1
|
Grytsyk N, Cianfarani D, Crégut O, Richert L, Boudier C, Humbert N, Didier P, Mély Y, Léonard J. Kinetics of protein-assisted nucleic acid interconversion monitored by transient time resolved fluorescence in microfluidic droplets. Nucleic Acids Res 2021; 49:e111. [PMID: 34450653 PMCID: PMC8565319 DOI: 10.1093/nar/gkab687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/29/2021] [Accepted: 08/24/2021] [Indexed: 11/25/2022] Open
Abstract
Interconversions between nucleic acid structures play an important role in transcriptional and translational regulation and also in repair and recombination. These interconversions are frequently promoted by nucleic acid chaperone proteins. To monitor their kinetics, Förster resonance energy transfer (FRET) is widely exploited using ensemble fluorescence intensity measurements in pre-steady-state stopped-flow experiments. Such experiments only provide a weighted average of the emission of all species in solution and consume large quantities of materials. Herein, we lift these limitations by combining time-resolved fluorescence (TRF) with droplet microfluidics (DmF). We validate the innovative TRF-DmF approach by investigating the well characterized annealing of the HIV-1 (+)/(–) Primer Binding Sequences (PBS) promoted by a HIV-1 nucleocapsid peptide. Upon rapid mixing of the FRET-labelled (–)PBS with its complementary (+)PBS sequence inside microdroplets, the TRF-DmF set-up enables resolving the time evolution of sub-populations of reacting species and reveals an early intermediate with a ∼50 ps donor fluorescence lifetime never identified so far. TRF-DmF also favorably compares with single molecule experiments, as it offers an accurate control of concentrations with no upper limit, no need to graft one partner on a surface and no photobleaching issues.
Collapse
Affiliation(s)
- Natalia Grytsyk
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg & CNRS, 67034 Strasbourg, France.,Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France
| | - Damien Cianfarani
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg & CNRS, 67034 Strasbourg, France
| | - Olivier Crégut
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg & CNRS, 67034 Strasbourg, France
| | - Ludovic Richert
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France
| | - Christian Boudier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France
| | - Nicolas Humbert
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France
| | - Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France
| | - Jérémie Léonard
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg & CNRS, 67034 Strasbourg, France
| |
Collapse
|
2
|
Orevi T, Rahamim G, Amir D, Kathuria S, Bilsel O, Matthews CR, Haas E. Sequential Closure of Loop Structures Forms the Folding Nucleus during the Refolding Transition of the Escherichia coli Adenylate Kinase Molecule. Biochemistry 2015; 55:79-91. [DOI: 10.1021/acs.biochem.5b00849] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Tomer Orevi
- The
Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel 52900
| | - Gil Rahamim
- The
Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel 52900
| | - Dan Amir
- The
Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel 52900
| | - Sagar Kathuria
- Department
of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Osman Bilsel
- Department
of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - C. Robert Matthews
- Department
of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Elisha Haas
- The
Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel 52900
| |
Collapse
|
3
|
Probing Microsecond Reactions with Microfluidic Mixers and TCSPC. SPRINGER SERIES IN CHEMICAL PHYSICS 2015. [DOI: 10.1007/978-3-319-14929-5_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
4
|
Maillot S, Carvalho A, Vola JP, Boudier C, Mély Y, Haacke S, Léonard J. Out-of-equilibrium biomolecular interactions monitored by picosecond fluorescence in microfluidic droplets. LAB ON A CHIP 2014; 14:1767-1774. [PMID: 24683603 DOI: 10.1039/c3lc51283e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We developed a new experimental approach combining Time-Resolved Fluorescence (TRF) spectroscopy and Droplet Microfluidics (DμF) to investigate the relaxation dynamics of structurally heterogeneous biomolecular systems. Here DμF was used to produce with minimal material consumption an out-of-equilibrium, fluorescently labeled biomolecular complex by rapid mixing within the droplets. TRF detection was implemented with a streak camera to monitor the time evolution of the structural heterogeneity of the complex along its relaxation towards equilibrium while it propagates inside the microfluidic channel. The approach was validated by investigating the fluorescence decay kinetics of a model interacting system of bovine serum albumin and Patent Blue V. Fluorescence decay kinetics are acquired with very good signal-to-noise ratio and allow for global, multicomponent fluorescence decay analysis, evidencing heterogeneous structural relaxation over several 100 ms.
