1
|
Zhu Z, Yang Q, Tian X, Man D, Wang J, Zhang J, Han B. MSTRG3207 promotes apoptosis in zebrafish ZF4 cells via sponging dre-miR-736/bbc3/LOC101885512 axis during cold acclimation. Gene 2024; 894:148010. [PMID: 37981079 DOI: 10.1016/j.gene.2023.148010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/04/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023]
Abstract
Long non-coding RNAs (lncRNAs) play essential roles in a variety of biological processes. It has been recently reported that lncRNAs can regulate mRNA expression by binding to microRNAs (miRNAs) as competing endogenous RNAs (ceRNAs). However, the involvement of this regulatory mechanism during cold acclimation in fish remains unclear. In this study, we constructed a ceRNA network mediated by lncRNAs in cold-acclimated zebrafish ZF4 cells through bioinformatic analysis of the mRNA, miRNA, and lncRNA profiles obtained from ZF4 cells cultured at 18 °C for 30 days. A previously uncharacterized lncRNA, MSTRG3207, was selected for further analysis. MSTRG3207 was upregulated and dre-miR-736 was downregulated during cold acclimation. MSTRG3207 was cloned by rapid amplification of cDNA ends (RACE) and functionally characterized. The binding of MSTRG3207 to dre-miR-736 was validated by dual-luciferase reporter assay. Under cold acclimation, MSTRG3207 promoted apoptosis by sponging dre-miR-736 and upregulating bbc3 and LOC101885512, two apoptotic genes targeted by dre-miR-736. Taken together, our findings indicate that MSTRG3207 upregulation promotes apoptosis by sponging dre-miR-736 during cold acclimation in fish.
Collapse
Affiliation(s)
- Zhongqiu Zhu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Qianting Yang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaoying Tian
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Da Man
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Jian Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Junfang Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, China.
| | - Bingshe Han
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, China.
| |
Collapse
|
2
|
York JM. Temperature activated transient receptor potential ion channels from Antarctic fishes. Open Biol 2023; 13:230215. [PMID: 37848053 PMCID: PMC10581778 DOI: 10.1098/rsob.230215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/01/2023] [Indexed: 10/19/2023] Open
Abstract
Antarctic notothenioid fishes (cryonotothenioids) live in waters that range between -1.86°C and an extreme maximum +4°C. Evidence suggests these fish sense temperature peripherally, but the molecular mechanism of temperature sensation in unknown. Previous work identified transient receptor potential (TRP) channels TRPA1b, TRPM4 and TRPV1a as the top candidates for temperature sensors. Here, cryonotothenioid TRPA1b and TRPV1a are characterized using Xenopus oocyte electrophysiology. TRPA1b and TRPV1a showed heat-evoked currents with Q10s of 11.1 ± 2.2 and 20.5 ± 2.4, respectively. Unexpectedly, heat activation occurred at a threshold of 22.9 ± 1.3°C for TRPA1b and 32.1 ± 0.6°C for TRPV1a. These fish have not experienced such temperatures for at least 15 Myr. Either (1) another molecular mechanism underlies temperature sensation, (2) these fishes do not sense temperatures below these thresholds despite having lethal limits as low as 5°C, or (3) native cellular conditions modify the TRP channels to function at relevant temperatures. The effects of osmolytes, pH, oxidation, phosphorylation, lipids and accessory proteins were tested. No conditions shifted the activity range of TRPV1a. Oxidation in combination with reduced cholesterol significantly dropped activation threshold of TRPA1b to 11.3 ± 2.3°C, it is hypothesized the effect may be due to lipid raft disruption.
Collapse
Affiliation(s)
- Julia M. York
- Department of Integrative Biology, Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
- School of Integrative Biology, University of Illinois Urbana–Champaign, Urbana, Illinois, USA
| |
Collapse
|
3
|
Graham LA, Gauthier SY, Davies PL. Origin of an antifreeze protein gene in response to Cenozoic climate change. Sci Rep 2022; 12:8536. [PMID: 35595816 PMCID: PMC9122973 DOI: 10.1038/s41598-022-12446-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Antifreeze proteins (AFPs) inhibit ice growth within fish and protect them from freezing in icy seawater. Alanine-rich, alpha-helical AFPs (type I) have independently (convergently) evolved in four branches of fishes, one of which is a subsection of the righteye flounders. The origin of this gene family has been elucidated by sequencing two loci from a starry flounder, Platichthys stellatus, collected off Vancouver Island, British Columbia. The first locus had two alleles that demonstrated the plasticity of the AFP gene family, one encoding 33 AFPs and the other allele only four. In the closely related Pacific halibut, this locus encodes multiple Gig2 (antiviral) proteins, but in the starry flounder, the Gig2 genes were found at a second locus due to a lineage-specific duplication event. An ancestral Gig2 gave rise to a 3-kDa "skin" AFP isoform, encoding three Ala-rich 11-a.a. repeats, that is expressed in skin and other peripheral tissues. Subsequent gene duplications, followed by internal duplications of the 11 a.a. repeat and the gain of a signal sequence, gave rise to circulating AFP isoforms. One of these, the "hyperactive" 32-kDa Maxi likely underwent a contraction to a shorter 3.3-kDa "liver" isoform. Present day starry flounders found in Pacific Rim coastal waters from California to Alaska show a positive correlation between latitude and AFP gene dosage, with the shorter allele being more prevalent at lower latitudes. This study conclusively demonstrates that the flounder AFP arose from the Gig2 gene, so it is evolutionarily unrelated to the three other classes of type I AFPs from non-flounders. Additionally, this gene arose and underwent amplification coincident with the onset of ocean cooling during the Cenozoic ice ages.
Collapse
Affiliation(s)
- Laurie A Graham
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Sherry Y Gauthier
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Peter L Davies
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
4
|
Davies PL. Reflections on antifreeze proteins and their evolution. Biochem Cell Biol 2022; 100:282-291. [PMID: 35580352 DOI: 10.1139/bcb-2022-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The discovery of radically different antifreeze proteins (AFPs) in fishes during the 1970s and 1980s suggested that these proteins had recently and independently evolved to protect teleosts from freezing in icy seawater. Early forays into the isolation and characterization of AFP genes in these fish showed they were massively amplified, often in long tandem repeats. The work of many labs in the 1980s onward led to the discovery and characterization of AFPs in other kingdoms, such as insects, plants, and many different microorganisms. The distinct ice-binding property that these ice-binding proteins (IBPs) share has facilitated their purification through adsorption to ice, and the ability to produce recombinant versions of IBPs has enabled their structural characterization and the mapping of their ice-binding sites (IBSs) using site-directed mutagenesis. One hypothesis for their ice affinity is that the IBS organizes surface waters into an ice-like pattern that freezes the protein onto ice. With access now to a rapidly expanding database of genomic sequences, it has been possible to trace the origins of some fish AFPs through the process of gene duplication and divergence, and to even show the horizontal transfer of an AFP gene from one species to another.
