1
|
Nishikino T, Sugimoto T, Kandori H. Low-temperature FTIR spectroscopy of the L/Q switch of proteorhodopsin. Phys Chem Chem Phys 2024; 26:22959-22967. [PMID: 39171479 DOI: 10.1039/d4cp02248c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Rhodopsins are photoreceptive membrane proteins containing a retinal chromophore, and the color tuning mechanism in rhodopsins is one of the important topics. Color switch is a color-determining residue at the same position, where replacement of red- and blue-shifting amino acids in two wild-type rhodopsins causes spectral blue- and red-shifts, respectively. The first and most famous color switch in microbial rhodopsins is the L/Q switch in proteorhodopsins (PRs). Green- or blue-absorbing PR (GPR or BPR) contains Leu and Gln at position 105 of the C-helix (TM3), respectively, and their replacement converted absorbing colors. The L/Q switch enables bacteria to absorb green or blue light in shallow or deep ocean waters, respectively. Although Gln and Leu are hydrophilic and hydrophobic residues, respectively, a comprehensive mutation study of position 105 in GPR revealed that the λmax correlated with the volume of residues, not the hydropathy index. To gain structural insights into the mechanism, we applied low-temperature FTIR spectroscopy of L105Q GPR, and the obtained spectra were compared with those of GPR and BPR. The difference FTIR spectra of L105Q GPR were similar to those of BPR, not GPR, implying that the L/Q switch converts the GPR structure into a BPR structure in terms of the local environments of the retinal chromophore. It includes retinal skeletal vibration, hydrogen-bonding strength of the protonated Schiff base, amide-A vibration (peptide backbone), and protein-bound water molecules. Consequently color is switched accompanying such structural alterations, and known as the L/Q switch.
Collapse
Affiliation(s)
- Tatsuro Nishikino
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Teppei Sugimoto
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
2
|
Choudhury A, Santra S, Ghosh D. Understanding the Photoprocesses in Biological Systems: Need for Accurate Multireference Treatment. J Chem Theory Comput 2024; 20:4951-4964. [PMID: 38864715 DOI: 10.1021/acs.jctc.4c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Light-matter interaction is crucial to life itself and revolves around many of the central processes in biology. The need for understanding these photochemical and photophysical processes cannot be overemphasized. Interaction of light with biological systems starts with the absorption of light and subsequent phenomena that occur in the excited states of the system. However, excited states are typically difficult to understand within the mean field approximation of quantum chemical methods. Therefore, suitable multireference methods and methodologies have been developed to understand these phenomena. In this Perspective, we will describe a few methods and methodologies suitable for these descriptions and discuss some persisting difficulties.
Collapse
Affiliation(s)
- Arpan Choudhury
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Supriyo Santra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Debashree Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
3
|
Lamm GHU, Zabelskii D, Balandin T, Gordeliy V, Wachtveitl J. Calcium-Sensitive Microbial Rhodopsin VirChR1: A Femtosecond to Second Photocycle Study. J Phys Chem Lett 2024; 15:5510-5516. [PMID: 38749015 DOI: 10.1021/acs.jpclett.4c00693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Viral rhodopsins are light-gated cation channels representing a novel class of microbial rhodopsins. For viral rhodopsin 1 subfamily members VirChR1 and OLPVR1, channel activity is abolished above a certain calcium concentration. Here we present a calcium-dependent spectroscopic analysis of VirChR1 on the femtosecond to second time scale. Unlike channelrhodopsin-2, VirChR1 possesses two intermediate states P1 and P2 on the ultrafast time scale, similar to J and K in ion-pumping rhodopsins. Subsequently, we observe multifaceted photocycle kinetics with up to seven intermediate states. Calcium predominantly affects the last photocycle steps, including the appearance of additional intermediates P6Ca and P7 representing the blocked channel. Furthermore, the photocycle of the counterion variant D80N is drastically altered, yielding intermediates with different spectra and kinetics compared to those of the wt. These findings demonstrate the central role of the counterion within the defined reaction sequence of microbial rhodopsins that ultimately defines the protein function.
Collapse
Affiliation(s)
- Gerrit H U Lamm
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | | | - Taras Balandin
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Valentin Gordeliy
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52428 Jülich, Germany
- University Grenoble Alpes, CEA, CNRS, Institute de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| |
Collapse
|
4
|
Fujimoto KJ, Minowa F, Nishina M, Nakamura S, Ohashi S, Katayama K, Kandori H, Yanai T. Molecular Mechanism of Spectral Tuning by Chloride Binding in Monkey Green Sensitive Visual Pigment. J Phys Chem Lett 2023; 14:1784-1793. [PMID: 36762971 DOI: 10.1021/acs.jpclett.2c03619] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The visual pigments of the cones perceive red, green, and blue colors. The monkey green (MG) pigment possesses a unique Cl- binding site; however, its relationship to the spectral tuning in green pigments remains elusive. Recently, FTIR spectroscopy revealed the characteristic structural modifications of the retinal binding site by Cl- binding. Herein, we report the computational structural modeling of MG pigments and quantum-chemical simulation to investigate its spectral redshift and physicochemical relevance when Cl- is present. Our protein structures reflect the previously suggested structural changes. AlphaFold2 failed to predict these structural changes. Excited-state calculations successfully reproduced the experimental red-shifted absorption energies, corroborating our protein structures. Electrostatic energy decomposition revealed that the redshift results from the His197 protonation state and conformations of Glu129, Ser202, and Ala308; however, Cl- itself contributes to the blueshift. Site-directed mutagenesis supported our analysis. These modeled structures may provide a valuable foundation for studying cone pigments.
Collapse
Affiliation(s)
- Kazuhiro J Fujimoto
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
- Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya, 464-8601, Japan
| | - Fumika Minowa
- Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya, 464-8601, Japan
| | - Michiya Nishina
- Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya, 464-8601, Japan
| | - Shunta Nakamura
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa, Nagoya, 466-8555, Japan
| | - Sayaka Ohashi
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa, Nagoya, 466-8555, Japan
| | - Kota Katayama
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa, Nagoya, 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Gokiso-cho, Showa, Nagoya, 466-8555, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa, Nagoya, 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Gokiso-cho, Showa, Nagoya, 466-8555, Japan
| | - Takeshi Yanai
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
- Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya, 464-8601, Japan
| |
Collapse
|
5
|
Li G, Hu Y, Pei S, Meng J, Wang J, Wang J, Yue S, Wang Z, Wang S, Liu X, Weng Y, Peng X, Zhao Q. Excited-state dynamics of all-trans protonated retinal Schiff base in CRABPII-based rhodopsin mimics. Biophys J 2022; 121:4109-4118. [PMID: 36181266 PMCID: PMC9675042 DOI: 10.1016/j.bpj.2022.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/06/2022] [Accepted: 09/26/2022] [Indexed: 11/20/2022] Open
Abstract
The rhodopsin mimic is a chemically synthetized complex with retinyl Schiff base (RSB) formed between protein and the retinal chromophore that can mimic the natural rhodopsin-like protein. The artificial rhodopsin mimic is more stable and designable than the natural protein and hence has wider uses in photon detection devices. The mimic structure RSB, like the case in the actual rhodopsin-like protein, undergoes isomerization and protonation throughout the photoreaction process. As a result, understanding the dynamics of the RSB in the photoreaction process is critical. In this study, the ultrafast transient absorption spectra of three mutants of the cellular retinoic acid-binding protein II-based rhodopsin mimic at acidic environment were recorded, from which the related excited-state dynamics of the all-trans protonated RSB (AT-PRSB) were investigated. The transient fluorescence spectra measurements are used to validate some of the dynamic features. We find that the excited-state dynamics of AT-PRSB in three mutants share a similar pattern that differs significantly from the dynamics of 15-cis PRSB of the rhodopsin mimic in neutral solution. By comparing the dynamics across the three mutants, we discovered that the aromatic residues near the β-ionone ring structure of the retinal may help stabilize the AT-PRSB and hence slow down its isomerization rate. The experimental results provide implications on designing a rhodopsin-like protein with significant infrared fluorescence, which can be particularly useful in the applications in biosensing or bioimaging in deeper tissues.
