1
|
Hirano S, Noguchi M, Thagun C, Nishio H, Kodama Y. Levels of photoactivated phototropin modulate signal transmission during the chloroplast accumulation response. PLANT, CELL & ENVIRONMENT 2024; 47:3215-3226. [PMID: 38736289 DOI: 10.1111/pce.14948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024]
Abstract
Chloroplasts accumulate in regions of plant cells exposed to irradiation to maximize light reception for efficient photosynthesis. This response is mediated by the blue-light receptor phototropin. Upon the perception of blue light, phototropin is photoactivated, an unknown signal is transmitted from the photoactivated phototropin to distant chloroplasts, and the chloroplasts begin their directional movement. How activated phototropin initiates this signal transmission is unknown. Here, using the liverwort Marchantia polymorpha, we analysed whether increased photoactive phototropin levels mediate signal transmission and chloroplast behaviour during the accumulation response. The signal transmission rate was higher in transgenic cells overexpressing phototropin than in wild-type cells. However, the chloroplast directional movement was similar between wild-type and transgenic cells. Consistent with the observation, increasing the amount of photoactivated phototropin through higher blue-light intensity also accelerated signal transmission but did not affect chloroplast behaviour in wild-type cells. Photoactivation of phototropin under weak blue-light led to the greater protein level of phosphorylated phototropin in cells overexpressing phototropin than in wild-type cells, whereas the autophosphorylation level within each phototropin molecule was similar. These results indicate that the abundance of photoactivated phototropin modulates the signal transmission rate to distant chloroplasts but does not affect chloroplast behaviour during the accumulation response.
Collapse
Affiliation(s)
- Satoyuki Hirano
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
- Graduate School of Regional Development and Creativity, Utsunomiya University, Tochigi, Japan
| | - Minoru Noguchi
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
- Graduate School of Regional Development and Creativity, Utsunomiya University, Tochigi, Japan
| | - Chonprakun Thagun
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
| | - Haruki Nishio
- Data Science and AI Innovation Research Promotion Center, Shiga University, Shiga, Japan
- Center for Ecological Research, Kyoto University, Shiga, Japan
| | - Yutaka Kodama
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
- Graduate School of Regional Development and Creativity, Utsunomiya University, Tochigi, Japan
| |
Collapse
|
2
|
Kimura I, Kanegae T. A phytochrome/phototropin chimeric photoreceptor promotes growth of fern gametophytes under limited light conditions. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2403-2416. [PMID: 38189579 DOI: 10.1093/jxb/erae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/06/2024] [Indexed: 01/09/2024]
Abstract
Many ferns thrive even in low-light niches such as under an angiosperm forest canopy. However, the shade adaptation strategy of ferns is not well understood. Phytochrome 3/neochrome (phy3/neo) is an unconventional photoreceptor, found in the fern Adiantum capillus-veneris, that controls both red and blue light-dependent phototropism and chloroplast photorelocation, which are considered to improve photosynthetic efficiency in ferns. Here we show that phy3/neo localizes not only at the plasma membrane but also in the nucleus. Since both phototropism and chloroplast photorelocation are mediated by membrane-associated phototropin photoreceptors, we speculated that nucleus-localized phy3/neo possesses a previously undescribed biological function. We reveal that phy3/neo directly interacts with Adiantum cryptochrome 3 (cry3) in the nucleus. Plant cryptochromes are blue light receptors that transcriptionally regulate photomorphogenesis; therefore, phy3/neo may function via cry3 to synchronize light-mediated development with phototropism and chloroplast photorelocation to promote fern growth under low-light conditions. Furthermore, we demonstrate that phy3/neo regulates the expression of the Cyclin-like gene AcCyc1 and promotes prothallium expansion growth. These findings provide insight into the shade adaptation strategy of ferns and suggest that phy3/neo plays a substantial role in the survival and growth of ferns during the tiny gametophytic stage under low-light conditions, such as those on the forest floor.
Collapse
Affiliation(s)
- Izumi Kimura
- Department of Biological Sciences, Graduate School of Science and Technology, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Takeshi Kanegae
- Department of Biological Sciences, Graduate School of Science and Technology, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
3
|
Hong Y, Wang Z, Li M, Su Y, Wang T. First Multi-Organ Full-Length Transcriptome of Tree Fern Alsophila spinulosa Highlights the Stress-Resistant and Light-Adapted Genes. Front Genet 2022; 12:784546. [PMID: 35186007 PMCID: PMC8854977 DOI: 10.3389/fgene.2021.784546] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Alsophila spinulosa, a relict tree fern, is a valuable plant for investigating environmental adaptations. Its genetic resources, however, are scarce. We used the PacBio and Illumina platforms to sequence the polyadenylated RNA of A. spinulosa root, rachis, and pinna, yielding 125,758, 89,107, and 89,332 unigenes, respectively. Combining the unigenes from three organs yielded a non-redundant reference transcriptome with 278,357 unigenes and N50 of 4141 bp, which were further reconstructed into 38,470 UniTransModels. According to functional annotation, pentatricopeptide repeat genes and retrotransposon-encoded polyprotein genes are the most abundant unigenes. Clean reads mapping to the full-length transcriptome is used to assess the expression of unigenes. The stress-induced ASR genes are highly expressed in all three organs, which is validated by qRT-PCR. The organ-specific upregulated genes are enriched for pathways involved in stress response, secondary metabolites, and photosynthesis. Genes for five types of photoreceptors, CRY signaling pathway, ABA biosynthesis and transduction pathway, and stomatal movement-related ion channel/transporter are profiled using the high-quality unigenes. The gene expression pattern coincides with the previously identified stomatal characteristics of fern. This study is the first multi-organ full-length transcriptome report of a tree fern species, the abundant genetic resources and comprehensive analysis of A. spinulosa, which provides the groundwork for future tree fern research.
Collapse
Affiliation(s)
- Yongfeng Hong
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhen Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Minghui Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yingjuan Su
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen, China
- *Correspondence: Yingjuan Su, ; Ting Wang,
| | - Ting Wang
- Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
- *Correspondence: Yingjuan Su, ; Ting Wang,
| |
Collapse
|
4
|
Cai S, Huang Y, Chen F, Zhang X, Sessa E, Zhao C, Marchant DB, Xue D, Chen G, Dai F, Leebens‐Mack JH, Zhang G, Shabala S, Christie JM, Blatt MR, Nevo E, Soltis PS, Soltis DE, Franks PJ, Wu F, Chen Z. Evolution of rapid blue-light response linked to explosive diversification of ferns in angiosperm forests. THE NEW PHYTOLOGIST 2021; 230:1201-1213. [PMID: 33280113 PMCID: PMC8048903 DOI: 10.1111/nph.17135] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/21/2020] [Indexed: 05/23/2023]
Abstract
Ferns appear in the fossil record some 200 Myr before angiosperms. However, as angiosperm-dominated forest canopies emerged in the Cretaceous period there was an explosive diversification of modern (leptosporangiate) ferns, which thrived in low, blue-enhanced light beneath angiosperm canopies. A mechanistic explanation for this transformative event in the diversification of ferns has remained elusive. We used physiological assays, transcriptome analysis and evolutionary bioinformatics to investigate a potential connection between the evolution of enhanced stomatal sensitivity to blue light in modern ferns and the rise of angiosperm-dominated forests in the geological record. We demonstrate that members of the largest subclade of leptosporangiate ferns, Polypodiales, have significantly faster stomatal response to blue light than more ancient fern lineages and a representative angiosperm. We link this higher sensitivity to levels of differentially expressed genes in blue-light signaling, particularly in the cryptochrome (CRY) signaling pathway. Moreover, CRYs of the Polypodiales examined show gene duplication events between 212.9-196.9 and 164.4-151.8 Ma, when angiosperms were emerging, which are lacking in other major clades of extant land plants. These findings suggest that evolution of stomatal blue-light sensitivity helped modern ferns exploit the shady habitat beneath angiosperm forest canopies, fueling their Cretaceous hyperdiversification.
