified into 15 genera, which are placed into five distinct orders within the phylum Cyanobacteria: (i) Synechococcales (Cyanobium, Inmanicoccus, Lacustricoccus gen. Nov., Parasynechococcus, Pseudosynechococcus, Regnicoccus, Synechospongium gen. nov., Synechococcus and Vulcanococcus); (ii) Cyanobacteriales (Limnothrix); (iii) Leptococcales (Brevicoccus and Leptococcus); (iv) Thermosynechococcales (Stenotopis and Thermosynechococcus) and (v) Neosynechococcales (Neosynechococcus). The newly proposed classification is consistent with habitat distribution patterns (seawater, freshwater, brackish and thermal environments) and reflects the ecological and evolutionary relationships of the SC.
Collapse
Affiliation(s)
- Vinícius W Salazar
- Center of Technology-CT2, SAGE-COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.,Department of Systems and Computer Engineering, COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Diogo A Tschoeke
- Department of Biomedical Engineering, COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Jean Swings
- Laboratory of Microbiology, Ghent University, Ghent, Belgium
| | - Carlos A Cosenza
- Center of Technology-CT2, SAGE-COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Marta Mattoso
- Department of Systems and Computer Engineering, COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Cristiane C Thompson
- Center of Technology-CT2, SAGE-COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.,Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Fabiano L Thompson
- Center of Technology-CT2, SAGE-COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.,Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
20
|
Fucich D, Chen F. Presence of toxin-antitoxin systems in picocyanobacteria and their ecological implications. ISME JOURNAL 2020; 14:2843-2850. [PMID: 32814864 DOI: 10.1038/s41396-020-00746-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/22/2020] [Accepted: 08/10/2020] [Indexed: 11/09/2022]
Abstract
Picocyanobacteria (mainly Synechococcus and Prochlorococcus) contribute significantly to ocean's primary production. Toxin-Antitoxin (TA) systems present in bacteria and archaea are known to regulate cell growth in response to environmental stresses. However, little is known about the presence of TA systems in picocyanobacteria. This study investigated complete genomes of Synechococcus and Prochlorococcus to understand the prevalence of TA systems in picocyanobacteria. Using the TAfinder software, Type II TA systems were predicted in 27 of 33 (81%) Synechococcus strains, but none of 38 Prochlorococcus strains contain TA genes. Synechococcus strains with larger genomes tend to contain more putative type II TA systems. The number of TA pairs varies from 0 to 42 in Synechococcus strains isolated from various environments. A linear correlation between the genome size and the number of putative TA systems in both coastal and freshwater Synechococcus was established. In general, open ocean Synechococcus contain no or few TA systems, while coastal and freshwater Synechococcus contain more TA systems. The type II TA systems inhibit microbial translation via ribonucleases and allow cells to enter the "dormant" stage in adverse environments. Inheritance of TA genes in freshwater and coastal Synechococcus could confer a recoverable persister mechanism important to survive in variable environments.
Collapse
Affiliation(s)
- Daniel Fucich
- The Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, USA
| | - Feng Chen
- The Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, USA.
| |
Collapse
|
21
|
Shilova IN, Magasin JD, Mills MM, Robidart JC, Turk-Kubo KA, Zehr JP. Phytoplankton transcriptomic and physiological responses to fixed nitrogen in the California current system. PLoS One 2020; 15:e0231771. [PMID: 32310982 PMCID: PMC7170224 DOI: 10.1371/journal.pone.0231771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/31/2020] [Indexed: 11/18/2022] Open
Abstract
Marine phytoplankton are responsible for approximately half of photosynthesis on Earth. However, their ability to drive ocean productivity depends on critical nutrients, especially bioavailable nitrogen (N) which is scarce over vast areas of the ocean. Phytoplankton differ in their preferences for N substrates as well as uptake efficiencies and minimal N requirements relative to other critical nutrients, including iron (Fe) and phosphorus. In this study, we used the MicroTOOLs high-resolution environmental microarray to examine transcriptomic responses of phytoplankton communities in the California Current System (CCS) transition zone to added urea, ammonium, nitrate, and also Fe in the late summer when N depletion is common. Transcript level changes of photosynthetic, carbon fixation, and nutrient stress genes indicated relief of N limitation in many strains of Prochlorococcus, Synechococcus, and eukaryotic phytoplankton. The transcriptomic responses helped explain shifts in physiological and growth responses observed later. All three phytoplankton groups had increased transcript levels of photosynthesis and/or carbon fixation genes in response to all N substrates. However, only Prochlorococcus had decreased transcript levels of N stress genes and grew substantially, specifically after urea and ammonium additions, suggesting that Prochlorococcus outcompeted other community members in these treatments. Diatom transcript levels of carbon fixation genes increased in response to Fe but not to Fe with N which might have favored phytoplankton that were co-limited by N and Fe. Moreover, transcription patterns of closely related strains indicated variability in N utilization, including nitrate utilization by some high-light adapted Prochlorococcus. Finally, up-regulation of urea transporter genes by both Prochlorococcus and Synechococcus in response to filtered deep water suggested a regulatory mechanism other than classic control via the global N regulator NtcA. This study indicated that co-existing phytoplankton strains experience distinct nutrient stresses in the transition zone of the CCS, an understudied region where oligotrophic and coastal communities naturally mix.
Collapse
Affiliation(s)
- Irina N. Shilova
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail: (INS); (JPZ)
| | - Jonathan D. Magasin
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Matthew M. Mills
- Department of Earth System Science, Stanford University, Stanford, California, United States of America
| | - Julie C. Robidart
- Ocean Technology and Engineering, National Oceanography Centre, Southampton, England, United Kingdom
| | - Kendra A. Turk-Kubo
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Jonathan P. Zehr
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail: (INS); (JPZ)
| |
Collapse
|
22
|
Metagenomic and Metaproteomic Insights into Photoautotrophic and Heterotrophic Interactions in a Synechococcus Culture. mBio 2020; 11:mBio.03261-19. [PMID: 32071270 PMCID: PMC7029141 DOI: 10.1128/mbio.03261-19] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The high complexity of in situ ecosystems renders it difficult to study marine microbial photoautotroph-heterotroph interactions. Two-member coculture systems of picocyanobacteria and single heterotrophic bacterial strains have been thoroughly investigated. However, in situ interactions comprise far more diverse heterotrophic bacterial associations with single photoautotrophic organisms. In the present study, combined metagenomic and metaproteomic data supplied the metabolic potentials and activities of uncultured dominant bacterial populations in the coculture system. The results of this study shed light on the nature of interactions between photoautotrophs and heterotrophs, improving our understanding of the complexity of in situ environments. Microbial photoautotroph-heterotroph interactions underlie marine food webs and shape ecosystem diversity and structure in upper ocean environments. Here, bacterial community composition, lifestyle preference, and genomic- and proteomic-level metabolic characteristics were investigated for an open ocean Synechococcus ecotype and its associated heterotrophs over 91 days of cocultivation. The associated heterotrophic bacterial assembly mostly constituted five classes, including Flavobacteria, Bacteroidetes, Phycisphaerae, Gammaproteobacteria, and Alphaproteobacteria. The seven most abundant taxa/genera comprised >90% of the total heterotrophic bacterial community, and five of these displayed distinct lifestyle preferences (free-living or attached) and responses to Synechococcus growth phases. Six high-quality genomes, including Synechococcus and the five dominant heterotrophic bacteria, were reconstructed. The only primary producer of the coculture system, Synechococcus, displayed metabolic processes primarily involved in inorganic nutrient uptake, photosynthesis, and organic matter biosynthesis and release. Two of the flavobacterial populations, Muricauda and Winogradskyella, and an SM1A02 population, displayed preferences for initial degradation of complex compounds and biopolymers, as evinced by high abundances of TonB-dependent transporters (TBDTs), glycoside hydrolase, and peptidase proteins. Polysaccharide utilization loci present in the flavobacterial genomes influence their lifestyle preferences and close associations with phytoplankton. In contrast, the alphaproteobacterium Oricola sp. population mainly utilized low-molecular-weight dissolved organic carbon (DOC) through ATP-binding cassette (ABC), tripartite ATP-independent periplasmic (TRAP), and tripartite tricarboxylate transporter (TTT) transport systems. The heterotrophic bacterial populations exhibited complementary mechanisms for degrading Synechococcus-derived organic matter and driving nutrient cycling. In addition to nutrient exchange, removal of reactive oxygen species and vitamin trafficking might also contribute to the maintenance of the Synechococcus-heterotroph coculture system and the interactions shaping the system.