Collapse
Affiliation(s)
- Gaoshang Li
- Center for Quantum Technology Research, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE), School of Physics, Beijing Institute of Technology, Beijing, China
| | - Yongnan Hu
- Center for Quantum Technology Research, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE), School of Physics, Beijing Institute of Technology, Beijing, China
| | - Sizhu Pei
- Center for Quantum Technology Research, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE), School of Physics, Beijing Institute of Technology, Beijing, China
| | - Jiajia Meng
- Center for Quantum Technology Research, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE), School of Physics, Beijing Institute of Technology, Beijing, China
| | - Jiayu Wang
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ju Wang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing, China
| | - Shuai Yue
- National Center for Nanoscience and Nanotechnology, Beijing, China
| | - Zhuan Wang
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Shufeng Wang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing, China
| | - Xinfeng Liu
- National Center for Nanoscience and Nanotechnology, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuxiang Weng
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xubiao Peng
- Center for Quantum Technology Research, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE), School of Physics, Beijing Institute of Technology, Beijing, China; Beijing Academy of Quantum Information Sciences, Beijing, China.
| | - Qing Zhao
- Center for Quantum Technology Research, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE), School of Physics, Beijing Institute of Technology, Beijing, China; Beijing Academy of Quantum Information Sciences, Beijing, China.
| |
Collapse
|
6
|
Sumikawa M, Abe-Yoshizumi R, Uchihashi T, Kandori H. Mechanism of the Irreversible Transition from Pentamer to Monomer at pH 2 in a Blue Proteorhodopsin. Biochemistry 2022; 61:1936-1944. [PMID: 36007110 DOI: 10.1021/acs.biochem.2c00328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proteorhodopsin (PR) is a light-driven proton pump found in marine bacteria, and thousands of PRs are classified as blue-absorbing PRs (BPR; λmax ∼ 490 nm) and green-absorbing PRs (GPR; λmax ∼ 525 nm). We previously converted BPR into GPR using an anomalous pH effect, which was achieved by an irreversible process at around pH 2. Recent size-exclusion chromatography (SEC) and atomic force microscopy (AFM) analyses of BPR from Vibrio califitulae (VcBPR) revealed the anomalous pH effect owing to the irreversible transition from pentamer to monomer. Different pKa values of the Schiff base counterion between pentamer and monomer lead to different colors at the same pH. Here, we incorporate systematic mutation into VcBPR and examine the anomalous pH effect. The anomalous pH effect was observed for the mutants of key residues near the retinal chromophore such as D76N, D206N, and Q84L, indicating that the Schiff base counterions and the L/Q switch do not affect the irreversible transition from pentamer to monomer at pH ∼ 2. We then focus on the two specific interactions at the intermonomer interface in a pentamer, E29/R30/D31 and W13/H54. Single mutants such as E29Q, R30A, W13A, and H54A and the wild type (WT) exhibited an anomalous pH effect. In contrast, the anomalous pH effect was lost for E29Q/H54A, R30A/H54A, and W13A/E29Q. Size-exclusion chromatography (SEC) and atomic force microscopy (AFM) measurements showed monomer forms in the original states of the double mutants, being a clear contrast to the pentamer forms of all single mutants in the original states. It was concluded that the pentamer structure of VcBPR was stabilized by an electrostatic interaction in the E29/R30/D31 region and a hydrogen-bonding interaction in the W13/H54 region, which was disrupted at pH 2 and converted into monomers.
Collapse
Affiliation(s)
- Mizuki Sumikawa
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Rei Abe-Yoshizumi
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | | | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
7
|
Smedley GD, McElroy KE, Feller KD, Serb JM. Additive and epistatic effects influence spectral tuning in molluscan retinochrome opsin. J Exp Biol 2022; 225:275511. [DOI: 10.1242/jeb.242929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 04/26/2022] [Indexed: 11/20/2022]
Abstract
The relationship between genotype and phenotype is nontrivial due to often complex molecular pathways that make it difficult to unambiguously relate phenotypes to specific genotypes. Photopigments, an opsin apoprotein bound to a light-absorbing chromophore, present an opportunity to directly relate the amino acid sequence to an absorbance peak phenotype (λmax). We examined this relationship by conducting a series of site-directed mutagenesis experiments of retinochrome, a non-visual opsin, from two closely related species: the common bay scallop, Argopecten irradians, and the king scallop, Pecten maximus. Using protein folding models, we identified three amino acid sites of likely functional importance and expressed mutated retinochrome proteins in vitro. Our results show that the mutation of amino acids lining the opsin binding pocket are responsible for fine spectral tuning, or small changes in the λmax of these light sensitive proteins Mutations resulted in a blue or red shift as predicted, but with dissimilar magnitudes. Shifts ranged from a 16 nm blue shift to a 12 nm red shift from the wild-type λmax. These mutations do not show an additive effect, but rather suggests the presence of epistatic interactions. This work highlights the importance of binding pocket shape in the evolution of spectral tuning and builds on our ability to relate genotypic changes to phenotypes in an emerging model for opsin functional analysis.
Collapse
Affiliation(s)
- G. Dalton Smedley
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
| | - Kyle E. McElroy
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
| | - Kathryn D. Feller
- Department of Biological Sciences, Union College, Schenectady, New York, USA
| | - Jeanne M. Serb
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
8
|
Sumikawa M, Abe-Yoshizumi R, Uchihashi T, Kandori H. Molecular Origin of the Anomalous pH Effect in Blue Proteorhodopsin. J Phys Chem Lett 2021; 12:12225-12229. [PMID: 34928158 DOI: 10.1021/acs.jpclett.1c03355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Proteorhodopsin (PR) is a light-driven proton pump found in marine bacteria, and thousands of PRs are classified into blue-absorbing PR (BPR; λmax ∼ 490 nm) and green-absorbing PR (GPR; λmax ∼ 525 nm). We previously presented conversion of BPR into GPR using the anomalous pH effect. When we lowered the pH of a BPR to pH 2 and returned to pH 7, the protein absorbs green light. This suggests the existence of the critical point of the irreversible process at around pH 2, but the mechanism of anomalous pH effect was fully unknown. The present size exclusion chromatography (SEC) and atomic force microscope (AFM) analysis of BPR from Vibrio califitulae (VcBPR) revealed the anomalous pH effect because of the conversion from pentamer to monomer. The different pKa of the Schiff base counterion between pentamer and monomer leads to different colors at the same pH.
Collapse
Affiliation(s)
- Mizuki Sumikawa
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Rei Abe-Yoshizumi
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | | | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
9
|
Scholz L, Neugebauer J. Protein Response Effects on Cofactor Excitation Energies from First Principles: Augmenting Subsystem Time-Dependent Density-Functional Theory with Many-Body Expansion Techniques. J Chem Theory Comput 2021; 17:6105-6121. [PMID: 34524815 DOI: 10.1021/acs.jctc.1c00551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We investigate the possibility of describing protein response effects on a chromophore excitation by means of subsystem time-dependent density-functional theory (sTDDFT) in combination with a many-body expansion (MBE) approach. While sTDDFT is in principle intrinsically able to include such contributions, addressing cofactor excitations in protein models or entire proteins with full environment-response treatments is currently out of reach. Taking different model structures of the green fluorescent protein (GFP) and bovine rhodopsin as examples, we demonstrate that an embedded-MBE approach based on sTDDFT in its simplest version leads to a good agreement of the predicted protein response effect already at second order. To reproduce reference response effects from nonsubsystem TDDFT calculations quantitatively (error ≤ 5%), however, a third- or even fourth-order MBE may be required. For the latter case, we explore a selective inclusion of fourth-order terms that drastically reduces the computational burden. In addition, we demonstrate how this sTDDFT-MBE treatment can be utilized as an analysis tool to identify residues with dominant response contributions. This, in turn, can be employed to arrive at smaller structural models for light-absorbing proteins, which still feature all of the main characteristics in terms of photoresponse properties.
Collapse
Affiliation(s)
- Linus Scholz
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Johannes Neugebauer
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
10
|
Fujimoto KJ. Electronic Couplings and Electrostatic Interactions Behind the Light Absorption of Retinal Proteins. Front Mol Biosci 2021; 8:752700. [PMID: 34604313 PMCID: PMC8480471 DOI: 10.3389/fmolb.2021.752700] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
The photo-functional chromophore retinal exhibits a wide variety of optical absorption properties depending on its intermolecular interactions with surrounding proteins and other chromophores. By utilizing these properties, microbial and animal rhodopsins express biological functions such as ion-transport and signal transduction. In this review, we present the molecular mechanisms underlying light absorption in rhodopsins, as revealed by quantum chemical calculations. Here, symmetry-adapted cluster-configuration interaction (SAC-CI), combined quantum mechanical and molecular mechanical (QM/MM), and transition-density-fragment interaction (TDFI) methods are used to describe the electronic structure of the retinal, the surrounding protein environment, and the electronic coupling between chromophores, respectively. These computational approaches provide successful reproductions of experimentally observed absorption and circular dichroism (CD) spectra, as well as insights into the mechanisms of unique optical properties in terms of chromophore-protein electrostatic interactions and chromophore-chromophore electronic couplings. On the basis of the molecular mechanisms revealed in these studies, we also discuss strategies for artificial design of the optical absorption properties of rhodopsins.
Collapse
Affiliation(s)
- Kazuhiro J Fujimoto
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan.,Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
11
|
Shtyrov AA, Nikolaev DM, Mironov VN, Vasin AV, Panov MS, Tveryanovich YS, Ryazantsev MN. Simple Models to Study Spectral Properties of Microbial and Animal Rhodopsins: Evaluation of the Electrostatic Effect of Charged and Polar Residues on the First Absorption Band Maxima. Int J Mol Sci 2021; 22:ijms22063029. [PMID: 33809708 PMCID: PMC8002287 DOI: 10.3390/ijms22063029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/05/2021] [Indexed: 01/22/2023] Open
Abstract
A typical feature of proteins from the rhodopsin family is the sensitivity of their absorption band maximum to protein amino acid composition. For this reason, studies of these proteins often require methodologies that determine spectral shift caused by amino acid substitutions. Generally, quantum mechanics/molecular mechanics models allow for the calculation of a substitution-induced spectral shift with high accuracy, but their application is not always easy and requires special knowledge. In the present study, we propose simple models that allow us to estimate the direct effect of a charged or polar residue substitution without extensive calculations using only rhodopsin three-dimensional structure and plots or tables that are provided in this article. The models are based on absorption maximum values calculated at the SORCI+Q level of theory for cis- and trans-forms of retinal protonated Schiff base in an external electrostatic field of charges and dipoles. Each value corresponds to a certain position of a charged or polar residue relative to the retinal chromophore. The proposed approach was evaluated against an example set consisting of twelve bovine rhodopsin and sodium pumping rhodopsin mutants. The limits of the applicability of the models are also discussed. The results of our study can be useful for the interpretation of experimental data and for the rational design of rhodopsins with required spectral properties.
