1
|
Heilers JH, Reiners J, Heller EM, Golzer A, Smits SHJ, van der Does C. DNA processing by the MOBH family relaxase TraI encoded within the gonococcal genetic island. Nucleic Acids Res 2019; 47:8136-8153. [PMID: 31276596 PMCID: PMC6736028 DOI: 10.1093/nar/gkz577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 06/18/2019] [Accepted: 06/26/2019] [Indexed: 11/26/2022] Open
Abstract
Relaxases of the MOBH family are often found on large plasmids, genetic islands and integrative conjugative elements. Many members of this family contain an N-terminal relaxase domain (TraI_2) followed by a disordered middle part and a C-terminal domain of unknown function (TraI_2_C). The TraI_2 domain contains two putative metal-binding motifs, an HD domain motif and an alternative 3H motif. TraI, encoded within the gonococcal genetic island of Neisseria gonorrhoeae, is the prototype of the MOBH family. SAXS experiments showed that TraI_2 and TraI_2_C form globular structures separated by an extended middle domain. The TraI_2 domain cleaves oriT-ssDNA in a site-specific Mn2+ or Co2+ dependent manner. The minimal oriT encompasses 50 nucleotides, requires an inverted repeat 3′ of the nic-site and several nucleotides around nic for efficient cleavage. Surprisingly, no stable covalent relaxase-DNA intermediate was observed. Mutagenesis of conserved tyrosines showed that cleavage was abolished in the Y212A mutant, whereas the Y212F and Y212H mutants retained residual activity. The HD and the alternative 3H motifs were essential for cleavage and the HD domain residues D162 and D267 for metal ion binding. We propose that the active site binds two metal ions, one in a high-affinity and one in a low-affinity site.
Collapse
Affiliation(s)
- Jan-Hendrik Heilers
- Institute for Biology II, Microbiology, Albert Ludwig University Freiburg, 79104 Freiburg, Germany
| | - Jens Reiners
- Biochemie I, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.,Center for Structural Studies, Heinrich Heine University, 40225 Düsseldorf, Germany
| | | | - Annika Golzer
- Institute for Biology II, Microbiology, Albert Ludwig University Freiburg, 79104 Freiburg, Germany
| | - Sander H J Smits
- Biochemie I, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.,Center for Structural Studies, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Chris van der Does
- Institute for Biology II, Microbiology, Albert Ludwig University Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
2
|
Bernardinelli G, Högberg B. Entirely enzymatic nanofabrication of DNA-protein conjugates. Nucleic Acids Res 2017; 45:e160. [PMID: 28977490 PMCID: PMC5737863 DOI: 10.1093/nar/gkx707] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/14/2017] [Indexed: 12/22/2022] Open
Abstract
While proteins are highly biochemically competent, DNA offers the ability to program, both reactions and the assembly of nanostructures, with a control that is unprecedented by any other molecule. Their joining: DNA–protein conjugates - offer the ability to combine the programmability of DNA with the competence of proteins to form novel tools enabling exquisite molecular control and the highest biological activity in one structure. However, in order for tools like these to become viable for biological applications, their production must be scalable, and an entirely enzymatic process is one way to achieve this. Here, we present a step in this direction: enzymatic production of DNA–protein conjugates using a new self-labeling tag derived from a truncated VirD2 protein of Agrobacterium tumefaciens. Using our previously reported MOSIC method for enzymatic ssDNA oligo production, we outline a pipeline for protein–DNA conjugates without the need for any synthetic chemistry in a one-pot reaction. Further, we validate HER2 staining using a completely enzymatically produced probe, enable the decoration of cell membranes and control of genetic expression. Establishing a method where protein–DNA conjugates can be made entirely using biological or enzymatic processing, opens a path to harvest these structures directly from bacteria and ultimately in-vivo assembly.