Collapse
Affiliation(s)
- Shengguan Cai
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
- School of ScienceWestern Sydney UniversityPenrithNSW2751Australia
| | - Yuqing Huang
- School of ScienceWestern Sydney UniversityPenrithNSW2751Australia
| | - Fei Chen
- School of ScienceWestern Sydney UniversityPenrithNSW2751Australia
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSW2751Australia
- College of Life and Environmental SciencesHangzhou Normal UniversityHangzhou310036China
| | - Xin Zhang
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
| | - Emily Sessa
- Department of BiologyUniversity of FloridaGainesvilleFL32611USA
| | - Chenchen Zhao
- School of ScienceWestern Sydney UniversityPenrithNSW2751Australia
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSW2751Australia
| | - D. Blaine Marchant
- Department of BiologyUniversity of FloridaGainesvilleFL32611USA
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFL32611USA
- Department of BiologyStanford UniversityStanfordCA94305USA
| | - Dawei Xue
- College of Life and Environmental SciencesHangzhou Normal UniversityHangzhou310036China
| | - Guang Chen
- Collaborative Innovation Centre for Grain IndustryCollege of AgricultureYangtze UniversityJingzhou434025China
| | - Fei Dai
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
| | | | - Guoping Zhang
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
| | - Sergey Shabala
- Tasmanian Institute of AgricultureUniversity of TasmaniaHobartTAS7004Australia
- International Research Centre for Environmental Membrane BiologyFoshan UniversityFoshan528041China
| | - John M. Christie
- Laboratory of Plant Physiology and BiophysicsUniversity of GlasgowGlasgowG12 8QQUK
| | - Michael R. Blatt
- Laboratory of Plant Physiology and BiophysicsUniversity of GlasgowGlasgowG12 8QQUK
| | - Eviatar Nevo
- Institute of EvolutionUniversity of HaifaMount CarmelHaifa34988384Israel
| | - Pamela S. Soltis
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFL32611USA
| | - Douglas E. Soltis
- Department of BiologyUniversity of FloridaGainesvilleFL32611USA
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFL32611USA
| | - Peter J. Franks
- School of Life and Environmental SciencesThe University of SydneySydneyNSW2006Australia
| | - Feibo Wu
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
| | - Zhong‐Hua Chen
- School of ScienceWestern Sydney UniversityPenrithNSW2751Australia
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSW2751Australia
| |
Collapse
|
5
|
Westbrook AS, McAdam SAM. Atavistic Stomatal Responses to Blue Light in Marsileaceae. PLANT PHYSIOLOGY 2020; 184:1378-1388. [PMID: 32843522 PMCID: PMC7608159 DOI: 10.1104/pp.20.00967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/17/2020] [Indexed: 05/05/2023]
Abstract
Stomata respond to changes in light environment through multiple mechanisms that jointly regulate the tradeoff between carbon assimilation and water loss. The stomatal response to blue light is highly sensitive, rapid, and not driven by photosynthesis. It is present in most vascular plant groups but is believed to have been lost in the ancestor of leptosporangiate ferns. Schizaeales and Salviniales are the only leptosporangiate orders that have not been tested for stomatal responses to a low fluence of blue light. We report that these stomatal responses are absent in Lygodium japonicum (Schizaeales). In contrast, we observed stomatal responses to a low fluence of blue light in Regnellidium diphyllum and Marsilea minuta (Marsileaceae, Salviniales). In R. diphyllum, blue light triggered stomatal oscillations. The oscillations were more sensitive to atmospheric carbon dioxide concentration than to humidity, suggesting that the blue light responses of Marsileaceae stomata differ from those of angiosperms. Our findings suggest that Marsileaceae have physiologically diverged from other leptosporangiate ferns, achieving unusually high photosynthetic capacities through amphibious lifestyles and numerous anatomical convergences with angiosperms. Blue light stomatal responses may have contributed to this divergence by enabling high rates of leaf gas exchange in Marsileaceae.
Collapse
Affiliation(s)
- Anna S Westbrook
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | - Scott A M McAdam
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
6
|
Suzuki H, Koshiba T, Fujita C, Yamauchi Y, Kimura T, Isobe T, Sakai T, Taoka M, Okamoto T. Low-fluence blue light-induced phosphorylation of Zmphot1 mediates the first positive phototropism. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5929-5941. [PMID: 31376280 PMCID: PMC6812725 DOI: 10.1093/jxb/erz344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/25/2019] [Indexed: 05/05/2023]
Abstract
Phototropin1 (phot1) perceives low- to high-fluence blue light stimuli and mediates both the first and second positive phototropisms. High-fluence blue light is known to induce autophosphorylation of phot1, leading to the second positive phototropism. However, the phosphorylation status of phot1 by low-fluence blue light that induces the first positive phototropism had not been observed. Here, we conducted a phosphoproteomic analysis of maize coleoptiles to investigate the fluence-dependent phosphorylation status of Zmphot1. High-fluence blue light induced phosphorylation of Zmphot1 at several sites. Notably, low-fluence blue light significantly increased the phosphorylation level of Ser291 in Zmphot1. Furthermore, Ser291-phosphorylated and Ser369Ser376-diphosphorylated peptides were found to be more abundant in the low-fluence blue light-irradiated sides than in the shaded sides of coleoptiles. The roles of these phosphorylation events in phototropism were explored by heterologous expression of ZmPHOT1 in the Arabidopsis thaliana phot1phot2 mutant. The first positive phototropism was restored in wild-type ZmPHOT1-expressing plants; however, plants expressing S291A-ZmPHOT1 or S369AS376A-ZmPHOT1 showed significantly reduced complementation rates. All transgenic plants tested in this study exhibited a normal second positive phototropism. These findings provide the first indication that low-fluence blue light induces phosphorylation of Zmphot1 and that this induced phosphorylation is crucial for the first positive phototropism.
Collapse
Affiliation(s)
- Hiromi Suzuki
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji-shi, Tokyo, Japan
- Japan Society for the Promotion of Science, Kojimachi Business Center Building, Chiyoda-ku, Tokyo, Japan
- Correspondence: or
| | - Tomokazu Koshiba
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji-shi, Tokyo, Japan
| | - Chiharu Fujita
- Department of Chemistry, Tokyo Metropolitan University, Hachioji-shi, Tokyo, Japan
| | - Yoshio Yamauchi
- Department of Chemistry, Tokyo Metropolitan University, Hachioji-shi, Tokyo, Japan
| | - Taro Kimura
- Japan Society for the Promotion of Science, Kojimachi Business Center Building, Chiyoda-ku, Tokyo, Japan
- Graduate School of Science and Technology, Niigata University, Niigata-shi, Niigata, Japan
| | - Toshiaki Isobe
- Department of Chemistry, Tokyo Metropolitan University, Hachioji-shi, Tokyo, Japan
| | - Tatsuya Sakai
- Graduate School of Science and Technology, Niigata University, Niigata-shi, Niigata, Japan
| | - Masato Taoka
- Department of Chemistry, Tokyo Metropolitan University, Hachioji-shi, Tokyo, Japan
| | - Takashi Okamoto
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji-shi, Tokyo, Japan
- Correspondence: or
| |
Collapse
|
7
|
Lee JW, Kim GH. Red And far-red regulation of filament movement correlates with the expression of phytochrome and FHY1 genes in Spirogyra varians (Zygnematales, Streptophyta) 1. JOURNAL OF PHYCOLOGY 2019; 55:688-699. [PMID: 30805922 DOI: 10.1111/jpy.12849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
Spirogyra filaments show unique photomovement that differs in response to blue, red, and far-red light. Phototropins involved in the blue-light movement have been characterized together with downstream signaling components, but the photoreceptors and mechanical effectors of red- and far-red light movement are not yet characterized. The filaments of Spirogyra varians slowly bent and aggregated to form a tangled mass in red light. In far-red light, the filaments unbent, stretched rapidly, and separated from each other. Mannitol and/or sorbitol treatment significantly inhibited this far-red light movement suggesting that turgor pressure is the driving force of this movement. The bending and aggregating movements of filaments in red light were not affected by osmotic change. Three phytochrome homologues isolated from S. varians showed unique phylogenetic characteristics. Two canonical phytochromes, named SvPHY1 and SvPHY2, and a noncanonical phytochrome named SvPHYX2. SvPHY1 is the first PHY1 family phytochrome reported in zygnematalean algae. The gene involved in the transport of phytochromes into the nucleus was characterized, and its expression in response to red and far-red light was measured using quantitative PCR. Our results suggest that the phytochromes and the genes involved in the transport system into the nucleus are well conserved in S. varians.