Collapse
Affiliation(s)
- Andrey A. Shtyrov
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, 8/3 Khlopina Street, 194021 St. Petersburg, Russia; (A.A.S.); (D.M.N.); (V.N.M.)
| | - Dmitrii M. Nikolaev
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, 8/3 Khlopina Street, 194021 St. Petersburg, Russia; (A.A.S.); (D.M.N.); (V.N.M.)
| | - Vladimir N. Mironov
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, 8/3 Khlopina Street, 194021 St. Petersburg, Russia; (A.A.S.); (D.M.N.); (V.N.M.)
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia; (M.S.P.); (Y.S.T.)
| | - Andrey V. Vasin
- Institute of Biomedical Systems and Botechnologies, Peter the Great St. Petersburg Polytechnic University, 29 Polytechnicheskaya Street, 195251 St. Petersburg, Russia;
| | - Maxim S. Panov
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia; (M.S.P.); (Y.S.T.)
| | - Yuri S. Tveryanovich
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia; (M.S.P.); (Y.S.T.)
| | - Mikhail N. Ryazantsev
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, 8/3 Khlopina Street, 194021 St. Petersburg, Russia; (A.A.S.); (D.M.N.); (V.N.M.)
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia; (M.S.P.); (Y.S.T.)
- Correspondence:
| |
Collapse
|
12
|
Abstract
Microbial rhodopsins are distributed through many microorganisms. Heliorhodopsins are newly discovered but have an unclear function. They have seven transmembrane helices similar to type-I and type-II rhodopsins, but they are different in that the N-terminal region of heliorhodopsin is cytoplasmic. We chose 13 representative heliorhodopsins from various microorganisms, expressed and purified with an N-terminal His tag, and measured the absorption spectra. The 13 natural variants had an absorption maximum (λmax) in the range 530–556 nm similar to proteorhodopsin (λmax = 490–525 nm). We selected several candidate residues that influence rhodopsin color-tuning based on sequence alignment and constructed mutants via site-directed mutagenesis to confirm the spectral changes. We found two important residues located near retinal chromophore that influence λmax. We also predict the 3D structure via homology-modeling of Thermoplasmatales heliorhodopsin. The results indicate that the color-tuning mechanism of type-I rhodopsin can be applied to understand the color-tuning of heliorhodopsin.
Collapse
|
13
|
Marsili E, Olivucci M, Lauvergnat D, Agostini F. Quantum and Quantum-Classical Studies of the Photoisomerization of a Retinal Chromophore Model. J Chem Theory Comput 2020; 16:6032-6048. [PMID: 32931266 DOI: 10.1021/acs.jctc.0c00679] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We report an in-depth analysis of the photo-induced isomerization of the 2-cis-penta-2,4-dieniminium cation: a minimal model of the 11-cis retinal protonated Schiff base chromophore of the dim-light photoreceptor rhodopsin. Based on recently developed three-dimensional potentials parametrized on ab initio multi-state multi-configurational second-order perturbation theory data, we perform quantum-dynamical studies. In addition, simulations based on various quantum-classical methods, among which Tully surface hopping and the coupled-trajectory approach derived from the exact factorization, allow us to validate their performance against vibronic wavepacket propagation and, therefore, a purely quantum treatment. Quantum-dynamics results uncover qualitative differences with respect to the two-dimensional Hahn-Stock potentials, widely used as model potentials for the isomerization of the same chromophore, due to the increased dimensionality and three-mode correlation. Quantum-classical simulations show, instead, that three-dimensional model potentials are capable of capturing a number of features revealed by atomistic simulations and experimental observations. In particular, a recently reported vibrational phase relationship between double-bond torsion and hydrogen-out-of-plane modes critical for rhodopsin isomerization efficiency is correctly reproduced.
Collapse
Affiliation(s)
- Emanuele Marsili
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay 91405, France.,Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Massimo Olivucci
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Via A. Moro 2, I-53100 Siena, Italy.,Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - David Lauvergnat
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay 91405, France
| | - Federica Agostini
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay 91405, France
| |
Collapse
|
14
|
Shao Y, Mei Y, Sundholm D, Kaila VRI. Benchmarking the Performance of Time-Dependent Density Functional Theory Methods on Biochromophores. J Chem Theory Comput 2020; 16:587-600. [PMID: 31815476 PMCID: PMC7391796 DOI: 10.1021/acs.jctc.9b00823] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Quantum chemical calculations are important for elucidating light-capturing mechanisms in photobiological systems. The time-dependent density functional theory (TDDFT) has become a popular methodology because of its balance between accuracy and computational scaling, despite its problems in describing, for example, charge transfer states. As a step toward systematically understanding the performance of TDDFT calculations on biomolecular systems, we study here 17 commonly used density functionals, including seven long-range separated functionals, and compare the obtained results with excitation energies calculated at the approximate second order coupled-cluster theory level (CC2). The benchmarking set includes the first five singlet excited states of 11 chemical analogues of biochromophores from the green fluorescent protein, rhodopsin/bacteriorhodopsin (Rh/bR), and the photoactive yellow protein. We find that commonly used pure density functionals such as BP86, PBE, M11-L, and hybrid functionals with 20-25% of Hartree-Fock (HF) exchange (B3LYP, PBE0) have a tendency to consistently underestimate vertical excitation energies (VEEs) relative to the CC2 values, whereas hybrid density functionals with around 50% HF exchange such as BHLYP, PBE50, and M06-2X and long-range corrected functionals such as CAM-B3LYP, ωPBE, ωPBEh, ωB97X, ωB97XD, BNL, and M11 overestimate the VEEs. We observe that calculations using the CAM-B3LYP and ωPBEh functionals with 65% and 100% long-range HF exchange, respectively, lead to an overestimation of the VEEs by 0.2-0.3 eV for the benchmarking set. To reduce the systematic error, we introduce here two new empirical functionals, CAMh-B3LYP and ωhPBE0, for which we adjusted the long-range HF exchange to 50%. The introduced parameterization reduces the mean signed average (MSA) deviation to 0.07 eV and the root mean square (rms) deviation to 0.17 eV as compared to the CC2 values. In the present study, TDDFT calculations using the aug-def2-TZVP basis sets, the best performing functionals relative to CC2 are ωhPBE0 (rms = 0.17, MSA = 0.06 eV); CAMh-B3LYP (rms = 0.16, MSA = 0.07 eV); and PBE0 (rms = 0.23, MSA = -0.14 eV). For the popular range-separated CAM-B3LYP functional, we obtain an rms value of 0.31 eV and an MSA value of 0.25 eV, which can be compared with the rms and MSA values of 0.37 and -0.31 eV, respectively, as obtained at the B3LYP level.
Collapse
Affiliation(s)
- Yihan Shao
- Department of Chemistry and Biochemistry , University of Oklahoma , Norman , Oklahoma 73019 , United States
| | - Ye Mei
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science , East China Normal University , Shanghai 200062 , China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai , Shanghai 200062 , China
| | - Dage Sundholm
- Department of Chemistry, Faculty of Science , University of Helsinki , P.O. Box 55, Helsinki FIN-00014 , Finland
| | - Ville R I Kaila
- Department Chemie , Technische Universität München (TUM) , Lichtenbergstrasse 4 , Garching D-85747 , Germany
- Department of Biochemistry and Biophysics , Stockholm University , Stockholm SE-10691 , Sweden
| |
Collapse
|
15
|
Ryazantsev MN, Nikolaev DM, Struts AV, Brown MF. Quantum Mechanical and Molecular Mechanics Modeling of Membrane-Embedded Rhodopsins. J Membr Biol 2019; 252:425-449. [PMID: 31570961 DOI: 10.1007/s00232-019-00095-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 09/10/2019] [Indexed: 12/20/2022]
Abstract
Computational chemistry provides versatile methods for studying the properties and functioning of biological systems at different levels of precision and at different time scales. The aim of this article is to review the computational methodologies that are applicable to rhodopsins as archetypes for photoactive membrane proteins that are of great importance both in nature and in modern technologies. For each class of computational techniques, from methods that use quantum mechanics for simulating rhodopsin photophysics to less-accurate coarse-grained methodologies used for long-scale protein dynamics, we consider possible applications and the main directions for improvement.
