1
|
Alvarez L, Hernandez SB, Torrens G, Weaver AI, Dörr T, Cava F. Control of bacterial cell wall autolysins by peptidoglycan crosslinking mode. Nat Commun 2024; 15:7937. [PMID: 39261529 PMCID: PMC11390936 DOI: 10.1038/s41467-024-52325-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024] Open
Abstract
To withstand their internal turgor pressure and external threats, most bacteria have a protective peptidoglycan (PG) cell wall. The growth of this PG polymer relies on autolysins, enzymes that create space within the structure. Despite extensive research, the regulatory mechanisms governing these PG-degrading enzymes remain poorly understood. Here, we unveil a novel and widespread control mechanism of lytic transglycosylases (LTs), a type of autolysin responsible for breaking down PG glycan chains. Specifically, we show that LD-crosslinks within the PG sacculus act as an inhibitor of LT activity. Moreover, we demonstrate that this regulation controls the release of immunogenic PG fragments and provides resistance against predatory LTs of both bacterial and viral origin. Our findings address a critical gap in understanding the physiological role of the LD-crosslinking mode in PG homeostasis, highlighting how bacteria can enhance their resilience against environmental threats, including phage attacks, through a single structural PG modification.
Collapse
Affiliation(s)
- Laura Alvarez
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Sara B Hernandez
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| | - Gabriel Torrens
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Anna I Weaver
- Department of Microbiology, Cornell University, Ithaca, New York, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Tobias Dörr
- Department of Microbiology, Cornell University, Ithaca, New York, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, USA
| | - Felipe Cava
- Department of Molecular Biology, Umeå University, Umeå, Sweden.
- Umeå Center for Microbial Research (UCMR), Umeå University, Umeå, Sweden.
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden.
- Science for Life Laboratory (SciLifeLab), Umeå University, Umeå, Sweden.
| |
Collapse
|
2
|
Caliskan HB, Ustok FI. Implications of intracrystalline OC17 on the protection of lattice incorporated proteins. SOFT MATTER 2024; 20:4886-4894. [PMID: 38860646 DOI: 10.1039/d4sm00371c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Biogenic CaCO3 formation is regulated by crystallization proteins during crystal growth. Interactions of proteins with nascent mineral surfaces trigger proteins to be incorporated into the crystal lattice. As a result of incorporation, these intracrystalline proteins are protected in the lattice, an example of which is ancient eggshell proteins that have persisted in CaCO3 for thousands of years even under harsh environmental conditions. OC17 is an eggshell protein known to interact with CaCO3 during eggshell formation during which OC17 becomes incorporated into the lattice. Understanding protein incorporation into CaCO3 could offer insights into protein stability inside crystals. Here, we study the protection of OC17 in the CaCO3 lattice. Using thermogravimetric analysis we show that the effect of temperature on intracrystalline proteins of eggshells is negligible below 250 °C. Next, we show that lattice incorporation protects the OC17 structure despite a heat-treatment step that is shown to denature the protein. Because incorporated proteins need to be released from crystals, we verify metal chelation as a safe crystal dissolution method to avoid protein denaturation during reconstitution. Finally, we optimize the recombinant expression of OC17 which could allow engineering OC17 for engineered intracrystalline entrapment studies.
Collapse
Affiliation(s)
- Huseyin Burak Caliskan
- University of Cambridge, Department of Engineering, Trumpington Street, CB2 1PZ Cambridge, UK.
- University of Cambridge, The Nanoscience Centre, 11 JJ Thomson Avenue, CB3 0FF Cambridge, UK
| | - Fatma Isik Ustok
- University of Cambridge, Cambridge Institute for Medical Research, Department of Haematology, The Keith Peters Building, Hills Road, CB2 0XY Cambridge, UK
| |
Collapse
|
3
|
Chitboonthavisuk C, Martin C, Huss P, Peters JM, Anantharaman K, Raman S. Systematic genome-wide discovery of host factors governing bacteriophage infectivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.20.590424. [PMID: 38659955 PMCID: PMC11042327 DOI: 10.1101/2024.04.20.590424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Bacterial host factors regulate the infection cycle of bacteriophages. Except for some well-studied host factors (e.g., receptors or restriction-modification systems), the contribution of the rest of the host genome on phage infection remains poorly understood. We developed PHAGEPACK, a pooled assay that systematically and comprehensively measures each host-gene impact on phage fitness. PHAGEPACK combines CRISPR interference with phage packaging to link host perturbation to phage fitness during active infection. Using PHAGEPACK, we constructed a genome-wide map of genes impacting T7 phage fitness in permissive E. coli, revealing pathways previously unknown to affect phage packaging. When applied to the non-permissive E. coli O121, PHAGEPACK identified pathways leading to host resistance; their removal increased phage susceptibility up to a billion-fold. Bioinformatic analysis indicates phage genomes carry homologs or truncations of key host factors, potentially for fitness advantage. In summary, PHAGEPACK offers valuable insights into phage-host interactions, phage evolution, and bacterial resistance.