Collapse
Affiliation(s)
- Peter L Davies
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
5
|
Chen H, Xue J, Zhang Z, Zhang G, Xu X, Li H, Zhang R, Ullah N, Chen L, Amanullah, Zang Z, Lai S, He X, Li W, Guan M, Li J, Chen L, Deng C. High-speed rail model reveals the gene tandem amplification mediated by short repeated sequence in eukaryote. Sci Rep 2022; 12:2289. [PMID: 35145182 PMCID: PMC8831618 DOI: 10.1038/s41598-022-06250-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 01/24/2022] [Indexed: 02/08/2023] Open
Abstract
The occurrence of gene duplication/amplification (GDA) provide potential material for adaptive evolution with environmental stress. Several molecular models have been proposed to explain GDA, recombination via short stretches of sequence similarity plays a crucial role. By screening genomes for such events, we propose a “SRS (short repeated sequence) *N + unit + SRS*N” amplified unit under USCE (unequal sister-chromatid exchange) for tandem amplification mediated by SRS with different repeat numbers in eukaryotes. The amplified units identified from 2131 well-organized amplification events that generate multi gene/element copy amplified with subsequent adaptive evolution in the respective species. Genomic data we analyzed showed dynamic changes among related species or subspecies or plants from different ecotypes/strains. This study clarifies the characteristics of variable copy number SRS on both sides of amplified unit under USCE mechanism, to explain well-organized gene tandem amplification under environmental stress mediated by SRS in all eukaryotes.
Collapse
Affiliation(s)
- Haidi Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, 210023, China
| | - Jingwen Xue
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, 210023, China
| | - Zhenghou Zhang
- The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Geyu Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, 210023, China
| | - Xinyuan Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, 210023, China
| | - He Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, 210023, China
| | - Ruxue Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, 210023, China
| | - Najeeb Ullah
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, 210023, China
| | - Lvxing Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, 210023, China
| | - Amanullah
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, 210023, China
| | - Zhuqing Zang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, 210023, China
| | - Shanshan Lai
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, 210023, China
| | - Ximiao He
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Wei Li
- Department of Dermatovenereology, Institutes for Systems Genetics, Rare Disease Center, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang Street, Chengdu, 610041, Sichuan, China
| | - Miao Guan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, 210023, China.
| | - Jingyi Li
- M.D. Department of Dermatology and Venereology, West China Hospital of Sichuan University, No. 37 Guo Xue Lane, Chengdu, 610041, China.
| | - Liangbiao Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Institute of Experimental Pathology, Shanghai Ocean University, Shanghai, 201306, China.
| | - Cheng Deng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, 210023, China.
| |
Collapse
|
6
|
Zhuang X, Cheng CHC. Propagation of a De Novo Gene under Natural Selection: Antifreeze Glycoprotein Genes and Their Evolutionary History in Codfishes. Genes (Basel) 2021; 12:genes12111777. [PMID: 34828383 PMCID: PMC8622921 DOI: 10.3390/genes12111777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022] Open
Abstract
The de novo birth of functional genes from non-coding DNA as an important contributor to new gene formation is increasingly supported by evidence from diverse eukaryotic lineages. However, many uncertainties remain, including how the incipient de novo genes would continue to evolve and the molecular mechanisms underlying their evolutionary trajectory. Here we address these questions by investigating evolutionary history of the de novo antifreeze glycoprotein (AFGP) gene and gene family in gadid (codfish) lineages. We examined AFGP phenotype on a phylogenetic framework encompassing a broad sampling of gadids from freezing and non-freezing habitats. In three select species representing different AFGP-bearing clades, we analyzed all AFGP gene family members and the broader scale AFGP genomic regions in detail. Codon usage analyses suggest that motif duplication produced the intragenic AFGP tripeptide coding repeats, and rapid sequence divergence post-duplication stabilized the recombination-prone long repetitive coding region. Genomic loci analyses support AFGP originated once from a single ancestral genomic origin, and shed light on how the de novo gene proliferated into a gene family. Results also show the processes of gene duplication and gene loss are distinctive in separate clades, and both genotype and phenotype are commensurate with differential local selective pressures.
Collapse
Affiliation(s)
- Xuan Zhuang
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
- Correspondence: (X.Z.); (C.-H.C.C.)
| | - C.-H. Christina Cheng
- Department of Evolution, Ecology, and Behavior, University of Illinois, Urbana-Champaign, IL 61801, USA
- Correspondence: (X.Z.); (C.-H.C.C.)
| |
Collapse
|
7
|
Hobbs RS, Hall JR, Graham LA, Davies PL, Fletcher GL. Antifreeze protein dispersion in eelpouts and related fishes reveals migration and climate alteration within the last 20 Ma. PLoS One 2020; 15:e0243273. [PMID: 33320906 PMCID: PMC7737890 DOI: 10.1371/journal.pone.0243273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 11/18/2020] [Indexed: 12/31/2022] Open
Abstract
Antifreeze proteins inhibit ice growth and are crucial for the survival of supercooled fish living in icy seawater. Of the four antifreeze protein types found in fishes, the globular type III from eelpouts is the one restricted to a single infraorder (Zoarcales), which is the only clade know to have antifreeze protein-producing species at both poles. Our analysis of over 60 unique antifreeze protein gene sequences from several Zoarcales species indicates this gene family arose around 18 Ma ago, in the Northern Hemisphere, supporting recent data suggesting that the Arctic Seas were ice-laden earlier than originally thought. The Antarctic was subject to widespread glaciation over 30 Ma and the Notothenioid fishes that produce an unrelated antifreeze glycoprotein extensively exploited the adjoining seas. We show that species from one Zoarcales family only encroached on this niche in the last few Ma, entering an environment already dominated by ice-resistant fishes, long after the onset of glaciation. As eelpouts are one of the dominant benthic fish groups of the deep ocean, they likely migrated from the north to Antarctica via the cold depths, losing all but the fully active isoform gene along the way. In contrast, northern species have retained both the fully active (QAE) and partially active (SP) isoforms for at least 15 Ma, which suggests that the combination of isoforms is functionally advantageous.
Collapse
Affiliation(s)
- Rod S. Hobbs
- Department of Ocean Sciences, Memorial University of Newfoundland, St John’s, Newfoundland, Canada
| | - Jennifer R. Hall
- Aquatic Research Cluster, CREAIT Network, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Laurie A. Graham
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- * E-mail:
| | - Peter L. Davies
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Garth L. Fletcher
- Department of Ocean Sciences, Memorial University of Newfoundland, St John’s, Newfoundland, Canada
| |
Collapse
|
8
|
Molecular mechanism and history of non-sense to sense evolution of antifreeze glycoprotein gene in northern gadids. Proc Natl Acad Sci U S A 2019; 116:4400-4405. [PMID: 30765531 PMCID: PMC6410882 DOI: 10.1073/pnas.1817138116] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The diverse antifreeze proteins enabling the survival of different polar fishes in freezing seas offer unparalleled vistas into the breadth of genetic sources and mechanisms that produce crucial new functions. Although most new genes evolved from preexisting genic ancestors, some are deemed to have arisen from noncoding DNA. However, the pertinent mechanisms, functions, and selective forces remain uncertain. Our paper presents clear evidence that the antifreeze glycoprotein gene of the northern codfish originated from a noncoding region. We further describe the detailed mechanism of its evolutionary transformation into a full-fledged crucial life-saving gene. This paper is a concrete dissection of the process of a de novo gene birth that has conferred a vital adaptive function directly linked to natural selection. A fundamental question in evolutionary biology is how genetic novelty arises. De novo gene birth is a recently recognized mechanism, but the evolutionary process and function of putative de novo genes remain largely obscure. With a clear life-saving function, the diverse antifreeze proteins of polar fishes are exemplary adaptive innovations and models for investigating new gene evolution. Here, we report clear evidence and a detailed molecular mechanism for the de novo formation of the northern gadid (codfish) antifreeze glycoprotein (AFGP) gene from a minimal noncoding sequence. We constructed genomic DNA libraries for AFGP-bearing and AFGP-lacking species across the gadid phylogeny and performed fine-scale comparative analyses of the AFGP genomic loci and homologs. We identified the noncoding founder region and a nine-nucleotide (9-nt) element therein that supplied the codons for one Thr-Ala-Ala unit from which the extant repetitive AFGP-coding sequence (cds) arose through tandem duplications. The latent signal peptide (SP)-coding exons were fortuitous noncoding DNA sequence immediately upstream of the 9-nt element, which, when spliced, supplied a typical secretory signal. Through a 1-nt frameshift mutation, these two parts formed a single read-through open reading frame (ORF). It became functionalized when a putative translocation event conferred the essential cis promoter for transcriptional initiation. We experimentally proved that all genic components of the extant gadid AFGP originated from entirely nongenic DNA. The gadid AFGP evolutionary process also represents a rare example of the proto-ORF model of de novo gene birth where a fully formed ORF existed before the regulatory element to activate transcription was acquired.