Collapse
Affiliation(s)
- Mikhail N Ryazantsev
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, Saint Petersburg, Russia, 198504
| | - Dmitrii M Nikolaev
- Saint-Petersburg Academic University - Nanotechnology Research and Education Centre RAS, Saint Petersburg, Russia, 194021
| | - Andrey V Struts
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA.,Laboratory of Biomolecular NMR, Saint Petersburg State University, Saint Petersburg, Russia, 199034
| | - Michael F Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA. .,Department of Physics, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
16
|
Katayama K, Imai H, Kandori H. FTIR Study of S180A Mutant of Primate Red-sensitive Pigment. CHEM LETT 2019. [DOI: 10.1246/cl.190458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kota Katayama
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Hiroo Imai
- Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi 466-8555, Japan
| |
Collapse
|
17
|
Katayama K, Nakamura S, Sasaki T, Imai H, Kandori H. Role of Gln114 in Spectral Tuning of a Long-Wavelength Sensitive Visual Pigment. Biochemistry 2019; 58:2944-2952. [DOI: 10.1021/acs.biochem.9b00340] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kota Katayama
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Shunta Nakamura
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Takuma Sasaki
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Hiroo Imai
- Primate Research Institute, Kyoto University, Inuyama 484-8506, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
18
|
Red-shifting mutation of light-driven sodium-pump rhodopsin. Nat Commun 2019; 10:1993. [PMID: 31040285 PMCID: PMC6491443 DOI: 10.1038/s41467-019-10000-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/12/2019] [Indexed: 11/08/2022] Open
Abstract
Microbial rhodopsins are photoreceptive membrane proteins that transport various ions using light energy. While they are widely used in optogenetics to optically control neuronal activity, rhodopsins that function with longer-wavelength light are highly demanded because of their low phototoxicity and high tissue penetration. Here, we achieve a 40-nm red-shift in the absorption wavelength of a sodium-pump rhodopsin (KR2) by altering dipole moment of residues around the retinal chromophore (KR2 P219T/S254A) without impairing its ion-transport activity. Structural differences in the chromophore of the red-shifted protein from that of the wildtype are observed by Fourier transform infrared spectroscopy. QM/MM models generated with an automated protocol show that the changes in the electrostatic interaction between protein and chromophore induced by the amino-acid replacements, lowered the energy gap between the ground and the first electronically excited state. Based on these insights, a natural sodium pump with red-shifted absorption is identified from Jannaschia seosinensis. Microbial rhodopsins are photoreceptive and widely used in optogenetics for which they should preferable function with longer-wavelength light. Here, authors achieve a 40-nm red-shift in the absorption wavelength of a sodium-pump rhodopsin (KR2) by altering the distribution of the retinal chromophore.
Collapse
|
19
|
Orozco-Gonzalez Y, Kabir MP, Gozem S. Electrostatic Spectral Tuning Maps for Biological Chromophores. J Phys Chem B 2019; 123:4813-4824. [DOI: 10.1021/acs.jpcb.9b00489] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Mohammad Pabel Kabir
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Samer Gozem
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| |
Collapse
|
20
|
Li X, Hu D, Xie Y, Lan Z. Analysis of trajectory similarity and configuration similarity in on-the-fly surface-hopping simulation on multi-channel nonadiabatic photoisomerization dynamics. J Chem Phys 2018; 149:244104. [DOI: 10.1063/1.5048049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Xusong Li
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Sino-Danish Center for Education and Research/Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deping Hu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Xie
- The Environmental Research Institute, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Zhenggang Lan
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Sino-Danish Center for Education and Research/Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
- The Environmental Research Institute, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
21
|
Lischka H, Nachtigallová D, Aquino AJA, Szalay PG, Plasser F, Machado FBC, Barbatti M. Multireference Approaches for Excited States of Molecules. Chem Rev 2018; 118:7293-7361. [DOI: 10.1021/acs.chemrev.8b00244] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hans Lischka
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, P.R. China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Dana Nachtigallová
- Institute of Organic Chemistry and Biochemistry v.v.i., The Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Palacký University, 78371 Olomouc, Czech Republic
| | - Adélia J. A. Aquino
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, P.R. China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
- Institute for Soil Research, University of Natural Resources and Life Sciences Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna, Austria
| | - Péter G. Szalay
- ELTE Eötvös Loránd University, Laboratory of Theoretical Chemistry, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - Felix Plasser
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
- Department of Chemistry, Loughborough University, Leicestershire LE11 3TU, United Kingdom
| | - Francisco B. C. Machado
- Departamento de Química, Instituto Tecnológico de Aeronáutica, São José dos Campos 12228-900, São Paulo, Brazil
| | | |
Collapse
|
22
|
Yanai K, Ishimura K, Nakayama A, Hasegawa JY. First-Order Interacting Space Approach to Excited-State Molecular Interaction: Solvatochromic Shift of p-Coumaric Acid and Retinal Schiff Base. J Chem Theory Comput 2018; 14:3643-3655. [DOI: 10.1021/acs.jctc.7b01089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kazuma Yanai
- Institute for Catalysis, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo 001-0021, Japan
| | - Kazuya Ishimura
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| | - Akira Nakayama
- Institute for Catalysis, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo 001-0021, Japan
| | - Jun-ya Hasegawa
- Institute for Catalysis, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo 001-0021, Japan
| |
Collapse
|
23
|
Expression of Anabaena sensory rhodopsin is influenced by different codons of seven residues at the N-terminal region. Protein Expr Purif 2018; 151:1-8. [PMID: 29793033 DOI: 10.1016/j.pep.2018.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/19/2018] [Indexed: 11/23/2022]
Abstract
Microbial rhodopsins are well-known seven-transmembrane proteins that have been extensively studied for their structure and function. These retinal-binding proteins can be divided into two types. Type I is microbial rhodopsin, and type II (visual pigment) is expressed mostly in mammalian eyes. The two primary functions of type I rhodopsin are ion pumping activity and sensory transduction. Anabaena sensory rhodopsin (ASR) is a microbial rhodopsin with a specific function of photosensory transduction. ASR is expressed at moderate levels in Escherichia coli, but its expression level is lower compared to the general green light absorbing proteorhodopsin (GPR). In this study, full-length ASR was used to test the influence of codon usage on expression E. coli. Seven amino acids at the N-terminal region of ASR after the Met start codon were changed randomly using designed primers, which allowed for 8192 different nucleotide combinations. The codon changes were screened for the preferable codons that resulted in higher expression yield. Among the 57 selected mutations, 24 color-enhanced E. coli colonies contained ASR proteins, and they expressed ASR at a higher level than the bacteria with wild-type ASR codon usage. This result strongly suggests that the specific codon usage of only the N-terminal portion of a protein can increase the expression level of the entire protein.
Collapse
|
24
|
Collette F, Renger T, Müh F, Schmidt am Busch M. Red/Green Color Tuning of Visual Rhodopsins: Electrostatic Theory Provides a Quantitative Explanation. J Phys Chem B 2018; 122:4828-4837. [DOI: 10.1021/acs.jpcb.8b02702] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Florimond Collette
- Institut für Theoretische Physik, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria
| | - Thomas Renger
- Institut für Theoretische Physik, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria
| | - Frank Müh
- Institut für Theoretische Physik, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria
| | - Marcel Schmidt am Busch
- Institut für Theoretische Physik, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria
| |
Collapse
|
25
|
Morzan UN, Alonso de Armiño DJ, Foglia NO, Ramírez F, González Lebrero MC, Scherlis DA, Estrin DA. Spectroscopy in Complex Environments from QM–MM Simulations. Chem Rev 2018; 118:4071-4113. [DOI: 10.1021/acs.chemrev.8b00026] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Uriel N. Morzan
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| | - Diego J. Alonso de Armiño
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| | - Nicolás O. Foglia
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| | - Francisco Ramírez
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| | - Mariano C. González Lebrero
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| | - Damián A. Scherlis
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| | - Darío A. Estrin
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| |
Collapse
|
26
|
Manathunga M, Yang X, Orozco-Gonzalez Y, Olivucci M. Impact of Electronic State Mixing on the Photoisomerization Time Scale of the Retinal Chromophore. J Phys Chem Lett 2017; 8:5222-5227. [PMID: 28981285 DOI: 10.1021/acs.jpclett.7b02344] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Spectral data show that the photoisomerization of retinal protonated Schiff base (rPSB) chromophores occurs on a 100 fs time scale or less in vertebrate rhodopsins, it is several times slower in microbial rhodopsins and it is between one and 2 orders of magnitude slower in solution. These time scale variations have been attributed to specific modifications of the topography of the first excited state potential energy surface of the chromophore. However, it is presently not clear which specific environment effects (e.g., electrostatic, electronic, or steric) are responsible for changing the surface topography. Here, we use QM/MM models and excited state trajectory computations to provide evidence for an increase in electronic mixing between the first and the second excited state of the chromophore when going from vertebrate rhodopsin to the solution environments. Ultimately, we argue that a correlation between the lifetime of the first excited state and electronic mixing between such state and its higher neighbor, may have been exploited to evolve rhodopsins toward faster isomerization and, possibly, light-sensitivity.