Collapse
|
23
|
Teoh F, Shah B, Ostrowski M, Paulsen I. Comparative membrane proteomics reveal contrasting adaptation strategies for coastal and oceanic marine Synechococcus cyanobacteria. Environ Microbiol 2020; 22:1816-1828. [PMID: 31769166 DOI: 10.1111/1462-2920.14876] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/29/2019] [Accepted: 11/21/2019] [Indexed: 11/27/2022]
Abstract
Marine cyanobacteria genus Synechococcus are among the most abundant and widespread primary producers in the open ocean. Synechococcus strains belonging to different clades have adapted distinct strategies for growth and survival across a range of marine conditions. Clades I and IV are prevalent in colder, mesotrophic, coastal waters, while clades II and III prefer warm, oligotrophic open oceans. To gain insight into the cellular resources these unicellular organisms invest in adaptation strategies we performed shotgun membrane proteomics of four Synechococcus spp. strains namely CC9311 (clade I), CC9605 (clade II), WH8102 (clade III) and CC9902 (clade IV). Comparative membrane proteomes analysis demonstrated that CC9902 and WH8102 showed high resource allocation for phosphate uptake, accounting for 44% and 38% of overall transporter protein expression of the species. WH8102 showed high expression of the iron uptake ATP-binding cassette binding protein FutA, suggesting that a high binding affinity for iron is possibly a key adaptation strategy for some strains in oligotrophic ocean environments. One protein annotated as a phosphatase 2c (Sync_2505 and Syncc9902_0387) was highly expressed in the coastal mesotrophic strains CC9311 and CC9902, constituting 14%-16% of total membrane protein, indicating a vital, but undefined function, for strains living in temperate mesotrophic environments.
Collapse
Affiliation(s)
- Fallen Teoh
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Bhumika Shah
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Martin Ostrowski
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Ian Paulsen
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
24
|
Ahlgren NA, Belisle BS, Lee MD. Genomic mosaicism underlies the adaptation of marine Synechococcus ecotypes to distinct oceanic iron niches. Environ Microbiol 2019; 22:1801-1815. [PMID: 31840403 DOI: 10.1111/1462-2920.14893] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/04/2019] [Accepted: 11/30/2019] [Indexed: 11/30/2022]
Abstract
Phytoplankton are limited by iron (Fe) in ~40% of the world's oceans including high-nutrient low-chlorophyll (HNLC) regions. While low-Fe adaptation has been well-studied in large eukaryotic diatoms, less is known for small, prokaryotic marine picocyanobacteria. This study reveals key physiological and genomic differences underlying Fe adaptation in marine picocyanobacteria. HNLC ecotype CRD1 strains have greater physiological tolerance to low Fe congruent with their expanded repertoire of Fe transporter, storage and regulatory genes compared to other ecotypes. From metagenomic analysis, genes encoding ferritin, flavodoxin, Fe transporters and siderophore uptake genes were more abundant in low-Fe waters, mirroring paradigms of low-Fe adaptation in diatoms. Distinct Fe-related gene repertories of HNLC ecotypes CRD1 and CRD2 also highlight how coexisting ecotypes have evolved independent approaches to life in low-Fe habitats. Synechococcus and Prochlorococcus HNLC ecotypes likewise exhibit independent, genome-wide reductions of predicted Fe-requiring genes. HNLC ecotype CRD1 interestingly was most similar to coastal ecotype I in Fe physiology and Fe-related gene content, suggesting populations from these different biomes experience similar Fe-selective conditions. This work supports an improved perspective that phytoplankton are shaped by more nuanced Fe niches in the oceans than previously implied from mostly binary comparisons of low- versus high-Fe habitats and populations.
Collapse
Affiliation(s)
- Nathan A Ahlgren
- Biology Department, Clark University, 950 Main Street, Worcester, MA, 01610, USA
| | | | - Michael D Lee
- NASA Ames Research Center, Exobiology Branch, PO Box 1, Moffett Field, CA, 94035, USA.,Blue Marble Space Institute of Science, Seattle, WA, 98154, USA
| |
Collapse
|
25
|
Complete Genome Sequence of Subcluster 5.2 Synechococcus sp. Strain CB0101, Isolated from the Chesapeake Bay. Microbiol Resour Announc 2019; 8:8/35/e00484-19. [PMID: 31467092 PMCID: PMC6715862 DOI: 10.1128/mra.00484-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Synechococcus sp. strain CB0101 is a model strain for cyanobacteria living in the estuarine environment. It is also a representative member of marine Synechococcus subcluster 5.2. The draft genome sequence of CB0101 was reported in 2014 with 454 sequencing. Here, we report the complete genome sequence of CB0101, obtained with PacBio sequencing. CB0101 contains a specialized array of genes which are involved in sensing, responding to, and persisting in the presence of environmental stress. Synechococcus sp. strain CB0101 is a model strain for cyanobacteria living in the estuarine environment. It is also a representative member of marine Synechococcus subcluster 5.2. The draft genome sequence of CB0101 was reported in 2014 with 454 sequencing. Here, we report the complete genome sequence of CB0101, obtained with PacBio sequencing. CB0101 contains a specialized array of genes which are involved in sensing, responding to, and persisting in the presence of environmental stress.
Collapse
|
26
|
Gu C, Wang J, Zhao Z, Han Y, Du M, Zan S, Wang F. Aerobic cometabolism of tetrabromobisphenol A by marine bacterial consortia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:23832-23841. [PMID: 31209756 DOI: 10.1007/s11356-019-05660-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
The coastal environments worldwide are subjected to increasing TBBPA contamination, but current knowledge on aerobic biodegradability of this compound by marine microbes is lacking. The aerobic removal of TBBPA using marine consortia under eight different cometabolic conditions was investigated here. Results showed that the composition and diversity of the TBBPA-degrading consortia had diverged after 120-day incubation. Pseudoalteromonas, Alteromonas, Glaciecola, Thalassomonas, and Limnobacter were the dominant genera in enrichment cultures. Furthermore, a combination of beef extract- and peptone-enriched marine consortia exhibited higher TBBPA removal efficiency (approximately 60%) than the other substrate amendments. Additionally, Alteromonas macleodii strain GCW was isolated from a culture of TBBPA-degrading consortium. This strain exhibited about 90% of degradation efficiency toward TBBPA (10 mg L-1) after 10 days of incubation under aerobic cometabolic conditions. The intermediates in the degradation of TBBPA by A. macleodii strain GCW were analyzed and the degradation pathways were proposed, involving β-scission, debromination, and nitration routes.