Collapse
Affiliation(s)
- Giulio Bernardinelli
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17 177 Stockholm, Sweden
| | - Björn Högberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17 177 Stockholm, Sweden
| |
Collapse
|
3
|
Fukuyo M, Nakano T, Zhang Y, Furuta Y, Ishikawa K, Watanabe-Matsui M, Yano H, Hamakawa T, Ide H, Kobayashi I. Restriction-modification system with methyl-inhibited base excision and abasic-site cleavage activities. Nucleic Acids Res 2015; 43:2841-52. [PMID: 25697504 PMCID: PMC4357717 DOI: 10.1093/nar/gkv116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The restriction-modification systems use epigenetic modification to distinguish between self and nonself DNA. A modification enzyme transfers a methyl group to a base in a specific DNA sequence while its cognate restriction enzyme introduces breaks in DNA lacking this methyl group. So far, all the restriction enzymes hydrolyze phosphodiester bonds linking the monomer units of DNA. We recently reported that a restriction enzyme (R.PabI) of the PabI superfamily with half-pipe fold has DNA glycosylase activity that excises an adenine base in the recognition sequence (5′-GTAC). We now found a second activity in this enzyme: at the resulting apurinic/apyrimidinic (AP) (abasic) site (5′-GT#C, # = AP), its AP lyase activity generates an atypical strand break. Although the lyase activity is weak and lacks sequence specificity, its covalent DNA–R.PabI reaction intermediates can be trapped by NaBH4 reduction. The base excision is not coupled with the strand breakage and yet causes restriction because the restriction enzyme action can impair transformation ability of unmethylated DNA even in the absence of strand breaks in vitro. The base excision of R.PabI is inhibited by methylation of the target adenine base. These findings expand our understanding of genetic and epigenetic processes linking those in prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Masaki Fukuyo
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan Department of Evolutionary Studies of Biosystems, School of Advanced Sciences, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa 240-0193, Japan Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Toshiaki Nakano
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University Higashi-Hiroshima 739-8526, Japan
| | - Yingbiao Zhang
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Yoshikazu Furuta
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Ken Ishikawa
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo 113-8654, Japan
| | - Miki Watanabe-Matsui
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Hirokazu Yano
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Takeshi Hamakawa
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University Higashi-Hiroshima 739-8526, Japan
| | - Hiroshi Ide
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University Higashi-Hiroshima 739-8526, Japan
| | - Ichizo Kobayashi
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo 113-8654, Japan
| |
Collapse
|
4
|
Pingoud A, Wilson GG, Wende W. Type II restriction endonucleases--a historical perspective and more. Nucleic Acids Res 2014; 42:7489-527. [PMID: 24878924 PMCID: PMC4081073 DOI: 10.1093/nar/gku447] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/02/2014] [Accepted: 05/07/2014] [Indexed: 12/17/2022] Open
Abstract
This article continues the series of Surveys and Summaries on restriction endonucleases (REases) begun this year in Nucleic Acids Research. Here we discuss 'Type II' REases, the kind used for DNA analysis and cloning. We focus on their biochemistry: what they are, what they do, and how they do it. Type II REases are produced by prokaryotes to combat bacteriophages. With extreme accuracy, each recognizes a particular sequence in double-stranded DNA and cleaves at a fixed position within or nearby. The discoveries of these enzymes in the 1970s, and of the uses to which they could be put, have since impacted every corner of the life sciences. They became the enabling tools of molecular biology, genetics and biotechnology, and made analysis at the most fundamental levels routine. Hundreds of different REases have been discovered and are available commercially. Their genes have been cloned, sequenced and overexpressed. Most have been characterized to some extent, but few have been studied in depth. Here, we describe the original discoveries in this field, and the properties of the first Type II REases investigated. We discuss the mechanisms of sequence recognition and catalysis, and the varied oligomeric modes in which Type II REases act. We describe the surprising heterogeneity revealed by comparisons of their sequences and structures.