Collapse
Affiliation(s)
- Madushanka Manathunga
- Department of Chemistry, Bowling Green State University , Bowling Green, Ohio 43403, United States
| | - Xuchun Yang
- Department of Chemistry, Bowling Green State University , Bowling Green, Ohio 43403, United States
| | - Yoelvis Orozco-Gonzalez
- Department of Chemistry, Bowling Green State University , Bowling Green, Ohio 43403, United States
- Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 Université de Strasbourg-CNRS, F-67034 Strasbourg, France
| | - Massimo Olivucci
- Department of Chemistry, Bowling Green State University , Bowling Green, Ohio 43403, United States
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena , via A. Moro 2, I-53100 Siena, Italy
- Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 Université de Strasbourg-CNRS, F-67034 Strasbourg, France
| |
Collapse
|
27
|
Xie P, Zhou P, Alsaedi A, Zhang Y. pH-dependent absorption spectra of rhodopsin mutant E113Q: On the role of counterions and protein. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 174:25-31. [PMID: 27865136 DOI: 10.1016/j.saa.2016.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/08/2016] [Accepted: 11/12/2016] [Indexed: 06/06/2023]
Abstract
The absorption spectra of bovine rhodopsin mutant E113Q in solutions were investigated at the molecular level by using a hybrid quantum mechanics/molecular mechanics (QM/MM) method. The calculations suggest the mechanism of the absorption variations of E113Q at different pH values. The results indicate that the polarizations of the counterions in the vicinity of Schiff base under protonation and unprotonation states of the mutant E113Q would be a crucial factor to change the energy gap of the retinal to tune the absorption spectra. Glu-181 residue, which is close to the chromophore, cannot serve as the counterion of the protonated Schiff base of E113Q in dark state. Moreover, the results of the absorption maximum in mutant E113Q with the various anions (Cl-, Br-, I- and NO3-) manifested that the mutant E113Q could have the potential for use as a template of anion biosensors at visible wavelength.
Collapse
Affiliation(s)
- Peng Xie
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
| | - Panwang Zhou
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
| | - Ahmed Alsaedi
- Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Yan Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China.
| |
Collapse
|
28
|
Varsano D, Caprasecca S, Coccia E. Theoretical description of protein field effects on electronic excitations of biological chromophores. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:013002. [PMID: 27830666 DOI: 10.1088/0953-8984/29/1/013002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Photoinitiated phenomena play a crucial role in many living organisms. Plants, algae, and bacteria absorb sunlight to perform photosynthesis, and convert water and carbon dioxide into molecular oxygen and carbohydrates, thus forming the basis for life on Earth. The vision of vertebrates is accomplished in the eye by a protein called rhodopsin, which upon photon absorption performs an ultrafast isomerisation of the retinal chromophore, triggering the signal cascade. Many other biological functions start with the photoexcitation of a protein-embedded pigment, followed by complex processes comprising, for example, electron or excitation energy transfer in photosynthetic complexes. The optical properties of chromophores in living systems are strongly dependent on the interaction with the surrounding environment (nearby protein residues, membrane, water), and the complexity of such interplay is, in most cases, at the origin of the functional diversity of the photoactive proteins. The specific interactions with the environment often lead to a significant shift of the chromophore excitation energies, compared with their absorption in solution or gas phase. The investigation of the optical response of chromophores is generally not straightforward, from both experimental and theoretical standpoints; this is due to the difficulty in understanding diverse behaviours and effects, occurring at different scales, with a single technique. In particular, the role played by ab initio calculations in assisting and guiding experiments, as well as in understanding the physics of photoactive proteins, is fundamental. At the same time, owing to the large size of the systems, more approximate strategies which take into account the environmental effects on the absorption spectra are also of paramount importance. Here we review the recent advances in the first-principle description of electronic and optical properties of biological chromophores embedded in a protein environment. We show their applications on paradigmatic systems, such as the light-harvesting complexes, rhodopsin and green fluorescent protein, emphasising the theoretical frameworks which are of common use in solid state physics, and emerging as promising tools for biomolecular systems.
Collapse
Affiliation(s)
- Daniele Varsano
- S3 Center, CNR Institute of Nanoscience, Via Campi 213/A, 41125 Modena, Italy
| | | | | |
Collapse
|
29
|
Stenrup M, Pieri E, Ledentu V, Ferré N. pH-Dependent absorption spectrum of a protein: a minimal electrostatic model of Anabaena sensory rhodopsin. Phys Chem Chem Phys 2017; 19:14073-14084. [DOI: 10.1039/c7cp00991g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A minimal electrostatic model is introduced which aims at reproducing and analyzing the visible-light absorption energy shift of a protein with pH.
Collapse
|
30
|
Guareschi R, Valsson O, Curutchet C, Mennucci B, Filippi C. Electrostatic versus Resonance Interactions in Photoreceptor Proteins: The Case of Rhodopsin. J Phys Chem Lett 2016; 7:4547-4553. [PMID: 27786481 DOI: 10.1021/acs.jpclett.6b02043] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Light sensing in photoreceptor proteins is subtly modulated by the multiple interactions between the chromophoric unit and its binding pocket. Many theoretical and experimental studies have tried to uncover the fundamental origin of these interactions but reached contradictory conclusions as to whether electrostatics, polarization, or intrinsically quantum effects prevail. Here, we select rhodopsin as a prototypical photoreceptor system to reveal the molecular mechanism underlying these interactions and regulating the spectral tuning. Combining a multireference perturbation method and density functional theory with a classical but atomistic and polarizable embedding scheme, we show that accounting for electrostatics only leads to a qualitatively wrong picture, while a responsive environment can successfully capture both the classical and quantum dominant effects. Several residues are found to tune the excitation by both differentially stabilizing ground and excited states and through nonclassical "inductive resonance" interactions. The results obtained with such a quantum-in-classical model are validated against both experimental data and fully quantum calculations.
Collapse
Affiliation(s)
- Riccardo Guareschi
- MESA+ Institute for Nanotechnology, University of Twente , P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Omar Valsson
- Department of Chemistry and Applied Bioscience, ETH Zurich and Facoltà di Informatica, Instituto di Scienze Computazionali, Università della Svizzera italiana , Via Giuseppe Buffi 13, CH-6900 Lugano, Switzerland
| | - Carles Curutchet
- Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona , Av. Joan XXIII, s/n 08028 Barcelona, Spain
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa , Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - Claudia Filippi
- MESA+ Institute for Nanotechnology, University of Twente , P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
31
|
Melaccio F, del Carmen Marín M, Valentini A, Montisci F, Rinaldi S, Cherubini M, Yang X, Kato Y, Stenrup M, Orozco-Gonzalez Y, Ferré N, Luk HL, Kandori H, Olivucci M. Toward Automatic Rhodopsin Modeling as a Tool for High-Throughput Computational Photobiology. J Chem Theory Comput 2016; 12:6020-6034. [DOI: 10.1021/acs.jctc.6b00367] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Federico Melaccio
- Department
of Biotechnology, Chemistry e Pharmacy, Università di Siena, via A. Moro 2, I-53100 Siena, Italy
| | - María del Carmen Marín
- Department
of Biotechnology, Chemistry e Pharmacy, Università di Siena, via A. Moro 2, I-53100 Siena, Italy
- Department
of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Alessio Valentini
- Department
of Biotechnology, Chemistry e Pharmacy, Università di Siena, via A. Moro 2, I-53100 Siena, Italy
| | - Fabio Montisci
- Department
of Biotechnology, Chemistry e Pharmacy, Università di Siena, via A. Moro 2, I-53100 Siena, Italy
| | - Silvia Rinaldi
- Department
of Biotechnology, Chemistry e Pharmacy, Università di Siena, via A. Moro 2, I-53100 Siena, Italy
| | - Marco Cherubini
- Department
of Biotechnology, Chemistry e Pharmacy, Università di Siena, via A. Moro 2, I-53100 Siena, Italy
| | - Xuchun Yang
- Department
of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Yoshitaka Kato
- Department
of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Japan
| | - Michael Stenrup
- Aix-Marseille Université, CNRS, ICR, 13284 Marseille, France
| | - Yoelvis Orozco-Gonzalez
- Department
of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
- Institut
de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 Université de Strasbourg-CNRS, F-67034 Strasbourg, France
- USIAS
Institut d’Études Avancées, Université de Strasbourg, 5 allée du Général Rouvillois, F-67083 Strasbourg, France
| | - Nicolas Ferré
- Aix-Marseille Université, CNRS, ICR, 13284 Marseille, France
| | - Hoi Ling Luk
- Department
of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Hideki Kandori
- Department
of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Japan
| | - Massimo Olivucci
- Department
of Biotechnology, Chemistry e Pharmacy, Università di Siena, via A. Moro 2, I-53100 Siena, Italy
- Department
of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
- Institut
de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 Université de Strasbourg-CNRS, F-67034 Strasbourg, France
- USIAS
Institut d’Études Avancées, Université de Strasbourg, 5 allée du Général Rouvillois, F-67083 Strasbourg, France
| |
Collapse
|
32
|
Hedegård ED, Reiher M. Polarizable Embedding Density Matrix Renormalization Group. J Chem Theory Comput 2016; 12:4242-53. [PMID: 27537835 DOI: 10.1021/acs.jctc.6b00476] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The polarizable embedding (PE) approach is a flexible embedding model where a preselected region out of a larger system is described quantum mechanically, while the interaction with the surrounding environment is modeled through an effective operator. This effective operator represents the environment by atom-centered multipoles and polarizabilities derived from quantum mechanical calculations on (fragments of) the environment. Thereby, the polarization of the environment is explicitly accounted for. Here, we present the coupling of the PE approach with the density matrix renormalization group (DMRG). This PE-DMRG method is particularly suitable for embedded subsystems that feature a dense manifold of frontier orbitals which requires large active spaces. Recovering such static electron-correlation effects in multiconfigurational electronic structure problems, while accounting for both electrostatics and polarization of a surrounding environment, allows us to describe strongly correlated electronic structures in complex molecular environments. We investigate various embedding potentials for the well-studied first excited state of water with active spaces that correspond to a full configuration-interaction treatment. Moreover, we study the environment effect on the first excited state of a retinylidene Schiff base within a channelrhodopsin protein. For this system, we also investigate the effect of dynamical correlation included through short-range density functional theory.