Collapse
Affiliation(s)
- Sacha Maillot
- Institut de Physique et Chimie des Matériaux de Strasbourg & Labex NIE, Université de Strasbourg, CNRS UMR 7504, F-67034 Strasbourg Cedex 2, France.
| | | | | | | | | | | | | |
Collapse
|
5
|
Kishore M, Krishnamoorthy G, Udgaonkar JB. Critical Evaluation of the Two-State Model Describing the Equilibrium Unfolding of the PI3K SH3 Domain by Time-Resolved Fluorescence Resonance Energy Transfer. Biochemistry 2013; 52:9482-96. [DOI: 10.1021/bi401337k] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Megha Kishore
- National
Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - G. Krishnamoorthy
- Department
of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Jayant B. Udgaonkar
- National
Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| |
Collapse
|
6
|
Kathuria SV, Chan A, Graceffa R, Nobrega RP, Matthews CR, Irving TC, Perot B, Bilsel O. Advances in turbulent mixing techniques to study microsecond protein folding reactions. Biopolymers 2013; 99:888-96. [PMID: 23868289 PMCID: PMC3843316 DOI: 10.1002/bip.22355] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 07/03/2013] [Indexed: 02/01/2023]
Abstract
Recent experimental and computational advances in the protein folding arena have shown that the readout of the one-dimensional sequence information into three-dimensional structure begins within the first few microseconds of folding. The initiation of refolding reactions has been achieved by several means, including temperature jumps, flash photolysis, pressure jumps, and rapid mixing methods. One of the most commonly used means of initiating refolding of chemically denatured proteins is by turbulent flow mixing with refolding dilution buffer, where greater than 99% mixing efficiency has been achieved within 10's of microseconds. Successful interfacing of turbulent flow mixers with complementary detection methods, including time-resolved Fluorescence Spectroscopy (trFL), Förster Resonance Energy Transfer, Circular Dichroism, Small-Angle X-ray Scattering, Hydrogen Exchange followed by Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy, Infrared Spectroscopy (IR), and Fourier Transform IR Spectroscopy, has made this technique very attractive for monitoring various aspects of structure formation during folding. Although continuous-flow (CF) mixing devices interfaced with trFL detection have a dead time of only 30 µs, burst phases have been detected in this time scale during folding of peptides and of large proteins (e.g., CheY and TIM barrels). Furthermore, a major limitation of the CF mixing technique has been the requirement of large quantities of sample. In this brief communication, we will discuss the recent flurry of activity in micromachining and microfluidics, guided by computational simulations, which are likely to lead to dramatic improvements in time resolution and sample consumption for CF mixers over the next few years.
Collapse
Affiliation(s)
- Sagar V. Kathuria
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St., Worcester, MA 01605
| | - Alexander Chan
- Department of Mechanical and Industrial Engineering, Engineering Laboratory, University of Massachusetts, Box 32210-219, Amherst, MA, 01003-2210
| | - Rita Graceffa
- BioCAT, Department of Biological and Chemical Science, Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, IL 60616
| | - R. Paul Nobrega
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St., Worcester, MA 01605
| | - C. Robert Matthews
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St., Worcester, MA 01605
| | - Thomas C. Irving
- BioCAT, Department of Biological and Chemical Science, Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, IL 60616
| | - Blair Perot
- Department of Mechanical and Industrial Engineering, Engineering Laboratory, University of Massachusetts, Box 32210-219, Amherst, MA, 01003-2210
| | - Osman Bilsel
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St., Worcester, MA 01605
| |
Collapse
|
7
|
Bouley Ford ND, Shin DW, Gray HB, Winkler JR. Intrachain contact dynamics in unfolded cytochrome cb562. J Phys Chem B 2013; 117:13206-11. [PMID: 23992117 DOI: 10.1021/jp403234h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have investigated intrachain contact dynamics in unfolded cytochrome cb562 by monitoring heme quenching of excited ruthenium photosensitizers covalently bound to residues along the polypeptide. Intrachain diffusion for chemically denatured proteins proceeds on the microsecond time scale with an upper limit of 0.1 μs. The rate constants exhibit a power-law dependence on the number of peptide bonds between the heme and Ru complex. The power-law exponent of -1.5 is consistent with theoretical models for freely jointed Gaussian chains, but its magnitude is smaller than that reported for several synthetic polypeptides. Contact formation within a stable loop was examined in a His63-heme ligated form of the protein under denaturing conditions. Loop formation accelerated contact kinetics for the Ru66 labeling site, owing to reduction in the length of the peptide separating redox sites. For other labeling sites within the stable loop, quenching rates were modestly reduced compared to the open chain polymer.