Collapse
|
4
|
Yang L, Guo Y, Yang H, Li S, Zhang Y, Gao C, Wei T, Hao L. Distinct microbiota assembly and functional patterns in disease-resistant and susceptible varieties of tobacco. Front Microbiol 2024; 15:1361883. [PMID: 38495510 PMCID: PMC10940526 DOI: 10.3389/fmicb.2024.1361883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/07/2024] [Indexed: 03/19/2024] Open
Abstract
The plant microbiota is believed to be an accessory genome that extends plant functions, forming holobionts together with the host plant. Plant disease resistance, therefore, is inextricably linked with plant microbiota, which play important roles in plant growth and health. To explore the relationship between plant microbiota and disease resistance, we investigated the tobacco microbiome of two varieties with contrasting disease-resistance levels to bacterial wilt and black shank diseases. Comparative microbiome analysis indicated that the resistant variety assembled a distinct microbiota with higher network complexity and diversity. While Pseudomonas and Ensifer, which contain biocontrol and beneficial members, were enriched in the rhizosphere of the resistant variety, Ralstonia, a genus including the known causative pathogen, was enriched in the susceptible variety. Metagenome sequencing revealed that biocontrol functions, such as hydrogen cyanide synthase, pyochelin biosynthesis, and arthrofactin-type cyclic lipopeptide synthetase, were more abundant in the resistant variety. Further analysis indicated that contigs encoding the corresponding genes were mostly assigned to Pseudomonas. Among all the metagenome-assembled genomes, positive selection was suggested in the genome assigned to Pseudomonas only in the rhizosphere of the resistant variety. The search of biosynthetic gene clusters in the Pseudomonas genome revealed a non-ribosomal peptide synthetase, the compound of which was brabantamide A, with known antimicrobial activity. Collectively, our study suggests that the plant microbiota might be involved in microbe-mediated disease resistance. Particularly, our results highlight Pseudomonas in the rhizosphere of the disease-resistant variety as a promising biocontrol candidate. Our study may facilitate further screening of bacterial isolates and the targeted design of microbial communities.
Collapse
Affiliation(s)
- Luhua Yang
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Yuan Guo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Hui Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
- Guizhou Academy of Tobacco Science, Guiyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shun Li
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
| | - Yunzeng Zhang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Cheng Gao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Tian Wei
- Bei Bu Zhan Qu CDC, Shenyang, China
| | - Likai Hao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi’an, China
| |
Collapse
|
5
|
Liang Y, Zhao Y, Kwan J, Wang Y, Qiao Y. Escherichia coli has robust regulatory mechanisms against elevated peptidoglycan cleavage by lytic transglycosylases. J Biol Chem 2023; 299:104615. [PMID: 36931392 PMCID: PMC10139938 DOI: 10.1016/j.jbc.2023.104615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/25/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
Peptidoglycan (PG) is an essential and conserved exoskeletal component in all bacteria that protects cells from lysis. Gram-negative bacteria such as Escherichia coli encode multiple redundant lytic transglycosylases (LTs) that engage in PG cleavage, a potentially lethal activity requiring proper regulation to prevent autolysis. To elucidate the potential effects and cellular regulatory mechanisms of elevated LT activity, we individually cloned the periplasmic domains of two membrane-bound LTs, MltA and MltB under the control of the arabinose-inducible system for overexpression in the periplasmic space in E. coli. Interestingly, upon induction, the culture undergoes an initial period of cell lysis followed by robust growth restoration. The LT-overexpressing E. coli exhibits altered morphology with larger spherical cells, which is in line with the weakening of the PG layer due to aberrant LT activity. On the other hand, the restored cells display a similar rod shape and peptidoglycan profile that is indistinguishable from the uninduced control. Quantitative proteomics analysis of the restored cells identified significant protein enrichment in the regulator of capsule synthesis (Rcs) regulon, a two-component stress response known to be specifically activated by PG damage. We showed that LT-overexpressing E. coli with an inactivated Rcs system partially impairs the growth restoration process, supporting the involvement of the Rcs system in countering aberrant PG cleavage. Furthermore, we demonstrated that the elevated LT activity specifically potentiates β-lactam antibiotics against E. coli with a defective Rcs regulon, suggesting the dual effects of augmented PG cleavage and blocked PG synthesis as a potential antimicrobial strategy.