Collapse
Affiliation(s)
- Chen Gu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Zelong Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Ying Han
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Miaomiao Du
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Shuaijun Zan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Fenbo Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
27
|
Burgsdorf I, Handley KM, Bar-Shalom R, Erwin PM, Steindler L. Life at Home and on the Roam: Genomic Adaptions Reflect the Dual Lifestyle of an Intracellular, Facultative Symbiont. mSystems 2019; 4:e00057-19. [PMID: 31086829 PMCID: PMC6506613 DOI: 10.1128/msystems.00057-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/02/2019] [Indexed: 02/06/2023] Open
Abstract
"Candidatus Synechococcus feldmannii" is a facultative intracellular symbiont of the Atlanto-Mediterranean sponge Petrosia ficiformis. Genomic information of sponge-associated cyanobacteria derives thus far from the obligate and extracellular symbiont "Candidatus Synechococcus spongiarum." Here we utilized a differential methylation-based approach for bacterial DNA enrichment combined with metagenomics to obtain the first draft genomes of "Ca. Synechococcus feldmannii." By comparative genomics, we revealed that some genomic features (e.g., iron transport mediated by siderophores, eukaryotic-like proteins, and defense mechanisms, like CRISPR-Cas [clustered regularly interspaced short palindromic repeats-associated proteins]) are unique to both symbiont types and absent or rare in the genomes of taxonomically related free-living cyanobacteria. These genomic features likely enable life under the conditions found inside the sponge host. Interestingly, there are many genomic features that are shared by "Ca. Synechococcus feldmannii" and free-living cyanobacteria, while they are absent in the obligate symbiont "Ca. Synechococcus spongiarum." These include genes related to cell surface structures, genetic regulation, and responses to environmental stress, as well as the composition of photosynthetic genes and DNA metabolism. We speculate that the presence of these genes confers on "Ca. Synechococcus feldmannii" its facultative nature (i.e., the ability to respond to a less stable environment when free-living). Our comparative analysis revealed that distinct genomic features depend on the nature of the symbiotic interaction: facultative and intracellular versus obligate and extracellular. IMPORTANCE Given the evolutionary position of sponges as one of the earliest phyla to depart from the metazoan stem lineage, studies on their distinct and exceptionally diverse microbial communities should yield a better understanding of the origin of animal-bacterium interactions. While genomes of several extracellular sponge symbionts have been published, the intracellular symbionts have, so far, been elusive. Here we compare the genomes of two unicellular cyanobacterial sponge symbionts that share an ancestor but followed different evolutionary paths-one became intracellular and the other extracellular. Counterintuitively, the intracellular cyanobacteria are facultative, while the extracellular ones are obligate. By sequencing the genomes of the intracellular cyanobacteria and comparing them to the genomes of the extracellular symbionts and related free-living cyanobacteria, we show how three different cyanobacterial lifestyles are reflected by adaptive genomic features.
Collapse
Affiliation(s)
- Ilia Burgsdorf
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Kim M. Handley
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Rinat Bar-Shalom
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Patrick M. Erwin
- Department of Biology and Marine Biology, Centre for Marine Science, University of North Carolina—Wilmington, Wilmington, North Carolina, USA
| | - Laura Steindler
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
28
|
Li Q, Huisman J, Bibby TS, Jiao N. Biogeography of Cyanobacterial isiA Genes and Their Link to Iron Availability in the Ocean. Front Microbiol 2019; 10:650. [PMID: 31024472 PMCID: PMC6460047 DOI: 10.3389/fmicb.2019.00650] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 03/14/2019] [Indexed: 11/15/2022] Open
Abstract
The cyanobacterial iron-stress-inducible isiA gene encodes a chlorophyll-binding protein that provides flexibility in photosynthetic strategy enabling cells to acclimate to low iron availability. Here, we report on the diversity and abundance of isiA genes from 14 oceanic stations encompassing large natural gradients in iron availability. Synechococcus CRD1 and CRD2-like isiA genes were ubiquitously identified from tropical and subtropical waters of the Pacific, Atlantic, and Indian Oceans. The relative abundance of isiA-containing Synechococcus cells ranged from less than 10% of the total Synechococcus population in regions where iron is replete such as the North Atlantic subtropical gyre, to over 80% in low-iron but high-nitrate regions of the eastern equatorial Pacific. Interestingly, Synechococcus populations in regions with both low iron and low nitrate concentrations such as the subtropical gyres in the North Pacific and South Atlantic had a low relative abundance of the isiA gene. Indeed, fitting our data into a multiple regression model showed that ∼80% of the variation in isiA relative abundances can be explained by nitrate and iron concentrations, whereas no other environmental variables (temperature, salinity, Chl a) had a significant effect. Hence, isiA has a predictable biogeographical distribution, consistent with the perceived biological role of IsiA as an adaptation to low-iron conditions. Understanding such photosynthetic strategies is critical to our ability to accurately estimate primary production and map nutrient limitation on global scales.
Collapse
Affiliation(s)
- Qian Li
- State Key Laboratory of Marine Environmental Sciences, Institute of Marine Microbes and Ecosphere, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
- Center for Microbial Oceanography: Research and Education, Department of Oceanography, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Jef Huisman
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Thomas S. Bibby
- School of Ocean and Earth Science, National Oceanography Centre Southampton, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, United Kingdom
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Sciences, Institute of Marine Microbes and Ecosphere, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
29
|
Zhang Q, Snow JT, Holdship P, Price D, Watson P, Rickaby REM. Direct measurement of multi-elements in high matrix samples with a flow injection ICP-MS: application to the extended Emiliania huxleyi Redfield ratio. JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY 2018; 33:1196-1208. [PMID: 30034070 PMCID: PMC6032269 DOI: 10.1039/c8ja00031j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/24/2018] [Indexed: 06/02/2023]
Abstract
The quotas of a limited number of trace elements in the extended Redfield ratios have been determined before and thought to reflect the requirements of phytoplankton. However, these quotas are found to be quite variable under different environmental conditions, suggesting that the cellular trace metal quota is not an accurate measure of cellular trace metal requirement. Here we present a method that has been developed and optimised for direct analysis of 32 elements simultaneously in small volume of cell lysate in buffers with a high salt matrix (800 μL, up to 30% TDS). We then demonstrate the application of the method to resolve the extended Redfield ratio of cell requirement by measuring the intracellular trace element composition of six Emiliania huxleyi strains isolated from different locations. The method uses a quadrupole-ICP-MS with a collision/reaction cell to resolve polyatomic interferences. The ICP-MS is interfaced with an Elemental Scientific Flow Injection Automation System (FIAS). The accuracy of the analysis according to this new method is verified by measuring 2 certified reference materials, BCR 273 and BCR 414. This work presents a number of running parameters, optimised for multi-element analysis of samples with a high TDS sample matrix. This method allows direct measurement of protein samples in their native state: no alteration or digestion is needed, which simplifies the steps for sample preparation. In this study with 6 E. huxleyi strains isolated from the environment, our method reveals significant differences between whole cell and intracellular metal quotas for all strains. The intracellular metal composition, interpreted as a truer representation of organisms' metal requirements, shows an environmentally dependent signal. This suggests that, compared with whole cell metal quotas, the metalloproteins are a better indicator of metal requirements of phytoplankton under various environmental conditions.
Collapse
Affiliation(s)
- Qiong Zhang
- Department of Earth Sciences , University of Oxford , OX1 3AN , UK .
| | - Joseph T Snow
- Department of Earth Sciences , University of Oxford , OX1 3AN , UK .
| | - Phil Holdship
- Department of Earth Sciences , University of Oxford , OX1 3AN , UK .
| | - David Price
- PerkinElmer, Inc. , Seer Green, Buckinghamshire , HP9 2FX , UK
| | - Paul Watson
- Elemental Scientific Instruments Ltd. , 73 Manchester Road, Warrington , WA1 4AE , UK
| | | |
Collapse
|
30
|
Chrismas NAM, Anesio AM, Sánchez-Baracaldo P. The future of genomics in polar and alpine cyanobacteria. FEMS Microbiol Ecol 2018; 94:4904125. [PMID: 29506259 PMCID: PMC5939894 DOI: 10.1093/femsec/fiy032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/23/2018] [Indexed: 01/01/2023] Open
Abstract
In recent years, genomic analyses have arisen as an exciting way of investigating the functional capacity and environmental adaptations of numerous micro-organisms of global relevance, including cyanobacteria. In the extreme cold of Arctic, Antarctic and alpine environments, cyanobacteria are of fundamental ecological importance as primary producers and ecosystem engineers. While their role in biogeochemical cycles is well appreciated, little is known about the genomic makeup of polar and alpine cyanobacteria. In this article, we present ways that genomic techniques might be used to further our understanding of cyanobacteria in cold environments in terms of their evolution and ecology. Existing examples from other environments (e.g. marine/hot springs) are used to discuss how methods developed there might be used to investigate specific questions in the cryosphere. Phylogenomics, comparative genomics and population genomics are identified as methods for understanding the evolution and biogeography of polar and alpine cyanobacteria. Transcriptomics will allow us to investigate gene expression under extreme environmental conditions, and metagenomics can be used to complement tradition amplicon-based methods of community profiling. Finally, new techniques such as single cell genomics and metagenome assembled genomes will also help to expand our understanding of polar and alpine cyanobacteria that cannot readily be cultured.