Collapse
|
9
|
Abstract
Antifreeze proteins (AFPs) protect marine fishes from freezing in icy seawater. They evolved relatively recently, most likely in response to the formation of sea ice and Cenozoic glaciations that occurred less than 50 million years ago, following a greenhouse Earth event. Based on their diversity, AFPs have independently evolved on many occasions to serve the same function, with some remarkable examples of convergent evolution at the structural level, and even instances of lateral gene transfer. For some AFPs, the progenitor gene is recognizable. The intense selection pressure exerted by icy seawater, which can rapidly kill unprotected fish, has led to massive AFP gene amplification, as well as some partial gene duplications that have increased the size and activity of the antifreeze. The many protein evolutionary processes described in Gordon H. Dixon's Essays in Biochemistry article will be illustrated here by examples from studies on AFPs. Abbreviations: AFGP: antifreeze glycoproteins; AFP: antifreeze proteins; GHD: Gordon H. Dixon; SAS: sialic acid synthase; TH: thermal hysteresis.
Collapse
Affiliation(s)
- Peter L Davies
- a Department of Biomedical and Molecular Sciences , Queen's University , Kingston , Canada
| | - Laurie A Graham
- a Department of Biomedical and Molecular Sciences , Queen's University , Kingston , Canada
| |
Collapse
|
10
|
Ammar AY, El Nahas AF, Mahmoud S, Barakat ME, Hassan AM. Characterization of type IV antifreeze gene in Nile tilapia (Oreochromis niloticus) and influence of cold and hot weather on its expression and some immune-related genes. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:515-525. [PMID: 29234908 DOI: 10.1007/s10695-017-0450-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 11/22/2017] [Indexed: 06/07/2023]
Abstract
The aim of this work is to study the effect of the thermal stress of ambient temperature during winter and summer on the expression of type IV antifreeze gene (ANF IV) in different tissues of Nile tilapia (Oreochromis niloticus) as well as some immune-related genes. At first, genomic ANF IV gene was characterized from one fish; 124 amino acids were identified with 92.7% similarity with that on the gene bank. Expression of ANF IV and immune-related genes were done twice, once at the end of December (winter sample, temperature 14 °C) and the other at August (summer sample, temperature 36 °C). Assessment of ANF IV gene expression in different organs of fish was done; splenic mRNA was used for assessment of immune-related gene transcripts (CXCl2 chemokine, cc-chemokine, INF-3A, and MHC IIβ). Winter expression analysis of AFP IV in O. niloticus revealed significant upregulation of mRNA transcript levels in the intestine, gills, skin, spleen, liver, and brain with 324.03-, 170.06-, 107.63-, 97.61-, 94.35-, and 27.85-folds, respectively. Furthermore, upregulation in the gene was observed in some organs during summer: in the liver, gills, skin, intestine, and brain with lower levels compared with winter. The level of expression of immune-related genes in winter is significantly higher than summer in all assessed genes. Cc-chemokine gene expression was the most affected in both winter and summer. Variable expression profile of ANF IV in different organs and in different seasons together with its amino acid similarity of N-terminal and C-terminal with apolipoprotein (lipid binder) and form of high-density lipoprotein (HDL) suggests a different role for this protein which may be related to lipid metabolism.
Collapse
Affiliation(s)
- Asmma Y Ammar
- Biotechnology department, Animal Health Research Institute, Kafr El Sheikh, Egypt
| | - Abeer F El Nahas
- Animal Husbandry and Animal Wealth Department, Faculty of Veterinary Medicine, Alexandria University, Edfina, Behera, 22758, Egypt.
| | - Shawky Mahmoud
- Department of Physiology, Faculty of Veterinary Medicine, Kafer El Sheikh University, Kafr El Sheikh, Egypt
| | - Mohamed E Barakat
- Biotechnology Department, Animal Health Research Institute, Kafer El Sheik, Egypt
| | - Asmaa M Hassan
- Biotechnology department, Animal Health Research Institute, Kafr El Sheikh, Egypt
| |
Collapse
|
11
|
Zhuang X, Murphy KR, Ghigliotti L, Pisano E, Cheng CHC. Reconstruction of the repetitive antifreeze glycoprotein genomic loci in the cold-water gadids Boreogadus saida and Microgadus tomcod. Mar Genomics 2018; 39:73-84. [PMID: 29510906 DOI: 10.1016/j.margen.2018.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 10/17/2022]
Abstract
Antifreeze glycoproteins (AFGPs) are a novel evolutionary innovation in members of the northern cod fish family (Gadidae), crucial in preventing death from inoculative freezing by environmental ice in their frigid Arctic and sub-Arctic habitats. However, the genomic origin and molecular mechanism of evolution of this novel life-saving adaptive genetic trait remained to be definitively determined. To this end, we constructed large insert genomic DNA BAC (bacterial artificial chromosome) libraries for two AFGP-bearing gadids, the high-Arctic polar cod Boreogadus saida and the cold-temperate Atlantic tomcod Microgadus tomcod, to isolate and sequence their AFGP genomic regions for fine resolution evolutionary analyses. The BAC library construction encountered poor cloning efficiency initially, which we resolved by pretreating the agarose-embedded erythrocyte DNA with a cationic detergent, a method that may be of general use to BAC cloning for teleost species and/or where erythrocytes are the source of input DNA. The polar cod BAC library encompassed 92,160 clones with an average insert size of 94.7 kbp, and the Atlantic tomcod library contained 73,728 clones with an average insert size of 89.6 kbp. The genome sizes of B. saida and M. tomcod were estimated by cell flow cytometry to be 836 Mbp and 645 Mbp respectively, thus their BAC libraries have approximately 10- and 9.7-fold genome coverage respectively. The inclusiveness and depth of coverage were empirically confirmed by screening the libraries with three housekeeping genes. The BAC clones that mapped to the AFGP genomic loci of the two gadids were then isolated by screening the BAC libraries with gadid AFGP gene probes. Eight minimal tiling path (MTP) clones were identified for B. saida, sequenced, and assembled. The B. saida AFGP locus reconstruction produced both haplotypes, and the locus comprises three distinct AFGP gene clusters, containing a total of 16 AFGP genes and spanning a combined distance of 512 kbp. The M. tomcod AFGP locus is much smaller at approximately 80 kbp, and contains only three AFGP genes. Fluorescent in situ hybridization with an AFGP gene probe showed the AFGP locus in both species occupies a single chromosomal location. The large AFGP locus with its high gene dosage in B. saida is consistent with its chronically freezing high Arctic habitats, while the small gene family in M. tomcod correlates with its milder habitats in lower latitudes. The results from this study provided the data for fine resolution sequence analyses that would yield insight into the molecular mechanisms and history of gadid AFGP gene evolution driven by northern hemisphere glaciation.