Collapse
Affiliation(s)
- Erik D Hedegård
- Laboratorium für Physikalische Chemie, ETH Zürich , Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Markus Reiher
- Laboratorium für Physikalische Chemie, ETH Zürich , Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| |
Collapse
|
33
|
Melaccio F, Calimet N, Schapiro I, Valentini A, Cecchini M, Olivucci M. Space and Time Evolution of the Electrostatic Potential During the Activation of a Visual Pigment. J Phys Chem Lett 2016; 7:2563-2567. [PMID: 27322155 DOI: 10.1021/acs.jpclett.6b00977] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Animal and microbial retinal proteins employ the Schiff base of retinal as their chromophore. Here, the possible consequences of the charge translocation associated with the light-induced dynamics of the chromophore of a visual opsin are investigated along a representative semiclassical trajectory. We show that the evolution of the electrostatic potential projected by the chromophore onto the surrounding protein displays intense but topographically localized sudden variations in proximity of the decay region. pKa calculations carried out on selected snapshots used as probes, indicate that the only residue which may be sensitive to the electrostatic potential shift is Glu181. Accordingly, our results suggest that the frail Tyr191/268-Glu181-Wat2-Ser186 hydrogen bond network may be perturbed by the transient variations of the electrostatic potential.
Collapse
Affiliation(s)
- Federico Melaccio
- Department of Chemistry, Bowling Green State University , Bowling Green, Ohio 43403, United States
| | - Nicolas Calimet
- ISIS, UMR 7006 CNRS, Université de Strasbourg , F-67083 Strasbourg Cedex, France
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| | - Alessio Valentini
- Department of Chemistry, Bowling Green State University , Bowling Green, Ohio 43403, United States
| | - Marco Cecchini
- ISIS, UMR 7006 CNRS, Université de Strasbourg , F-67083 Strasbourg Cedex, France
| | - Massimo Olivucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena , via A. Moro 2, I-53100 Siena, Italy
- Department of Chemistry, Bowling Green State University , Bowling Green, Ohio 43403, United States
- Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 Université de Strasbourg-CNRS , F-67034 Strasbourg, France
| |
Collapse
|
34
|
Suomivuori CM, Lang L, Sundholm D, Gamiz-Hernandez AP, Kaila VRI. Tuning the Protein-Induced Absorption Shifts of Retinal in Engineered Rhodopsin Mimics. Chemistry 2016; 22:8254-61. [DOI: 10.1002/chem.201505126] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/23/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Carl-Mikael Suomivuori
- Department of Chemistry; University of Helsinki; A.I. Virtanens plats 1, P.O. Box 55 FI-00014 Helsinki Finland
- Department Chemie; Technische Universität München (TUM); Lichtenbergstrasse 4 85747 Garching Germany
| | - Lucas Lang
- Department Chemie; Technische Universität München (TUM); Lichtenbergstrasse 4 85747 Garching Germany
| | - Dage Sundholm
- Department of Chemistry; University of Helsinki; A.I. Virtanens plats 1, P.O. Box 55 FI-00014 Helsinki Finland
| | - Ana P. Gamiz-Hernandez
- Department Chemie; Technische Universität München (TUM); Lichtenbergstrasse 4 85747 Garching Germany
| | - Ville R. I. Kaila
- Department Chemie; Technische Universität München (TUM); Lichtenbergstrasse 4 85747 Garching Germany
| |
Collapse
|
35
|
Loos PF, Preat J, Laurent AD, Michaux C, Jacquemin D, Perpète EA, Assfeld X. Theoretical Investigation of the Geometries and UV-vis Spectra of Poly(l-glutamic acid) Featuring a Photochromic Azobenzene Side Chain. J Chem Theory Comput 2015; 4:637-45. [PMID: 26620938 DOI: 10.1021/ct700188w] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The geometries and UV-vis spectra of azobenzene dyes grafted as a side chain on poly(l-glutamic acid) have been investigated using a combination of quantum mechanics/molecular mechanics (QM/MM) and time-dependent density functional theory (TD-DFT) methods at the TD-PBE0/6-311+G(d,p)//B3LYP/6-311G(d,p):Amber ff99 level of theory. The influence of the secondary structure of the polypeptide on the electronic properties of both the trans and cis conformations of azobenzene dyes has been studied. It turns out that the grafted dyes exhibit a red-shift of the π → π* absorption energies mainly due to the auxochromic shift induced by the peptidic group used to link the chromophoric unit to the polypeptide and that specific interactions between the glutamic side chain and the azobenzene moiety lead to a large blue-shift of the n → π* transition.
Collapse
Affiliation(s)
- Pierre-François Loos
- Equipe de Chimie et Biochimie Théoriques, UMR 7565 CNRS-UHP, Institut Jean Barriol (FR CNRS 2843), Faculté des Sciences et Techniques, Nancy-Université, B.P. 239,54506 Vandoeuvre-les-Nancy Cedex, France, and Groupe de Chimie Physique Théorique et Structurale, Facultés Universitaires Notre-Dame de la Paix, rue de Bruxelles, 61, B-5000 Namur, Belgium
| | - Julien Preat
- Equipe de Chimie et Biochimie Théoriques, UMR 7565 CNRS-UHP, Institut Jean Barriol (FR CNRS 2843), Faculté des Sciences et Techniques, Nancy-Université, B.P. 239,54506 Vandoeuvre-les-Nancy Cedex, France, and Groupe de Chimie Physique Théorique et Structurale, Facultés Universitaires Notre-Dame de la Paix, rue de Bruxelles, 61, B-5000 Namur, Belgium
| | - Adèle D Laurent
- Equipe de Chimie et Biochimie Théoriques, UMR 7565 CNRS-UHP, Institut Jean Barriol (FR CNRS 2843), Faculté des Sciences et Techniques, Nancy-Université, B.P. 239,54506 Vandoeuvre-les-Nancy Cedex, France, and Groupe de Chimie Physique Théorique et Structurale, Facultés Universitaires Notre-Dame de la Paix, rue de Bruxelles, 61, B-5000 Namur, Belgium
| | - Catherine Michaux
- Equipe de Chimie et Biochimie Théoriques, UMR 7565 CNRS-UHP, Institut Jean Barriol (FR CNRS 2843), Faculté des Sciences et Techniques, Nancy-Université, B.P. 239,54506 Vandoeuvre-les-Nancy Cedex, France, and Groupe de Chimie Physique Théorique et Structurale, Facultés Universitaires Notre-Dame de la Paix, rue de Bruxelles, 61, B-5000 Namur, Belgium
| | - Denis Jacquemin
- Equipe de Chimie et Biochimie Théoriques, UMR 7565 CNRS-UHP, Institut Jean Barriol (FR CNRS 2843), Faculté des Sciences et Techniques, Nancy-Université, B.P. 239,54506 Vandoeuvre-les-Nancy Cedex, France, and Groupe de Chimie Physique Théorique et Structurale, Facultés Universitaires Notre-Dame de la Paix, rue de Bruxelles, 61, B-5000 Namur, Belgium
| | - Eric A Perpète
- Equipe de Chimie et Biochimie Théoriques, UMR 7565 CNRS-UHP, Institut Jean Barriol (FR CNRS 2843), Faculté des Sciences et Techniques, Nancy-Université, B.P. 239,54506 Vandoeuvre-les-Nancy Cedex, France, and Groupe de Chimie Physique Théorique et Structurale, Facultés Universitaires Notre-Dame de la Paix, rue de Bruxelles, 61, B-5000 Namur, Belgium
| | - Xavier Assfeld
- Equipe de Chimie et Biochimie Théoriques, UMR 7565 CNRS-UHP, Institut Jean Barriol (FR CNRS 2843), Faculté des Sciences et Techniques, Nancy-Université, B.P. 239,54506 Vandoeuvre-les-Nancy Cedex, France, and Groupe de Chimie Physique Théorique et Structurale, Facultés Universitaires Notre-Dame de la Paix, rue de Bruxelles, 61, B-5000 Namur, Belgium
| |
Collapse
|
36
|
Söderhjelm P, Husberg C, Strambi A, Olivucci M, Ryde U. Protein Influence on Electronic Spectra Modeled by Multipoles and Polarizabilities. J Chem Theory Comput 2015; 5:649-58. [PMID: 26610229 DOI: 10.1021/ct800459t] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have developed automatic methods to calculate multipoles and anisotropic polarizabilities for all atoms and bond centers in a protein and to include such a model in the calculation of electronic properties at any level of quantum mechanical theory. This approach is applied for the calculation of the electronic spectra of retinal in rhodopsin at the CASPT2//CASSCF level (second-order multiconfigurational perturbation theory) for the wild-type protein, as well as two mutants and isorhodopsin in QM/MM structures based on two crystal structures. We also perform a detailed investigation of the importance and distance dependence of the multipoles and the polarizabilities for both the absolute and the relative absorption energies. It is shown that the model of the surrounding protein strongly influences the spectrum and that different models give widely different results. For example, the Amber 1994 and 2003 force fields give excitation energies that differ by up to 16 kJ/mol. For accurate excitation energies, multipoles up to quadrupoles and anisotropic polarizabilities are needed. However, interactions with residues more than 10 Å from the chromophore can be treated with a standard polarizable force field without any dipoles or quadrupoles.