Collapse
Affiliation(s)
- Alfred Pingoud
- Institute of Biochemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany
| | - Geoffrey G Wilson
- New England Biolabs Inc., 240 County Road, Ipswich, MA 01938-2723, USA
| | - Wolfgang Wende
- Institute of Biochemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany
| |
Collapse
|
5
|
Loenen WAM, Dryden DTF, Raleigh EA, Wilson GG, Murray NE. Highlights of the DNA cutters: a short history of the restriction enzymes. Nucleic Acids Res 2014; 42:3-19. [PMID: 24141096 PMCID: PMC3874209 DOI: 10.1093/nar/gkt990] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/24/2013] [Accepted: 10/02/2013] [Indexed: 11/16/2022] Open
Abstract
In the early 1950's, 'host-controlled variation in bacterial viruses' was reported as a non-hereditary phenomenon: one cycle of viral growth on certain bacterial hosts affected the ability of progeny virus to grow on other hosts by either restricting or enlarging their host range. Unlike mutation, this change was reversible, and one cycle of growth in the previous host returned the virus to its original form. These simple observations heralded the discovery of the endonuclease and methyltransferase activities of what are now termed Type I, II, III and IV DNA restriction-modification systems. The Type II restriction enzymes (e.g. EcoRI) gave rise to recombinant DNA technology that has transformed molecular biology and medicine. This review traces the discovery of restriction enzymes and their continuing impact on molecular biology and medicine.
Collapse
Affiliation(s)
- Wil A. M. Loenen
- Leiden University Medical Center, Leiden, the Netherlands, EaStChemSchool of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland, UK and New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - David T. F. Dryden
- Leiden University Medical Center, Leiden, the Netherlands, EaStChemSchool of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland, UK and New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Elisabeth A. Raleigh
- Leiden University Medical Center, Leiden, the Netherlands, EaStChemSchool of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland, UK and New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Geoffrey G. Wilson
- Leiden University Medical Center, Leiden, the Netherlands, EaStChemSchool of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland, UK and New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | | |
Collapse
|
6
|
Abstract
The 1952 observation of host-induced non-hereditary variation in bacteriophages by Salvador Luria and Mary Human led to the discovery in the 1960s of modifying enzymes that glucosylate hydroxymethylcytosine in T-even phages and of genes encoding corresponding host activities that restrict non-glucosylated phage DNA: rglA and rglB (restricts glucoseless phage). In the 1980’s, appreciation of the biological scope of these activities was dramatically expanded with the demonstration that plant and animal DNA was also sensitive to restriction in cloning experiments. The rgl genes were renamed mcrA and mcrBC (modified cytosine restriction). The new class of modification-dependent restriction enzymes was named Type IV, as distinct from the familiar modification-blocked Types I–III. A third Escherichia coli enzyme, mrr (modified DNA rejection and restriction) recognizes both methylcytosine and methyladenine. In recent years, the universe of modification-dependent enzymes has expanded greatly. Technical advances allow use of Type IV enzymes to study epigenetic mechanisms in mammals and plants. Type IV enzymes recognize modified DNA with low sequence selectivity and have emerged many times independently during evolution. Here, we review biochemical and structural data on these proteins, the resurgent interest in Type IV enzymes as tools for epigenetic research and the evolutionary pressures on these systems.
Collapse
Affiliation(s)
- Wil A M Loenen
- Leiden University Medical Center, P.O. Box 9600 2300RC Leiden, The Netherlands and New England Biolabs Inc., 240 County Road Ipswich, MA 01938-2723, USA
| | | |
Collapse
|
7
|
Kleinstiver BP, Wolfs JM, Edgell DR. The monomeric GIY-YIG homing endonuclease I-BmoI uses a molecular anchor and a flexible tether to sequentially nick DNA. Nucleic Acids Res 2013; 41:5413-27. [PMID: 23558745 PMCID: PMC3664794 DOI: 10.1093/nar/gkt186] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The GIY-YIG nuclease domain is found within protein scaffolds that participate in diverse cellular pathways and contains a single active site that hydrolyzes DNA by a one-metal ion mechanism. GIY-YIG homing endonucleases (GIY-HEs) are two-domain proteins with N-terminal GIY-YIG nuclease domains connected to C-terminal DNA-binding and they are thought to function as monomers. Using I-BmoI as a model GIY-HE, we test mechanisms by which the single active site is used to generate a double-strand break. We show that I-BmoI is partially disordered in the absence of substrate, and that the GIY-YIG domain alone has weak affinity for DNA. Significantly, we show that I-BmoI functions as a monomer at all steps of the reaction pathway and does not transiently dimerize or use sequential transesterification reactions to cleave substrate. Our results are consistent with the I-BmoI DNA-binding domain acting as a molecular anchor to tether the GIY-YIG domain to substrate, permitting rotation of the GIY-YIG domain to sequentially nick each DNA strand. These data highlight the mechanistic differences between monomeric GIY-HEs and dimeric or tetrameric GIY-YIG restriction enzymes, and they have implications for the use of the GIY-YIG domain in genome-editing applications.