Collapse
Affiliation(s)
- Yaquan Liang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technical University, Singapore 637371
| | - Yilin Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technical University, Singapore 637371
| | - JericMunChung Kwan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technical University, Singapore 637371
| | - Yue Wang
- A*STAR Infectious Disease Labs, Singapore 138648
| | - Yuan Qiao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technical University, Singapore 637371.
| |
Collapse
|
6
|
Wang RX, Huang Y, Shi Y, Jiang FH, Gao Y, Liu X, Zhao Z. Characterization and functional analysis of a c-type lysozyme gene from obscure puffer Takifugu obscurus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 133:104412. [PMID: 35405184 DOI: 10.1016/j.dci.2022.104412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Lysozyme (Lyz) is an alkaline enzyme that hydrolyzes mucopolysaccharides in bacteria and is highly conserved vertebrates and invertebrates. In this study, a c-type lysozyme gene (named ToLyzC) from the obscure puffer Takifugu obscurus was cloned and characterized. The full-length cDNA of ToLyzC was 432 bp, encoding 143 amino acids, with a predicted molecular mass of 16.2 kDa and a theoretical pI of 8.86. The depicted protein sequence contained a LYZ1 domain from 16 to 142 amino acids, seven conserved cysteine residues. Phylogenetic analysis indicated that ToLyzC clustered with Lyzs from other teleost fishes. Quantitative real-time PCR analysis revealed that ToLyzC mRNA was mainly expressed in the liver. The transcript level of ToLyzC gene was significantly upregulated after Staphylococcus aureus and Vibrio harveyi challenge. The optimal pH and temperature of recombinant ToLyzC protein (rToLyzC) lytic activity was detected to be 7.5 and 35 °C, respectively. rToLyzC exhibited significant antibacterial and bacterial binding activities against S. aureus, Aeromonas hydrophila, V. harveyi, and Edwardsiella tarda at different time points. In addition, the morphological changes of V. harveyi cells treated with rToLyzC were observed under scanning electron microscope, which further confirmed the antibacterial and bacteriolytic activity of rToLyzC. Taken together, our current study indicated that ToLyzC is involved in the immune response to bacterial infection in obscure puffers.
Collapse
Affiliation(s)
- Rui-Xia Wang
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu, 210098, China
| | - Ying Huang
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu, 210098, China
| | - Yan Shi
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu, 210098, China
| | - Fu-Hui Jiang
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu, 210098, China
| | - Yang Gao
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu, 210098, China
| | - Xin Liu
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu, 210098, China
| | - Zhe Zhao
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu, 210098, China.
| |
Collapse
|
7
|
Moreau T, Gautron J, Hincke MT, Monget P, Réhault-Godbert S, Guyot N. Antimicrobial Proteins and Peptides in Avian Eggshell: Structural Diversity and Potential Roles in Biomineralization. Front Immunol 2022; 13:946428. [PMID: 35967448 PMCID: PMC9363672 DOI: 10.3389/fimmu.2022.946428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/22/2022] [Indexed: 11/21/2022] Open
Abstract
The calcitic avian eggshell provides physical protection for the embryo during its development, but also regulates water and gaseous exchange, and is a calcium source for bone mineralization. The calcified eggshell has been extensively investigated in the chicken. It is characterized by an inventory of more than 900 matrix proteins. In addition to proteins involved in shell mineralization and regulation of its microstructure, the shell also contains numerous antimicrobial proteins and peptides (AMPPs) including lectin-like proteins, Bacterial Permeability Increasing/Lipopolysaccharide Binding Protein/PLUNC family proteins, defensins, antiproteases, and chelators, which contribute to the innate immune protection of the egg. In parallel, some of these proteins are thought to be crucial determinants of the eggshell texture and its resulting mechanical properties. During the progressive solubilization of the inner mineralized eggshell during embryonic development (to provide calcium to the embryo), some antimicrobials may be released simultaneously to reinforce egg defense and protect the egg from contamination by external pathogens, through a weakened eggshell. This review provides a comprehensive overview of the diversity of avian eggshell AMPPs, their three-dimensional structures and their mechanism of antimicrobial activity. The published chicken eggshell proteome databases are integrated for a comprehensive inventory of its AMPPs. Their biochemical features, potential dual function as antimicrobials and as regulators of eggshell biomineralization, and their phylogenetic evolution will be described and discussed with regard to their three-dimensional structural characteristics. Finally, the repertoire of chicken eggshell AMPPs are compared to orthologs identified in other avian and non-avian eggshells. This approach sheds light on the similarities and differences exhibited by AMPPs, depending on bird species, and leads to a better understanding of their sequential or dual role in biomineralization and innate immunity.