Collapse
Affiliation(s)
- Ji Woong Lee
- Department of Biological Sciences, Kongju National University, Gongju, 32588, Korea
| | - Gwang Hoon Kim
- Department of Biological Sciences, Kongju National University, Gongju, 32588, Korea
| |
Collapse
|
8
|
Nuclear movement and positioning in plant cells. Semin Cell Dev Biol 2018; 82:17-24. [DOI: 10.1016/j.semcdb.2017.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/03/2017] [Accepted: 10/03/2017] [Indexed: 12/15/2022]
|
9
|
Kimura Y, Kimura I, Kanegae T. Phototropins of the moss Physcomitrella patens function as blue-light receptors for phototropism in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2018; 13:e1525995. [PMID: 30265188 PMCID: PMC6204831 DOI: 10.1080/15592324.2018.1525995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/03/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
Four phototropin genes (PHOTA1, PHOTA2, PHOTB1, PHOTB2) have been isolated in the moss Physcomitrella patens. These genes encode phototropins that mediate blue-light-induced chloroplast movement. However, the individual functions of these phototropins, including the function of mediating blue-light-induced phototropism, remain unclear. To elucidate the individual functions of P. patens phototropins, each of these phototropin genes was expressed in a phototropin-deficient mutant of Arabidopsis (phot1-5 phot2-1). In addition, fluorescence of GFP fused to these phototropins was examined to determine the subcellular localization of each phototropin. Our results demonstrate that all four P. patens phototropins mediate blue-light-induced phototropism and are associated with the plasma membrane in Arabidopsis. Abbreviations GFP: green fluorescent protein; Pp_phot: Physcomitrella patens phototropin.
Collapse
Affiliation(s)
- Yuki Kimura
- Department of Biological Sciences, Graduate School of Science and Technology, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Izumi Kimura
- Department of Biological Sciences, Graduate School of Science and Technology, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Takeshi Kanegae
- Department of Biological Sciences, Graduate School of Science and Technology, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| |
Collapse
|
10
|
Schmickl R, Marburger S, Bray S, Yant L. Hybrids and horizontal transfer: introgression allows adaptive allele discovery. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5453-5470. [PMID: 29096001 DOI: 10.1093/jxb/erx297] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Evolution has devised countless remarkable solutions to diverse challenges. Understanding the mechanistic basis of these solutions provides insights into how biological systems can be subtly tweaked without maladaptive consequences. The knowledge gained from illuminating these mechanisms is equally important to our understanding of fundamental evolutionary mechanisms as it is to our hopes of developing truly rational plant breeding and synthetic biology. In particular, modern population genomic approaches are proving very powerful in the detection of candidate alleles for mediating consequential adaptations that can be tested functionally. Especially striking are signals gained from contexts involving genetic transfers between populations, closely related species, or indeed between kingdoms. Here we discuss two major classes of these scenarios, adaptive introgression and horizontal gene flow, illustrating discoveries made across kingdoms.
Collapse
Affiliation(s)
- Roswitha Schmickl
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, 128 01 Prague, Czech Republic
| | - Sarah Marburger
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Sian Bray
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Levi Yant
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| |
Collapse
|
11
|
Ganesan M, Lee HY, Kim JI, Song PS. Development of transgenic crops based on photo-biotechnology. PLANT, CELL & ENVIRONMENT 2017; 40:2469-2486. [PMID: 28010046 DOI: 10.1111/pce.12887] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 06/06/2023]
Abstract
The phenotypes associated with plant photomorphogenesis such as the suppressed shade avoidance response and de-etiolation offer the potential for significant enhancement of crop yields. Of many light signal transducers and transcription factors involved in the photomorphogenic responses of plants, this review focuses on the transgenic overexpression of the photoreceptor genes at the uppermost stream of the signalling events, particularly phytochromes, crytochromes and phototropins as the transgenes for the genetic engineering of crops with improved harvest yields. In promoting the harvest yields of crops, the photoreceptors mediate the light regulation of photosynthetically important genes, and the improved yields often come with the tolerance to abiotic stresses such as drought, salinity and heavy metal ions. As a genetic engineering approach, the term photo-biotechnology has been coined to convey the idea that the greater the photosynthetic efficiency that crop plants can be engineered to possess, the stronger the resistance to biotic and abiotic stresses. Development of GM crops based on photoreceptor transgenes (mainly phytochromes, crytochromes and phototropins) is reviewed with the proposal of photo-biotechnology that the photoreceptors mediate the light regulation of photosynthetically important genes, and the improved yields often come with the added benefits of crops' tolerance to environmental stresses.
Collapse
Affiliation(s)
- Markkandan Ganesan
- Subtropical Horticulture Research Institute and Faculty of Biotechnology, Jeju National University, Jeju, 63243, Korea
- Department of Life Sciences, Presidency University, Kolkata, 700073, India
| | - Hyo-Yeon Lee
- Subtropical Horticulture Research Institute and Faculty of Biotechnology, Jeju National University, Jeju, 63243, Korea
| | - Jeong-Il Kim
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju, 61186, Korea
| | - Pill-Soon Song
- Subtropical Horticulture Research Institute and Faculty of Biotechnology, Jeju National University, Jeju, 63243, Korea
| |
Collapse
|
12
|
|
13
|
Photoreceptors mapping from past history till date. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 162:223-231. [PMID: 27387671 DOI: 10.1016/j.jphotobiol.2016.06.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/13/2016] [Indexed: 12/14/2022]
Abstract
The critical source of information in plants is light, which is perceived by receptors present in plants and animals. Receptors present in plant and animal system regulate important processes, and knowing the chromophores and signalling domains for each receptor could pave a way to trace out links between these receptors. The signalling mechanism for each receptor will give insight knowledge. This review has focussed on the photoreceptors from past history till date, that have evolved in the plant as well as in the animal system (to lesser extent). We have also focussed our attention on finding the links between the receptors by showing the commonalities as well as the differences between them, and also tried to trace out the links with the help of chromophores and signalling domain. Several photoreceptors have been traced out, which share similarity in the chromophore as well as in the signalling domain, which indicate towards the evolution of photoreceptors from one another. For instance, cryptochrome has been found to evolve three times from CPD photolyase as well as evolution of different types of phytochrome is a result of duplication and divergence. In addition, similarity between the photoreceptors suggested towards evolution from one another. This review has also discussed possible mechanism for each receptor i.e. how they regulate developmental processes and involve what kinds of regulators and also gives an insight on signalling mechanisms by these receptors. This review could also be a new initiative in the study of UVR8 associated studies.