Collapse
Affiliation(s)
- Nicole D Bouley Ford
- Beckman Institute, California Institute of Technology , Pasadena, California 91125, United States
| | | | | | | |
Collapse
|
8
|
Orevi T, Rahamim G, Hazan G, Amir D, Haas E. The loop hypothesis: contribution of early formed specific non-local interactions to the determination of protein folding pathways. Biophys Rev 2013; 5:85-98. [PMID: 28510159 DOI: 10.1007/s12551-013-0113-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/01/2013] [Indexed: 12/12/2022] Open
Abstract
The extremely fast and efficient folding transition (in seconds) of globular proteins led to the search for some unifying principles embedded in the physics of the folding polypeptides. Most of the proposed mechanisms highlight the role of local interactions that stabilize secondary structure elements or a folding nucleus as the starting point of the folding pathways, i.e., a "bottom-up" mechanism. Non-local interactions were assumed either to stabilize the nucleus or lead to the later steps of coalescence of the secondary structure elements. An alternative mechanism was proposed, an "up-down" mechanism in which it was assumed that folding starts with the formation of very few non-local interactions which form closed long loops at the initiation of folding. The possible biological advantage of this mechanism, the "loop hypothesis", is that the hydrophobic collapse is associated with ordered compactization which reduces the chance for degradation and misfolding. In the present review the experiments, simulations and theoretical consideration that either directly or indirectly support this mechanism are summarized. It is argued that experiments monitoring the time-dependent development of the formation of specifically targeted early-formed sub-domain structural elements, either long loops or secondary structure elements, are necessary. This can be achieved by the time-resolved FRET-based "double kinetics" method in combination with mutational studies. Yet, attempts to improve the time resolution of the folding initiation should be extended down to the sub-microsecond time regime in order to design experiments that would resolve the classes of proteins which first fold by local or non-local interactions.
Collapse
Affiliation(s)
- Tomer Orevi
- The Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel, 52900
| | - Gil Rahamim
- The Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel, 52900
| | - Gershon Hazan
- The Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel, 52900
| | - Dan Amir
- The Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel, 52900
| | - Elisha Haas
- The Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel, 52900.
| |
Collapse
|
9
|
Abstract
We have investigated the folding dynamics of Thermus thermophilus cytochrome c(552) by time-resolved fluorescence energy transfer between the heme and each of seven site-specific fluorescent probes. We have found both an equilibrium unfolding intermediate and a distinct refolding intermediate from kinetics studies. Depending on the protein region monitored, we observed either two-state or three-state denaturation transitions. The unfolding intermediate associated with three-state folding exhibited native contacts in β-sheet and C-terminal helix regions. We probed the formation of a refolding intermediate by time-resolved fluorescence energy transfer between residue 110 and the heme using a continuous flow mixer. The intermediate ensemble, a heterogeneous mixture of compact and extended polypeptides, forms in a millisecond, substantially slower than the ∼100-μs formation of a burst-phase intermediate in cytochrome c. The surprising finding is that, unlike for cytochrome c, there is an observable folding intermediate, but no microsecond burst phase in the folding kinetics of the structurally related thermostable protein.
Collapse
|
10
|
Toofanny RD, Daggett V. Understanding protein unfolding from molecular simulations. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2012. [DOI: 10.1002/wcms.1088] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Rudesh D. Toofanny
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Valerie Daggett
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
11
|
Haran G. How, when and why proteins collapse: the relation to folding. Curr Opin Struct Biol 2011; 22:14-20. [PMID: 22104965 DOI: 10.1016/j.sbi.2011.10.005] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 10/15/2011] [Accepted: 10/18/2011] [Indexed: 11/25/2022]
Abstract
Unfolded proteins under strongly denaturing conditions are highly expanded. However, when the conditions are more close to native, an unfolded protein may collapse to a compact globular structure distinct from the folded state. This transition is akin to the coil-globule transition of homopolymers. Single-molecule FRET experiments have been particularly conducive in revealing the collapsed state under conditions of coexistence with the folded state. The collapse can be even more readily observed in natively unfolded proteins. Time-resolved studies, using FRET and small-angle scattering, have shown that the collapse transition is a very fast event, probably occurring on the submicrosecond time scale. The forces driving collapse are likely to involve both hydrophobic and backbone interactions. The loss of configurational entropy during collapse makes the unfolded state less stable compared to the folded state, thus facilitating folding.