Collapse
Affiliation(s)
- Xuan Zhuang
- Department of Animal Biology, University of Illinois at Urbana - Champaign, 515 Morrill Hall, Urbana, IL 61801, USA; Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA.
| | - Katherine R Murphy
- Department of Animal Biology, University of Illinois at Urbana - Champaign, 515 Morrill Hall, Urbana, IL 61801, USA
| | - Laura Ghigliotti
- Institute of Marine Sciences (ISMAR), National Research Council (CNR), Genoa 16149, Italy
| | - Eva Pisano
- Institute of Marine Sciences (ISMAR), National Research Council (CNR), Genoa 16149, Italy
| | - C-H Christina Cheng
- Department of Animal Biology, University of Illinois at Urbana - Champaign, 515 Morrill Hall, Urbana, IL 61801, USA.
| |
Collapse
|
12
|
Baalsrud HT, Tørresen OK, Solbakken MH, Salzburger W, Hanel R, Jakobsen KS, Jentoft S. De Novo Gene Evolution of Antifreeze Glycoproteins in Codfishes Revealed by Whole Genome Sequence Data. Mol Biol Evol 2018; 35:593-606. [PMID: 29216381 PMCID: PMC5850335 DOI: 10.1093/molbev/msx311] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
New genes can arise through duplication of a pre-existing gene or de novo from non-coding DNA, providing raw material for evolution of new functions in response to a changing environment. A prime example is the independent evolution of antifreeze glycoprotein genes (afgps) in the Arctic codfishes and Antarctic notothenioids to prevent freezing. However, the highly repetitive nature of these genes complicates studies of their organization. In notothenioids, afgps evolved from an extant gene, yet the evolutionary origin of afgps in codfishes is unknown. Here, we demonstrate that afgps in codfishes have evolved de novo from non-coding DNA 13-18 Ma, coinciding with the cooling of the Northern Hemisphere. Using whole-genome sequence data from several codfishes and notothenioids, we find higher copy number of afgp in species exposed to more severe freezing suggesting a gene dosage effect. Notably, antifreeze function is lost in one lineage of codfishes analogous to the afgp losses in non-Antarctic notothenioids. This indicates that selection can eliminate the antifreeze function when freezing is no longer imminent. In addition, we show that evolution of afgp-assisting antifreeze potentiating protein genes (afpps) in notothenioids coincides with origin and lineage-specific losses of afgp. The origin of afgps in codfishes is one of the first examples of an essential gene born from non-coding DNA in a non-model species. Our study underlines the power of comparative genomics to uncover past molecular signatures of genome evolution, and further highlights the impact of de novo gene origin in response to a changing selection regime.
Collapse
Affiliation(s)
- Helle Tessand Baalsrud
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Ole Kristian Tørresen
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Monica Hongrø Solbakken
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Walter Salzburger
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
- Zoological Institute, University of Basel, Basel, Switzerland
| | - Reinhold Hanel
- Institute of Fisheries Ecology, Johann Heinrich von Thünen Institute, Federal Research Institute for Rural Areas, Forestry and Fisheries, Hamburg, Germany
| | - Kjetill S Jakobsen
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Sissel Jentoft
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| |
Collapse
|
13
|
Soyano K, Mushirobira Y. The Mechanism of Low-Temperature Tolerance in Fish. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1081:149-164. [DOI: 10.1007/978-981-13-1244-1_9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Cao L, Huang Q, Wu Z, Cao DD, Ma Z, Xu Q, Hu P, Fu Y, Shen Y, Chan J, Zhou CZ, Zhai W, Chen L. Neofunctionalization of zona pellucida proteins enhances freeze-prevention in the eggs of Antarctic notothenioids. Nat Commun 2016; 7:12987. [PMID: 27698404 PMCID: PMC5059455 DOI: 10.1038/ncomms12987] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 08/24/2016] [Indexed: 12/26/2022] Open
Abstract
The mechanisms by which the eggs of the Antarctic notothenioid fishes avoid freezing are not fully understood. Zona pellucida proteins (ZPs) are constituents of the chorion which forms a protective matrix surrounding the egg. Here we report occurrence of freezing temperature-related gene expansion and acquisition of unusual ice melting-promoting (IMP) activity in a family of Antarctic notothenioid ZPs (AnnotoZPs). Members of AnnotoZPs are shown to bind with ice and non-colligatively depress the melting point of a solution in a range of 0.26 to 0.65 °C at a moderate concentration. Eggs of zebrafishes expressing an AnnotoZP transgene show improved melting point depression and enhanced survival in freezing conditions. Mutational analyses in a representative AnnotoZP indicate the ZP domain and patches of acidic residues are essential structures for the IMP activity. AnnotoZPs, therefore, represent a group of macromolecules that prevent freezing by a unique ZP-ice interaction mechanism distinct from the known antifreeze proteins.
Collapse
Affiliation(s)
- Lixue Cao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiao Huang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Zhichao Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Dong-dong Cao
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhanling Ma
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Qianghua Xu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Peng Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Yanxia Fu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Yu Shen
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiulin Chan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Cong-zhao Zhou
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wanying Zhai
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Liangbiao Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
15
|
Beers JM, Jayasundara N. Antarctic notothenioid fish: what are the future consequences of 'losses' and 'gains' acquired during long-term evolution at cold and stable temperatures? ACTA ACUST UNITED AC 2016; 218:1834-45. [PMID: 26085661 DOI: 10.1242/jeb.116129] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Antarctic notothenioids dominate the fish fauna of the Southern Ocean. Evolution for millions of years at cold and stable temperatures has led to the acquisition of numerous biochemical traits that allow these fishes to thrive in sub-zero waters. The gain of antifreeze glycoproteins has afforded notothenioids the ability to avert freezing and survive at temperatures often hovering near the freezing point of seawater. Additionally, possession of cold-adapted proteins and membranes permits them to sustain appropriate metabolic rates at exceptionally low body temperatures. The notothenioid genome is also distinguished by the disappearance of traits in some species, losses that might prove costly in a warmer environment. Perhaps the best-illustrated example is the lack of expression of hemoglobin in white-blooded icefishes from the family Channichthyidae. Loss of key elements of the cellular stress response, notably the heat shock response, has also been observed. Along with their attainment of cold tolerance, notothenioids have developed an extreme stenothermy and many species perish at temperatures only a few degrees above their habitat temperatures. Thus, in light of today's rapidly changing climate, it is critical to evaluate how these extreme stenotherms will respond to rising ocean temperatures. It is conceivable that the remarkable cold specialization of notothenioids may ultimately leave them vulnerable to future thermal increases and threaten their fitness and survival. Within this context, our review provides a current summary of the biochemical losses and gains that are known for notothenioids and examines these cold-adapted traits with a focus on processes underlying thermal tolerance and acclimation capacity.