Collapse
|
14
|
Ermert AL, Mailliet K, Hughes J. Holophytochrome-Interacting Proteins in Physcomitrella: Putative Actors in Phytochrome Cytoplasmic Signaling. FRONTIERS IN PLANT SCIENCE 2016; 7:613. [PMID: 27242820 PMCID: PMC4867686 DOI: 10.3389/fpls.2016.00613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 04/21/2016] [Indexed: 05/26/2023]
Abstract
Phytochromes are the principle photoreceptors in light-regulated plant development, primarily acting via translocation of the light-activated photoreceptor into the nucleus and subsequent gene regulation. However, several independent lines of evidence indicate unambiguously that an additional cytoplasmic signaling mechanism must exist. Directional responses in filament tip cells of the moss Physcomitrella patens are steered by phy4 which has been shown to interact physically with the blue light receptor phototropin at the plasma membrane. This complex might perceive and transduce vectorial information leading to cytoskeleton reorganization and finally a directional growth response. We developed yeast two-hybrid procedures using photochemically functional, full-length phy4 as bait in Physcomitrella cDNA library screens and growth assays under different light conditions, revealing Pfr-dependent interactions possibly associated with phytochrome cytoplasmic signaling. Candidate proteins were then expressed in planta with fluorescent protein tags to determine their intracellular localization in darkness and red light. Of 14 candidates, 12 were confirmed to interact with phy4 in planta using bimolecular fluorescence complementation. We also used database information to study their expression patterns relative to those of phy4. We discuss the likely functional characteristics of these holophytochrome-interacting proteins (HIP's) and their possible roles in signaling.
Collapse
|
15
|
Li FW, Mathews S. Evolutionary aspects of plant photoreceptors. JOURNAL OF PLANT RESEARCH 2016; 129:115-22. [PMID: 26843269 DOI: 10.1007/s10265-016-0785-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 12/27/2015] [Indexed: 05/04/2023]
Abstract
Plant photoreceptors link environmental light cues with physiological responses, determining how individual plants complete their life cycles. Structural and functional evolution of photoreceptors has co-occurred as plants diversified and faced the challenge of new light environments, during the transition of plants to land and as substantial plant canopies evolved. Large-scale comparative sequencing projects allow us for the first time to document photoreceptor evolution in understudied clades, revealing some surprises. Here we review recent progress in evolutionary studies of three photoreceptor families: phytochromes, phototropins and neochromes.
Collapse
Affiliation(s)
- Fay-Wei Li
- Department of Biology, Duke University, Durham, NC, 27708, USA.
- University Herbarium and Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA.
| | - Sarah Mathews
- CSIRO National Research Collections Australia, Australian National Herbarium, Canberra, ACT, 2601, Australia.
| |
Collapse
|
16
|
WADA M. Chloroplast and nuclear photorelocation movements. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2016; 92:387-411. [PMID: 27840388 PMCID: PMC5328789 DOI: 10.2183/pjab.92.387] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/24/2016] [Indexed: 05/18/2023]
Abstract
Chloroplasts move toward weak light to increase photosynthetic efficiency, and migrate away from strong light to protect chloroplasts from photodamage and eventual cell death. These chloroplast behaviors were first observed more than 100 years ago, but the underlying mechanism has only recently been identified. Ideal plant materials, such as fern gametophytes for photobiological and cell biological approaches, and Arabidopsis thaliana for genetic analyses, have been used along with sophisticated methods, such as partial cell irradiation and time-lapse video recording under infrared light to study chloroplast movement. These studies have revealed precise chloroplast behavior, and identified photoreceptors, other relevant protein components, and novel actin filament structures required for chloroplast movement. In this review, our findings regarding chloroplast and nuclear movements are described.
Collapse
Affiliation(s)
- Masamitsu WADA
- Department Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa, Tokyo, Japan
| |
Collapse
|
17
|
Kanegae T, Kimura I. A phytochrome/phototropin chimeric photoreceptor of fern functions as a blue/far-red light-dependent photoreceptor for phototropism in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:480-8. [PMID: 26095327 DOI: 10.1111/tpj.12903] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 05/27/2015] [Accepted: 06/01/2015] [Indexed: 05/07/2023]
Abstract
In the fern Adiantum capillus-veneris, the phototropic response of the protonemal cells is induced by blue light and partially inhibited by subsequent irradiation with far-red light. This observation strongly suggests the existence of a phytochrome that mediates this blue/far-red reversible response; however, the phytochrome responsible for this response has not been identified. PHY3/NEO1, one of the three phytochrome genes identified in Adiantum, encodes a chimeric photoreceptor composed of both a phytochrome and a phototropin domain. It was demonstrated that phy3 mediates the red light-dependent phototropic response of Adiantum, and that phy3 potentially functions as a phototropin. These findings suggest that phy3 is the phytochrome that mediates the blue/far-red response in Adiantum protonemata. In the present study, we expressed Adiantum phy3 in a phot1 phot2 phototropin-deficient Arabidopsis line, and investigated the ability of phy3 to induce phototropic responses under various light conditions. Blue light irradiation clearly induced a phototropic response in the phy3-expressing transgenic seedlings, and this effect was fully inhibited by simultaneous irradiation with far-red light. In addition, experiments using amino acid-substituted phy3 indicated that FMN-cysteinyl adduct formation in the light, oxygen, voltage (LOV) domain was not necessary for the induction of blue light-dependent phototropism by phy3. We thus demonstrate that phy3 is the phytochrome that mediates the blue/far-red reversible phototropic response in Adiantum. Furthermore, our results imply that phy3 can function as a phototropin, but that it acts principally as a phytochrome that mediates both the red/far-red and blue/far-red light responses.
Collapse
Affiliation(s)
- Takeshi Kanegae
- Department of Biological Sciences, Graduate School of Science and Technology, Tokyo Metropolitan University, Minami Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Izumi Kimura
- Department of Biological Sciences, Graduate School of Science and Technology, Tokyo Metropolitan University, Minami Osawa, Hachioji, Tokyo, 192-0397, Japan
| |
Collapse
|
18
|
Abstract
Phytochromes are red/far-red photoreceptors that play essential roles in diverse plant morphogenetic and physiological responses to light. Despite their functional significance, phytochrome diversity and evolution across photosynthetic eukaryotes remain poorly understood. Using newly available transcriptomic and genomic data we show that canonical plant phytochromes originated in a common ancestor of streptophytes (charophyte algae and land plants). Phytochromes in charophyte algae are structurally diverse, including canonical and non-canonical forms, whereas in land plants, phytochrome structure is highly conserved. Liverworts, hornworts and Selaginella apparently possess a single phytochrome, whereas independent gene duplications occurred within mosses, lycopods, ferns and seed plants, leading to diverse phytochrome families in these clades. Surprisingly, the phytochrome portions of algal and land plant neochromes, a chimera of phytochrome and phototropin, appear to share a common origin. Our results reveal novel phytochrome clades and establish the basis for understanding phytochrome functional evolution in land plants and their algal relatives. Phytochromes are red-light photoreceptors in plants that regulate key life cycle processes, yet their evolutionary origins are not well understood. Using transcriptomic and genomic data, Li et al. find that canonical plant phytochromes originated in a common ancestor of land plants and charophyte algae.