Collapse
Affiliation(s)
- Benjamin P Kleinstiver
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | | | | |
Collapse
|
8
|
Li NS, Frederiksen JK, Piccirilli JA. Automated solid-phase synthesis of RNA oligonucleotides containing a nonbridging phosphorodithioate linkage via phosphorothioamidites. J Org Chem 2012; 77:9889-92. [PMID: 23050987 DOI: 10.1021/jo301834p] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This work describes a general method for the synthesis of oligoribonucleotides containing a site-specific nonbridging phosphorodithioate linkage via automated solid-phase synthesis using 5'-O-DMTr-2'-O-TBS-ribonucleoside 3'-N,N-dimethyl-S-(2,4-dichlorobenzyl) phosphorothioamidites (2a-2d). The 3'-phosphorothioamidites (2a-2d) can be conveniently prepared in good yields (86-99%) via a one-pot reaction from the corresponding 5'-O-DMTr-2'-O-TBS-ribonucleosides (1a-1d).
Collapse
Affiliation(s)
- Nan-Sheng Li
- Department of Biochemistry & Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States.
| | | | | |
Collapse
|
9
|
Sokolowska M, Czapinska H, Bochtler M. Hpy188I-DNA pre- and post-cleavage complexes--snapshots of the GIY-YIG nuclease mediated catalysis. Nucleic Acids Res 2010; 39:1554-64. [PMID: 20935048 PMCID: PMC3045582 DOI: 10.1093/nar/gkq821] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The GIY-YIG nuclease domain is present in all kingdoms of life and has diverse functions. It is found in the eukaryotic flap endonuclease and Holliday junction resolvase Slx1–Slx4, the prokaryotic nucleotide excision repair proteins UvrC and Cho, and in proteins of ‘selfish’ genetic elements. Here we present the structures of the ternary pre- and post-cleavage complexes of the type II GIY-YIG restriction endonuclease Hpy188I with DNA and a surrogate or catalytic metal ion, respectively. Our structures suggest that GIY-YIG nucleases catalyze DNA hydrolysis by a single substitution reaction. They are consistent with a previous proposal that a tyrosine residue (which we expect to occur in its phenolate form) acts as a general base for the attacking water molecule. In contrast to the earlier proposal, our data identify the general base with the GIY and not the YIG tyrosine. A conserved glutamate residue (Glu149 provided in trans in Hpy188I) anchors a single metal cation in the active site. This metal ion contacts the phosphate proS oxygen atom and the leaving group 3′-oxygen atom, presumably to facilitate its departure. Taken together, our data reveal striking analogy in the absence of homology between GIY-YIG and ββα-Me nucleases.