Collapse
Affiliation(s)
- Pär Söderhjelm
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden, and Dipartimento di Chimica, Università di Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Charlotte Husberg
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden, and Dipartimento di Chimica, Università di Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Angela Strambi
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden, and Dipartimento di Chimica, Università di Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Massimo Olivucci
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden, and Dipartimento di Chimica, Università di Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Ulf Ryde
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden, and Dipartimento di Chimica, Università di Siena, via Aldo Moro 2, I-53100 Siena, Italy
| |
Collapse
|
37
|
Molecular bases for the selection of the chromophore of animal rhodopsins. Proc Natl Acad Sci U S A 2015; 112:15297-302. [PMID: 26607446 DOI: 10.1073/pnas.1510262112] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The functions of microbial and animal rhodopsins are triggered by the isomerization of their all-trans and 11-cis retinal chromophores, respectively. To lay the molecular basis driving the evolutionary transition from the all-trans to the 11-cis chromophore, multiconfigurational quantum chemistry is used to compare the isomerization mechanisms of the sensory rhodopsin from the cyanobacterium Anabaena PCC 7120 (ASR) and of the bovine rhodopsin (Rh). It is found that, despite their evolutionary distance, these eubacterial and vertebrate rhodopsins start to isomerize via distinct implementations of the same bicycle-pedal mechanism originally proposed by Warshel [Warshel A (1976) Nature 260:678-683]. However, by following the electronic structure changes of ASR (featuring the all-trans chromophore) during the isomerization, we find that ASR enters a region of degeneracy between the first and second excited states not found in Rh (featuring the 11-cis chromophore). We show that such degeneracy is modulated by the preorganized structure of the chromophore and by the position of the reactive double bond. It is argued that the optimization of the electronic properties of the chromophore, which affects the photoisomerization efficiency and the thermal isomerization barrier, provided a key factor for the emergence of the striking amino acid sequence divergence observed between the microbial and animal rhodopsins.
Collapse
|
38
|
Hofmann L, Palczewski K. Advances in understanding the molecular basis of the first steps in color vision. Prog Retin Eye Res 2015; 49:46-66. [PMID: 26187035 DOI: 10.1016/j.preteyeres.2015.07.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/07/2015] [Accepted: 07/09/2015] [Indexed: 01/05/2023]
Abstract
Serving as one of our primary environmental inputs, vision is the most sophisticated sensory system in humans. Here, we present recent findings derived from energetics, genetics and physiology that provide a more advanced understanding of color perception in mammals. Energetics of cis-trans isomerization of 11-cis-retinal accounts for color perception in the narrow region of the electromagnetic spectrum and how human eyes can absorb light in the near infrared (IR) range. Structural homology models of visual pigments reveal complex interactions of the protein moieties with the light sensitive chromophore 11-cis-retinal and that certain color blinding mutations impair secondary structural elements of these G protein-coupled receptors (GPCRs). Finally, we identify unsolved critical aspects of color tuning that require future investigation.
Collapse
Affiliation(s)
- Lukas Hofmann
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - Krzysztof Palczewski
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
39
|
Kato HE, Kamiya M, Sugo S, Ito J, Taniguchi R, Orito A, Hirata K, Inutsuka A, Yamanaka A, Maturana AD, Ishitani R, Sudo Y, Hayashi S, Nureki O. Atomistic design of microbial opsin-based blue-shifted optogenetics tools. Nat Commun 2015; 6:7177. [PMID: 25975962 PMCID: PMC4479019 DOI: 10.1038/ncomms8177] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 04/14/2015] [Indexed: 12/31/2022] Open
Abstract
Microbial opsins with a bound chromophore function as photosensitive ion transporters and have been employed in optogenetics for the optical control of neuronal activity. Molecular engineering has been utilized to create colour variants for the functional augmentation of optogenetics tools, but was limited by the complexity of the protein-chromophore interactions. Here we report the development of blue-shifted colour variants by rational design at atomic resolution, achieved through accurate hybrid molecular simulations, electrophysiology and X-ray crystallography. The molecular simulation models and the crystal structure reveal the precisely designed conformational changes of the chromophore induced by combinatory mutations that shrink its π-conjugated system which, together with electrostatic tuning, produce large blue shifts of the absorption spectra by maximally 100 nm, while maintaining photosensitive ion transport activities. The design principle we elaborate is applicable to other microbial opsins, and clarifies the underlying molecular mechanism of the blue-shifted action spectra of microbial opsins recently isolated from natural sources.
Collapse
Affiliation(s)
- Hideaki E Kato
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Motoshi Kamiya
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Seiya Sugo
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Jumpei Ito
- Department of Bioengineering Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Reiya Taniguchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Ayaka Orito
- Department of Bioengineering Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | | | - Ayumu Inutsuka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Andrés D Maturana
- Department of Bioengineering Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Ryuichiro Ishitani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Yuki Sudo
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Shigehiko Hayashi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
40
|
Brunk E, Rothlisberger U. Mixed Quantum Mechanical/Molecular Mechanical Molecular Dynamics Simulations of Biological Systems in Ground and Electronically Excited States. Chem Rev 2015; 115:6217-63. [PMID: 25880693 DOI: 10.1021/cr500628b] [Citation(s) in RCA: 301] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Elizabeth Brunk
- †Laboratory of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.,‡Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94618, United States
| | - Ursula Rothlisberger
- †Laboratory of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.,§National Competence Center of Research (NCCR) MARVEL-Materials' Revolution: Computational Design and Discovery of Novel Materials, 1015 Lausanne, Switzerland
| |
Collapse
|
41
|
Katayama K, Okitsu T, Imai H, Wada A, Kandori H. Identical Hydrogen-Bonding Strength of the Retinal Schiff Base between Primate Green- and Red-Sensitive Pigments: New Insight into Color Tuning Mechanism. J Phys Chem Lett 2015; 6:1130-1133. [PMID: 26262961 DOI: 10.1021/acs.jpclett.5b00291] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Three aspects are generally considered in the color-tuning mechanism of vision: (I) chromophore distortion, (II) electrostatic interaction between the protonated Schiff base and counterion, and (III) polarity around the β-ionone ring and polyene chain. Primate green- and red-sensitive proteins are highly homologous but display maximum absorption at 530 and 560 nm, respectively. In the present study, the N-D stretching frequency of monkey green-sensitive protein was identified by using C15-D retinal. The hydrogen-bonding strength between monkey green and red was identical. Together with a previous resonance Raman study, we conclude that the 30 nm difference originates exclusively from the polarity around the β-ionone ring and polyene chain. Three amino acids (Ala, Phe, and Ala in monkey green and Ser, Tyr, and Thr in monkey red, respectively) may be responsible for color tuning together with protein-bound water molecules around the β-ionone ring and polyene chain but not at the Schiff base region.
Collapse
Affiliation(s)
- Kota Katayama
- †Department of Frontier Materials and Sciences, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Takashi Okitsu
- ‡Department of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| | - Hiroo Imai
- §Primate Research Institute, Kyoto University, Inuyama 484-8506, Japan
| | - Akimori Wada
- ‡Department of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| | - Hideki Kandori
- †Department of Frontier Materials and Sciences, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
42
|
Send R, Suomivuori CM, Kaila VRI, Sundholm D. Coupled-Cluster Studies of Extensive Green Fluorescent Protein Models Using the Reduced Virtual Space Approach. J Phys Chem B 2015; 119:2933-45. [DOI: 10.1021/jp5120898] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Robert Send
- BASF SE, Quantum Chemistry Group, GVM/M - B009, D-67056 Ludwigshafen, Germany
| | - Carl-Mikael Suomivuori
- Department
of Chemistry, University of Helsinki, P.O. Box 55 (A. I. Virtanens plats
1), FI-00014 Helsinki, Finland
| | - Ville R. I. Kaila
- Department
Chemie, Technische Universität München, Lichtenbergstraβe 4, D-85747 Garching, Munich, Germany
| | - Dage Sundholm
- Department
of Chemistry, University of Helsinki, P.O. Box 55 (A. I. Virtanens plats
1), FI-00014 Helsinki, Finland
| |
Collapse
|
43
|
Ozaki Y, Kawashima T, Abe-Yoshizumi R, Kandori H. A color-determining amino acid residue of proteorhodopsin. Biochemistry 2014; 53:6032-40. [PMID: 25180875 DOI: 10.1021/bi500842w] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteorhodopsin (PR) is a light-driven proton pump found in marine bacteria. More than 1000 PRs are classified as blue-absorbing (λmax ∼ 490 nm) and green-absorbing (λmax ∼ 525 nm) PRs. The color determinant is known to be at position 105, where blue-absorbing and green-absorbing PRs possess Gln and Leu, respectively. This suggests hydrophobicity at position 105 plays a key role in color tuning. Here we successfully introduced 19 amino acid residues into position 105 of green-absorbing PR in the membrane environment and investigated the absorption properties. High-performance liquid chromatography analysis shows that the isomeric composition of the all-trans form is >70% for all mutants, indicating little influence of different isomers on color tuning. Absorption spectra of the wild-type and 19 mutant proteins were well-characterized by the pH-dependent equilibria of the protonated and deprotonated counterion (Asp97) of the Schiff base, whereas the λmax values of these two states and the pKa value differed significantly among mutants. Although Gln and Leu are hydrophilic and hydrophobic residues, respectively, the λmax values of the two states and the pKa value did not correlate with the hydropathy index of residues. In contrast, the λmax and pKa were correlated with the volume of residues, though Gln and Leu possess similar volumes. This observation concludes that the λmax and pKa of Asp97 are determined by local and specific interactions in the Schiff base moiety, in which the volume of the residue at position 105 is more influential than its hydrophobicity. We suggest that the hydrogen-bonding network in the Schiff base moiety plays a key role in the λmax and pKa of Asp97, and the hydrogen-bonding network is significantly perturbed by large amino acid residues but may be preserved by additional water molecule(s) for small amino acid residues at position 105.