Collapse
|
19
|
Kanegae T. Intramolecular co-action of two independent photosensory modules in the fern phytochrome 3. PLANT SIGNALING & BEHAVIOR 2015; 10:e1086857. [PMID: 26340326 PMCID: PMC4883953 DOI: 10.1080/15592324.2015.1086857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 08/20/2015] [Accepted: 08/20/2015] [Indexed: 06/05/2023]
Abstract
Fern phytochrome3/neochrome1 (phy3/neo1) is a chimeric photoreceptor composed of a phytochrome-chromophore binding domain and an almost full-length phototropin. phy3 thus contains two different light-sensing modules; a red/far-red light receptor phytochrome and a blue light receptor phototropin. phy3 induces both red light- and blue light-dependent phototropism in phototropin-deficient Arabidopsis thaliana (phot1 phot2) seedlings. The red-light response is dependent on the phytochrome module of phy3, and the blue-light response is dependent on the phototropin module. We recently showed that both the phototropin-sensing module and the phytochrome-sensing module mediate the blue light-dependent phototropic response. Particularly under low-light conditions, these two light-sensing modules cooperate to induce the blue light-dependent phototropic response. This intramolecular co-action of two independent light-sensing modules in phy3 enhances light sensitivity, and perhaps allowed ferns to adapt to the low-light canopy conditions present in angiosperm forests.
Collapse
Affiliation(s)
- Takeshi Kanegae
- Department of Biological Sciences; Graduate School of Science and Technology; Tokyo Metropolitan University; Tokyo, Japan
| |
Collapse
|
20
|
Li FW, Rothfels CJ, Melkonian M, Villarreal JC, Stevenson DW, Graham SW, Wong GKS, Mathews S, Pryer KM. The origin and evolution of phototropins. FRONTIERS IN PLANT SCIENCE 2015; 6:637. [PMID: 26322073 PMCID: PMC4532919 DOI: 10.3389/fpls.2015.00637] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 07/31/2015] [Indexed: 05/19/2023]
Abstract
Plant phototropism, the ability to bend toward or away from light, is predominantly controlled by blue-light photoreceptors, the phototropins. Although phototropins have been well-characterized in Arabidopsis thaliana, their evolutionary history is largely unknown. In this study, we complete an in-depth survey of phototropin homologs across land plants and algae using newly available transcriptomic and genomic data. We show that phototropins originated in an ancestor of Viridiplantae (land plants + green algae). Phototropins repeatedly underwent independent duplications in most major land-plant lineages (mosses, lycophytes, ferns, and seed plants), but remained single-copy genes in liverworts and hornworts-an evolutionary pattern shared with another family of photoreceptors, the phytochromes. Following each major duplication event, the phototropins differentiated in parallel, resulting in two specialized, yet partially overlapping, functional forms that primarily mediate either low- or high-light responses. Our detailed phylogeny enables us to not only uncover new phototropin lineages, but also link our understanding of phototropin function in Arabidopsis with what is known in Adiantum and Physcomitrella (the major model organisms outside of flowering plants). We propose that the convergent functional divergences of phototropin paralogs likely contributed to the success of plants through time in adapting to habitats with diverse and heterogeneous light conditions.
Collapse
Affiliation(s)
- Fay-Wei Li
- Department of Biology, Duke UniversityDurham, NC, USA
- *Correspondence: Fay-Wei Li, Department of Biology, Duke University, Biological Sciences Building, 130 Science Drive, Durham, NC 27708, USA,
| | - Carl J. Rothfels
- University Herbarium and Department of Integrative Biology, University of California at BerkeleyBerkeley, CA, USA
| | - Michael Melkonian
- Botany Department, Cologne Biocenter, University of CologneCologne, Germany
| | | | | | - Sean W. Graham
- Department of Botany, University of British ColumbiaVancouver, BC, Canada
| | - Gane K.-S. Wong
- Department of Biological Sciences, University of AlbertaEdmonton, AB, Canada
- Department of Medicine, University of AlbertaEdmonton, AB, Canada
- BGI-ShenzhenShenzhen, China
| | - Sarah Mathews
- CSIRO, Centre for Australian National Biodiversity ResearchCanberra, ACT, Australia
| | | |
Collapse
|
21
|
Komatsu A, Terai M, Ishizaki K, Suetsugu N, Tsuboi H, Nishihama R, Yamato KT, Wada M, Kohchi T. Phototropin encoded by a single-copy gene mediates chloroplast photorelocation movements in the liverwort Marchantia polymorpha. PLANT PHYSIOLOGY 2014; 166:411-27. [PMID: 25096976 PMCID: PMC4149725 DOI: 10.1104/pp.114.245100] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 08/02/2014] [Indexed: 05/18/2023]
Abstract
Blue-light-induced chloroplast photorelocation movement is observed in most land plants. Chloroplasts move toward weak-light-irradiated areas to efficiently absorb light (the accumulation response) and escape from strong-light-irradiated areas to avoid photodamage (the avoidance response). The plant-specific kinase phototropin (phot) is the blue-light receptor for chloroplast movements. Although the molecular mechanisms for chloroplast photorelocation movement have been analyzed, the overall aspects of signal transduction common to land plants are still unknown. Here, we show that the liverwort Marchantia polymorpha exhibits the accumulation and avoidance responses exclusively induced by blue light as well as specific chloroplast positioning in the dark. Moreover, in silico and Southern-blot analyses revealed that the M. polymorpha genome encodes a single PHOT gene, MpPHOT, and its knockout line displayed none of the chloroplast photorelocation movements, indicating that the sole MpPHOT gene mediates all types of movement. Mpphot was localized on the plasma membrane and exhibited blue-light-dependent autophosphorylation both in vitro and in vivo. Heterologous expression of MpPHOT rescued the defects in chloroplast movement of phot mutants in the fern Adiantum capillus-veneris and the seed plant Arabidopsis (Arabidopsis thaliana). These results indicate that Mpphot possesses evolutionarily conserved regulatory activities for chloroplast photorelocation movement. M. polymorpha offers a simple and versatile platform for analyzing the fundamental processes of phototropin-mediated chloroplast photorelocation movement common to land plants.
Collapse
Affiliation(s)
- Aino Komatsu
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan (A.K., M.T., K.I., N.S., R.N., K.T.Y., T.K.); andFaculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan (N.S., H.T., M.W.)
| | - Mika Terai
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan (A.K., M.T., K.I., N.S., R.N., K.T.Y., T.K.); andFaculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan (N.S., H.T., M.W.)
| | - Kimitsune Ishizaki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan (A.K., M.T., K.I., N.S., R.N., K.T.Y., T.K.); andFaculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan (N.S., H.T., M.W.)
| | - Noriyuki Suetsugu
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan (A.K., M.T., K.I., N.S., R.N., K.T.Y., T.K.); andFaculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan (N.S., H.T., M.W.)
| | - Hidenori Tsuboi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan (A.K., M.T., K.I., N.S., R.N., K.T.Y., T.K.); andFaculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan (N.S., H.T., M.W.)
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan (A.K., M.T., K.I., N.S., R.N., K.T.Y., T.K.); andFaculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan (N.S., H.T., M.W.)
| | - Katsuyuki T Yamato
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan (A.K., M.T., K.I., N.S., R.N., K.T.Y., T.K.); andFaculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan (N.S., H.T., M.W.)
| | - Masamitsu Wada
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan (A.K., M.T., K.I., N.S., R.N., K.T.Y., T.K.); andFaculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan (N.S., H.T., M.W.)