Collapse
Affiliation(s)
- Jody M Beers
- Hopkins Marine Station, Stanford University, 120 Ocean View Boulevard, Pacific Grove, CA 93950, USA
| | - Nishad Jayasundara
- Nicholas School of the Environment, Duke University, 450 Research Drive, Durham, NC 27708, USA
| |
Collapse
|
16
|
Papetti C, Windisch HS, La Mesa M, Lucassen M, Marshall C, Lamare MD. Non-Antarctic notothenioids: Past phylogenetic history and contemporary phylogeographic implications in the face of environmental changes. Mar Genomics 2015; 25:1-9. [PMID: 26610933 DOI: 10.1016/j.margen.2015.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/12/2015] [Accepted: 11/12/2015] [Indexed: 12/31/2022]
Abstract
The non-Antarctic Notothenioidei families, Bovichtidae, Pseudaphritidae and Eleginopsidae, diverged early from the main notothenioid lineage. They are important in clarifying the early evolutionary processes that triggered notothenioid evolution in the Antarctic. The early-diverged group represents 8% of all notothenioid species and never established themselves on the Antarctic shelf. Most attention has been paid to the Antarctic notothenioids and their limited physiological tolerance to climate change and increased temperatures. In this review, we discuss key life history traits that are characteristic of the non-Antarctic early-diverged notothenioid taxa as well as the genetic resources and population differentiation information available for this group. We emphasise the population fitness and dynamics of these species and indicate how resource management and conservation of the group can be strengthened through an integrative approach. Both Antarctic waters and the non-Antarctic regions face rapid temperature rises combined with strong anthropogenic exploitation. While it is expected that early-diverged notothenioid species may have physiological advantages over high Antarctic species, it is difficult to predict how climate changes might alter the geographic range, behaviour, phenology and ultimately genetic variability of these species. It is possible, however, that their high degree of endemism and dependence on local environmental specificities to complete their life cycles might enhance their vulnerability.
Collapse
Affiliation(s)
- Chiara Papetti
- Section of Integrative Ecophysiology, Alfred-Wegener-Institute for Polar and Marine Research, Am Handelshafen 12, Bremerhaven 27570, Germany.
| | - Heidrun S Windisch
- Institute for Cell Biology and Zoology, Heinrich-Heine-University, Universitätsstrasse 1, Düsseldorf 40225, Germany.
| | - Mario La Mesa
- ISMAR-CNR, Istituto di Scienze Marine, Sede di Ancona, Largo Fiera della Pesca, 60125 Ancona, Italy.
| | - Magnus Lucassen
- Section of Integrative Ecophysiology, Alfred-Wegener-Institute for Polar and Marine Research, Am Handelshafen 12, Bremerhaven 27570, Germany.
| | - Craig Marshall
- Department of Biochemistry and Genetics, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Miles D Lamare
- Department of Marine Sciences, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| |
Collapse
|
17
|
Sex determination in Antarctic notothenioid fish: chromosomal clues and evolutionary hypotheses. Polar Biol 2014. [DOI: 10.1007/s00300-014-1601-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Shin SC, Ahn DH, Kim SJ, Pyo CW, Lee H, Kim MK, Lee J, Lee JE, Detrich HW, Postlethwait JH, Edwards D, Lee SG, Lee JH, Park H. The genome sequence of the Antarctic bullhead notothen reveals evolutionary adaptations to a cold environment. Genome Biol 2014; 15:468. [PMID: 25252967 PMCID: PMC4192396 DOI: 10.1186/s13059-014-0468-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 09/11/2014] [Indexed: 01/05/2023] Open
Abstract
Background Antarctic fish have adapted to the freezing waters of the Southern Ocean. Representative adaptations to this harsh environment include a constitutive heat shock response and the evolution of an antifreeze protein in the blood. Despite their adaptations to the cold, genome-wide studies have not yet been performed on these fish due to the lack of a sequenced genome. Notothenia coriiceps, the Antarctic bullhead notothen, is an endemic teleost fish with a circumpolar distribution and makes a good model to understand the genomic adaptations to constant sub-zero temperatures. Results We provide the draft genome sequence and annotation for N. coriiceps. Comparative genome-wide analysis with other fish genomes shows that mitochondrial proteins and hemoglobin evolved rapidly. Transcriptome analysis of thermal stress responses find alternative response mechanisms for evolution strategies in a cold environment. Loss of the phosphorylation-dependent sumoylation motif in heat shock factor 1 suggests that the heat shock response evolved into a simple and rapid phosphorylation-independent regulatory mechanism. Rapidly evolved hemoglobin and the induction of a heat shock response in the blood may support the efficient supply of oxygen to cold-adapted mitochondria. Conclusions Our data and analysis suggest that evolutionary strategies in efficient aerobic cellular respiration are controlled by hemoglobin and mitochondrial proteins, which may be important for the adaptation of Antarctic fish to their environment. The use of genome data from the Antarctic endemic fish provides an invaluable resource providing evidence of evolutionary adaptation and can be applied to other studies of Antarctic fish. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0468-1) contains supplementary material, which is available to authorized users.
Collapse
|
19
|
|
20
|
Convey P, Chown SL, Clarke A, Barnes DKA, Bokhorst S, Cummings V, Ducklow HW, Frati F, Green TGA, Gordon S, Griffiths HJ, Howard-Williams C, Huiskes AHL, Laybourn-Parry J, Lyons WB, McMinn A, Morley SA, Peck LS, Quesada A, Robinson SA, Schiaparelli S, Wall DH. The spatial structure of Antarctic biodiversity. ECOL MONOGR 2014. [DOI: 10.1890/12-2216.1] [Citation(s) in RCA: 232] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Huth TJ, Place SP. De novo assembly and characterization of tissue specific transcriptomes in the emerald notothen, Trematomus bernacchii. BMC Genomics 2013; 14:805. [PMID: 24252228 PMCID: PMC3840625 DOI: 10.1186/1471-2164-14-805] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 11/15/2013] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The notothenioids comprise a diverse group of fishes that rapidly radiated after isolation by the Antarctic Circumpolar Current approximately 14-25 million years ago. Given that evolutionary adaptation has led to finely tuned traits with narrow physiological limits in these organisms, this system provides a unique opportunity to examine physiological trade-offs and limits of adaptive responses to environmental perturbation. As such, notothenioids have a rich history with respect to studies attempting to understand the vulnerability of polar ecosystems to the negative impacts associated with global climate change. Unfortunately, despite being a model system for understanding physiological adaptations to extreme environments, we still lack fundamental molecular tools for much of the Nototheniidae family. RESULTS Specimens of the emerald notothen, Trematomus bernacchii, were acclimated for 28 days in flow-through seawater tanks maintained near ambient seawater temperatures (-1.5°C) or at +4°C. Following acclimation, tissue specific cDNA libraries for liver, gill and brain were created by pooling RNA from n = 5 individuals per temperature treatment. The tissue specific libraries were bar-coded and used for 454 pyrosequencing, which yielded over 700 thousand sequencing reads. A de novo assembly and annotation of these reads produced a functional transcriptome library of T. bernacchii containing 30,107 unigenes, 13,003 of which possessed significant homology to a known protein product. Digital gene expression analysis of these extremely cold adapted fish reinforced the loss of an inducible heat shock response and allowed the preliminary exploration into other elements of the cellular stress response. CONCLUSIONS Preliminary exploration of the transcriptome of T. bernacchii under elevated temperatures enabled a semi-quantitative comparison to prior studies aimed at characterizing the thermal response of this endemic fish whose size, abundance and distribution has established it as a pivotal species in polar research spanning several decades. The comparison of these findings to previous studies demonstrates the efficacy of transcriptomics and digital gene expression analysis as tools in future studies of polar organisms and has greatly increased the available genomic resources for the suborder Notothenioidei, particularly in the Trematominae subfamily.