Collapse
Affiliation(s)
- Thierry Moreau
- INRAE, Université de Tours, BOA, Nouzilly, France
- *Correspondence: Nicolas Guyot, ; Thierry Moreau,
| | - Joël Gautron
- INRAE, Université de Tours, BOA, Nouzilly, France
| | - Maxwell T. Hincke
- Department of Innovation in Medical Education, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Philippe Monget
- INRAE, CNRS, IFCE, Université de Tours, PRC, Nouzilly, France
| | | | - Nicolas Guyot
- INRAE, Université de Tours, BOA, Nouzilly, France
- *Correspondence: Nicolas Guyot, ; Thierry Moreau,
| |
Collapse
|
8
|
Nishihara A, Morimoto N, Sumiyoshi T, Yasumoto S, Kondo M, Kono T, Sakai M, Hikima JI. Inhibition of lysozyme lytic activity by Ivy derived from Photobacterium damselae subsp. piscicida. FISH & SHELLFISH IMMUNOLOGY 2022; 124:280-288. [PMID: 35421575 DOI: 10.1016/j.fsi.2022.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
A pseudotuberculosis pathogen, Photobacterium damselae subsp. piscicida (Pdp), has caused enormous economic damage to yellowtail aquaculture in Japan. The Ivy gene has been discovered in plasmid of Pdp, and it has been proposed that it may help bacteria evade lysozyme-mediated lysis during interaction with an animal host. However, the lysozyme-inhibiting activity of Pdp-derived Ivy (Ivy-Pdp) is unknown, and it is unclear whether it acts as a virulence factor for host biophylaxis. In this study, the inhibitory effect of Ivy-Pdp on lysozyme was evaluated by expressing and purifying the recombinant Ivy-Pdp protein (rIvy-Pdp). The rIvy-Pdp protein inhibited hen egg white lysozyme activity in an rIvy-Pdp-concentration-dependent manner, and its inhibitory effect was similar under different temperature and pH conditions. The serum and skin mucus of the yellowtail (which is the host species of Pdp), Japanese flounder, and Nile tilapia showed bacteriolytic activity. In contrast, the addition of rIvy-Pdp inhibited the lytic activity in the serum of these fish species. In particular, it significantly inhibited lytic activity in the serum and skin mucus of Nile tilapia. On the basis of these results, we suggest that Ivy-Pdp is a temperature- and pH-stable lysozyme inhibitor. Additionally, Ivy-Pdp inhibited the lytic activity of lysozyme, which is involved in host biophylaxis. In summary, we inferred that Ivy-Pdp is an important factor that diminishes the sterilization ability of C-type lysozyme when Pdp infects the host.
Collapse
Affiliation(s)
- Aki Nishihara
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Natsuki Morimoto
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Takechiyo Sumiyoshi
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Shinya Yasumoto
- Department of Applied Aquabiology, National Fisheries University, Japan Fisheries Research and Education Agency, Yamaguchi 759-6595, Japan
| | - Masakazu Kondo
- Department of Applied Aquabiology, National Fisheries University, Japan Fisheries Research and Education Agency, Yamaguchi 759-6595, Japan
| | - Tomoya Kono
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Masahiro Sakai
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Jun-Ichi Hikima
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan.