Collapse
Affiliation(s)
- Nathan A M Chrismas
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, University Road, Bristol, BS8 1SS, UK
- Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
| | - Alexandre M Anesio
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, University Road, Bristol, BS8 1SS, UK
| | - Patricia Sánchez-Baracaldo
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, University Road, Bristol, BS8 1SS, UK
| |
Collapse
|
31
|
Kim Y, Jeon J, Kwak MS, Kim GH, Koh I, Rho M. Photosynthetic functions of Synechococcus in the ocean microbiomes of diverse salinity and seasons. PLoS One 2018; 13:e0190266. [PMID: 29293601 PMCID: PMC5749766 DOI: 10.1371/journal.pone.0190266] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/11/2017] [Indexed: 12/27/2022] Open
Abstract
Synechococcus is an important photosynthetic picoplankton in the temperate to tropical oceans. As a photosynthetic bacterium, Synechococcus has an efficient mechanism to adapt to the changes in salinity and light intensity. The analysis of the distributions and functions of such microorganisms in the ever changing river mouth environment, where freshwater and seawater mix, should help better understand their roles in the ecosystem. Toward this objective, we have collected and sequenced the ocean microbiome in the river mouth of Kwangyang Bay, Korea, as a function of salinity and temperature. In conjunction with comparative genomics approaches using the sequenced genomes of a wide phylogeny of Synechococcus, the ocean microbiome was analyzed in terms of their composition and clade-specific functions. The results showed significant differences in the compositions of Synechococcus sampled in different seasons. The photosynthetic functions in such enhanced Synechococcus strains were also observed in the microbiomes in summer, which is significantly different from those in other seasons.
Collapse
Affiliation(s)
- Yihwan Kim
- Department of Computer Science and Engineering, Hanyang University, Seoul, Korea
| | - Jehyun Jeon
- Department of Computer Science and Engineering, Hanyang University, Seoul, Korea
| | - Min Seok Kwak
- Department of Biology, Kongju National University, Kongju, Korea
| | - Gwang Hoon Kim
- Department of Biology, Kongju National University, Kongju, Korea
| | - InSong Koh
- Department of Biomedical Informatics, Hanyang University, Seoul, Korea
| | - Mina Rho
- Department of Computer Science and Engineering, Hanyang University, Seoul, Korea
- Department of Biomedical Informatics, Hanyang University, Seoul, Korea
- * E-mail:
| |
Collapse
|
32
|
Mackey KRM, Hunter-Cevera K, Britten GL, Murphy LG, Sogin ML, Huber JA. Seasonal Succession and Spatial Patterns of Synechococcus Microdiversity in a Salt Marsh Estuary Revealed through 16S rRNA Gene Oligotyping. Front Microbiol 2017; 8:1496. [PMID: 28848514 PMCID: PMC5552706 DOI: 10.3389/fmicb.2017.01496] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 07/25/2017] [Indexed: 11/13/2022] Open
Abstract
Synechococcus are ubiquitous and cosmopolitan cyanobacteria that play important roles in global productivity and biogeochemical cycles. This study investigated the fine scale microdiversity, seasonal patterns, and spatial distributions of Synechococcus in estuarine waters of Little Sippewissett salt marsh (LSM) on Cape Cod, MA. The proportion of Synechococcus reads was higher in the summer than winter, and higher in coastal waters than within the estuary. Variations in the V4-V6 region of the bacterial 16S rRNA gene revealed 12 unique Synechococcus oligotypes. Two distinct communities emerged in early and late summer, each comprising a different set of statistically co-occurring Synechococcus oligotypes from different clades. The early summer community included clades I and IV, which correlated with lower temperature and higher dissolved oxygen levels. The late summer community included clades CB5, I, IV, and VI, which correlated with higher temperatures and higher salinity levels. Four rare oligotypes occurred in the late summer community, and their relative abundances more strongly correlated with high salinity than did other co-occurring oligotypes. The analysis revealed that multiple, closely related oligotypes comprised certain abundant clades (e.g., clade 1 in the early summer and clade CB5 in the late summer), but the correlations between these oligotypes varied from pair to pair, suggesting they had slightly different niches despite being closely related at the clade level. Lack of tidal water exchange between sampling stations gave rise to a unique oligotype not abundant at other locations in the estuary, suggesting physical isolation plays a role in generating additional microdiversity within the community. Together, these results contribute to our understanding of the environmental and ecological factors that influence patterns of Synechococcus microbial community composition over space and time in salt marsh estuarine waters.
Collapse
Affiliation(s)
| | - Kristen Hunter-Cevera
- Marine Biological Laboratory, Josephine Bay Paul Center for Comparative Molecular Biology and EvolutionWoods Hole, MA, United States
| | - Gregory L Britten
- Earth System Science, University of California IrvineIrvine, CA, United States
| | - Leslie G Murphy
- Marine Biological Laboratory, Josephine Bay Paul Center for Comparative Molecular Biology and EvolutionWoods Hole, MA, United States
| | - Mitchell L Sogin
- Marine Biological Laboratory, Josephine Bay Paul Center for Comparative Molecular Biology and EvolutionWoods Hole, MA, United States
| | - Julie A Huber
- Marine Biological Laboratory, Josephine Bay Paul Center for Comparative Molecular Biology and EvolutionWoods Hole, MA, United States
| |
Collapse
|
33
|
Xia X, Guo W, Tan S, Liu H. Synechococcus Assemblages across the Salinity Gradient in a Salt Wedge Estuary. Front Microbiol 2017; 8:1254. [PMID: 28729864 PMCID: PMC5498518 DOI: 10.3389/fmicb.2017.01254] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/21/2017] [Indexed: 02/01/2023] Open
Abstract
Synechococcus are the most abundant and widely distributed picocyanobacteria in the ocean. The salt-wedge type of estuary possesses the complete horizontal and vertical gradient of salinity together with other physical and chemical parameters. In order to reveal whether such a complex environmental gradient harbors a high diversity of Synechococcus, we investigated the abundance, taxonomic composition and pigment genetic diversity of Synechococcus in surface and bottom waters across the salinity gradient in a salt-wedge estuary by flow cytometric analysis and pyrosequencing of the rpoC1 gene and cpcBA operon (encoding phycocyanin). Synechococcus were ubiquitously distributed in the studied region, with clear spatial variations both horizontally and vertically. The abundance and diversity of Synechococcus were low in the freshwater-dominated low salinity waters. By pyrosequencing of the rpoC1 gene, we have shown that with the increase of salinity, the dominant Synechococcus shifted from the freshwater Synechococcus to the combination of phylogenetic subcluster 5.2 and freshwater Synechococcus, and then the strictly marine subcluster 5.1 clade III. Besides, the composition of Synechococcus assemblage in the deep layer was markedly different from the surface in the stratified waters (dissimilarities: 40.32%-95.97%, SIMPER analysis). High abundance of clade III Synechococcus found in the brackish waters may revise our previous understanding that strains of this clade prefers oligotrophic environment. Our data also suggested that both the phylogenetic subcluster 5.3 Synechococcus, a lineage that was not well understood, and subcluster 5.1 clade I, a typical cold water lineage, were widely distributed in the bottom layer of the estuary. Clade I detected in the studied region was mainly contributed by subclade IG. Analysis of the cpcBA operon sequences revealed niche partitioning between type 1 and type 3 Synechococcus, with type 2 distributed broadly across the whole environmental gradients. Our results suggest that the salt wedge estuary provides various niches for different lineages of Synechococcus, making it an environment with high Synechococcus diversity compared with adjacent freshwater and shelf sea environments.