Collapse
Affiliation(s)
- Yuya Ozaki
- Department of Frontier Materials, Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555, Japan
| | | | | | | |
Collapse
|
44
|
Varsano D, Coccia E, Pulci O, Conte AM, Guidoni L. Ground state structures and electronic excitations of biological chromophores at Quantum Monte Carlo/Many Body Green’s Function Theory level. COMPUT THEOR CHEM 2014. [DOI: 10.1016/j.comptc.2014.03.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
45
|
Directed evolution of Gloeobacter violaceus rhodopsin spectral properties. J Mol Biol 2014; 427:205-20. [PMID: 24979679 DOI: 10.1016/j.jmb.2014.06.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/05/2014] [Accepted: 06/22/2014] [Indexed: 01/01/2023]
Abstract
Proton-pumping rhodopsins (PPRs) are photoactive retinal-binding proteins that transport ions across biological membranes in response to light. These proteins are interesting for light-harvesting applications in bioenergy production, in optogenetics applications in neuroscience, and as fluorescent sensors of membrane potential. Little is known, however, about how the protein sequence determines the considerable variation in spectral properties of PPRs from different biological niches or how to engineer these properties in a given PPR. Here we report a comprehensive study of amino acid substitutions in the retinal-binding pocket of Gloeobacter violaceus rhodopsin (GR) that tune its spectral properties. Directed evolution generated 70 GR variants with absorption maxima shifted by up to ±80nm, extending the protein's light absorption significantly beyond the range of known natural PPRs. While proton-pumping activity was disrupted in many of the spectrally shifted variants, we identified single tuning mutations that incurred blue and red shifts of 42nm and 22nm, respectively, that did not disrupt proton pumping. Blue-shifting mutations were distributed evenly along the retinal molecule while red-shifting mutations were clustered near the residue K257, which forms a covalent bond with retinal through a Schiff base linkage. Thirty eight of the identified tuning mutations are not found in known microbial rhodopsins. We discovered a subset of red-shifted GRs that exhibit high levels of fluorescence relative to the WT (wild-type) protein.
Collapse
|
46
|
Campomanes P, Neri M, Horta BAC, Röhrig UF, Vanni S, Tavernelli I, Rothlisberger U. Origin of the Spectral Shifts among the Early Intermediates of the Rhodopsin Photocycle. J Am Chem Soc 2014; 136:3842-51. [DOI: 10.1021/ja411303v] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Pablo Campomanes
- Laboratory
of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale Lausanne, CH-1015 Lausanne, Switzerland
| | - Marilisa Neri
- Laboratory
of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale Lausanne, CH-1015 Lausanne, Switzerland
| | - Bruno A. C. Horta
- Laboratory
of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale Lausanne, CH-1015 Lausanne, Switzerland
| | - Ute F. Röhrig
- Molecular Modeling
Group, Swiss Institute of
Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Stefano Vanni
- Laboratory
of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale Lausanne, CH-1015 Lausanne, Switzerland
| | - Ivano Tavernelli
- Laboratory
of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale Lausanne, CH-1015 Lausanne, Switzerland
| | - Ursula Rothlisberger
- Laboratory
of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
47
|
Comparison of the isomerization mechanisms of human melanopsin and invertebrate and vertebrate rhodopsins. Proc Natl Acad Sci U S A 2014; 111:1714-9. [PMID: 24449866 DOI: 10.1073/pnas.1309508111] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Comparative modeling and ab initio multiconfigurational quantum chemistry are combined to investigate the reactivity of the human nonvisual photoreceptor melanopsin. It is found that both the thermal and photochemical isomerization of the melanopsin 11-cis retinal chromophore occur via a space-saving mechanism involving the unidirectional, counterclockwise twisting of the =C11H-C12H= moiety with respect to its Lys340-linked frame as proposed by Warshel for visual pigments [Warshel A (1976) Nature 260(5553):679-683]. A comparison with the mechanisms documented for vertebrate (bovine) and invertebrate (squid) visual photoreceptors shows that such a mechanism is not affected by the diversity of the three chromophore cavities. Despite such invariance, trajectory computations indicate that although all receptors display less than 100 fs excited state dynamics, human melanopsin decays from the excited state ∼40 fs earlier than bovine rhodopsin. Some diversity is also found in the energy barriers controlling thermal isomerization. Human melanopsin features the highest computed barrier which appears to be ∼2.5 kcal mol(-1) higher than that of bovine rhodopsin. When assuming the validity of both the reaction speed/quantum yield correlation discussed by Warshel, Mathies and coworkers [Weiss RM, Warshel A (1979) J Am Chem Soc 101:6131-6133; Schoenlein RW, Peteanu LA, Mathies RA, Shank CV (1991) Science 254(5030):412-415] and of a relationship between thermal isomerization rate and thermal activation of the photocycle, melanopsin turns out to be a highly sensitive pigment consistent with the low number of melanopsin-containing cells found in the retina and with the extraretina location of melanopsin in nonmammalian vertebrates.
Collapse
|
48
|
Ernst OP, Lodowski DT, Elstner M, Hegemann P, Brown L, Kandori H. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem Rev 2014; 114:126-63. [PMID: 24364740 PMCID: PMC3979449 DOI: 10.1021/cr4003769] [Citation(s) in RCA: 791] [Impact Index Per Article: 79.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Oliver P. Ernst
- Departments
of Biochemistry and Molecular Genetics, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Toronto, Ontario M5S 1A8, Canada
| | - David T. Lodowski
- Center
for Proteomics and Bioinformatics, Case
Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Marcus Elstner
- Institute
for Physical Chemistry, Karlsruhe Institute
of Technology, Kaiserstrasse
12, 76131 Karlsruhe, Germany
| | - Peter Hegemann
- Institute
of Biology, Experimental Biophysics, Humboldt-Universität
zu Berlin, Invalidenstrasse
42, 10115 Berlin, Germany
| | - Leonid
S. Brown
- Department
of Physics and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Hideki Kandori
- Department
of Frontier Materials, Nagoya Institute
of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
49
|
Gozem S, Melaccio F, Luk HL, Rinaldi S, Olivucci M. Learning from photobiology how to design molecular devices using a computer. Chem Soc Rev 2014; 43:4019-36. [DOI: 10.1039/c4cs00037d] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Learning how to model photo-responsive proteins may open the way to the design of lightpowered biomimetic molecular devices.
Collapse
Affiliation(s)
- S. Gozem
- Department of Chemistry
- Bowling Green State University
- Bowling Green, USA
| | - F. Melaccio
- Dipartimento di Chimica
- Università di Siena
- Siena, Italy
| | - H. L. Luk
- Department of Chemistry
- Bowling Green State University
- Bowling Green, USA
| | - S. Rinaldi
- Dipartimento di Chimica
- Università di Siena
- Siena, Italy
| | - M. Olivucci
- Department of Chemistry
- Bowling Green State University
- Bowling Green, USA
- Dipartimento di Chimica
- Università di Siena
| |
Collapse
|
50
|
Doemer M, Maurer P, Campomanes P, Tavernelli I, Rothlisberger U. Generalized QM/MM Force Matching Approach Applied to the 11-cis Protonated Schiff Base Chromophore of Rhodopsin. J Chem Theory Comput 2013; 10:412-22. [PMID: 26579920 DOI: 10.1021/ct400697n] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We extended a previously developed force matching approach to systems with covalent QM/MM boundaries and describe its user-friendly implementation in the publicly available software package CPMD. We applied this approach to the challenging case of the retinal protonated Schiff base in dark state bovine rhodopsin. We were able to develop a highly accurate force field that is able to capture subtle structural changes within the chromophore that have a pronounced influence on the optical properties. The optical absorption spectrum calculated from configurations extracted from a MD trajectory using the new force field is in excellent agreement with QM/MM and experimental references.
Collapse
Affiliation(s)
- Manuel Doemer
- Laboratoire de Chimie et Biochimie Computationelle, Ecole Polytechnique Fédérale de Lausanne , Lausanne, CH-1025, Switzerland
| | - Patrick Maurer
- Laboratoire de Chimie et Biochimie Computationelle, Ecole Polytechnique Fédérale de Lausanne , Lausanne, CH-1025, Switzerland
| | - Pablo Campomanes
- Laboratoire de Chimie et Biochimie Computationelle, Ecole Polytechnique Fédérale de Lausanne , Lausanne, CH-1025, Switzerland
| | - Ivano Tavernelli
- Laboratoire de Chimie et Biochimie Computationelle, Ecole Polytechnique Fédérale de Lausanne , Lausanne, CH-1025, Switzerland
| | - Ursula Rothlisberger
- Laboratoire de Chimie et Biochimie Computationelle, Ecole Polytechnique Fédérale de Lausanne , Lausanne, CH-1025, Switzerland
| |
Collapse
|