| |
Collapse
|
9
|
Hyun Y, Baek Y, Lee C, Ki N, Ahn J, Ryu S, Ha NC. Structure and Function of the Autolysin SagA in the Type IV Secretion System of Brucella abortus. Mol Cells 2021; 44:517-528. [PMID: 34112742 PMCID: PMC8334348 DOI: 10.14348/molcells.2021.0011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 11/27/2022] Open
Abstract
A recent genetic study with Brucella abortus revealed the secretion activator gene A (SagA) as an autolysin component creating pores in the peptidoglycan (PGN) layer for the type IV secretion system (T4SS) and peptidoglycan hydrolase inhibitor A (PhiA) as an inhibitor of SagA. In this study, we determined the crystal structures of both SagA and PhiA. Notably, the SagA structure contained a PGN fragment in a space between the N- and C-terminal domains, showing the substrate-dependent hinge motion of the domains. The purified SagA fully hydrolyzed the meso-diaminopimelic acid (DAP)-type PGN, showing a higher activity than hen egg-white lysozyme. The PhiA protein exhibiting tetrameric assembly failed to inhibit SagA activity in our experiments. Our findings provide implications for the molecular basis of the SagA-PhiA system of B. abortus. The development of inhibitors of SagA would further contribute to controlling brucellosis by attenuating the function of T4SS, the major virulence factor of Brucella.
Collapse
Affiliation(s)
- Yongseong Hyun
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Center for Food and Bioconvergence, CALS, Seoul National University, Seoul 08826, Korea
| | - Yeongjin Baek
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Center for Food and Bioconvergence, CALS, Seoul National University, Seoul 08826, Korea
| | - Chanyoung Lee
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Center for Food and Bioconvergence, CALS, Seoul National University, Seoul 08826, Korea
| | - Nayeon Ki
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Center for Food and Bioconvergence, CALS, Seoul National University, Seoul 08826, Korea
| | - Jinsook Ahn
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Center for Food and Bioconvergence, CALS, Seoul National University, Seoul 08826, Korea
| | - Sangryeol Ryu
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Center for Food and Bioconvergence, CALS, Seoul National University, Seoul 08826, Korea
| | - Nam-Chul Ha
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Center for Food and Bioconvergence, CALS, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
10
|
Malekian N, Al-Fatlawi A, Berendonk TU, Schroeder M. Mutations in bdcA and valS Correlate with Quinolone Resistance in Wastewater Escherichia coli. Int J Mol Sci 2021; 22:ijms22116063. [PMID: 34199768 PMCID: PMC8200043 DOI: 10.3390/ijms22116063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 11/16/2022] Open
Abstract
Single mutations can confer resistance to antibiotics. Identifying such mutations can help to develop and improve drugs. Here, we systematically screen for candidate quinolone resistance-conferring mutations. We sequenced highly diverse wastewater E. coli and performed a genome-wide association study (GWAS) to determine associations between over 200,000 mutations and quinolone resistance phenotypes. We uncovered 13 statistically significant mutations including 1 located at the active site of the biofilm dispersal gene bdcA and 6 silent mutations in the aminoacyl-tRNA synthetase valS. The study also recovered the known mutations in the topoisomerases gyrase (gyrA) and topoisomerase IV (parC). In summary, we demonstrate that GWAS effectively and comprehensively identifies resistance mutations without a priori knowledge of targets and mode of action. The results suggest that mutations in the bdcA and valS genes, which are involved in biofilm dispersal and translation, may lead to novel resistance mechanisms.
Collapse
Affiliation(s)
- Negin Malekian
- Biotechnology Center (BIOTEC), Dresden University of Technology, Tatzberg 47-49, 01307 Dresden, Germany; (N.M.); (A.A.-F.)
| | - Ali Al-Fatlawi
- Biotechnology Center (BIOTEC), Dresden University of Technology, Tatzberg 47-49, 01307 Dresden, Germany; (N.M.); (A.A.-F.)
| | - Thomas U. Berendonk
- Institute of Hydrobiology, Dresden University of Technology, 01217 Dresden, Germany;
| | - Michael Schroeder
- Biotechnology Center (BIOTEC), Dresden University of Technology, Tatzberg 47-49, 01307 Dresden, Germany; (N.M.); (A.A.-F.)
