1
|
New biochemical insights of CCA enzyme role in tRNA maturation and an efficient method to synthesize the 3'-amino-tailed tRNA. Biochimie 2023; 209:95-102. [PMID: 36646204 DOI: 10.1016/j.biochi.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/19/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
The maturation of tRNA and its quality control is crucial for aminoacylation and protein synthesis. The CCA enzyme, also known as tRNA nucleotidyltransferase, catalyzes the addition or repair of CCA at the 3'-terminus of tRNAs to facilitate aminoacylation. Structural studies of CCA enzyme in complex with ATP and CTP suggested that adding CCA at the 3'-terminus of tRNAs is a sequential process [1-4]. However, there are many inconsistent results of CCA addition from the biochemical studies, which raise the ambiguity about the CCA enzyme specificity in vitro [5-7]. On the other hand, there are no effective methods for preparing the 3'-amino-tailed tRNA to provide a stable amide linkage, which is vital to make homogeneous samples for structural studies of stalling peptides to understand ribosome mediated gene regulation [7-11]. In this study, we examined the functional specificity of the Class II CCA enzyme from E. coli, and optimized the benchmark experimental conditions to prepare the 3'-NH2-tRNA using the CCA enzyme. Our results suggest that the CCA enzyme has a specific ability to catalyze the CCA addition/repair activity within the stoichiometric range of the reactants, and excess amounts of nucleotides lead to non-specific polymerization of the tRNA. Further, we developed an efficient method for synthesizing 3'-amino tRNA, which can facilitate stable aminoacyl/peptidyl-tRNA preparation.
Collapse
|
2
|
de Wijn R, Rollet K, Ernst FGM, Wellner K, Betat H, Mörl M, Sauter C. CCA-addition in the cold: Structural characterization of the psychrophilic CCA-adding enzyme from the permafrost bacterium Planococcus halocryophilus. Comput Struct Biotechnol J 2021; 19:5845-5855. [PMID: 34765099 PMCID: PMC8563995 DOI: 10.1016/j.csbj.2021.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 11/25/2022] Open
Abstract
A high-resolution structure of a psychrophilic RNA polymerase contributes to our knowledge of cold adaptation. While catalytic core motifs are conserved, at least one shows cold adaptation. Loss of helix-capping increases structural flexibility in a catalytic core motif. Overall reduction of alpha-helical elements appears as a strategy for cold adaptation.
CCA-adding enzymes are highly specific RNA polymerases that add and maintain the sequence C-C-A at tRNA 3‘-ends. Recently, we could reveal that cold adaptation of such a polymerase is not only achieved at the expense of enzyme stability, but also at the cost of polymerization fidelity. Enzymes from psychrophilic organisms usually show an increased structural flexibility to enable catalysis at low temperatures. Here, polymerases face a dilemma, as there is a discrepancy between the need for a tightly controlled flexibility during polymerization and an increased flexibility as strategy for cold adaptation. Based on structural and biochemical analyses, we contribute to clarify the cold adaptation strategy of the psychrophilic CCA-adding enzyme from Planococcus halocryophilus, a gram-positive bacterium thriving in the arctic permafrost at low temperatures down to −15 °C. A comparison with the closely related enzyme from the thermophilic bacterium Geobacillus stearothermophilus reveals several features of cold adaptation - a significantly reduced amount of alpha-helical elements in the C-terminal tRNA-binding region and a structural adaptation in one of the highly conserved catalytic core motifs located in the N-terminal catalytic core of the enzyme.
Collapse
Affiliation(s)
- Raphaël de Wijn
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France
| | - Kévin Rollet
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France.,Institute for Biochemistry, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany
| | - Felix G M Ernst
- Institute for Biochemistry, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany
| | - Karolin Wellner
- Institute for Biochemistry, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany
| | - Heike Betat
- Institute for Biochemistry, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany
| | - Claude Sauter
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France
| |
Collapse
|
3
|
Jones GH. Acquisition of pcnB [poly(A) polymerase I] genes via horizontal transfer from the β, γ- Proteobacteria. Microb Genom 2021; 7. [PMID: 33502308 PMCID: PMC8208693 DOI: 10.1099/mgen.0.000508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Poly(A) polymerases (PAPs) and tRNA nucleotidyltransferases belong to a superfamily of nucleotidyltransferases and modify RNA 3'-ends. The product of the pcnB gene, PAP I, has been characterized in a few β-, γ- and δ-Proteobacteria. Using the PAP I signature sequence, putative PAPs were identified in bacterial species from the α- and ε-Proteobacteria and from four other bacterial phyla (Firmicutes, Actinobacteria, Bacteroidetes and Aquificae). Phylogenetic analysis, alien index and G+C content calculations strongly suggest that the PAPs in the species identified in this study arose by horizontal gene transfer from the β- and γ-Proteobacteria.
Collapse
Affiliation(s)
- George H Jones
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
4
|
Phylogeny and Evolution of RNA 3'-Nucleotidyltransferases in Bacteria. J Mol Evol 2019; 87:254-270. [PMID: 31435688 DOI: 10.1007/s00239-019-09907-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/07/2019] [Indexed: 10/26/2022]
Abstract
The tRNA nucleotidyltransferases and poly(A) polymerases belong to a superfamily of nucleotidyltransferases. The amino acid sequences of a number of bacterial tRNA nucleotidyltransferases and poly(A) polymerases have been used to construct a rooted, neighbor-joining phylogenetic tree. Using information gleaned from that analysis, along with data from the rRNA-based phylogenetic tree, structural data available on a number of members of the superfamily and other biochemical information on the superfamily, it is possible to suggest a scheme for the evolution of the bacterial tRNA nucleotidyltransferases and poly(A) polymerases from ancestral species. Elements of that scheme are discussed along with questions arising from the scheme which can be explored experimentally.