Collapse
Affiliation(s)
- Monika Sokolowska
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | | | | |
Collapse
|
10
|
Abstract
Nucleases cleave the phosphodiester bonds of nucleic acids and may be endo or exo, DNase or RNase, topoisomerases, recombinases, ribozymes, or RNA splicing enzymes. In this review, I survey nuclease activities with known structures and catalytic machinery and classify them by reaction mechanism and metal-ion dependence and by their biological function ranging from DNA replication, recombination, repair, RNA maturation, processing, interference, to defense, nutrient regeneration or cell death. Several general principles emerge from this analysis. There is little correlation between catalytic mechanism and biological function. A single catalytic mechanism can be adapted in a variety of reactions and biological pathways. Conversely, a single biological process can often be accomplished by multiple tertiary and quaternary folds and by more than one catalytic mechanism. Two-metal-ion-dependent nucleases comprise the largest number of different tertiary folds and mediate the most diverse set of biological functions. Metal-ion-dependent cleavage is exclusively associated with exonucleases producing mononucleotides and endonucleases that cleave double- or single-stranded substrates in helical and base-stacked conformations. All metal-ion-independent RNases generate 2',3'-cyclic phosphate products, and all metal-ion-independent DNases form phospho-protein intermediates. I also find several previously unnoted relationships between different nucleases and shared catalytic configurations.
Collapse
|
11
|
Chan SH, Stoddard BL, Xu SY. Natural and engineered nicking endonucleases--from cleavage mechanism to engineering of strand-specificity. Nucleic Acids Res 2010; 39:1-18. [PMID: 20805246 PMCID: PMC3017599 DOI: 10.1093/nar/gkq742] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Restriction endonucleases (REases) are highly specific DNA scissors that have facilitated the development of modern molecular biology. Intensive studies of double strand (ds) cleavage activity of Type IIP REases, which recognize 4–8 bp palindromic sequences, have revealed a variety of mechanisms of molecular recognition and catalysis. Less well-studied are REases which cleave only one of the strands of dsDNA, creating a nick instead of a ds break. Naturally occurring nicking endonucleases (NEases) range from frequent cutters such as Nt.CviPII (^CCD; ^ denotes the cleavage site) to rare-cutting homing endonucleases (HEases) such as I-HmuI. In addition to these bona fida NEases, individual subunits of some heterodimeric Type IIS REases have recently been shown to be natural NEases. The discovery and characterization of more REases that recognize asymmetric sequences, particularly Types IIS and IIA REases, has revealed recognition and cleavage mechanisms drastically different from the canonical Type IIP mechanisms, and has allowed researchers to engineer highly strand-specific NEases. Monomeric LAGLIDADG HEases use two separate catalytic sites for cleavage. Exploitation of this characteristic has also resulted in useful nicking HEases. This review aims at providing an overview of the cleavage mechanisms of Types IIS and IIA REases and LAGLIDADG HEases, the engineering of their nicking variants, and the applications of NEases and nicking HEases.
Collapse
|
12
|
Dexheimer TS, Stephen AG, Fivash MJ, Fisher RJ, Pommier Y. The DNA binding and 3'-end preferential activity of human tyrosyl-DNA phosphodiesterase. Nucleic Acids Res 2010; 38:2444-52. [PMID: 20097655 PMCID: PMC2853120 DOI: 10.1093/nar/gkp1206] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Human tyrosyl-DNA phosphodiesterase (Tdp1) processes 3′-blocking lesions, predominantly 3′-phosphotyrosyl bonds resulting from the trapping of topoisomerase I (Top1) cleavage complexes. The controversial ability of yeast Tdp1 to hydrolyze 5′-phosphotyrosyl linkage between topoisomerase II (Top2) and DNA raises the question whether human Tdp1 possesses 5′-end processing activity. Here we characterize the end-binding and cleavage preference of human Tdp1 using single-stranded 5′- and 3′-fluorescein-labeled oligonucleotides. We establish 3′-fluorescein as an efficient surrogate substrate for human Tdp1, provided it is attached to the DNA by a phosphodiester (but not a phosphorothioate) linkage. We demonstrate that human Tdp1 lacks the ability to hydrolyze a phosphodiester linked 5′-fluorescein. Using both fluorescence anisotropy and time-resolved fluorescence quenching techniques, we also show the preferential binding of human Tdp1 to the 3′-end. However, DNA binding competition experiments indicate that human Tdp1 binding is dependent on DNA length rather than number of DNA ends. Lastly, using surface plasmon resonance, we show that human Tdp1 selectively binds the 3′-end of DNA. Together, our results suggest human Tdp1 may act using a scanning mechanism, in which Tdp1 bind non-specifically upstream of a 3′-blocking lesion and is preferentially stabilized at 3′-DNA ends corresponding to its site of action.