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan (A.K., M.T., K.I., N.S., R.N., K.T.Y., T.K.); andFaculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan (N.S., H.T., M.W.)
| |
Collapse
|
22
|
Li FW, Villarreal JC, Kelly S, Rothfels CJ, Melkonian M, Frangedakis E, Ruhsam M, Sigel EM, Der JP, Pittermann J, Burge DO, Pokorny L, Larsson A, Chen T, Weststrand S, Thomas P, Carpenter E, Zhang Y, Tian Z, Chen L, Yan Z, Zhu Y, Sun X, Wang J, Stevenson DW, Crandall-Stotler BJ, Shaw AJ, Deyholos MK, Soltis DE, Graham SW, Windham MD, Langdale JA, Wong GKS, Mathews S, Pryer KM. Horizontal transfer of an adaptive chimeric photoreceptor from bryophytes to ferns. Proc Natl Acad Sci U S A 2014; 111:6672-7. [PMID: 24733898 PMCID: PMC4020063 DOI: 10.1073/pnas.1319929111] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ferns are well known for their shade-dwelling habits. Their ability to thrive under low-light conditions has been linked to the evolution of a novel chimeric photoreceptor--neochrome--that fuses red-sensing phytochrome and blue-sensing phototropin modules into a single gene, thereby optimizing phototropic responses. Despite being implicated in facilitating the diversification of modern ferns, the origin of neochrome has remained a mystery. We present evidence for neochrome in hornworts (a bryophyte lineage) and demonstrate that ferns acquired neochrome from hornworts via horizontal gene transfer (HGT). Fern neochromes are nested within hornwort neochromes in our large-scale phylogenetic reconstructions of phototropin and phytochrome gene families. Divergence date estimates further support the HGT hypothesis, with fern and hornwort neochromes diverging 179 Mya, long after the split between the two plant lineages (at least 400 Mya). By analyzing the draft genome of the hornwort Anthoceros punctatus, we also discovered a previously unidentified phototropin gene that likely represents the ancestral lineage of the neochrome phototropin module. Thus, a neochrome originating in hornworts was transferred horizontally to ferns, where it may have played a significant role in the diversification of modern ferns.
Collapse
Affiliation(s)
- Fay-Wei Li
- Department of Biology, Duke University, Durham, NC 27708
| | - Juan Carlos Villarreal
- Systematic Botany and Mycology, Department of Biology, University of Munich, 80638 Munich, Germany
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Carl J. Rothfels
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Michael Melkonian
- Botany Department, Cologne Biocenter, University of Cologne, 50674 Cologne, Germany
| | | | - Markus Ruhsam
- Royal Botanic Garden Edinburgh, Edinburgh EH3 5LR, Scotland
| | - Erin M. Sigel
- Department of Biology, Duke University, Durham, NC 27708
| | - Joshua P. Der
- Department of Biology and
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802
| | - Jarmila Pittermann
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064
| | | | | | - Anders Larsson
- Systematic Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Tao Chen
- Fairy Lake Botanical Garden, Shenzhen, Guangdong 518004, China
| | - Stina Weststrand
- Systematic Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Philip Thomas
- Royal Botanic Garden Edinburgh, Edinburgh EH3 5LR, Scotland
| | - Eric Carpenter
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
| | | | | | - Li Chen
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Ying Zhu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xiao Sun
- BGI-Shenzhen, Shenzhen 518083, China
| | - Jun Wang
- BGI-Shenzhen, Shenzhen 518083, China
| | | | | | | | - Michael K. Deyholos
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
| | - Douglas E. Soltis
- Florida Museum of Natural History
- Department of Biology, and
- Genetics Institute, University of Florida, Gainesville, FL 32611
| | - Sean W. Graham
- Department of Botany, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | | | - Jane A. Langdale
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
- BGI-Shenzhen, Shenzhen 518083, China
- Department of Medicine, University of Alberta, Edmonton, AB, Canada T6G 2E1; and
| | | | | |
Collapse
|
23
|
Possart A, Fleck C, Hiltbrunner A. Shedding (far-red) light on phytochrome mechanisms and responses in land plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 217-218:36-46. [PMID: 24467894 DOI: 10.1016/j.plantsci.2013.11.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/20/2013] [Accepted: 11/21/2013] [Indexed: 05/20/2023]
Abstract
In order to monitor ambient light conditions, plants rely on functionally diversified photoreceptors. Among these, phytochromes perceive red (R) and far-red (FR) light. FR light does not constitute a photosynthetic energy source; it however influences adaptive and developmental processes. In seed plants, phytochrome A (phyA) acts as FR receptor and mediates FR high irradiance responses (FR-HIRs). It exerts a dual role by promoting e.g. germination and seedling de-etiolation in canopy shade and by antagonising shade avoidance growth. Even though cryptogam plants such as mosses and ferns do not have phyA, they show FR-induced responses. In the present review we discuss the mechanistic basis of phyA-dependent FR-HIRs as well as their dual role in seed plants. We compare FR responses in seed plants and cryptogam plants and conclude on different potential concepts for the detection of canopy shade. Scenarios for the evolution of FR perception and responses are discussed.
Collapse
Affiliation(s)
- Anja Possart
- Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Christian Fleck
- Laboratory for Systems and Synthetic Biology, Wageningen University, 6703 HB Wageningen, The Netherlands.
| | - Andreas Hiltbrunner
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
24
|
Fraikin GY, Strakhovskaya MG, Rubin AB. Biological photoreceptors of light-dependent regulatory processes. BIOCHEMISTRY (MOSCOW) 2013; 78:1238-53. [DOI: 10.1134/s0006297913110047] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Sessa EB, Givnish TJ. Leaf form and photosynthetic physiology ofDryopterisspecies distributed along light gradients in eastern North America. Funct Ecol 2013. [DOI: 10.1111/1365-2435.12150] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Emily B. Sessa
- Department of Botany; University of Wisconsin-Madison; 430 Lincoln Drive Madison WI 53706 USA
| | - Thomas J. Givnish
- Department of Botany; University of Wisconsin-Madison; 430 Lincoln Drive Madison WI 53706 USA
| |
Collapse
|
26
|
Goyal A, Szarzynska B, Fankhauser C. Phototropism: at the crossroads of light-signaling pathways. TRENDS IN PLANT SCIENCE 2013; 18:393-401. [PMID: 23562459 DOI: 10.1016/j.tplants.2013.03.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/28/2013] [Accepted: 03/08/2013] [Indexed: 05/11/2023]
Abstract
Phototropism enables plants to orient growth towards the direction of light and thereby maximizes photosynthesis in low-light environments. In angiosperms, blue-light photoreceptors called phototropins are primarily involved in sensing the direction of light. Phytochromes and cryptochromes (sensing red/far-red and blue light, respectively) also modulate asymmetric hypocotyl growth, leading to phototropism. Interactions between different light-signaling pathways regulating phototropism occur in cryptogams and angiosperms. In this review, we focus on the molecular mechanisms underlying the co-action between photosensory systems in the regulation of hypocotyl phototropism in Arabidopsis thaliana. Recent studies have shown that phytochromes and cryptochromes enhance phototropism by controlling the expression of important regulators of phototropin signaling. In addition, phytochromes may also regulate growth towards light via direct interaction with the phototropins.
Collapse
Affiliation(s)
- Anupama Goyal
- Centre for Integrative Genomics, University of Lausanne, Genopode Building, CH 1015 Lausanne, Switzerland
| | | | | |
Collapse
|
27
|
Abstract
Extensive studies in both lower and higher plants indicate that plant phytochrome photoreceptors signal not only by regulating transcription in the nucleus but also by acting within the cytoplasm, the latter signaling routes acting within minutes or even seconds and also providing directional information. Directional signals seem to arise from phytochromes attached anisotropically to the plasma membrane. Neochromes-phytochrome-phototropin hybrid photoreceptors probably attached to the plasma membrane-provide this signal in various ferns and perhaps certain algae but are absent from other groups. In mosses and probably higher plants too, a subpopulation of canonical phytochromes interact with phototropins at the plasma membrane and thereby steer directional responses. Phytochromes also seem able to regulate translation in the cytoplasm. This review discusses putative phytochrome functions in these contexts.