Collapse
|
5
|
Wellner K, Pöhler MT, Betat H, Mörl M. Dual expression of CCA-adding enzyme and RNase T in Escherichia coli generates a distinct cca growth phenotype with diverse applications. Nucleic Acids Res 2019; 47:3631-3639. [PMID: 30828718 PMCID: PMC6468291 DOI: 10.1093/nar/gkz133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/14/2019] [Accepted: 02/18/2019] [Indexed: 11/22/2022] Open
Abstract
Correct synthesis and maintenance of functional tRNA 3′-CCA-ends is a crucial prerequisite for aminoacylation and must be achieved by the phylogenetically diverse group of tRNA nucleotidyltransferases. While numerous reports on the in vitro characterization exist, robust analysis under in vivo conditions is lacking. Here, we utilize Escherichia coli RNase T, a tRNA-processing enzyme responsible for the tRNA-CCA-end turnover, to generate an in vivo system for the evaluation of A-adding activity. Expression of RNase T results in a prominent growth phenotype that renders the presence of a CCA- or A-adding enzyme essential for cell survival in an E. coli Δcca background. The distinct growth fitness allows for both complementation and selection of enzyme variants in a natural environment. We demonstrate the potential of our system via detection of altered catalytic efficiency and temperature sensitivity. Furthermore, we select functional enzyme variants out of a sequence pool carrying a randomized codon for a highly conserved position essential for catalysis. The presented E. coli-based approach opens up a wide field of future studies including the investigation of tRNA nucleotidyltransferases from all domains of life and the biological relevance of in vitro data concerning their functionality and mode of operation.
Collapse
Affiliation(s)
- Karolin Wellner
- Institute for Biochemistry, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany
| | - Marie-Theres Pöhler
- Institute for Biochemistry, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany
| | - Heike Betat
- Institute for Biochemistry, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany
| |
Collapse
|
6
|
Leibovitch M, Reid NE, Victoria J, Hanic-Joyce PJ, Joyce PBM. Analysis of the pathogenic I326T variant of human tRNA nucleotidyltransferase reveals reduced catalytic activity and thermal stability in vitro linked to a conformational change. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:616-626. [PMID: 30959222 DOI: 10.1016/j.bbapap.2019.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/22/2019] [Accepted: 04/02/2019] [Indexed: 12/22/2022]
Abstract
The I326T mutation in the TRNT1 gene encoding human tRNA nucleotidyltransferase (tRNA-NT) is linked to a relatively mild form of SIFD. Previous work indicated that the I326T variant was unable to incorporate AMP into tRNAs in vitro, however, expression of the mutant allele from a strong heterologous promoter supported in vivo CCA addition to both cytosolic and mitochondrial tRNAs in a yeast strain lacking tRNA-NT. To address this discrepancy, we determined the biochemical and biophysical characteristics of the I326T variant enzyme and the related variant, I326A. Our in vitro analysis revealed that the I326T substitution decreases the thermal stability of the enzyme and causes a ten-fold reduction in enzyme activity. We propose that the structural changes in the I326T variant that lead to these altered parameters result from a rearrangement of helices within the body domain of the protein which can be probed by the inability of the monomeric enzyme to form a covalent dimer in vitro mediated by C373. In addition, we confirm that the effects of the I326T or I326A substitutions are relatively mild in vivo by demonstrating that the mutant alleles support both mitochondrial and cytosolic CCA-addition in yeast.
Collapse
Affiliation(s)
- M Leibovitch
- Department of Chemistry and Biochemistry and Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke St. W., Montréal H4B 1R6, Québec, Canada
| | - N E Reid
- Department of Chemistry and Biochemistry and Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke St. W., Montréal H4B 1R6, Québec, Canada
| | - J Victoria
- Department of Chemistry and Biochemistry and Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke St. W., Montréal H4B 1R6, Québec, Canada
| | - P J Hanic-Joyce
- Department of Chemistry and Biochemistry and Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke St. W., Montréal H4B 1R6, Québec, Canada
| | - P B M Joyce
- Department of Chemistry and Biochemistry and Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke St. W., Montréal H4B 1R6, Québec, Canada.
| |
Collapse
|
7
|
Reid NE, Ngou JS, Joyce PBM. Schizosaccharomyces pombe contains separate CC- and A-adding tRNA nucleotidyltransferases. Biochem Biophys Res Commun 2018; 508:785-790. [PMID: 30528393 DOI: 10.1016/j.bbrc.2018.11.131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/13/2018] [Accepted: 11/20/2018] [Indexed: 01/22/2023]
Abstract
A specific cytidine-cytidine-adenosine (CCA) sequence is required at the 3'-terminus of all functional tRNAs. This sequence is added during tRNA maturation or repair by tRNA nucleotidyltransferase enzymes. While most eukaryotes have a single enzyme responsible for CCA addition, some bacteria have separate CC- and A-adding activities. The fungus, Schizosaccharomyces pombe, has two genes (cca1 and cca2) that are thought, based on predicted amino acid sequences, to encode tRNA nucleotidyltransferases. Here, we show that both genes together are required to complement a Saccharomyces cerevisiae strain bearing a null mutation in the single gene encoding its tRNA nucleotidyltransferase. Using enzyme assays we show further that the purified S. pombe cca1 gene product specifically adds two cytidine residues to a tRNA substrate lacking this sequence while the cca2 gene product specifically adds the terminal adenosine residue thereby completing the CCA sequence. These data indicate that S. pombe represents the first eukaryote known to have separate CC- and A-adding activities for tRNA maturation and repair. In addition, we propose that a novel structural change in a tRNA nucleotidyltransferase is responsible for defining a CC-adding enzyme.