- Correspondence:
| |
Collapse
|
11
|
Ezaj MMA, Haque MS, Syed SB, Khan MSA, Ahmed KR, Khatun MT, Nayeem SMA, Rizvi GR, Al-Forkan M, Khaleda L. Comparative proteomic analysis to annotate the structural and functional association of the hypothetical proteins of S. maltophilia k279a and predict potential T and B cell targets for vaccination. PLoS One 2021; 16:e0252295. [PMID: 34043709 PMCID: PMC8159010 DOI: 10.1371/journal.pone.0252295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 05/07/2021] [Indexed: 11/18/2022] Open
Abstract
Stenotrophomonas maltophilia is a multidrug-resistant bacterium with no precise clinical treatment. This bacterium can be a vital cause for death and different organ failures in immune-compromised, immune-competent, and long-time hospitalized patients. Extensive quorum sensing capability has become a challenge to develop new drugs against this pathogen. Moreover, the organism possesses about 789 proteins which function, structure, and pathogenesis remain obscured. In this piece of work, we tried to enlighten the aforementioned sectors using highly reliable bioinformatics tools validated by the scientific community. At first, the whole proteome sequence of the organism was retrieved and stored. Then we separated the hypothetical proteins and searched for the conserved domain with a high confidence level and multi-server validation, which resulted in 24 such proteins. Furthermore, all of their physical and chemical characterizations were performed, such as theoretical isoelectric point, molecular weight, GRAVY value, and many more. Besides, the subcellular localization, protein-protein interactions, functional motifs, 3D structures, antigenicity, and virulence factors were also evaluated. As an extension of this work, 'RTFAMSSER' and 'PAAPQPSAS' were predicted as potential T and B cell epitopes, respectively. We hope our findings will help in better understating the pathogenesis and smoothen the way to the cure.
Collapse
Affiliation(s)
- Md. Muzahid Ahmed Ezaj
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
- Reverse Vaccinology Research Division, Advanced Bioinformatics, Computational Biology and Data Science Laboratory, Chittagong, Bangladesh
| | - Md. Sajedul Haque
- Department of Chemistry, Faculty of Science, University of Chittagong, Chattogram, Bangladesh
| | - Shifath Bin Syed
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Md. Shakil Ahmed Khan
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Kazi Rejvee Ahmed
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Mst. Tania Khatun
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - S. M. Abdul Nayeem
- Reverse Vaccinology Research Division, Advanced Bioinformatics, Computational Biology and Data Science Laboratory, Chittagong, Bangladesh
- Department of Chemistry, Faculty of Science, University of Chittagong, Chattogram, Bangladesh
| | - Golam Rosul Rizvi
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Mohammad Al-Forkan
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Laila Khaleda
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| |
Collapse
|
12
|
Shi K, Oakland JT, Kurniawan F, Moeller NH, Banerjee S, Aihara H. Structural basis of superinfection exclusion by bacteriophage T4 Spackle. Commun Biol 2020; 3:691. [PMID: 33214665 PMCID: PMC7677548 DOI: 10.1038/s42003-020-01412-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/22/2020] [Indexed: 01/21/2023] Open
Abstract
A bacterial cell infected with T4 phage rapidly establishes resistance against further infections by the same or closely related T-even-type bacteriophages – a phenomenon called superinfection exclusion. Here we show that one of the T4 early gene products and a periplasmic protein, Spackle, forms a stoichiometric complex with the lysozyme domain of T4 tail spike protein gp5 and potently inhibits its activity. Crystal structure of the Spackle-gp5 lysozyme complex shows that Spackle binds to a horseshoe-shaped basic patch surrounding the oligosaccharide-binding cleft and induces an allosteric conformational change of the active site. In contrast, Spackle does not appreciably inhibit the lysozyme activity of cytoplasmic T4 endolysin responsible for cell lysis to release progeny phage particles at the final step of the lytic cycle. Our work reveals a unique mode of inhibition for lysozymes, a widespread class of enzymes in biology, and provides a mechanistic understanding of the T4 bacteriophage superinfection exclusion. Ke Shi et al. perform a structural and biochemical characterization of the complex formed between Spackle, an early gene product of T4 and the gp5 lysozyme located in the tail of T4, thereby revealing a new mode of inhibition of the well-known lysozyme enzyme. This study provides structural insight into the phenomenon of superinfection exclusion, phenomenon by which bacterial cells infected with a T4 phage become resistant to secondary infections by the same or closely related phages.