Collapse
Affiliation(s)
- Jon Hughes
- Department of Plant Physiology, Justus Liebig University, D35390 Giessen, Germany.
| |
Collapse
|
28
|
Possart A, Hiltbrunner A. An evolutionarily conserved signaling mechanism mediates far-red light responses in land plants. THE PLANT CELL 2013; 25:102-14. [PMID: 23303916 PMCID: PMC3584528 DOI: 10.1105/tpc.112.104331] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 11/22/2012] [Accepted: 12/18/2012] [Indexed: 05/18/2023]
Abstract
Phytochromes are plant photoreceptors important for development and adaptation to the environment. Phytochrome A (PHYA) is essential for the far-red (FR) high-irradiance responses (HIRs), which are of particular ecological relevance as they enable plants to establish under shade conditions. PHYA and HIRs have been considered unique to seed plants because the divergence of seed plants and cryptogams (e.g., ferns and mosses) preceded the evolution of PHYA. Seed plant phytochromes translocate into the nucleus and regulate gene expression. By contrast, there has been little evidence of a nuclear localization and function of cryptogam phytochromes. Here, we identified responses to FR light in cryptogams, which are highly reminiscent of PHYA signaling in seed plants. In the moss Physcomitrella patens and the fern Adiantum capillus-veneris, phytochromes accumulate in the nucleus in response to light. Although P. patens phytochromes evolved independently of PHYA, we have found that one clade of P. patens phytochromes exhibits the molecular properties of PHYA. We suggest that HIR-like responses had evolved in the last common ancestor of modern seed plants and cryptogams and that HIR signaling is more ancient than PHYA. Thus, other phytochromes in seed plants may have lost the capacity to mediate HIRs during evolution, rather than that PHYA acquired it.
Collapse
Affiliation(s)
- Anja Possart
- Centre for Plant Molecular Biology, University of Tübingen, 72076 Tuebingen, Germany
| | | |
Collapse
|
29
|
Kami C, Hersch M, Trevisan M, Genoud T, Hiltbrunner A, Bergmann S, Fankhauser C. Nuclear phytochrome A signaling promotes phototropism in Arabidopsis. THE PLANT CELL 2012; 24:566-76. [PMID: 22374392 PMCID: PMC3315233 DOI: 10.1105/tpc.111.095083] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/07/2012] [Accepted: 02/13/2012] [Indexed: 05/19/2023]
Abstract
Phototropin photoreceptors (phot1 and phot2 in Arabidopsis thaliana) enable responses to directional light cues (e.g., positive phototropism in the hypocotyl). In Arabidopsis, phot1 is essential for phototropism in response to low light, a response that is also modulated by phytochrome A (phyA), representing a classical example of photoreceptor coaction. The molecular mechanisms underlying promotion of phototropism by phyA remain unclear. Most phyA responses require nuclear accumulation of the photoreceptor, but interestingly, it has been proposed that cytosolic phyA promotes phototropism. By comparing the kinetics of phototropism in seedlings with different subcellular localizations of phyA, we show that nuclear phyA accelerates the phototropic response, whereas in the fhy1 fhl mutant, in which phyA remains in the cytosol, phototropic bending is slower than in the wild type. Consistent with this data, we find that transcription factors needed for full phyA responses are needed for normal phototropism. Moreover, we show that phyA is the primary photoreceptor promoting the expression of phototropism regulators in low light (e.g., PHYTOCHROME KINASE SUBSTRATE1 [PKS1] and ROOT PHOTO TROPISM2 [RPT2]). Although phyA remains cytosolic in fhy1 fhl, induction of PKS1 and RPT2 expression still occurs in fhy1 fhl, indicating that a low level of nuclear phyA signaling is still present in fhy1 fhl.
Collapse
Affiliation(s)
- Chitose Kami
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Micha Hersch
- Department of Medical Genetics, University of Lausanne, CH-1005 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Martine Trevisan
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Thierry Genoud
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Andreas Hiltbrunner
- Centre for Plant Molecular Biology, University of Tuebingen, D-72076 Tuebingen, Germany
| | - Sven Bergmann
- Department of Medical Genetics, University of Lausanne, CH-1005 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Christian Fankhauser
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
- Address correspondence to
| |
Collapse
|
30
|
Iwata T, Tokutomi S, Kandori H. Light-induced structural changes of the LOV2 domains in various phototropins revealed by FTIR spectroscopy. Biophysics (Nagoya-shi) 2011; 7:89-98. [PMID: 27857596 PMCID: PMC5036776 DOI: 10.2142/biophysics.7.89] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 09/08/2011] [Indexed: 12/01/2022] Open
Abstract
Phototropin (Phot), a blue-light photoreceptor in plants, consists of two FMN-binding domains (named LOV1 and LOV2) and a serine/threonine (Ser/Thr) kinase domain. We have investigated light-induced structural changes of LOV domains, which lead to the activation of the kinase domain, by means of light-induced difference FTIR spectroscopy. FTIR spectroscopy revealed that the reactive cysteine is protonated in both unphotolyzed and triplet-excited states, which is difficult to detect by other methods such as X-ray crystallography. In this review, we describe the light-induced structural changes of hydrogen-bonding environment of FMN chromophore and protein backbone in Adiantum neo1-LOV2 in the C=O stretching region by use of 13C-labeled samples. We also describe the comprehensive FTIR analysis of LOV2 domains among Arabidopsis phot1, phot2, and Adiantum neo1 with and without Jα helix domain.
Collapse
Affiliation(s)
- Tatsuya Iwata
- Center for Fostering Young and Innovative Researchers, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Satoru Tokutomi
- Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
31
|
Salinas-Mondragon RE, Kajla JD, Perera IY, Brown CS, Sederoff HW. Role of inositol 1,4,5-triphosphate signalling in gravitropic and phototropic gene expression. PLANT, CELL & ENVIRONMENT 2010; 33:2041-55. [PMID: 20584147 DOI: 10.1111/j.1365-3040.2010.02204.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plants sense light and gravity to orient their direction of growth. One common component in the early events of both phototropic and gravitropic signal transduction is activation of phospholipase C (PLC), which leads to an increase in inositol 1,4,5-triphosphate (InsP(3)) levels. The InsP(3) signal is terminated by hydrolysis of InsP(3) through inositolpolyphosphate-5-phosphatases (InsP 5-ptases). Arabidopsis plants expressing a heterologous InsP 5-ptase have low basal InsP(3) levels and exhibit reduced gravitropic and phototropic bending. Downstream effects of InsP(3)-mediated signalling are not understood. We used comparative transcript profiling to characterize gene expression changes in gravity- or light-stimulated Arabidopsis root apices that were manipulated in their InsP(3) metabolism either through inhibition of PLC activity or expression of InsP 5-ptase. We identified InsP(3)-dependent and InsP(3)-independent co-regulated gene sets in response to gravity or light stimulation. Inhibition of PLC activity in wild-type plants caused similar changes in transcript abundance in response to gravitropic and phototropic stimulation as in the transgenic lines. Therefore, we conclude that changes in gene expression in response to gravitropic and phototropic stimulation are mediated by two signal transduction pathways that vary in their dependence on changes in InsP(3).
Collapse
|
32
|
Rösler J, Jaedicke K, Zeidler M. Cytoplasmic phytochrome action. PLANT & CELL PHYSIOLOGY 2010; 51:1248-1254. [PMID: 20576692 DOI: 10.1093/pcp/pcq091] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Phytochrome photoperception is a common mechanism for the detection of red and far-red light in bacteria, cyanobacteria, fungi and plants. However, the responses following phytochrome activation appear to be quite diverse between species. Lower plants, such as mosses, show phytochrome-mediated directional responses, namely phototropism and polarotropism. These cannot be explained by nuclear gene regulation and are thought to be triggered by phytochromes in the cytoplasm or at the plasma membrane. In higher plants, similar directional responses are mediated via phototropin, a blue light receptor, with phytochromes mainly controlling morphogenetic responses through gene regulation. However, cytoplasmic phytochrome responses exist in higher plants too, which appear to be intertwined with directional blue light perception. By summarizing the respective findings, a possible conservation of cytoplasmic phytochrome function in higher and lower plants is addressed here.