Collapse
Affiliation(s)
- Nathalie E Reid
- Department of Chemistry and Biochemistry, Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke St. W, Montréal, Québec, H4B 1R6, Canada
| | - Judith S Ngou
- Department of Chemistry and Biochemistry, Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke St. W, Montréal, Québec, H4B 1R6, Canada
| | - Paul B M Joyce
- Department of Chemistry and Biochemistry, Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke St. W, Montréal, Québec, H4B 1R6, Canada.
| |
Collapse
|
8
|
Leibovitch M, Hanic-Joyce PJ, Joyce PBM. In vitro studies of disease-linked variants of human tRNA nucleotidyltransferase reveal decreased thermal stability and altered catalytic activity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:527-540. [PMID: 29454993 DOI: 10.1016/j.bbapap.2018.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/09/2018] [Accepted: 02/14/2018] [Indexed: 11/15/2022]
Abstract
Mutations in the human TRNT1 gene encoding tRNA nucleotidyltransferase (tRNA-NT), an essential enzyme responsible for addition of the CCA (cytidine-cytidine-adenosine) sequence to the 3'-termini of tRNAs, have been linked to disease phenotypes including congenital sideroblastic anemia with B-cell immunodeficiency, periodic fevers and developmental delay (SIFD) or retinitis pigmentosa with erythrocyte microcytosis. The effects of these disease-linked mutations on the structure and function of tRNA-NT have not been explored. Here we use biochemical and biophysical approaches to study how five SIFD-linked amino acid substitutions (T154I, M158V, L166S, R190I and I223T), residing in the N-terminal head and neck domains of the enzyme, affect the structure and activity of human tRNA-NT in vitro. Our data suggest that the SIFD phenotype is linked to poor stability of the T154I and L166S variant proteins, and to a combination of reduced stability and altered catalytic efficiency in the M158 V, R190I and I223T variants.
Collapse
Affiliation(s)
- M Leibovitch
- Department of Chemistry and Biochemistry and Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke St. W., Montréal H4B 1R6, Québec, Canada
| | - P J Hanic-Joyce
- Department of Chemistry and Biochemistry and Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke St. W., Montréal H4B 1R6, Québec, Canada
| | - P B M Joyce
- Department of Chemistry and Biochemistry and Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke St. W., Montréal H4B 1R6, Québec, Canada.
| |
Collapse
|
9
|
Reautschnig P, Vogel P, Stafforst T. The notorious R.N.A. in the spotlight - drug or target for the treatment of disease. RNA Biol 2016; 14:651-668. [PMID: 27415589 PMCID: PMC5449091 DOI: 10.1080/15476286.2016.1208323] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
mRNA is an attractive drug target for therapeutic interventions. In this review we highlight the current state, clinical trials, and developments in antisense therapy, including the classical approaches like RNaseH-dependent oligomers, splice-switching oligomers, aptamers, and therapeutic RNA interference. Furthermore, we provide an overview on emerging concepts for using RNA in therapeutic settings including protein replacement by in-vitro-transcribed mRNAs, mRNA as vaccines and anti-allergic drugs. Finally, we give a brief outlook on early-stage RNA repair approaches that apply endogenous or engineered proteins in combination with short RNAs or chemically stabilized oligomers for the re-programming of point mutations, RNA modifications, and frame shift mutations directly on the endogenous mRNA.
Collapse
Affiliation(s)
- Philipp Reautschnig
- a Interfaculty Institute of Biochemistry, University of Tübingen Auf der Morgenstelle , Tübingen , Germany
| | - Paul Vogel
- a Interfaculty Institute of Biochemistry, University of Tübingen Auf der Morgenstelle , Tübingen , Germany
| | - Thorsten Stafforst
- a Interfaculty Institute of Biochemistry, University of Tübingen Auf der Morgenstelle , Tübingen , Germany
| |
Collapse
|
10
|
Wende S, Bonin S, Götze O, Betat H, Mörl M. The identity of the discriminator base has an impact on CCA addition. Nucleic Acids Res 2015; 43:5617-29. [PMID: 25958396 PMCID: PMC4477674 DOI: 10.1093/nar/gkv471] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 04/29/2015] [Indexed: 11/13/2022] Open
Abstract
CCA-adding enzymes synthesize and maintain the C-C-A sequence at the tRNA 3'-end, generating the attachment site for amino acids. While tRNAs are the most prominent substrates for this polymerase, CCA additions on non-tRNA transcripts are described as well. To identify general features for substrate requirement, a pool of randomized transcripts was incubated with the human CCA-adding enzyme. Most of the RNAs accepted for CCA addition carry an acceptor stem-like terminal structure, consistent with tRNA as the main substrate group for this enzyme. While these RNAs show no sequence conservation, the position upstream of the CCA end was in most cases represented by an adenosine residue. In tRNA, this position is described as discriminator base, an important identity element for correct aminoacylation. Mutational analysis of the impact of the discriminator identity on CCA addition revealed that purine bases (with a preference for adenosine) are strongly favoured over pyrimidines. Furthermore, depending on the tRNA context, a cytosine discriminator can cause a dramatic number of misincorporations during CCA addition. The data correlate with a high frequency of adenosine residues at the discriminator position observed in vivo. Originally identified as a prominent identity element for aminoacylation, this position represents a likewise important element for efficient and accurate CCA addition.