Collapse
Affiliation(s)
- Ke Shi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church Street S.E., Minneapolis, MN, 55455, USA.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Justin T Oakland
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church Street S.E., Minneapolis, MN, 55455, USA.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Fredy Kurniawan
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church Street S.E., Minneapolis, MN, 55455, USA.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Nicholas H Moeller
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church Street S.E., Minneapolis, MN, 55455, USA.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Surajit Banerjee
- Northeastern Collaborative Access Team, Cornell University, Advanced Photon Source, Lemont, IL, 60439, USA
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church Street S.E., Minneapolis, MN, 55455, USA. .,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
13
|
Shi K, Kurniawan F, Banerjee S, Moeller NH, Aihara H. Crystal structure of bacteriophage T4 Spackle as determined by native SAD phasing. Acta Crystallogr D Struct Biol 2020; 76:899-904. [PMID: 32876065 PMCID: PMC7466748 DOI: 10.1107/s2059798320010979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 08/10/2020] [Indexed: 05/05/2023] Open
Abstract
The crystal structure of a bacteriophage T4 early gene product, Spackle, was determined by native sulfur single-wavelength anomalous diffraction (SAD) phasing using synchrotron radiation and was refined to 1.52 Å resolution. The structure shows that Spackle consists of a bundle of five α-helices, forming a relatively flat disc-like overall shape. Although Spackle forms a dimer in the crystal, size-exclusion chromatography with multi-angle light scattering shows that it is monomeric in solution. Mass spectrometry confirms that purified mature Spackle lacks the amino-terminal signal peptide and contains an intramolecular disulfide bond, consistent with its proposed role in the periplasm of T4 phage-infected Escherichia coli cells. The surface electrostatic potential of Spackle shows a strikingly bipolar charge distribution, suggesting a possible mode of membrane association and inhibition of the tail lysozyme activity in T4 bacteriophage superinfection exclusion.
Collapse
Affiliation(s)
- Ke Shi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Fredy Kurniawan
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Surajit Banerjee
- Northeastern Collaborative Access Team, Cornell University, Advanced Photon Source, Lemont, IL 60439, USA
| | - Nicholas H. Moeller
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
14
|
Nolasco E, Guha S, Majumder K. Bioactive Egg Proteins. EGGS AS FUNCTIONAL FOODS AND NUTRACEUTICALS FOR HUMAN HEALTH 2019. [DOI: 10.1039/9781788013833-00223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The nutritional excellence of chicken egg is derived from its task as a life-giving medium, supplying the necessary nutrients to the hen's embryo while protecting it from external threats. Additionally, egg proteins possess unique biological activities above and beyond their known functional and nutritional roles. In the last few decades, extensive research has been done to evaluate the various biological activities of egg proteins and protein-derived peptides. Egg proteins and protein-derived peptides have been attributed to diverse biological activities, the most well-known being their antimicrobial properties. However, egg proteins and peptides have been shown to have other biological activities, such as antihypertensive, antioxidant, anticancer, immunomodulatory, and protease inhibitory activity. Egg-derived bioactive proteins have had a relevant scientific impact and exhibit promising applicability as an ingredient for the development of functional foods and nutraceuticals. However, it is critical to understand the effects of these proteins in signaling pathways to delineate their molecular mechanisms of action. Further studies are required to fill the current knowledge gaps. Therefore, the purpose of the chapter is to illustrate the present knowledge of the bioactivity of different egg proteins and their physiological effects.
Collapse
Affiliation(s)
- Emerson Nolasco
- University of Nebraska-Lincoln, Department of Food Science and Technology 1901 N 21 St Lincoln NE 68588-6205 USA
| | - Snigdha Guha
- University of Nebraska-Lincoln, Department of Food Science and Technology 1901 N 21 St Lincoln NE 68588-6205 USA
| | - Kaustav Majumder
- University of Nebraska-Lincoln, Department of Food Science and Technology 1901 N 21 St Lincoln NE 68588-6205 USA
| |
Collapse
|
15
|
Athreya AG, Shareef MI, Gopinath SM. Antibacterial Activity of Silver Nanoparticles Isolated from Cow’s Milk, Hen’s Egg White and Lysozyme: A Comparative Study. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2018. [DOI: 10.1007/s13369-018-3685-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Bonomi M, Hanot S, Greenberg CH, Sali A, Nilges M, Vendruscolo M, Pellarin R. Bayesian Weighing of Electron Cryo-Microscopy Data for Integrative Structural Modeling. Structure 2018; 27:175-188.e6. [PMID: 30393052 DOI: 10.1016/j.str.2018.09.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 08/07/2018] [Accepted: 09/19/2018] [Indexed: 10/28/2022]
Abstract
Cryo-electron microscopy (cryo-EM) has become a mainstream technique for determining the structures of complex biological systems. However, accurate integrative structural modeling has been hampered by the challenges in objectively weighing cryo-EM data against other sources of information due to the presence of random and systematic errors, as well as correlations, in the data. To address these challenges, we introduce a Bayesian scoring function that efficiently and accurately ranks alternative structural models of a macromolecular system based on their consistency with a cryo-EM density map as well as other experimental and prior information. The accuracy of this approach is benchmarked using complexes of known structure and illustrated in three applications: the structural determination of the GroEL/GroES, RNA polymerase II, and exosome complexes. The approach is implemented in the open-source Integrative Modeling Platform (http://integrativemodeling.org), thus enabling integrative structure determination by combining cryo-EM data with other sources of information.