Collapse
Affiliation(s)
- Troy J Huth
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Sean P Place
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Environment and Sustainability Program, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
22
|
Wilson LAB, Colombo M, Hanel R, Salzburger W, Sánchez-Villagra MR. Ecomorphological disparity in an adaptive radiation: opercular bone shape and stable isotopes in Antarctic icefishes. Ecol Evol 2013; 3:3166-82. [PMID: 24102002 PMCID: PMC3790559 DOI: 10.1002/ece3.708] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 07/01/2013] [Accepted: 07/03/2013] [Indexed: 11/25/2022] Open
Abstract
To assess how ecological and morphological disparity is interrelated in the adaptive radiation of Antarctic notothenioid fish we used patterns of opercle bone evolution as a model to quantify shape disparity, phylogenetic patterns of shape evolution, and ecological correlates in the form of stable isotope values. Using a sample of 25 species including representatives from four major notothenioid clades, we show that opercle shape disparity is higher in the modern fauna than would be expected under the neutral evolution Brownian motion model. Phylogenetic comparative methods indicate that opercle shape data best fit a model of directional selection (Ornstein–Uhlenbeck) and are least supported by the “early burst” model of adaptive radiation. The main evolutionary axis of opercle shape change reflects movement from a broad and more symmetrically tapered opercle to one that narrows along the distal margin, but with only slight shape change on the proximal margin. We find a trend in opercle shape change along the benthic–pelagic axis, underlining the importance of this axis for diversification in the notothenioid radiation. A major impetus for the study of adaptive radiations is to uncover generalized patterns among different groups, and the evolutionary patterns in opercle shape among notothenioids are similar to those found among other adaptive radiations (three-spined sticklebacks) promoting the utility of this approach for assessing ecomorphological interactions on a broad scale.
Collapse
Affiliation(s)
- Laura A B Wilson
- Paläontologisches Institute und Museum Karl-Schmid Strasse 4, CH 8006, Zürich, Switzerland ; School of Biological, Earth and Environmental Sciences, University of New South Wales High Street, Kensington, NSW, 2052, Australia
| | | | | | | | | |
Collapse
|
23
|
Magnoni LJ, Scarlato NA, Patricio Ojeda F, Wöhler OC. Gluconeogenic pathway does not display metabolic cold adaptation in liver of Antarctic notothenioid fish. Polar Biol 2013. [DOI: 10.1007/s00300-013-1292-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
24
|
Dettai A, Berkani M, Lautredou AC, Couloux A, Lecointre G, Ozouf-Costaz C, Gallut C. Tracking the elusive monophyly of nototheniid fishes (Teleostei) with multiple mitochondrial and nuclear markers. Mar Genomics 2012. [DOI: 10.1016/j.margen.2012.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Pujolar JM, Marino IAM, Milan M, Coppe A, Maes GE, Capoccioni F, Ciccotti E, Bervoets L, Covaci A, Belpaire C, Cramb G, Patarnello T, Bargelloni L, Bortoluzzi S, Zane L. Surviving in a toxic world: transcriptomics and gene expression profiling in response to environmental pollution in the critically endangered European eel. BMC Genomics 2012; 13:507. [PMID: 23009661 PMCID: PMC3532374 DOI: 10.1186/1471-2164-13-507] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 09/23/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genomic and transcriptomic approaches have the potential for unveiling the genome-wide response to environmental perturbations. The abundance of the catadromous European eel (Anguilla anguilla) stock has been declining since the 1980s probably due to a combination of anthropogenic and climatic factors. In this paper, we explore the transcriptomic dynamics between individuals from high (river Tiber, Italy) and low pollution (lake Bolsena, Italy) environments, which were measured for 36 PCBs, several organochlorine pesticides and brominated flame retardants and nine metals. RESULTS To this end, we first (i) updated the European eel transcriptome using deep sequencing data with a total of 640,040 reads assembled into 44,896 contigs (Eeelbase release 2.0), and (ii) developed a transcriptomic platform for global gene expression profiling in the critically endangered European eel of about 15,000 annotated contigs, which was applied to detect differentially expressed genes between polluted sites. Several detoxification genes related to metabolism of pollutants were upregulated in the highly polluted site, including genes that take part in phase I of the xenobiotic metabolism (CYP3A), phase II (glutathione-S-transferase) and oxidative stress (glutathione peroxidase). In addition, key genes in the mitochondrial respiratory chain and oxidative phosphorylation were down-regulated at the Tiber site relative to the Bolsena site. CONCLUSIONS Together with the induced high expression of detoxification genes, the suggested lowered expression of genes supposedly involved in metabolism suggests that pollution may also be associated with decreased respiratory and energy production.
Collapse
|
26
|
Enzor LA, Zippay ML, Place SP. High latitude fish in a high CO2 world: Synergistic effects of elevated temperature and carbon dioxide on the metabolic rates of Antarctic notothenioids. Comp Biochem Physiol A Mol Integr Physiol 2012; 164:154-61. [PMID: 22884997 DOI: 10.1016/j.cbpa.2012.07.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 07/26/2012] [Accepted: 07/27/2012] [Indexed: 11/18/2022]
Abstract
Although the physiological response of teleost fishes to increased temperature has been well documented, there is only a small body of literature that examines the effects of ocean acidification on fish under ecologically relevant scenarios. Furthermore, little data exists which examines the possible synergistic effects of increased sea surface temperatures and pCO(2) levels, although it is well established that both will co-committedly change in the coming centuries. In this study we examined the effects of increased temperature, increased pCO(2), and a combination of these treatments on the resting metabolic rate (RMR) of four species of notothenioid fish, Trematomus bernacchii, T. hansoni, T. newnesi, and Pagothenia borchgrevinki, acclimated to treatment conditions for 7, 14 or 28days. While most species appear capable of rapidly acclimating to increased pCO(2), temperature continues to impact RMRs for up to 28days. One species in particular, T. newnesi, displayed no acclimatory response to any of the treatments regardless of acclimation time and may have a reduced capacity to respond to environmental change. Furthermore, we present evidence that temperature and pCO(2) act synergistically to further elevate the RMR and slow acclimation when compared to temperature or pCO(2) increases alone.
Collapse
Affiliation(s)
- Laura A Enzor
- University of South Carolina, Department of Biological Sciences, Columbia, SC 29208, USA
| | | | | |
Collapse
|
27
|
Desjardins M, Graham LA, Davies PL, Fletcher GL. Antifreeze protein gene amplification facilitated niche exploitation and speciation in wolffish. FEBS J 2012; 279:2215-30. [PMID: 22520964 DOI: 10.1111/j.1742-4658.2012.08605.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During winter, the coastal waters of Newfoundland can be considered a 'freeze risk ecozone' for teleost fishes, where the shallower habitats pose a high (and the deeper habitats a low) risk of freezing. Atlantic (Anarhichas lupus) and spotted (Anarhichas minor) wolffish, which inhabit these waters, reside at opposite ends of this ecozone, with the Atlantic wolffish being the species facing the greatest risk, because of its shallower niche. In order to resist freezing, this species secretes five times the level of antifreeze protein (AFP) activity into the plasma than does the spotted wolffish. The main basis for this interspecific difference in AFP levels is gene dosage, as the Atlantic wolffish has approximately three times as many AFP gene copies as the spotted wolffish. In addition, AFP transcript levels in liver (the primary source of circulating AFPs) are several times higher in the Atlantic wolffish. One explanation for the difference in gene dosage and transcript levels is the presence of tandemly arrayed repeats in the latter, which make up two-thirds of its AFP gene pool. Such repeats are not present in the spotted wolffish. The available evidence indicates that the two species diverged from a common ancestor at a time when the ebb and flow of northern glaciations would have resulted in the emergence of shallow water 'freeze risk ecozones'. The results of this study suggest that the duplication/amplification of AFP genes in a subpopulation of ancestral wolffish would have facilitated the exploitation of this high-risk habitat, resulting in the divergence and evolution of modern-day Atlantic and spotted wolffish species.