Collapse
Affiliation(s)
- Xiaomin Xia
- Division of Life Science, The Hong Kong University of Science and TechnologyHong Kong, Hong Kong
| | - Wang Guo
- Division of Life Science, The Hong Kong University of Science and TechnologyHong Kong, Hong Kong
| | - Shangjin Tan
- Division of Life Science, The Hong Kong University of Science and TechnologyHong Kong, Hong Kong
| | - Hongbin Liu
- Division of Life Science, The Hong Kong University of Science and TechnologyHong Kong, Hong Kong
| |
Collapse
|
34
|
Agarwal V, Miles ZD, Winter JM, Eustáquio AS, El Gamal AA, Moore BS. Enzymatic Halogenation and Dehalogenation Reactions: Pervasive and Mechanistically Diverse. Chem Rev 2017; 117:5619-5674. [PMID: 28106994 PMCID: PMC5575885 DOI: 10.1021/acs.chemrev.6b00571] [Citation(s) in RCA: 275] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Naturally produced halogenated compounds are ubiquitous across all domains of life where they perform a multitude of biological functions and adopt a diversity of chemical structures. Accordingly, a diverse collection of enzyme catalysts to install and remove halogens from organic scaffolds has evolved in nature. Accounting for the different chemical properties of the four halogen atoms (fluorine, chlorine, bromine, and iodine) and the diversity and chemical reactivity of their organic substrates, enzymes performing biosynthetic and degradative halogenation chemistry utilize numerous mechanistic strategies involving oxidation, reduction, and substitution. Biosynthetic halogenation reactions range from simple aromatic substitutions to stereoselective C-H functionalizations on remote carbon centers and can initiate the formation of simple to complex ring structures. Dehalogenating enzymes, on the other hand, are best known for removing halogen atoms from man-made organohalogens, yet also function naturally, albeit rarely, in metabolic pathways. This review details the scope and mechanism of nature's halogenation and dehalogenation enzymatic strategies, highlights gaps in our understanding, and posits where new advances in the field might arise in the near future.
Collapse
Affiliation(s)
- Vinayak Agarwal
- Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California, San Diego
| | - Zachary D. Miles
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego
| | | | - Alessandra S. Eustáquio
- College of Pharmacy, Department of Medicinal Chemistry & Pharmacognosy and Center for Biomolecular Sciences, University of Illinois at Chicago
| | - Abrahim A. El Gamal
- Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California, San Diego
| | - Bradley S. Moore
- Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California, San Diego
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego
| |
Collapse
|
35
|
Larkin AA, Martiny AC. Microdiversity shapes the traits, niche space, and biogeography of microbial taxa. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:55-70. [PMID: 28185400 DOI: 10.1111/1758-2229.12523] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 06/06/2023]
Abstract
With rapidly improving sequencing technologies, scientists have recently gained the ability to examine diverse microbial communities at high genomic resolution, revealing that both free-living and host-associated microbes partition their environment at fine phylogenetic scales. This 'microdiversity,' or closely related (> 97% similar 16S rRNA gene) but ecologically and physiologically distinct sub-taxonomic groups, appears to be an intrinsic property of microorganisms. However, the functional implications of microdiversity as well as its effects on microbial biogeography are poorly understood. Here, we present two theoretical models outlining the evolutionary mechanisms that drive the formation of microdiverse 'sub-taxa.' Additionally, we review recent literature and reveal that microdiversity influences a wide range of functional traits across diverse ecosystems and microbes. Moving to higher levels of organization, we use laboratory data from marine, soil, and host-associated bacteria to demonstrate that the aggregated trait-based response of microdiverse sub-taxa modifies the fundamental niche of microbes. The correspondence between microdiversity and niche space represents a critical tool for future studies of microbial ecology. By combining growth experiments on diverse isolates with examinations of environmental abundance patterns, researchers can better quantify the fundamental and realized niches of microbes and improve understanding of microbial biogeography and response to future environmental change.
Collapse
Affiliation(s)
- Alyse A Larkin
- Department of Earth System Science, University of California, Irvine, CA, 92697, USA
| | - Adam C Martiny
- Department of Earth System Science, University of California, Irvine, CA, 92697, USA
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| |
Collapse
|
36
|
Stuart RK, Bundy R, Buck K, Ghassemain M, Barbeau K, Palenik B. Copper toxicity response influences mesotrophicSynechococcuscommunity structure. Environ Microbiol 2017; 19:756-769. [DOI: 10.1111/1462-2920.13630] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 11/17/2016] [Accepted: 11/19/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Rhona K. Stuart
- Scripps Institution of Oceanography, University of California at San Diego; La Jolla CA USA
| | - Randelle Bundy
- University of California at San Diego; La Jolla 92093 CA USA
| | - Kristen Buck
- Scripps Institution of Oceanography, University of California at San Diego; La Jolla CA USA
| | | | - Kathy Barbeau
- Scripps Institution of Oceanography, University of California at San Diego; La Jolla CA USA
| | - Brian Palenik
- Scripps Institution of Oceanography, University of California at San Diego; La Jolla CA USA
| |
Collapse
|
37
|
Marques CR. Bio-rescue of marine environments: On the track of microbially-based metal/metalloid remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 565:165-180. [PMID: 27161138 DOI: 10.1016/j.scitotenv.2016.04.119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 04/17/2016] [Accepted: 04/18/2016] [Indexed: 06/05/2023]
Abstract
The recent awareness of the huge relevance of marine resources and ecological services is driving regulatory demands for their protection from overwhelming contaminants, such as metals/metalloids. These contaminants enter and accumulate in different marine niches, hence deeply compromising their quality and integrity. Bioremediation has been flourishing to counteract metal/metalloid impacts, since it provides cost-effective and sustainable options by relying on ecology-based technologies. The potential of marine microbes for metal/metalloid bioremediation is the core of many studies, due to their high plasticity to overcome successive environmental hurdles. However, any thorough review on the advances of metal/metalloid bioremediation in marine environments was so far unveiled. This review is designed to (i) outline the characteristics and potential of marine microbes for metal/metalloid bioremediation, (ii) describe the underlying pathways of resistance and detoxification, as well as useful methodologies for their characterization, (iii) identify major bottlenecks on metal/metalloid bioremediation with marine microbes, (iv) present alternative strategies based on microbial consortia and engineered microbes for enhanced bioremediation, and (v) propose key research avenues to keep pace with a changing society, science and economy in a sustainable manner.