Collapse
Affiliation(s)
- Thomas S Dexheimer
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | | | | | | | | |
Collapse
|
13
|
Sasnauskas G, Zakrys L, Zaremba M, Cosstick R, Gaynor JW, Halford SE, Siksnys V. A novel mechanism for the scission of double-stranded DNA: BfiI cuts both 3'-5' and 5'-3' strands by rotating a single active site. Nucleic Acids Res 2010; 38:2399-410. [PMID: 20047964 PMCID: PMC2853115 DOI: 10.1093/nar/gkp1194] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Metal-dependent nucleases that generate double-strand breaks in DNA often possess two symmetrically-equivalent subunits, arranged so that the active sites from each subunit act on opposite DNA strands. Restriction endonuclease BfiI belongs to the phospholipase D (PLD) superfamily and does not require metal ions for DNA cleavage. It exists as a dimer but has at its subunit interface a single active site that acts sequentially on both DNA strands. The active site contains two identical histidines related by 2-fold symmetry, one from each subunit. This symmetrical arrangement raises two questions: first, what is the role and the contribution to catalysis of each His residue; secondly, how does a nuclease with a single active site cut two DNA strands of opposite polarities to generate a double-strand break. In this study, the roles of active-site histidines in catalysis were dissected by analysing heterodimeric variants of BfiI lacking the histidine in one subunit. These variants revealed a novel mechanism for the scission of double-stranded DNA, one that requires a single active site to not only switch between strands but also to switch its orientation on the DNA.
Collapse
|
14
|
Morasso C, Bellini T, Monti D, Bassi M, Prosperi D, Riva S. Dispersed Phantom Scatterer Technique Reveals Subtle Differences in Substrate Recognition by Phospholipase D Inactive Mutants. Chembiochem 2009; 10:639-44. [DOI: 10.1002/cbic.200800718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Mundle ST, Delaney JC, Essigmann JM, Strauss PR. Enzymatic mechanism of human apurinic/apyrimidinic endonuclease against a THF AP site model substrate. Biochemistry 2009; 48:19-26. [PMID: 19123919 PMCID: PMC2731572 DOI: 10.1021/bi8016137] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The endonucleolytic activity of human apurinic/apyrimidinic endonuclease (AP endo) is a major factor in the maintenance of the integrity of the human genome. There are estimates that this enzyme is responsible for eliminating as many as 10(5) potentially mutagenic and genotoxic lesions from the genome of each cell every day. Furthermore, inhibition of AP endonuclease may be effective in decreasing the dose requirements of chemotherapeutics used in the treatment of cancer as well as other diseases. Therefore, it is essential to accurately and directly characterize the enzymatic mechanism of AP endo. Here we describe specifically designed double-stranded DNA oligomers containing tetrahydrofuran (THF) with a 5'-phosphorothioate linkage as the abasic site substrate. Using H(2)(18)O during the cleavage reaction and leveraging the stereochemical preferences of AP endo and T4 DNA ligase for phosphorothioate substrates, we show that AP endo acts by a one-step associative phosphoryl transfer mechanism on a THF-containing substrate.