Collapse
Affiliation(s)
- Gilad Haran
- Chemical Physics Department, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
12
|
Jurkowski W, Kułaga T, Roterman I. Geometric parameters defining the structure of proteins--relation to early-stage folding step. J Biomol Struct Dyn 2011; 29:79-104. [PMID: 21696227 DOI: 10.1080/07391102.2011.10507376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Two geometrical parameters describing the structure of a polypeptide: V-dihedral angle between two sequential peptide bond planes and R-radius of curvature are used for structural classification of polypeptide structure in proteins. The relation between these two parameters was the basis for the definition of the conformational sub-space for early-stage structural forms. The cluster analysis of V and lnR, applied to the selected proteins of well-defined secondary structure (according to DSSP classification) and to proteins without any introductory classified analysis, revealed that several of the discriminated groups of proteins agree with the assumed model of early-stage conformational sub-space. This analysis shows that protein structures may be represented in VR space instead of Phi, Psi angles space, thus lowering the conformational space dimensionality. The VR model allows classification of traditional secondary structure elements as well as different Random Coil motifs, which broadens the range of recognized structural categories (compared to standard secondary structure elements).
Collapse
Affiliation(s)
- W Jurkowski
- Department of Bioinformatics and Telemedicine, Jagiellonian University-Medical College, Department of Bioinformatics and Telemedicine, Lazarza 16, 31-530 Krakow, Poland
| | | | | |
Collapse
|
13
|
Olmon ED, Sontz PA, Blanco-Rodríguez AM, Towrie M, Clark IP, Vlček A, Barton JK. Charge photoinjection in intercalated and covalently bound [Re(CO)3(dppz)(py)]+-DNA constructs monitored by time-resolved visible and infrared spectroscopy. J Am Chem Soc 2011; 133:13718-30. [PMID: 21827149 PMCID: PMC3227519 DOI: 10.1021/ja205568r] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The complex [Re(CO)(3)(dppz)(py'-OR)](+) (dppz = dipyrido[3,2-a:2',3'-c]phenazine; py'-OR = 4-functionalized pyridine) offers IR sensitivity and can oxidize DNA directly from the excited state, making it a promising probe for the study of DNA-mediated charge transport (CT). The behavior of several covalent and noncovalent Re-DNA constructs was monitored by time-resolved IR (TRIR) and UV/visible spectroscopies, as well as biochemical methods, confirming the long-range oxidation of DNA by the excited complex. Optical excitation of the complex leads to population of MLCT and at least two distinct intraligand states. Experimental observations that are consistent with charge injection from these excited states include similarity between long-time TRIR spectra and the reduced state spectrum observed by spectroelectrochemistry, the appearance of a guanine radical signal in TRIR spectra, and the eventual formation of permanent guanine oxidation products. The majority of reactivity occurs on the ultrafast time scale, although processes dependent on slower conformational motions of DNA, such as the accumulation of oxidative damage at guanine, are also observed. The ability to measure events on such disparate time scales, its superior selectivity in comparison to other spectroscopic techniques, and the ability to simultaneously monitor carbonyl ligand and DNA IR absorption bands make TRIR a valuable tool for the study of CT in DNA.
Collapse
Affiliation(s)
- Eric D Olmon
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Dar TA, Schaeffer RD, Daggett V, Bowler BE. Manifestations of native topology in the denatured state ensemble of Rhodopseudomonas palustris cytochrome c'. Biochemistry 2011; 50:1029-41. [PMID: 21190388 PMCID: PMC3329124 DOI: 10.1021/bi101551h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To provide insight into the role of local sequence in the nonrandom coil behavior of the denatured state, we have extended our measurements of histidine-heme loop formation equilibria for cytochrome c' to 6 M guanidine hydrochloride. We observe that there is some reduction in the scatter about the best fit line of loop stability versus loop size data in 6 M versus 3 M guanidine hydrochloride, but the scatter is not eliminated. The scaling exponent, ν(3), of 2.5 ± 0.2 is also similar to that found previously in 3 M guanidine hydrochloride (2.6 ± 0.3). Rates of histidine-heme loop breakage in the denatured state of cytochrome c' show that some histidine-heme loops are significantly more persistent than others at both 3 and 6 M guanidine hydrochloride. Rates of histidine-heme loop formation more closely approximate random coil behavior. This observation indicates that heterogeneity in the denatured state ensemble results mainly from contact persistence. When mapped onto the structure of cytochrome c', the histidine-heme loops with slow breakage rates coincide with chain reversals between helices 1 and 2 and between helices 2 and 3. Molecular dynamics simulations of the unfolding of cytochrome c' at 498 K show that these reverse turns persist in the unfolded state. Thus, these portions of the primary structure of cytochrome c' set up the topology of cytochrome c' in the denatured state, predisposing the protein to fold efficiently to its native structure.