Collapse
Affiliation(s)
- Catarina R Marques
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
38
|
Bemal S, Anil AC. Genetic and ecophysiological traits of Synechococcus strains isolated from coastal and open ocean waters of the Arabian Sea. FEMS Microbiol Ecol 2016; 92:fiw162. [PMID: 27495242 DOI: 10.1093/femsec/fiw162] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2016] [Indexed: 11/14/2022] Open
Abstract
The picocyanobacterium Synechococcus is a prominent primary producer in the marine environment. The marine Synechococcus strains are clustered into different clades representing ecologically distinct genotypes. In this study, we compared phylogeny, photophysiology and cell cycles of four novel phycoerythrin-containing Synechococcus strains (clade II of subcluster 5.1) isolated from different depths of the water column (surface and subsurface waters) in coastal and offshore regions of the eastern Arabian Sea. The surface water strains possessed a lesser number of thylakoid layers and had a higher zeaxanthin to chlorophyll a ratio than subsurface strains indicating possible influence of light intensity available at their niche. The DNA distribution pattern of the four strains was bimodal in optimal cellular physiology conditions with cell division restricted to the light period and synchronized with the light-dark cycle. The presence of phycourobilin or phycoerythrobilin and the ratio between these two chromophores in all four strains varied according to available spectral wavelength in situ This study indicates that the timing of cell division is conserved within these genotypically identical Synechococcus strains, despite their having different chromophore ratios. We conclude that the timing of cell division of the Synechococcus strains has a genetic basis rather than being determined by phenotypic characters, such as chromophore content and ratio.
Collapse
Affiliation(s)
- Suchandan Bemal
- School of Oceanography, Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research, National Institute of Oceanography (CSIR-NIO), Dona-Paula 403004, Goa, India
| | - Arga Chandrashekar Anil
- Council of Scientific and Industrial Research, National Institute of Oceanography, Dona-Paula 403004, Goa, India
| |
Collapse
|
39
|
Coutinho F, Tschoeke DA, Thompson F, Thompson C. Comparative genomics of Synechococcus and proposal of the new genus Parasynechococcus. PeerJ 2016; 4:e1522. [PMID: 26839740 PMCID: PMC4734447 DOI: 10.7717/peerj.1522] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 11/28/2015] [Indexed: 11/30/2022] Open
Abstract
Synechococcus is among the most important contributors to global primary productivity. The genomes of several strains of this taxon have been previously sequenced in an effort to understand the physiology and ecology of these highly diverse microorganisms. Here we present a comparative study of Synechococcus genomes. For that end, we developed GenTaxo, a program written in Perl to perform genomic taxonomy based on average nucleotide identity, average amino acid identity and dinucleotide signatures, which revealed that the analyzed strains are drastically distinct regarding their genomic content. Phylogenomic reconstruction indicated a division of Synechococcus in two clades (i.e. Synechococcus and the new genus Parasynechococcus), corroborating evidences that this is in fact a polyphyletic group. By clustering protein encoding genes into homologue groups we were able to trace the Pangenome and core genome of both marine and freshwater Synechococcus and determine the genotypic traits that differentiate these lineages.
Collapse
Affiliation(s)
- Felipe Coutinho
- Instituto de Biologia (IB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Centre for Molecular and Biomolecular Informatics (CMBI), Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Diogo Antonio Tschoeke
- Instituto de Biologia (IB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Fabiano Thompson
- Instituto de Biologia (IB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- COPPE/SAGE, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Cristiane Thompson
- Instituto de Biologia (IB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
40
|
Shilova IN, Robidart JC, DeLong EF, Zehr JP. Genetic Diversity Affects the Daily Transcriptional Oscillations of Marine Microbial Populations. PLoS One 2016; 11:e0146706. [PMID: 26751368 PMCID: PMC4709009 DOI: 10.1371/journal.pone.0146706] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/21/2015] [Indexed: 11/18/2022] Open
Abstract
Marine microbial communities are genetically diverse but have robust synchronized daily transcriptional patterns at the genus level that are similar across a wide variety of oceanic regions. We developed a microarray-inspired gene-centric approach to resolve transcription of closely-related but distinct strains/ecotypes in high-throughput sequence data. Applying this approach to the existing metatranscriptomics datasets collected from two different oceanic regions, we found unique and variable patterns of transcription by individual taxa within the abundant picocyanobacteria Prochlorococcus and Synechococcus, the alpha Proteobacterium Pelagibacter and the eukaryotic picophytoplankton Ostreococcus. The results demonstrate that marine microbial taxa respond differentially to variability in space and time in the ocean. These intra-genus individual transcriptional patterns underlie whole microbial community responses, and the approach developed here facilitates deeper insights into microbial population dynamics.
Collapse
Affiliation(s)
- Irina N. Shilova
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Julie C. Robidart
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Edward F. DeLong
- School of Ocean and Earth Science and Technology, University of Hawai’i at Manoa, Honolulu, Hawaii, United States of America
| | - Jonathan P. Zehr
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail:
| |
Collapse
|
41
|
Hugerth LW, Larsson J, Alneberg J, Lindh MV, Legrand C, Pinhassi J, Andersson AF. Metagenome-assembled genomes uncover a global brackish microbiome. Genome Biol 2015; 16:279. [PMID: 26667648 PMCID: PMC4699468 DOI: 10.1186/s13059-015-0834-7] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/12/2015] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Microbes are main drivers of biogeochemical cycles in oceans and lakes. Although the genome is a foundation for understanding the metabolism, ecology and evolution of an organism, few bacterioplankton genomes have been sequenced, partly due to difficulties in cultivating them. RESULTS We use automatic binning to reconstruct a large number of bacterioplankton genomes from a metagenomic time-series from the Baltic Sea, one of world's largest brackish water bodies. These genomes represent novel species within typical freshwater and marine clades, including clades not previously sequenced. The genomes' seasonal dynamics follow phylogenetic patterns, but with fine-grained lineage-specific variations, reflected in gene-content. Signs of streamlining are evident in most genomes, and estimated genome sizes correlate with abundance variation across filter size fractions. Comparing the genomes with globally distributed metagenomes reveals significant fragment recruitment at high sequence identity from brackish waters in North America, but little from lakes or oceans. This suggests the existence of a global brackish metacommunity whose populations diverged from freshwater and marine relatives over 100,000 years ago, long before the Baltic Sea was formed (8000 years ago). This markedly contrasts to most Baltic Sea multicellular organisms, which are locally adapted populations of freshwater or marine counterparts. CONCLUSIONS We describe the gene content, temporal dynamics and biogeography of a large set of new bacterioplankton genomes assembled from metagenomes. We propose that brackish environments exert such strong selection that lineages adapted to them flourish globally with limited influence from surrounding aquatic communities.
Collapse
Affiliation(s)
- Luisa W Hugerth
- KTH Royal Institute of Technology, Science for Life Laboratory, School of Biotechnology, Division of Gene Technology, Stockholm, Sweden.
| | - John Larsson
- Centre for Ecology and Evolution in Microbial model Systems - EEMiS, Linnaeus University, Barlastgatan 11, SE-39182, Kalmar, Sweden.
| | - Johannes Alneberg
- KTH Royal Institute of Technology, Science for Life Laboratory, School of Biotechnology, Division of Gene Technology, Stockholm, Sweden.
| | - Markus V Lindh
- Centre for Ecology and Evolution in Microbial model Systems - EEMiS, Linnaeus University, Barlastgatan 11, SE-39182, Kalmar, Sweden.
| | - Catherine Legrand
- Centre for Ecology and Evolution in Microbial model Systems - EEMiS, Linnaeus University, Barlastgatan 11, SE-39182, Kalmar, Sweden.
| | - Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial model Systems - EEMiS, Linnaeus University, Barlastgatan 11, SE-39182, Kalmar, Sweden.
| | - Anders F Andersson
- KTH Royal Institute of Technology, Science for Life Laboratory, School of Biotechnology, Division of Gene Technology, Stockholm, Sweden.