Collapse
Affiliation(s)
- Sophia T. Mundle
- Department of Biology, Northeastern University, Boston, MA 02115
| | - James C. Delaney
- Departments of Biological Engineering and Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - John M. Essigmann
- Departments of Biological Engineering and Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | | |
Collapse
|
16
|
Jakubauskas A, Sasnauskas G, Giedriene J, Janulaitis A. Domain organization and functional analysis of type IIS restriction endonuclease Eco31I. Biochemistry 2008; 47:8546-56. [PMID: 18642930 DOI: 10.1021/bi800660u] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Type IIS restriction endonuclease Eco31I harbors a single HNH active site and cleaves both DNA strands close to its recognition sequence, 5'-GGTCTC(1/5). A two-domain organization of Eco31I was determined by limited proteolysis. Analysis of proteolytic fragments revealed that the N-terminal domain of Eco31I is responsible for the specific DNA binding, while the C-terminal domain contains the HNH nuclease-like active site. Gel-shift and gel-filtration experiments revealed that a monomer of the N-terminal domain of Eco31I is able to bind a single copy of cognate DNA. However, in contrast to other studied type IIS enzymes, the isolated catalytic domain of Eco31I was inactive. Steady-state and transient kinetic analysis of Eco31I reactions was inconsistent with dimerization of Eco31I on DNA. Thus, we propose that Eco31I interacts with individual copies of its recognition sequence in its monomeric form and presumably remains a monomer as it cleaves both strands of double-stranded DNA. The domain organization and reaction mechanism established for Eco31I should be common for a group of evolutionary related type IIS restriction endonucleases Alw26I, BsaI, BsmAI, BsmBI and Esp3I that recognize DNA sequences bearing the common pentanucleotide 5'-GTCTC.
Collapse
|
17
|
Sasnauskas G, Connolly BA, Halford SE, Siksnys V. Template-directed addition of nucleosides to DNA by the BfiI restriction enzyme. Nucleic Acids Res 2008; 36:3969-77. [PMID: 18515343 PMCID: PMC2475615 DOI: 10.1093/nar/gkn343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Restriction endonucleases catalyse DNA cleavage at specific sites. The BfiI endonuclease cuts DNA to give staggered ends with 1-nt 3'-extensions. We show here that BfiI can also fill in the staggered ends: while cleaving DNA, it can add a 2'-deoxynucleoside to the reaction product to yield directly a blunt-ended DNA. We propose that nucleoside incorporation proceeds through a two-step reaction, in which BfiI first cleaves the DNA to make a covalent enzyme-DNA intermediate and then resolves it by a nucleophilic attack of the 3'-hydroxyl group of the incoming nucleoside, to yield a transesterification product. We demonstrate that base pairing of the incoming nucleoside with the protruding DNA end serves as a template for the incorporation and governs the yield of the elongated product. The efficiency of the template-directed process has been exploited by using BfiI for the site-specific modification of DNA 5'-termini with an amino group using a 5'-amino-5'-deoxythymidine.
Collapse
|
18
|
Gasiunas G, Sasnauskas G, Tamulaitis G, Urbanke C, Razaniene D, Siksnys V. Tetrameric restriction enzymes: expansion to the GIY-YIG nuclease family. Nucleic Acids Res 2007; 36:938-49. [PMID: 18086711 PMCID: PMC2241918 DOI: 10.1093/nar/gkm1090] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The GIY-YIG nuclease domain was originally identified in homing endonucleases and enzymes involved in DNA repair and recombination. Many of the GIY-YIG family enzymes are functional as monomers. We show here that the Cfr42I restriction endonuclease which belongs to the GIY-YIG family and recognizes the symmetric sequence 5′-CCGC/GG-3′ (‘/’ indicates the cleavage site) is a tetramer in solution. Moreover, biochemical and kinetic studies provided here demonstrate that the Cfr42I tetramer is catalytically active only upon simultaneous binding of two copies of its recognition sequence. In that respect Cfr42I resembles the homotetrameric Type IIF restriction enzymes that belong to the distinct PD-(E/D)XK nuclease superfamily. Unlike the PD-(E/D)XK enzymes, the GIY-YIG nuclease Cfr42I accommodates an extremely wide selection of metal-ion cofactors, including Mg2+, Mn2+, Co2+, Zn2+, Ni2+, Cu2+ and Ca2+. To our knowledge, Cfr42I is the first tetrameric GIY-YIG family enzyme. Similar structural arrangement and phenotypes displayed by restriction enzymes of the PD-(E/D)XK and GIY-YIG nuclease families point to the functional significance of tetramerization.