Collapse
Affiliation(s)
- Tanveer A. Dar
- Department of Chemistry & Biochemistry, Center for Biomolecular Structure & Dynamics, University of Montana, Missoula, Montana, 59812, USA
| | - R. Dustin Schaeffer
- Biomolecular Structure & Design Program, University of Washington, Seattle, WA 98195 USA
| | - Valerie Daggett
- Biomolecular Structure & Design Program, University of Washington, Seattle, WA 98195 USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195-5013 USA
| | - Bruce E. Bowler
- Department of Chemistry & Biochemistry, Center for Biomolecular Structure & Dynamics, University of Montana, Missoula, Montana, 59812, USA
| |
Collapse
|
16
|
Abstract
Cytochrome cb(562) is a variant of an Escherichia coli four-helix bundle b-type heme protein in which the porphyrin prosthetic group is covalently ligated to the polypeptide near the terminus of helix 4. Studies from other laboratories have shown that the apoprotein folds rapidly without the formation of intermediates, whereas the holoprotein loses heme before native structure can be attained. Time-resolved fluorescence energy transfer (TRFET) measurements of cytochrome cb(562) refolding triggered using an ultrafast continuous-flow mixer (150 micros dead time) reveal that heme attachment to the polypeptide does not interfere with rapid formation of the native structure. Analyses of the TRFET data produce distributions of Trp-59-heme distances in the protein before, during, and after refolding. Characterization of the moments and time evolution of these distributions provides compelling evidence for a refolding mechanism that does not involve significant populations of intermediates. These observations suggest that the cytochrome b(562) folding energy landscape is minimally frustrated and able to tolerate the introduction of substantial perturbations (i.e., the heme prosthetic group) without the formation of deep misfolded traps.
Collapse
|
17
|
Abstract
The coil-globule transition, a tenet of the physics of polymers, has been identified in recent years as an important unresolved aspect of the initial stages of the folding of proteins. We describe the basics of the collapse transition, starting with homopolymers and continuing with proteins. Studies of denatured-state collapse under equilibrium are then presented. An emphasis is placed on single-molecule fluorescence experiments, which are particularly useful for measuring properties of the denatured state even under conditions of coexistence with the folded state. Attempts to understand the dynamics of collapse, both theoretically and experimentally, are then described. Only an upper limit for the rate of collapse has been obtained so far. Improvements in experimental and theoretical methodology are likely to continue to push our understanding of the importance of the denatured-state thermodynamics and dynamics for protein folding in the coming years.
Collapse
Affiliation(s)
- Guy Ziv
- Chemical Physics Department, Weizmann Institute of Science, 76100 Rehovot, Israel. E-mail:
| | - D. Thirumalai
- Biophysics Program, Institute for Physical Science and Technology and Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Gilad Haran
- Chemical Physics Department, Weizmann Institute of Science, 76100 Rehovot, Israel. E-mail:
| |
Collapse
|
18
|
Callis PR. Exploring the Electrostatic Landscape of Proteins with Tryptophan Fluorescence. REVIEWS IN FLUORESCENCE 2009. [DOI: 10.1007/978-0-387-88722-7_10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Orevi T, Ben Ishay E, Pirchi M, Jacob MH, Amir D, Haas E. Early closure of a long loop in the refolding of adenylate kinase: a possible key role of non-local interactions in the initial folding steps. J Mol Biol 2008; 385:1230-42. [PMID: 19013178 DOI: 10.1016/j.jmb.2008.10.077] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2008] [Revised: 09/16/2008] [Accepted: 10/27/2008] [Indexed: 11/25/2022]
Abstract
Most globular protein chains, when transferred from high to low denaturant concentrations, collapse instantly before they refold to their native state. The initial compaction of the protein molecule is assumed to have a key effect on the folding pathway, but it is not known whether the earliest structures formed during or instantly after collapse are defined by local or by non-local interactions--that is, by secondary structural elements or by loop closure of long segments of the protein chain. Stable closure of one or several long loops can reduce the chain entropy at a very early stage and can prevent the protein from following non-productive pathways whose number grows exponentially with the length of the protein chain. In Escherichia coli adenylate kinase (AK), about seven long loops define the topology of the native structure. We selected four loop-forming sections of the chain and probed the time course of loop formation during refolding of AK. We labeled the termini of the loop segments with tryptophan and cysteine-5-amidosalicylic acid. This donor-acceptor pair of probes used with fluorescence resonance excitation energy transfer spectroscopy (FRET) is suitable for detecting very short distances and thus is able to distinguish between random and specific compactions. Refolding of AK was initiated by stopped-flow mixing, followed simultaneously by donor and acceptor fluorescence, and analyzed in terms of energy transfer efficiency and distance. In the collapsed state of AK, observed after the 5-ms dead time of the instrument, one of the selected segments shows a native-like separation of its termini; it forms a loop already in the collapsed state. A second segment that includes the first but is longer by 15 residues shows an almost native-like separation of its termini. In contrast, a segment that is shorter but part of the second segment shows a distance separation of its termini as high as a segment that spans almost the whole protein chain. We conclude that a specific network of non-local interactions, the closure of one or several loops, can play an important role in determining the protein folding pathway at its early phases.