| |
Collapse
|
42
|
Transcriptome dynamics of a broad host-range cyanophage and its hosts. ISME JOURNAL 2015; 10:1437-55. [PMID: 26623542 DOI: 10.1038/ismej.2015.210] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 09/17/2015] [Accepted: 10/07/2015] [Indexed: 01/21/2023]
Abstract
Cyanobacteria are highly abundant in the oceans and are constantly exposed to lytic viruses. The T4-like cyanomyoviruses are abundant in the marine environment and have broad host-ranges relative to other cyanophages. It is currently unknown whether broad host-range phages specifically tailor their infection program for each host, or employ the same program irrespective of the host infected. Also unknown is how different hosts respond to infection by the same phage. Here we used microarray and RNA-seq analyses to investigate the interaction between the Syn9 T4-like cyanophage and three phylogenetically, ecologically and genomically distinct marine Synechococcus strains: WH7803, WH8102 and WH8109. Strikingly, Syn9 led a nearly identical infection and transcriptional program in all three hosts. Different to previous assumptions for T4-like cyanophages, three temporally regulated gene expression classes were observed. Furthermore, a novel regulatory element controlled early-gene transcription, and host-like promoters drove middle gene transcription, different to the regulatory paradigm for T4. Similar results were found for the P-TIM40 phage during infection of Prochlorococcus NATL2A. Moreover, genomic and metagenomic analyses indicate that these regulatory elements are abundant and conserved among T4-like cyanophages. In contrast to the near-identical transcriptional program employed by Syn9, host responses to infection involved host-specific genes primarily located in hypervariable genomic islands, substantiating islands as a major axis of phage-cyanobacteria interactions. Our findings suggest that the ability of broad host-range phages to infect multiple hosts is more likely dependent on the effectiveness of host defense strategies than on differential tailoring of the infection process by the phage.
Collapse
|
43
|
Divergent responses of Atlantic coastal and oceanic Synechococcus to iron limitation. Proc Natl Acad Sci U S A 2015. [PMID: 26216989 DOI: 10.1073/pnas.1509448112] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Marine Synechococcus are some of the most diverse and ubiquitous phytoplankton, and iron (Fe) is an essential micronutrient that limits productivity in many parts of the ocean. To investigate how coastal and oceanic Atlantic Synechococcus strains acclimate to Fe availability, we compared the growth, photophysiology, and quantitative proteomics of two Synechococcus strains from different Fe regimes. Synechococcus strain WH8102, from a region in the southern Sargasso Sea that receives substantial dust deposition, showed impaired growth and photophysiology as Fe declined, yet used few acclimation responses. Coastal WH8020, from the dynamic, seasonally variable New England shelf, displayed a multitiered, hierarchical cascade of acclimation responses with different Fe thresholds. The multitiered response included changes in Fe acquisition, storage, and photosynthetic proteins, substitution of flavodoxin for ferredoxin, and modified photophysiology, all while maintaining remarkably stable growth rates over a range of Fe concentrations. Modulation of two distinct ferric uptake regulator (Fur) proteins that coincided with the multitiered proteome response was found, implying the coastal strain has different regulatory threshold responses to low Fe availability. Low nitrogen (N) and phosphorus (P) availability in the open ocean may favor the loss of Fe response genes when Fe availability is consistent over time, whereas these genes are retained in dynamic environments where Fe availability fluctuates and N and P are more abundant.
Collapse
|
44
|
Co-occurring Synechococcus ecotypes occupy four major oceanic regimes defined by temperature, macronutrients and iron. ISME JOURNAL 2015. [PMID: 26208139 DOI: 10.1038/ismej.2015.115] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Marine picocyanobacteria, comprised of the genera Synechococcus and Prochlorococcus, are the most abundant and widespread primary producers in the ocean. More than 20 genetically distinct clades of marine Synechococcus have been identified, but their physiology and biogeography are not as thoroughly characterized as those of Prochlorococcus. Using clade-specific qPCR primers, we measured the abundance of 10 Synechococcus clades at 92 locations in surface waters of the Atlantic and Pacific Oceans. We found that Synechococcus partition the ocean into four distinct regimes distinguished by temperature, macronutrients and iron availability. Clades I and IV were prevalent in colder, mesotrophic waters; clades II, III and X dominated in the warm, oligotrophic open ocean; clades CRD1 and CRD2 were restricted to sites with low iron availability; and clades XV and XVI were only found in transitional waters at the edges of the other biomes. Overall, clade II was the most ubiquitous clade investigated and was the dominant clade in the largest biome, the oligotrophic open ocean. Co-occurring clades that occupy the same regime belong to distinct evolutionary lineages within Synechococcus, indicating that multiple ecotypes have evolved independently to occupy similar niches and represent examples of parallel evolution. We speculate that parallel evolution of ecotypes may be a common feature of diverse marine microbial communities that contributes to functional redundancy and the potential for resiliency.
Collapse
|
45
|
Sudek S, Everroad RC, Gehman ALM, Smith JM, Poirier CL, Chavez FP, Worden AZ. Cyanobacterial distributions along a physico-chemical gradient in the Northeastern Pacific Ocean. Environ Microbiol 2015; 17:3692-707. [PMID: 25522910 DOI: 10.1111/1462-2920.12742] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 12/01/2014] [Accepted: 12/01/2014] [Indexed: 12/11/2022]
Abstract
The cyanobacteria Prochlorococcus and Synechococcus are important marine primary producers. We explored their distributions and covariance along a physico-chemical gradient from coastal to open ocean waters in the Northeastern Pacific Ocean. An inter-annual pattern was delineated in the dynamic transition zone where upwelled and eastern boundary current waters mix, and two new Synechococcus clades, Eastern Pacific Clade (EPC) 1 and EPC2, were identified. By applying state-of-the-art phylogenetic analysis tools to bar-coded 16S amplicon datasets, we observed higher abundance of Prochlorococcus high-light I (HLI) and low-light I (LLI) in years when more oligotrophic water intruded farther inshore, while under stronger upwelling Synechococcus I and IV dominated. However, contributions of some cyanobacterial clades were proportionally relatively constant, e.g. Synechococcus EPC2. In addition to supporting observations that Prochlorococcus LLI thrive at higher irradiances than other LL taxa, the results suggest LLI tolerate lower temperatures than previously reported. The phylogenetic precision of our 16S rRNA gene analytical approach and depth of bar-coded sequencing also facilitated detection of clades at low abundance in unexpected places. These include Prochlorococcus at the coast and Cyanobium-related sequences offshore, although it remains unclear whether these came from resident or potentially advected cells. Our study enhances understanding of cyanobacterial distributions in an ecologically important eastern boundary system.
Collapse
Affiliation(s)
- Sebastian Sudek
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA
| | - R Craig Everroad
- Exobiology Branch, NASA Ames Research Center, MS 239-4, Moffett Field, CA, 94035, USA
| | - Alyssa-Lois M Gehman
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA
| | - Jason M Smith
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA
| | - Camille L Poirier
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA
| | - Francisco P Chavez
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA
| | - Alexandra Z Worden
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA.,Integrated Microbial Biodiversity Program, Canadian Institute for Advanced Research, Toronto, ON, M5G 1Z8, Canada
| |
Collapse
|
46
|
Kretz CB, Bell DW, Lomas DA, Lomas MW, Martiny AC. Influence of growth rate on the physiological response of marine Synechococcus to phosphate limitation. Front Microbiol 2015; 6:85. [PMID: 25717321 PMCID: PMC4324148 DOI: 10.3389/fmicb.2015.00085] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 01/22/2015] [Indexed: 11/13/2022] Open
Abstract
Phosphate (P) is an important nutrient potentially limiting for primary productivity, yet, we currently know little about the relationship between growth rate and physiological response to P limitation in abundant marine Cyanobacteria. Thus, the aim of this research was to determine how variation in growth rate affected the physiology of marine Synechococcus WH8102 and CC9311 when growing under high N:P conditions. Experiments were carried out in chemostats with a media input N:P of 441 and we estimated the half saturation concentration for growth under P limiting conditions (K s,p ) and cellular C:N:P ratios. The K s,p values were the lowest measured for any phytoplankton and on par with ambient P concentrations in oligotrophic regions. We also observed that both strains were able draw down P below 3 nM. Both K s,p and drawdown concentration were lower for the open ocean vs. coastal Synechococcus strain, which may be linked to differences in P acquisition genes in these strains. Cellular C:P and N:P ratios were significantly higher in relation to the Redfield ratio for both Synechococcus strains but we saw no difference in these ratios among growth rates or strains. These results demonstrate that Synechococcus can proliferate under very low P conditions and also that genetically different strains have unique physiological responses to P limitation.