Collapse
Affiliation(s)
- Mariève Desjardins
- Ocean Sciences Centre, Memorial University of Newfoundland, St John's, NL, Canada
| | | | | | | |
Collapse
|
28
|
Hobbs RS, Shears MA, Graham LA, Davies PL, Fletcher GL. Isolation and characterization of type I antifreeze proteins from cunner, Tautogolabrus adspersus, order Perciformes. FEBS J 2011; 278:3699-710. [DOI: 10.1111/j.1742-4658.2011.08288.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Nicodemus-Johnson J, Silic S, Ghigliotti L, Pisano E, Cheng CHC. Assembly of the antifreeze glycoprotein/trypsinogen-like protease genomic locus in the Antarctic toothfish Dissostichus mawsoni (Norman). Genomics 2011; 98:194-201. [DOI: 10.1016/j.ygeno.2011.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 06/02/2011] [Indexed: 10/18/2022]
|
30
|
Wojnar JM, Evans CW, DeVries AL, Brimble MA. Synthesis of an Isotopically-labelled Antarctic Fish Antifreeze Glycoprotein Probe. Aust J Chem 2011. [DOI: 10.1071/ch10464] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Antifreeze glycoproteins (AFGPs) are glycosylated polypeptides produced by Antarctic and Arctic fishes, which allow them to survive in seawater at sub-zero temperatures. An investigation into the postulated enteric uptake of AFGP synthesized in the exocrine pancreas of Antarctic fishes required a custom-prepared AFGP probe that incorporated seven isotopically-labelled Ala residues for detection by mass spectrometry. The AFGPs are composed of a repetitive three amino acid unit (Ala-Ala-Thr), in which the threonine residue is glycosylated with the disaccharide β-d-Gal-(1→3)-α-d-GalNAc. The synthesis of isotopically-labelled AFGP8 (1), as well as the optimized synthesis of the protected glycosylated amino acid building block 2, is reported.
Collapse
|
31
|
Kelley JL, Aagaard JE, MacCoss MJ, Swanson WJ. Functional diversification and evolution of antifreeze proteins in the antarctic fish Lycodichthys dearborni. J Mol Evol 2010; 71:111-8. [PMID: 20686757 DOI: 10.1007/s00239-010-9367-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 07/06/2010] [Indexed: 12/01/2022]
Abstract
Antifreeze proteins (AFPs) have independently evolved in many organisms. AFPs act by binding to ice crystals, effectively lowering the freezing point. AFPs are often at high copy number in a genome and diversity exists between copies. Type III antifreeze proteins are found in Arctic and Antarctic eel pouts, and have previously been shown to evolve under positive selection. Here we combine molecular and proteomic techniques to understand the molecular evolution and diversity of Type III antifreeze proteins in a single individual Antarctic fish Lycodichthys dearborni. Our expressed sequence tag (EST) screen reveals that at least seven different AFP variants are transcribed, which are ultimately translated into five different protein isoforms. The isoforms have identical 66 base pair signal sequences and different numbers of subsequent ice-binding domains followed by a stop codon. Isoforms with one ice-binding unit (monomer), two units (dimer), and multiple units (multimer) were present in the EST library. We identify a previously uncharacterized protein dimer, providing further evidence that there is diversity between Type III AFP isoforms, perhaps driven by positive selection for greater thermal hysteresis. Proteomic analysis confirms that several of these isoforms are translated and present in the liver. Our molecular evolution study shows that paralogs have diverged under positive selection. We hypothesize that antifreeze protein diversity is an important contributor to depressing the serum freezing point.
Collapse
Affiliation(s)
- Joanna L Kelley
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | | | | | | |
Collapse
|
32
|
Delayed onset of adult antifreeze activity in juveniles of the Antarctic icefish Chaenocephalus aceratus. Polar Biol 2010. [DOI: 10.1007/s00300-010-0828-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Giordano D, Russo R, Coppola D, di Prisco G, Verde C. Molecular adaptations in haemoglobins of notothenioid fishes. JOURNAL OF FISH BIOLOGY 2010; 76:301-318. [PMID: 20738709 DOI: 10.1111/j.1095-8649.2009.02528.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Since haemoglobins of all animal species have the same haem group, differences in their properties, including oxygen affinity, electrophoretic mobility and pH sensitivity, must result from the interaction of the prosthetic group with specific amino-acid residues in the primary structure. For this reason, fish globins have been the subject of extensive studies in recent years, not only for their structural characteristics, but also because they offer the possibility to investigate the evolutionary history of these ancient molecules in marine and freshwater species living in a great variety of environmental conditions. This review summarizes the current knowledge on the structure, function and phylogeny of haemoglobins of notothenioid fishes. On the basis of crystallographic analysis, the evolution of the Root effect is analysed. Adaptation of the oxygen transport system in notothenioids seems to be based on evolutionary changes, involving levels of biological organization higher than the structure of haemoglobin. These include changes in the rate of haemoglobin synthesis or in regulation by allosteric effectors, which affect the amount of oxygen transported in blood. These factors are thought to be more important for short-term response to environmental challenges than previously believed.