Collapse
Affiliation(s)
- Jutta Rösler
- Department of Plant Physiology, Justus-Liebig-University Giessen, Giessen, Germany
| | | | | |
Collapse
|
33
|
Koyama T, Iwata T, Yamamoto A, Sato Y, Matsuoka D, Tokutomi S, Kandori H. Different Role of the Jα Helix in the Light-Induced Activation of the LOV2 Domains in Various Phototropins. Biochemistry 2009; 48:7621-8. [DOI: 10.1021/bi9009192] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Takayuki Koyama
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Tatsuya Iwata
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Atsushi Yamamoto
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Yoshiaki Sato
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Daisuke Matsuoka
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Satoru Tokutomi
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
34
|
Yang YX, Gao L, Wang T. [Molecular cloning and protein structure analyses of red/blue light chimeric photoreceptor from Allantodia dilatata (Bl.) Ching]. YI CHUAN = HEREDITAS 2009; 31:748-54. [PMID: 19586881 DOI: 10.3724/sp.j.1005.2009.00748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Phytochrome 3 (PHY3) is a novel chimeric photoreceptor that can respond to both red/far red and blue light. Using this photoreceptor, some cryptogams could enhance light sensitivity under low light environment. But PHY3 sequence information is still extremely limited. In the present study, a full-length PHY3 genomic sequence was cloned from a fern Allantodia dilatata (Bl.) Ching by inverse PCR approaches. Sequence analysis showed that introns were absent in the gene. It contained a 4 278 bp open reading frame, encoding a deduced protein of 1 425 amino acid residues with a theoretical isoelectric point (pI) of 6.29 and a calculated molecular mass about 157 kDa. Protein domain search and structure analyses indicated that PHY3 originated from the recombination of two different photoreceptors. Its N-terminal section consisted of a putative functional phytochrome chromophore-binding domain including PAS, GAF, and PHY, whereas the C-terminal region possessed a nearly complete phototropin motif with two LOV and one STKc domains.
Collapse
Affiliation(s)
- Yong-Xia Yang
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| | | | | |
Collapse
|
35
|
|
36
|
|
37
|
Jones MA, Christie JM. Phototropin receptor kinase activation by blue light. PLANT SIGNALING & BEHAVIOR 2008; 3:44-6. [PMID: 19704767 PMCID: PMC2633957 DOI: 10.4161/psb.3.1.4848] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Accepted: 08/08/2007] [Indexed: 05/10/2023]
Abstract
Phototropins (phot1 and phot2) are blue light-activated serine/threonine protein kinases that function to mediate a variety of adaptive processes that serve to optimize the photosynthetic efficiency of plants and thereby promote their growth. Light sensing by the phototropins is mediated by a repeated motif located within the N-terminal region of the protein designated the LOV domain. Although phototropins possess two LOV photosensors (LOV1 and LOV2), recent biophysical and structure-function analyses clearly indicate that the LOV2 domain plays a predominant role in regulating phototropin kinase activity owing to specific protein changes that occur in response to LOV2 photoexcitation. In particular, the central beta-sheet scaffold plays a role in propagating the photochemical signal generated from within LOV2 to protein changes at the surface that are necessary for kinase activation.
Collapse
Affiliation(s)
- Matthew A Jones
- Plant Science Group; Division of Biochemistry and Molecular Biology; Institute of Biomedical and Life Sciences; University of Glasgow; Glasgow, Scotland UK
| | | |
Collapse
|
38
|
Suetsugu N, Wada M. Chloroplast photorelocation movement mediated by phototropin family proteins in green plants. Biol Chem 2007; 388:927-35. [PMID: 17696776 DOI: 10.1515/bc.2007.118] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Chloroplasts gather in areas irradiated with weak light to maximize photosynthesis (the accumulation response). They move away from areas irradiated with strong light to minimize damage of the photosynthetic apparatus (the avoidance response). The processes underlying these chloroplast movements can be divided into three parts: photoperception, signal transduction, and chloroplast movement. Photoreceptors for chloroplast movement have been identified recently in various plant species. A blue light receptor phototropin (phot) mediates chloroplast photorelocation movement in the seed plant Arabidopsis thaliana, the fern Adiantum capillus-veneris, the moss Physcomitrella patens and possibly the green alga Mougeotia scalaris. A chimeric photoreceptor between phytochrome and phototropin, neochrome (neo), was found in some advanced ferns and in the green alga M. scalaris. While the mechanism of chloroplast movement is not well understood, it is known that actin filaments play an important role in this process. To understand the molecular mechanisms associated with chloroplast movement, several mutants were isolated in A. thaliana (jac1 and chup1) and the corresponding genes were cloned. In this review, recent progress in photoreceptor research into chloroplast movement in various plant species and the possible factors functioning in signal transduction or the regulation of actin filaments identified in A. thaliana is discussed.
Collapse
Affiliation(s)
- Noriyuki Suetsugu
- Division of Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | | |
Collapse
|
39
|
Tokutomi S, Matsuoka D, Zikihara K. Molecular structure and regulation of phototropin kinase by blue light. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1784:133-42. [PMID: 17988963 DOI: 10.1016/j.bbapap.2007.09.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 08/27/2007] [Accepted: 09/18/2007] [Indexed: 01/15/2023]
Abstract
Phototropin (phot) is a blue light photoreceptor in plants that mediates phototropism, chloroplast movement, stomata opening and leaf expansion. The phot molecule has two photoreceptive domains, LOV 1 and 2, in the N-terminal half and the C-terminal half forms Ser/Thr kinase. Phot acts as a blue light-regulated protein kinase. Each LOV domain binds a FMN and undergoes a unique cyclic reaction upon blue light absorption that induces conformational changes in the protein moiety and leads to regulation of the kinase activity, in which LOV2 plays a predominant role in the switching and LOV1 acts to attenuate the light sensitivity. Phot kinase is classified into the AGC kinase group since the consensus amino acid residues and the motifs are well conserved except for the lack of the hydrophobic motif and the presence of additional amino acid sequence in the activation loop. Secondary structure prediction and 3D structure simulation show a alpha/beta fold of the phot kinase similar to that of the catalytic subunit of PKA. The additional sequence forms an extra helix and loops. Docking simulation of the LOV2 domain with phot kinase provided useful information regarding the molecular mechanism underlying the photoregulation of phot kinase.
Collapse
Affiliation(s)
- Satoru Tokutomi
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, Japan.
| | | | | |
Collapse
|
40
|
Suetsugu N, Wada M. Phytochrome-dependent photomovement responses mediated by phototropin family proteins in cryptogam plants. Photochem Photobiol 2007; 83:87-93. [PMID: 16542113 DOI: 10.1562/2006-02-27-ir-817] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this review, we describe the regulation of photomovement responses by phototropin and phytochrome photoreceptors. The blue light receptor phototropin mediates various photomovement responses such as phototropism, chloroplast movement and stomatal opening. In cryptogamic plants including ferns, mosses and green alga, red as well as blue light mediates phototropism and chloroplast movement. The red/far-red light reversibility suggests the involvement of phytochrome in these responses. Thereby, plant growth is presumably promoted by coordinating these photomovements to capture efficiently light for photosynthesis.
Collapse
Affiliation(s)
- Noriyuki Suetsugu
- Division of Photobiology, National Institute for Basic Biology, Okazaki, Japan
| | | |
Collapse
|