Collapse
Affiliation(s)
- Sandra Wende
- Institute for Biochemistry, University of Leipzig, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Sonja Bonin
- Institute for Biochemistry, University of Leipzig, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Oskar Götze
- Institute for Biochemistry, University of Leipzig, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Heike Betat
- Institute for Biochemistry, University of Leipzig, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Mario Mörl
- Institute for Biochemistry, University of Leipzig, Brüderstrasse 34, 04103 Leipzig, Germany
| |
Collapse
|
11
|
Wilusz JE. Controlling translation via modulation of tRNA levels. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 6:453-70. [PMID: 25919480 DOI: 10.1002/wrna.1287] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/13/2015] [Accepted: 04/06/2015] [Indexed: 12/22/2022]
Abstract
Transfer RNAs (tRNAs) are critical adaptor molecules that carry amino acids to a messenger RNA (mRNA) template during protein synthesis. Although tRNAs have commonly been viewed as abundant 'house-keeping' RNAs, it is becoming increasingly clear that tRNA expression is tightly regulated. Depending on a cell's proliferative status, the pool of active tRNAs is rapidly changed, enabling distinct translational programs to be expressed in differentiated versus proliferating cells. Here, I highlight several post-transcriptional regulatory mechanisms that allow the expression or functions of tRNAs to be altered. Modulating the modification status or structural stability of individual tRNAs can cause those specific tRNA transcripts to selectively accumulate or be degraded. Decay generally occurs via the rapid tRNA decay pathway or by the nuclear RNA surveillance machinery. In addition, the CCA-adding enzyme plays a critical role in determining the fate of a tRNA. The post-transcriptional addition of CCA to the 3' ends of stable tRNAs generates the amino acid attachment site, whereas addition of CCACCA to unstable tRNAs prevents aminoacylation and marks the tRNA for degradation. In response to various stresses, tRNAs can accumulate in the nucleus or be further cleaved into small RNAs, some of which inhibit translation. By implementing these various post-transcriptional control mechanisms, cells are able to fine-tune tRNA levels to regulate subsets of mRNAs as well as overall translation rates.
Collapse
Affiliation(s)
- Jeremy E Wilusz
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
12
|
Ernst FGM, Rickert C, Bluschke A, Betat H, Steinhoff HJ, Mörl M. Domain movements during CCA-addition: a new function for motif C in the catalytic core of the human tRNA nucleotidyltransferases. RNA Biol 2015; 12:435-46. [PMID: 25849199 PMCID: PMC4615804 DOI: 10.1080/15476286.2015.1018502] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/06/2015] [Accepted: 02/07/2015] [Indexed: 10/23/2022] Open
Abstract
CCA-adding enzymes are highly specific RNA polymerases that synthesize and maintain the sequence CCA at the tRNA 3'-end. This nucleotide triplet is a prerequisite for tRNAs to be aminoacylated and to participate in protein biosynthesis. During CCA-addition, a set of highly conserved motifs in the catalytic core of these enzymes is responsible for accurate sequential nucleotide incorporation. In the nucleotide binding pocket, three amino acid residues form Watson-Crick-like base pairs to the incoming CTP and ATP. A reorientation of these templating amino acids switches the enzyme's specificity from CTP to ATP recognition. However, the mechanism underlying this essential structural rearrangement is not understood. Here, we show that motif C, whose actual function has not been identified yet, contributes to the switch in nucleotide specificity during polymerization. Biochemical characterization as well as EPR spectroscopy measurements of the human enzyme reveal that mutating the highly conserved amino acid position D139 in this motif interferes with AMP incorporation and affects interdomain movements in the enzyme. We propose a model of action, where motif C forms a flexible spring element modulating the relative orientation of the enzyme's head and body domains to accommodate the growing 3'-end of the tRNA. Furthermore, these conformational transitions initiate the rearranging of the templating amino acids to switch the specificity of the nucleotide binding pocket from CTP to ATP during CCA-synthesis.
Collapse
Affiliation(s)
- Felix G M Ernst
- Institute for Biochemistry; University of Leipzig; Leipzig, Germany
| | | | | | - Heike Betat
- Institute for Biochemistry; University of Leipzig; Leipzig, Germany
| | | | - Mario Mörl
- Institute for Biochemistry; University of Leipzig; Leipzig, Germany
| |
Collapse
|
13
|
Tomita K, Yamashita S. Molecular mechanisms of template-independent RNA polymerization by tRNA nucleotidyltransferases. Front Genet 2014; 5:36. [PMID: 24596576 PMCID: PMC3925840 DOI: 10.3389/fgene.2014.00036] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 01/31/2014] [Indexed: 11/13/2022] Open
Abstract
The universal 3'-terminal CCA sequence of tRNA is built and/or synthesized by the CCA-adding enzyme, CTP:(ATP) tRNA nucleotidyltransferase. This RNA polymerase has no nucleic acid template, but faithfully synthesizes the defined CCA sequence on the 3'-terminus of tRNA at one time, using CTP and ATP as substrates. The mystery of CCA-addition without a nucleic acid template by unique RNA polymerases has long fascinated researchers in the field of RNA enzymology. In this review, the mechanisms of RNA polymerization by the remarkable CCA-adding enzyme and its related enzymes are presented, based on their structural features.