Collapse
Affiliation(s)
- Giedrius Gasiunas
- Institute of Biotechnology, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | | | | | | | | | | |
Collapse
|
19
|
Bao Y, Higgins L, Zhang P, Chan SH, Laget S, Sweeney S, Lunnen K, Xu SY. Expression and purification of BmrI restriction endonuclease and its N-terminal cleavage domain variants. Protein Expr Purif 2007; 58:42-52. [PMID: 18164625 DOI: 10.1016/j.pep.2007.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 10/17/2007] [Accepted: 11/03/2007] [Indexed: 10/22/2022]
Abstract
BmrI (ACTGGG N5/N4) is one of the few metal-independent restriction endonucleases (REases) found in bacteria. The BmrI restriction-modification system was cloned by the methylase selection method, inverse PCR, and PCR. BmrI REase shows significant amino acid sequence identity to BfiI and a putative endonuclease MspBNCORF3798 from the sequenced Mesorhizobium sp. BNC1 genome. The EDTA-resistant BmrI REase was successfully over-expressed in a pre-modified E. coli strain from pET21a or pBAC-expIQ vectors. The recombinant BmrI REase shows strong promiscuous activity (star activity) in NEB buffers 1, 4, and an EDTA buffer. Star activity was diminished in buffers with 100-150 mM NaCl and 10 mM MgCl(2). His-tagged BmrI192, the N-terminal cleavage domain of BmrI, was expressed in E. coli and purified from inclusion bodies. The refolded BmrI192 protein possesses non-specific endonuclease activity. BmrI192 variants with a single Ser to Cys substitution (S76C or S90C) and BmrI200 (T200C) with a single Cys at the C-terminal end were also constructed and purified. BmrI200 digests both single-strand (ss) and double-strand (ds) DNA and the nuclease activity on ss DNA is at least 5-fold higher than that on ds DNA. The Cys-containing BmrI192 and BmrI200 nuclease variants may be useful for coupling to other DNA binding elements such as synthetic zinc fingers, thio-containing locked nucleic acids (LNA) or peptide nucleic acids (PNA).
Collapse
Affiliation(s)
- Yongming Bao
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Bellamy SRW, Milsom SE, Kovacheva YS, Sessions RB, Halford SE. A switch in the mechanism of communication between the two DNA-binding sites in the SfiI restriction endonuclease. J Mol Biol 2007; 373:1169-83. [PMID: 17870087 PMCID: PMC2082129 DOI: 10.1016/j.jmb.2007.08.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 08/10/2007] [Accepted: 08/14/2007] [Indexed: 11/29/2022]
Abstract
While many Type II restriction enzymes are dimers with a single DNA-binding cleft between the subunits, SfiI is a tetramer of identical subunits. Two of its subunits (a dimeric unit) create one DNA-binding cleft, and the other two create a second cleft on the opposite side of the protein. The two clefts bind specific DNA cooperatively to give a complex of SfiI with two recognition sites. This complex is responsible for essentially all of the DNA-cleavage reactions by SfiI: virtually none is due to the complex with one site. The communication between the DNA-binding clefts was examined by disrupting one of the very few polar interactions in the otherwise hydrophobic interface between the dimeric units: a tyrosine hydroxyl was removed by mutation to phenylalanine. The mutant protein remained tetrameric in solution and could bind two DNA sites. But instead of being activated by binding two sites, like wild-type SfiI, it showed maximal activity when bound to a single site and had a lower activity when bound to two sites. This interaction across the dimer interface thus enforces in wild-type SfiI a cooperative transition between inactive and active states in both dimers, but without this interaction as in the mutant protein, a single dimer can undergo the transition to give a stable intermediate with one inactive dimer and one active dimer.
Collapse
Affiliation(s)
- Stuart R W Bellamy
- The DNA-Protein Interactions Unit, Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK.
| | | | | | | | | |
Collapse
|