Collapse
Affiliation(s)
- Tomer Orevi
- The E. Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | | | | | | | | | | |
Collapse
|
20
|
Microsecond acquisition of heterogeneous structure in the folding of a TIM barrel protein. Proc Natl Acad Sci U S A 2008; 105:13367-72. [PMID: 18757725 DOI: 10.1073/pnas.0802788105] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The earliest kinetic folding events for (betaalpha)(8) barrels reflect the appearance of off-pathway intermediates. Continuous-flow microchannel mixing methods interfaced to small-angle x-ray scattering (SAXS), circular dichroism (CD), time-resolved Förster resonant energy transfer (trFRET), and time-resolved fluorescence anisotropy (trFLAN) have been used to directly monitor global and specific dimensional properties of the partially folded state in the microsecond time range for a representative (betaalpha)(8) barrel protein. Within 150 micros, the alpha-subunit of Trp synthase (alphaTS) experiences a global collapse and the partial formation of secondary structure. The time resolution of the folding reaction was enhanced with trFRET and trFLAN to show that, within 30 micros, a distinct and autonomous partially collapsed structure has already formed in the N-terminal and central regions but not in the C-terminal region. A distance distribution analysis of the trFRET data confirmed the presence of a heterogeneous ensemble that persists for several hundreds of microseconds. Ready access to locally folded, stable substructures may be a hallmark of repeat-module proteins and the source of early kinetic traps in these very common motifs. Their folding free-energy landscapes should be elaborated to capture this source of frustration.
Collapse
|
21
|
Li W, Zhang J, Su Y, Wang J, Qin M, Wang W. Effects of Zinc Binding on the Conformational Distribution of the Amyloid-β Peptide Based on Molecular Dynamics Simulations. J Phys Chem B 2007; 111:13814-21. [DOI: 10.1021/jp076213t] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wenfei Li
- National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University, Nanjing 210093, China
| | - Jian Zhang
- National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University, Nanjing 210093, China
| | - Yu Su
- National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University, Nanjing 210093, China
| | - Jun Wang
- National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University, Nanjing 210093, China
| | - Meng Qin
- National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University, Nanjing 210093, China
| | - Wei Wang
- National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University, Nanjing 210093, China
| |
Collapse
|
22
|
Pletneva EV, Zhao Z, Kimura T, Petrova KV, Gray HB, Winkler JR. Probing the cytochrome c' folding landscape. J Inorg Biochem 2007; 101:1768-75. [PMID: 17673297 PMCID: PMC2110879 DOI: 10.1016/j.jinorgbio.2007.06.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 05/31/2007] [Accepted: 06/01/2007] [Indexed: 11/27/2022]
Abstract
The folding kinetics of R. palustris cytochrome c' (cyt c') have been monitored by heme absorption and native Trp72 fluorescence at pH 5. The Trp72 fluorescence burst signal suggests early compaction of the polypeptide ensemble. Analysis of heme transient absorption spectra reveals deviations from two-state behavior, including a prominent slow phase that is accelerated by the prolyl isomerase cyclophilin. A nonnative proline configuration (Pro21) likely interferes with the formation of the helical bundle surrounding the heme.
Collapse
Affiliation(s)
| | | | | | | | - Harry B. Gray
- *Corresponding authors. E-mails: (H.B.G.) and (J.R.W.)
| | | |
Collapse
|