Collapse
Affiliation(s)
- Kozo Tomita
- RNA Processing Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology Tsukuba, Japan
| | - Seisuke Yamashita
- RNA Processing Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology Tsukuba, Japan
| |
Collapse
|
14
|
Translocation and rotation of tRNA during template-independent RNA polymerization by tRNA nucleotidyltransferase. Structure 2014; 22:315-25. [PMID: 24389024 DOI: 10.1016/j.str.2013.12.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/23/2013] [Accepted: 12/06/2013] [Indexed: 11/21/2022]
Abstract
The 3'-terminal CCA (CCA-3' at positions 74-76) of tRNA is synthesized by CCA-adding enzyme using CTP and ATP as substrates, without a nucleic acid template. In Aquifex aeolicus, CC-adding and A-adding enzymes collaboratively synthesize the CCA-3'. The mechanism of CCA-3' synthesis by these two enzymes remained obscure. We now present crystal structures representing CC addition onto tRNA by A. aeolicus CC-adding enzyme. After C₇₄ addition in an enclosed active pocket and pyrophosphate release, the tRNA translocates and rotates relative to the enzyme, and C₇₅ addition occurs in the same active pocket as C₇₄ addition. At both the C₇₄-adding and C₇₅-adding stages, CTP is selected by Watson-Crick-like hydrogen bonds between the cytosine of CTP and conserved Asp and Arg residues in the pocket. After C₇₄C₇₅ addition and pyrophosphate release, the tRNA translocates further and drops off the enzyme, and the CC-adding enzyme terminates RNA polymerization.
Collapse
|
15
|
Goring ME, Leibovitch M, Gea-Mallorqui E, Karls S, Richard F, Hanic-Joyce PJ, Joyce PBM. The ability of an arginine to tryptophan substitution in Saccharomyces cerevisiae tRNA nucleotidyltransferase to alleviate a temperature-sensitive phenotype suggests a role for motif C in active site organization. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2097-106. [PMID: 23872483 DOI: 10.1016/j.bbapap.2013.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 07/08/2013] [Accepted: 07/10/2013] [Indexed: 11/15/2022]
Abstract
We report that the temperature-sensitive (ts) phenotype in Saccharomyces cerevisiae associated with a variant tRNA nucleotidyltransferase containing an amino acid substitution at position 189 results from a reduced ability to incorporate AMP and CMP into tRNAs. We show that this defect can be compensated for by a second-site suppressor converting residue arginine 64 to tryptophan. The R64W substitution does not alter the structure or thermal stability of the enzyme dramatically but restores catalytic activity in vitro and suppresses the ts phenotype in vivo. R64 is found in motif A known to be involved in catalysis and nucleotide triphosphate binding while E189 lies within motif C previously thought only to connect the head and neck domains of the protein. Although mutagenesis experiments indicate that residues R64 and E189 do not interact directly, our data suggest a critical role for residue E189 in enzyme structure and function. Both R64 and E189 may contribute to the organization of the catalytic domain of the enzyme. These results, along with overexpression and deletion analyses, show that the ts phenotype of cca1-E189F does not arise from thermal instability of the variant tRNA nucleotidyltransferase but instead from the inability of a partially active enzyme to support growth only at higher temperatures.
Collapse
Affiliation(s)
- Mark E Goring
- Department of Biology, Concordia University, Montréal, H4B 1R6, Canada
| | | | | | | | | | | | | |
Collapse
|
16
|
Pyrophosphorolysis of CCA addition: implication for fidelity. J Mol Biol 2011; 414:28-43. [PMID: 22001019 DOI: 10.1016/j.jmb.2011.09.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 09/13/2011] [Accepted: 09/21/2011] [Indexed: 11/21/2022]
Abstract
In nucleic acid polymerization reaction, pyrophosphorolysis is the reversal of nucleotide addition, in which the terminal nucleotide is excised in the presence of inorganic pyrophosphate (PPi). The CCA enzymes are unusual RNA polymerases, which catalyze CCA addition to positions 74-76 at the tRNA 3' end without using a nucleic acid template. To better understand the reaction mechanism of CCA addition, we tested pyrophosphorolysis of CCA enzymes, which are divided into two structurally distinct classes. Here, we show that only class II CCA enzymes catalyze pyrophosphorolysis and that the reaction can initiate from all three CCA positions and proceed processively until the removal of nucleotide C74. Pyrophosphorolysis of class II enzymes establishes a fundamental difference from class I enzymes, and it is achieved only with the tRNA structure and with specific divalent metal ions. Importantly, pyrophosphorolysis enables class II enzymes to efficiently remove an incorrect A75 nucleotide from the 3' end, at a rate much faster than the rate of A75 incorporation, suggesting the ability to perform a previously unexpected quality control mechanism for CCA synthesis. Measurement of kinetic parameters of the class II Escherichia coli CCA enzyme reveals that the enzyme catalyzes pyrophosphorolysis slowly relative to the forward nucleotide addition and that it exhibits weak binding affinity to PPi relative to NTP, suggesting a mechanism in which PPi is rapidly released after each nucleotide addition as a driving force to promote the forward synthesis of CCA.