Collapse
Affiliation(s)
- D Giordano
- Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy
| | | | | | | | | |
Collapse
|
34
|
Liu JX, Zhai YH, Gui JF. Molecular characterization and expression pattern of AFPIV during embryogenesis in gibel carp(Carassiu auratus gibelio). Mol Biol Rep 2008; 36:2011-8. [DOI: 10.1007/s11033-008-9412-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 10/27/2008] [Indexed: 11/30/2022]
|
35
|
Buckley BA, Somero GN. cDNA microarray analysis reveals the capacity of the cold-adapted Antarctic fish Trematomus bernacchii to alter gene expression in response to heat stress. Polar Biol 2008. [DOI: 10.1007/s00300-008-0533-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
36
|
Identification of a two-domain antifreeze protein gene in Antarctic eelpout Lycodichthys dearborni. Polar Biol 2008. [DOI: 10.1007/s00300-008-0499-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
Cheng CHC, Detrich HW. Molecular ecophysiology of Antarctic notothenioid fishes. Philos Trans R Soc Lond B Biol Sci 2008; 362:2215-32. [PMID: 17553777 PMCID: PMC2443173 DOI: 10.1098/rstb.2006.1946] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The notothenioid fishes of the Southern Ocean surrounding Antarctica are remarkable examples of organismal adaptation to extreme cold. Their evolution since the mid-Miocene in geographical isolation and a chronically cold marine environment has resulted in extreme stenothermality of the extant species. Given the unique thermal history of the notothenioids, one may ask what traits have been gained, and conversely, what characters have been lost through change in the information content of their genomes. Two dramatic changes that epitomize such evolutionary transformations are the gain of novel antifreeze proteins, which are obligatory for survival in icy seawater, by most notothenioids and the paradoxical loss of respiratory haemoproteins and red blood cells, normally deemed indispensable for vertebrate life, by the species of a highly derived notothenioid family, the icefishes. Here, we review recent advances in our understanding of these traits and their evolution and suggest future avenues of investigation. The formerly coherent paradigm of notothenioid freeze avoidance, developed from three decades of study of antifreeze glycoprotein (AFGP) based cold adaptation, now faces challenges stemming from the recent discovery of antifreeze-deficient, yet freeze-resistant, early notothenioid life stages and from definitive evidence that the liver is not the physiological source of AFGPs in notothenioid blood. The resolution of these intriguing observations is likely to reveal new physiological traits that are unique to the notothenioids. Similarly, the model of AFGP gene evolution from a notothenioid pancreatic trypsinogen-like gene precursor is being expanded and refined based on genome-level analyses of the linked AFGP loci and their ancestral precursors. Finally, the application of comparative genomics to study evolutionary change in the AFGP genotypes of cool-temperate notothenioids from sub-Antarctic habitats, where these genes are not necessary, will contribute to the mechanistic understanding of the dynamics of AFGP gene gain and loss. In humans and most vertebrates, mutations in the alpha- or beta-globin genes or defects in globin chain synthesis are causes of severe genetic disease. Thus, the 16 species of haemoglobinless, erythrocyte-null icefishes are surprising anomalies -- in fact, they could only have evolved and thrived due to relaxed selection pressure for oxygen-binding proteins in the cold, oxygen-rich waters of the Southern Ocean. Fifteen of the sixteen icefish species have lost most of the adult alphabeta-globin locus and retain only a small 3' fragment of the alpha-globin gene. The only exception to this pattern occurs in Neopagetopsis ionah, which possesses a disrupted alphabeta-globin gene complex that probably represents a non-functional intermediate on the evolutionary pathway to near total globin gene extinction. By contrast, six of the icefish species fail to express myoglobin. The absence of myoglobin expression has occurred by several independent mutations and distinct mechanisms. Haemoprotein loss is correlated with dramatic increases in cellular mitochondrial density, heart size, blood volume and capillary bed volume. Evolution of these compensatory traits was probably facilitated by the homeostatic activity of nitric oxide, a key modulator of angiogenesis and mitochondrial biogenesis. These natural knockouts of the red blood cell lineage are an excellent genomic resource for erythroid gene discovery by comparative genomics, as illustrated for the newly described gene, bloodthirsty.
Collapse
Affiliation(s)
- C-H Christina Cheng
- Department of Animal Biology, University of Illinois, Urbana, IL 61801, USA.
| | | |
Collapse
|
38
|
Todgham AE, Hoaglund EA, Hofmann GE. Is cold the new hot? Elevated ubiquitin-conjugated protein levels in tissues of Antarctic fish as evidence for cold-denaturation of proteins in vivo. J Comp Physiol B 2007; 177:857-66. [PMID: 17710411 DOI: 10.1007/s00360-007-0183-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 06/20/2007] [Accepted: 06/21/2007] [Indexed: 11/25/2022]
Abstract
Levels of ubiquitin (Ub)-conjugated proteins, as an index of misfolded or damaged proteins, were measured in notothenioid fishes, with both Antarctic (Trematomus bernacchii, T. pennellii, Pagothenia borchgrevinki) and non-Antarctic (Notothenia angustata, Bovichtus variegatus) distributions, as well as non-notothenioid fish from the Antarctic (Lycodichthys dearborni, Family Zoarcidae) and New Zealand (Bellapiscis medius, Family Tripterygiidae), in an effort to better understand the effect that inhabiting a sub-zero environment has on maintaining the integrity of the cellular protein pool. Overall, levels of Ub-conjugated proteins in cold-adapted Antarctic fishes were significantly higher than New Zealand fishes in gill, liver, heart and spleen tissues suggesting that life at sub-zero temperatures impacts protein homeostasis. The highest tissue levels of ubiquitinated proteins were found in the spleen of all fish. Ub conjugate levels in the New Zealand N. angustata, more closely resembled levels measured in other Antarctic fishes than levels measured in other New Zealand species, likely reflecting their recent shared ancestry with Antarctic notothenioids.
Collapse
Affiliation(s)
- Anne E Todgham
- Department of Ecology, Evolution and Marine Biology, University of California-Santa Barbara, Santa Barbara, CA 93106-9610, USA
| | | | | |
Collapse
|
39
|
Stefanni S, Porteiro FM, Bettencourt R, Gavaia PJ, Santos RS. Molecular insights indicate that Pachycara thermophilum () and P. saldanhai () (Perciformes: Zoarcidae) from the Mid-Atlantic Ridge are synonymous species. Mol Phylogenet Evol 2007; 45:423-6. [PMID: 17448690 DOI: 10.1016/j.ympev.2007.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 01/31/2007] [Accepted: 02/01/2007] [Indexed: 11/27/2022]
Affiliation(s)
- S Stefanni
- IMAR, Department of Oceanography and Fisheries, University of the Azores - 9901-862, Horta, Azores, Portugal.
| | | | | | | | | |
Collapse
|
40
|
Coppes Petricorena ZL, Somero GN. Biochemical adaptations of notothenioid fishes: comparisons between cold temperate South American and New Zealand species and Antarctic species. Comp Biochem Physiol A Mol Integr Physiol 2006; 147:799-807. [PMID: 17293146 DOI: 10.1016/j.cbpa.2006.09.028] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2006] [Revised: 09/17/2006] [Accepted: 09/29/2006] [Indexed: 11/25/2022]
Abstract
Fishes of the perciform suborder Notothenioidei afford an excellent opportunity for studying the evolution and functional importance of diverse types of biochemical adaptation to temperature. Antarctic notothenioids have evolved numerous biochemical adaptations to stably cold waters, including antifreeze glycoproteins, which inhibit growth of ice crystals, and enzymatic proteins with cold-adapted specific activities (k(cat) values) and substrate binding abilities (K(m) values), which support metabolism at low temperatures. Antarctic notothenioids also exhibit the loss of certain biochemical traits that are ubiquitous in other fishes, including the heat-shock response (HSR) and, in members of the family Channichthyidae, hemoglobins and myoglobins. Tolerance of warm temperatures is also truncated in stenothermal Antarctic notothenioids. In contrast to Antarctic notothenioids, notothenioid species found in South American and New Zealand waters have biochemistries more reflective of cold-temperate environments. Some of the contemporary non-Antarctic notothenioids likely derive from ancestral species that evolved in the Antarctic and later "escaped" to lower latitude waters when the Antarctic Polar Front temporarily shifted northward during the late Miocene. Studies of cold-temperate notothenioids may enable the timing of critical events in the evolution of Antarctic notothenioids to be determined, notably the chronology of acquisition and amplification of antifreeze glycoprotein genes and the loss of the HSR. Genomic studies may reveal how the gene regulatory networks involved in acclimation to temperature differ between stenotherms like the Antarctic notothenioids and more eurythermal species like cold-temperate notothenioids. Comparative studies of Antarctic and cold-temperate notothenioids thus have high promise for revealing the mechanisms by which temperature-adaptive biochemical traits are acquired - or through which traits that cease to be of advantage under conditions of stable, near-freezing temperatures are lost - during evolution.
Collapse
Affiliation(s)
| | - George N Somero
- Hopkins Marine Station, Department of Biological Sciences, Stanford University, Pacific Grove, CA 93950-3094, USA
| |
Collapse
|