Collapse
Affiliation(s)
- Cécilia B Kretz
- Department of Ecology and Evolutionary Biology, University of California Irvine Irvine, CA, USA
| | - Doug W Bell
- Marine Science Program, School of Earth, Ocean and Environment, University of South Carolina Columbia, SC, USA
| | - Debra A Lomas
- Bigelow Laboratory for Ocean Sciences East Boothbay, ME, USA
| | - Michael W Lomas
- Bigelow Laboratory for Ocean Sciences East Boothbay, ME, USA
| | - Adam C Martiny
- Department of Ecology and Evolutionary Biology, University of California Irvine Irvine, CA, USA ; Department of Earth System Science, University of California Irvine Irvine, CA, USA
| |
Collapse
|
47
|
Das C, Adak P, Mondal S, Sekiya R, Kuroda R, Gorelsky SI, Chattopadhyay SK. Synthesis, Characterization, X-ray Crystal Structure, DFT Calculations, and Catalytic Properties of a Dioxidovanadium(V) Complex Derived from Oxamohydrazide and Pyridoxal: A Model Complex of Vanadate-Dependent Bromoperoxidase. Inorg Chem 2014; 53:11426-37. [DOI: 10.1021/ic501216d] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Chandrima Das
- Department
of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur,
Howrah 711 103, India
| | - Piyali Adak
- Department
of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur,
Howrah 711 103, India
| | - Satyajit Mondal
- Department
of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur,
Howrah 711 103, India
| | - Ryo Sekiya
- Department
of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902 Japan
| | - Reiko Kuroda
- Department
of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902 Japan
| | - Serge I. Gorelsky
- Centre
for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5,
| | - Shyamal Kumar Chattopadhyay
- Department
of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur,
Howrah 711 103, India
| |
Collapse
|
48
|
Pierella Karlusich JJ, Lodeyro AF, Carrillo N. The long goodbye: the rise and fall of flavodoxin during plant evolution. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5161-78. [PMID: 25009172 PMCID: PMC4400536 DOI: 10.1093/jxb/eru273] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 05/18/2023]
Abstract
Ferredoxins are electron shuttles harbouring iron-sulfur clusters that connect multiple oxido-reductive pathways in organisms displaying different lifestyles. Some prokaryotes and algae express an isofunctional electron carrier, flavodoxin, which contains flavin mononucleotide as cofactor. Both proteins evolved in the anaerobic environment preceding the appearance of oxygenic photosynthesis. The advent of an oxygen-rich atmosphere proved detrimental to ferredoxin owing to iron limitation and oxidative damage to the iron-sulfur cluster, and many microorganisms induced flavodoxin expression to replace ferredoxin under stress conditions. Paradoxically, ferredoxin was maintained throughout the tree of life, whereas flavodoxin is absent from plants and animals. Of note is that flavodoxin expression in transgenic plants results in increased tolerance to multiple stresses and iron deficit, through mechanisms similar to those operating in microorganisms. Then, the question remains open as to why a trait that still confers plants such obvious adaptive benefits was not retained. We compare herein the properties of ferredoxin and flavodoxin, and their contrasting modes of expression in response to different environmental stimuli. Phylogenetic analyses suggest that the flavodoxin gene was already absent in the algal lineages immediately preceding land plants. Geographical distribution of phototrophs shows a bias against flavodoxin-containing organisms in iron-rich coastal/freshwater habitats. Based on these observations, we propose that plants evolved from freshwater macroalgae that already lacked flavodoxin because they thrived in an iron-rich habitat with no need to back up ferredoxin functions and therefore no selective pressure to keep the flavodoxin gene. Conversely, ferredoxin retention in the plant lineage is probably related to its higher efficiency as an electron carrier, compared with flavodoxin. Several lines of evidence supporting these contentions are presented and discussed.
Collapse
Affiliation(s)
- Juan J Pierella Karlusich
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Anabella F Lodeyro
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Néstor Carrillo
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| |
Collapse
|
49
|
Biller SJ, Berube PM, Berta-Thompson JW, Kelly L, Roggensack SE, Awad L, Roache-Johnson KH, Ding H, Giovannoni SJ, Rocap G, Moore LR, Chisholm SW. Genomes of diverse isolates of the marine cyanobacterium Prochlorococcus. Sci Data 2014; 1:140034. [PMID: 25977791 PMCID: PMC4421930 DOI: 10.1038/sdata.2014.34] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 08/19/2014] [Indexed: 11/30/2022] Open
Abstract
The marine cyanobacterium Prochlorococcus is the numerically dominant photosynthetic organism in the oligotrophic oceans, and a model system in marine microbial ecology. Here we report 27 new whole genome sequences (2 complete and closed; 25 of draft quality) of cultured isolates, representing five major phylogenetic clades of Prochlorococcus. The sequenced strains were isolated from diverse regions of the oceans, facilitating studies of the drivers of microbial diversity—both in the lab and in the field. To improve the utility of these genomes for comparative genomics, we also define pre-computed clusters of orthologous groups of proteins (COGs), indicating how genes are distributed among these and other publicly available Prochlorococcus genomes. These data represent a significant expansion of Prochlorococcus reference genomes that are useful for numerous applications in microbial ecology, evolution and oceanography.
Collapse
Affiliation(s)
- Steven J Biller
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts, USA
| | - Paul M Berube
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts, USA
| | - Jessie W Berta-Thompson
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts, USA ; Microbiology Graduate Program, Massachusetts Institute of Technology , Cambridge, Massachusetts, USA
| | - Libusha Kelly
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts, USA
| | - Sara E Roggensack
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts, USA
| | - Lana Awad
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts, USA
| | | | - Huiming Ding
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts, USA ; Department of Biology, Massachusetts Institute of Technology , Cambridge, Massachusetts, USA
| | | | - Gabrielle Rocap
- School of Oceanography, Center for Environmental Genomics, University of Washington , Seattle, Washington, USA
| | - Lisa R Moore
- Department of Biological Sciences, University of Southern Maine , Portland, Maine, USA
| | - Sallie W Chisholm
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts, USA ; Department of Biology, Massachusetts Institute of Technology , Cambridge, Massachusetts, USA
| |
Collapse
|
50
|
Saito MA, McIlvin MR, Moran DM, Goepfert TJ, DiTullio GR, Post AF, Lamborg CH. Multiple nutrient stresses at intersecting Pacific Ocean biomes detected by protein biomarkers. Science 2014; 345:1173-7. [PMID: 25190794 DOI: 10.1126/science.1256450] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Marine primary productivity is strongly influenced by the scarcity of required nutrients, yet our understanding of these nutrient limitations is informed by experimental observations with sparse geographical coverage and methodological limitations. We developed a quantitative proteomic method to directly assess nutrient stress in high-light ecotypes of the abundant cyanobacterium Prochlorococcus across a meridional transect in the central Pacific Ocean. Multiple peptide biomarkers detected widespread and overlapping regions of nutritional stress for nitrogen and phosphorus in the North Pacific Subtropical Gyre and iron in the equatorial Pacific. Quantitative protein analyses demonstrated simultaneous stress for these nutrients at biome interfaces. This application of proteomic biomarkers to diagnose ocean metabolism demonstrated Prochlorococcus actively and simultaneously deploying multiple biochemical strategies for low-nutrient conditions in the oceans.
Collapse
Affiliation(s)
- Mak A Saito
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
| | - Matthew R McIlvin
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Dawn M Moran
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Tyler J Goepfert
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | | | - Anton F Post
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Carl H Lamborg
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| |
Collapse
|