Collapse
|
17
|
Zhou XL, Du DH, Tan M, Lei HY, Ruan LL, Eriani G, Wang ED. Role of tRNA amino acid-accepting end in aminoacylation and its quality control. Nucleic Acids Res 2011; 39:8857-68. [PMID: 21775341 PMCID: PMC3203616 DOI: 10.1093/nar/gkr595] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Aminoacyl–tRNA synthetases (aaRSs) are remarkable enzymes that are in charge of the accurate recognition and ligation of amino acids and tRNA molecules. The greatest difficulty in accurate aminoacylation appears to be in discriminating between highly similar amino acids. To reduce mischarging of tRNAs by non-cognate amino acids, aaRSs have evolved an editing activity in a second active site to cleave the incorrect aminoacyl–tRNAs. Editing occurs after translocation of the aminoacyl–CCA76 end to the editing site, switching between a hairpin and a helical conformation for aminoacylation and editing. Here, we studied the consequence of nucleotide changes in the CCA76 accepting end of tRNALeu during the aminoacylation and editing reactions. The analysis showed that the terminal A76 is essential for both reactions, suggesting that critical interactions occur in the two catalytic sites. Substitutions of C74 and C75 selectively decreased aminoacylation keeping nearly unaffected editing. These mutations might favor the regular helical conformation required to reach the editing site. Mutating the editing domain residues that contribute to CCA76 binding reduced the aminoacylation fidelity leading to cell-toxicity in the presence of non-cognate amino acids. Collectively, the data show how protein synthesis quality is controlled by the CCA76 homogeneity of tRNAs.
Collapse
Affiliation(s)
- Xiao-Long Zhou
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Mechanism for the alteration of the substrate specificities of template-independent RNA polymerases. Structure 2011; 19:232-43. [PMID: 21300291 DOI: 10.1016/j.str.2010.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 12/09/2010] [Accepted: 12/12/2010] [Indexed: 11/21/2022]
Abstract
PolyA polymerase (PAP) adds a polyA tail onto the 3'-end of RNAs without a nucleic acid template, using adenosine-5'-triphosphate (ATP) as a substrate. The mechanism for the substrate selection by eubacterial PAP remains obscure. Structural and biochemical studies of Escherichia coli PAP (EcPAP) revealed that the shape and size of the nucleobase-interacting pocket of EcPAP are maintained by an intra-molecular hydrogen-network, making it suitable for the accommodation of only ATP, using a single amino acid, Arg(197). The pocket structure is sustained by interactions between the catalytic domain and the RNA-binding domain. EcPAP has a flexible basic C-terminal region that contributes to optimal RNA translocation for processive adenosine 5'-monophosphate (AMP) incorporations onto the 3'-end of RNAs. A comparison of the EcPAP structure with those of other template-independent RNA polymerases suggests that structural changes of domain(s) outside the conserved catalytic core domain altered the substrate specificities of the template-independent RNA polymerases.
Collapse
|
19
|
Betat H, Rammelt C, Mörl M. tRNA nucleotidyltransferases: ancient catalysts with an unusual mechanism of polymerization. Cell Mol Life Sci 2010; 67:1447-63. [PMID: 20155482 PMCID: PMC11115931 DOI: 10.1007/s00018-010-0271-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 12/14/2009] [Accepted: 01/14/2010] [Indexed: 10/19/2022]
Abstract
RNA polymerases are important enzymes involved in the realization of the genetic information encoded in the genome. Thereby, DNA sequences are used as templates to synthesize all types of RNA. Besides these classical polymerases, there exists another group of RNA polymerizing enzymes that do not depend on nucleic acid templates. Among those, tRNA nucleotidyltransferases show remarkable and unique features. These enzymes add the nucleotide triplet C-C-A to the 3'-end of tRNAs at an astonishing fidelity and are described as "CCA-adding enzymes". During this incorporation of exactly three nucleotides, the enzymes have to switch from CTP to ATP specificity. How these tasks are fulfilled by rather simple and small enzymes without the help of a nucleic acid template is a fascinating research area. Surprising results of biochemical and structural studies allow scientists to understand at least some of the mechanistic principles of the unique polymerization mode of these highly unusual enzymes.
Collapse
Affiliation(s)
- Heike Betat
- Institute for Biochemistry, University of Leipzig, Brüderstr. 34, 04103 Leipzig, Germany
| | - Christiane Rammelt
- Institute for Biochemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle, Germany
| | - Mario Mörl
- Institute for Biochemistry, University of Leipzig, Brüderstr. 34, 04103 Leipzig, Germany
| |
Collapse
|
20
|
Vörtler S, Mörl M. tRNA-nucleotidyltransferases: highly unusual RNA polymerases with vital functions. FEBS Lett 2009; 584:297-302. [PMID: 19883645 DOI: 10.1016/j.febslet.2009.10.078] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 10/29/2009] [Indexed: 02/04/2023]
Abstract
tRNA-nucleotidyltransferases are fascinating and unusual RNA polymerases responsible for the synthesis of the nucleotide triplet CCA at the 3'-terminus of tRNAs. As this CCA end represents an essential functional element for aminoacylation and translation, these polymerases (CCA-adding enzymes) are of vital importance in all organisms. With a possible origin of ancient telomerase-like activity, the CCA-adding enzymes obviously emerged twice during evolution, leading to structurally different, but functionally identical enzymes. The evolution as well as the unique polymerization features of these interesting proteins will be discussed in this review.
Collapse
Affiliation(s)
- Stefan Vörtler
- Institute for Biochemistry, University of Leipzig, Brüderstr. 34, 04103 Leipzig, Germany.
| | | |
Collapse
|
21
|
Zimmer SL, Schein A, Zipor G, Stern DB, Schuster G. Polyadenylation in Arabidopsis and Chlamydomonas organelles: the input of nucleotidyltransferases, poly(A) polymerases and polynucleotide phosphorylase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:88-99. [PMID: 19309454 DOI: 10.1111/j.1365-313x.2009.03853.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The polyadenylation-stimulated RNA degradation pathway takes place in plant and algal organelles, yet the identities of the enzymes that catalyze the addition of the tails remain to be clarified. In a search for the enzymes responsible for adding poly(A) tails in Chlamydomonas and Arabidopsis organelles, reverse genetic and biochemical approaches were employed. The involvement of candidate enzymes including members of the nucleotidyltransferase (Ntr) family and polynucleotide phosphorylase (PNPase) was examined. For several of the analyzed nuclear-encoded proteins, mitochondrial localization was established and possible dual targeting to mitochondria and chloroplasts could be predicted. We found that certain members of the Ntr family, when expressed in bacteria, displayed poly(A) polymerase (PAP) activity and partially complemented an Escherichia coli strain lacking the endogenous PAP1 enzyme. Other Ntr proteins appeared to be specific for tRNA maturation. When the expression of PNPase was down-regulated by RNAi in Chlamydomonas, very few poly(A) tails were detected in chloroplasts for the atpB transcript, suggesting that this enzyme may be solely responsible for chloroplast polyadenylation activity in this species. Depletion of PNPase did not affect the number or sequence of mitochondrial mRNA poly(A) tails, where unexpectedly we found, in addition to polyadenylation, poly(U)-rich tails. Together, our results identify several Ntr-PAPs and PNPase in organelle polyadenylation, and reveal novel poly(U)-rich sequences in Chlamydomonas mitochondria.
Collapse
Affiliation(s)
- Sarah L Zimmer
- Boyce Thompson Institute for Plant Research, Tower Rd., Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
22
|
Just A, Butter F, Trenkmann M, Heitkam T, Mörl M, Betat H. A comparative analysis of two conserved motifs in bacterial poly(A) polymerase and CCA-adding enzyme. Nucleic Acids Res 2008; 36:5212-20. [PMID: 18682528 PMCID: PMC2532741 DOI: 10.1093/nar/gkn494] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Showing a high sequence similarity, the evolutionary closely related bacterial poly(A) polymerases (PAP) and CCA-adding enzymes catalyze quite different reactions—PAP adds poly(A) tails to RNA 3′-ends, while CCA-adding enzymes synthesize the sequence CCA at the 3′-terminus of tRNAs. Here, two highly conserved structural elements of the corresponding Escherichia coli enzymes were characterized. The first element is a set of amino acids that was identified in CCA-adding enzymes as a template region determining the enzymes' specificity for CTP and ATP. The same element is also present in PAP, where it confers ATP specificity. The second investigated region corresponds to a flexible loop in CCA-adding enzymes and is involved in the incorporation of the terminal A-residue. Although, PAP seems to carry a similar flexible region, the functional relevance of this element in PAP is not known. The presented results show that the template region has an essential function in both enzymes, while the second element is surprisingly dispensable in PAP. The data support the idea that the bacterial PAP descends from CCA-adding enzymes and still carries some of the structural elements required for CCA-addition as an evolutionary relic and is now fixed in a conformation specific for A-addition.
Collapse
Affiliation(s)
- Andrea Just
- Institute for Biochemistry, University of Leipzig, Brüderstr. 34, 04103 Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Evolution of tRNA nucleotidyltransferases: a small deletion generated CC-adding enzymes. Proc Natl Acad Sci U S A 2008; 105:7953-8. [PMID: 18523015 DOI: 10.1073/pnas.0801971105] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CCA-adding enzymes are specialized polymerases that add a specific sequence (C-C-A) to tRNA 3' ends without requiring a nucleic acid template. In some organisms, CCA synthesis is accomplished by the collaboration of evolutionary closely related enzymes with partial activities (CC and A addition). These enzymes carry all known motifs of the catalytic core found in CCA-adding enzymes. Therefore, it is a mystery why these polymerases are restricted in their activity and do not synthesize a complete CCA terminus. Here, a region located outside of the conserved motifs was identified that is missing in CC-adding enzymes. When recombinantly introduced from a CCA-adding enzyme, the region restores full CCA-adding activity in the resulting chimera. Correspondingly, deleting the region in a CCA-adding enzyme abolishes the A-incorporating activity, also leading to CC addition. The presence of the deletion was used to predict the CC-adding activity of putative bacterial tRNA nucleotidyltransferases. Indeed, two such enzymes were experimentally identified as CC-adding enzymes, indicating that the existence of the deletion is a hallmark for this activity. Furthermore, phylogenetic analysis of identified and putative CC-adding enzymes indicates that this type of tRNA nucleotidyltransferases emerged several times during evolution. Obviously, these enzymes descend from CCA-adding enzymes, where the occurrence of the deletion led to the restricted activity of CC addition. A-adding enzymes, however, seem to represent a monophyletic group that might also be ancestral to CCA-adding enzymes. Yet, experimental data indicate that it is possible that A-adding activities also evolved from CCA-adding enzymes by the occurrence of individual point mutations.
Collapse
|
24
|
Francklyn CS, First EA, Perona JJ, Hou YM. Methods for kinetic and thermodynamic analysis of aminoacyl-tRNA synthetases. Methods 2008; 44:100-18. [PMID: 18241792 PMCID: PMC2288706 DOI: 10.1016/j.ymeth.2007.09.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 09/24/2007] [Accepted: 09/25/2007] [Indexed: 10/22/2022] Open
Abstract
The accuracy of protein synthesis relies on the ability of aminoacyl-tRNA synthetases (aaRSs) to discriminate among true and near cognate substrates. To date, analysis of aaRSs function, including identification of residues of aaRS participating in amino acid and tRNA discrimination, has largely relied on the steady state kinetic pyrophosphate exchange and aminoacylation assays. Pre-steady state kinetic studies investigating a more limited set of aaRS systems have also been undertaken to assess the energetic contributions of individual enzyme-substrate interactions, particularly in the adenylation half reaction. More recently, a renewed interest in the use of rapid kinetics approaches for aaRSs has led to their application to several new aaRS systems, resulting in the identification of mechanistic differences that distinguish the two structurally distinct aaRS classes. Here, we review the techniques for thermodynamic and kinetic analysis of aaRS function. Following a brief survey of methods for the preparation of materials and for steady state kinetic analysis, this review will describe pre-steady state kinetic methods employing rapid quench and stopped-flow fluorescence for analysis of the activation and aminoacyl transfer reactions. Application of these methods to any aaRS system allows the investigator to derive detailed kinetic mechanisms for the activation and aminoacyl transfer reactions, permitting issues of substrate specificity, stereochemical mechanism, and inhibitor interaction to be addressed in a rigorous and quantitative fashion.
Collapse
Affiliation(s)
- Christopher S Francklyn
- Department of Biochemistry, University of Vermont, Health Sciences Complex, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| | | | | | | |
Collapse
|
25
|
Lizano E, Scheibe M, Rammelt C, Betat H, Mörl M. A comparative analysis of CCA-adding enzymes from human and E. coli: differences in CCA addition and tRNA 3'-end repair. Biochimie 2008; 90:762-72. [PMID: 18226598 DOI: 10.1016/j.biochi.2007.12.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Accepted: 12/27/2007] [Indexed: 11/19/2022]
Abstract
Representing one of the most fascinating RNA polymerases, the CCA-adding enzyme (tRNA nucleotidyltransferase) is responsible for synthesis and repair of the 3'-terminal CCA sequence in tRNA transcripts. As a consequence of this important function, this enzyme is found in all organisms analyzed so far. Here, it is shown that the closely related enzymes of Homo sapiens and Escherichia coli differ substantially in their substrate preferences for the incorporation of CTP and ATP. While both enzymes require helical structures (mimicking the upper part of tRNAs) for C addition, the data indicate that the E. coli enzyme--in contrast to the human version--is quite promiscuous concerning the incorporation of ATP, where any RNA ending with two C residues is accepted. This feature is consistent with the primary function of the E. coli protein as a repair enzyme. Furthermore, even if the amino acid motif that interacts with the incoming nucleotides in the NTP binding pocket of these enzymes is destroyed and does no longer discriminate between individual bases, both nucleotidyltransferases have a back-up mechanism that ensures CCA addition with considerable accuracy and efficiency in order to guarantee functional protein synthesis and, consequently, the survival of the cell.
Collapse
Affiliation(s)
- Esther Lizano
- University of Leipzig, Institute for Biochemistry, Brüderstrasse 34, D-04103 Leipzig, Germany
| | | | | | | | | |
Collapse
|
26
|
Shan X, Russell TA, Paul SM, Kushner DB, Joyce PBM. Characterization of a temperature-sensitive mutation that impairs the function of yeast tRNA nucleotidyltransferase. Yeast 2008; 25:219-33. [DOI: 10.1002/yea.1582] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
27
|
Abstract
RNA-specific nucleotidyl transferases (rNTrs) are a diverse family of template-independent polymerases that add ribonucleotides to the 3'-ends of RNA molecules. All rNTrs share a related active-site architecture first described for DNA polymerase beta and a catalytic mechanism conserved among DNA and RNA polymerases. The best known examples are the nuclear poly(A) polymerases involved in the 3'-end processing of eukaryotic messenger RNA precursors and the ubiquitous CCA-adding enzymes that complete the 3'-ends of tRNA molecules. In recent years, a growing number of new enzymes have been added to the list that now includes the "noncanonical" poly(A) polymerases involved in RNA quality control or in the readenylation of dormant messenger RNAs in the cytoplasm. Other members of the group are terminal uridylyl transferases adding single or multiple UMP residues in RNA-editing reactions or upon the maturation of small RNAs and poly(U) polymerases, the substrates of which are still not known. 2'-5'Oligo(A) synthetases differ from the other rNTrs by synthesizing oligonucleotides with 2'-5'-phosphodiester bonds de novo.
Collapse
Affiliation(s)
- Georges Martin
- Department of Cell Biology, Biozentrum, University of Basel, Basel, Switzerland
| | | |
Collapse
|