Collapse
Affiliation(s)
| | - Samuel Hanot
- Institut Pasteur, Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, CNRS UMR 3528, C3BI USR 3756 CNRS & IP, Paris, France
| | - Charles H Greenberg
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Sciences, and California Institute for Quantitative Biomedical Sciences, University of California, San Francisco, CA 94158, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Sciences, and California Institute for Quantitative Biomedical Sciences, University of California, San Francisco, CA 94158, USA
| | - Michael Nilges
- Institut Pasteur, Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, CNRS UMR 3528, C3BI USR 3756 CNRS & IP, Paris, France
| | | | - Riccardo Pellarin
- Institut Pasteur, Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, CNRS UMR 3528, C3BI USR 3756 CNRS & IP, Paris, France.
| |
Collapse
|
17
|
Ragland SA, Humbert MV, Christodoulides M, Criss AK. Neisseria gonorrhoeae employs two protein inhibitors to evade killing by human lysozyme. PLoS Pathog 2018; 14:e1007080. [PMID: 29975775 PMCID: PMC6033460 DOI: 10.1371/journal.ppat.1007080] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/08/2018] [Indexed: 12/25/2022] Open
Abstract
The bacterial pathogen Neisseria gonorrhoeae (Gc) infects mucosal sites rich in antimicrobial proteins, including the bacterial cell wall-degrading enzyme lysozyme. Certain Gram-negative bacteria produce protein inhibitors that bind to and inhibit lysozyme. Here, we identify Ng_1063 as a new inhibitor of lysozyme in Gc, and we define its functions in light of a second, recently identified lysozyme inhibitor, Ng_1981. In silico analyses indicated that Ng_1063 bears sequence and structural homology to MliC-type inhibitors of lysozyme. Recombinant Ng_1063 inhibited lysozyme-mediated killing of a susceptible mutant of Gc and the lysozyme-sensitive bacterium Micrococcus luteus. This inhibitory activity was dependent on serine 83 and lysine 103 of Ng_1063, which are predicted to interact with lysozyme’s active site residues. Lysozyme co-immunoprecipitated with Ng_1063 and Ng_1981 from intact Gc. Ng_1063 and Ng_1981 protein levels were also increased in Gc exposed to lysozyme. Gc lacking both ng1063 and ng1981 was significantly more sensitive to killing by lysozyme than wild-type or single mutant bacteria. When exposed to human tears or saliva, in which lysozyme is abundant, survival of Δ1981Δ1063 Gc was significantly reduced compared to wild-type, and survival was restored upon addition of recombinant Ng_1981. Δ1981Δ1063 mutant Gc survival was additionally reduced in the presence of human neutrophils, which produce lysozyme. We found that while Ng_1063 was exposed on the surface of Gc, Ng_1981 was both in an intracellular pool and extracellularly released from the bacteria, suggesting that Gc employs these two proteins at multiple spatial barriers to fully neutralize lysozyme activity. Together, these findings identify Ng_1063 and Ng_1981 as critical components for Gc defense against lysozyme. These proteins may be attractive targets for antimicrobial therapy aimed to render Gc susceptible to host defenses and/or for vaccine development, both of which are urgently needed against drug-resistant gonorrhea. The mucosal pathogen Neisseria gonorrhoeae has acquired resistance to almost all recommended antibiotics, and no gonorrhea vaccine currently exists. Attractive targets for therapeutic discovery include bacterial factors that, when inactivated, enhance bacterial susceptibility to host-derived antimicrobial components. The bacterial cell wall-degrading enzyme lysozyme is abundant in mucosal secretions and innate immune cells. To resist killing by lysozyme, some bacteria produce proteins that bind to and directly inhibit the activity of lysozyme. Here, we demonstrate lysozyme inhibitory activity in the N. gonorrhoeae protein Ng_1063. We found that both Ng_1063 and a second, recently described lysozyme inhibitor, Ng_1981, contribute to full resistance of N. gonorrhoeae to lysozyme, including resistance to lysozyme-rich mucosal secretions and human neutrophils. Although Ng_1063 and Ng_1981 are both inhibitors of lysozyme, they are distinct in their sequences, biological activities, and cellular localizations. Because both Ng_1063 and Ng_1981 are extracellular, we propose they can be targeted for vaccines and drugs that sensitize Gc to human antimicrobial defenses.
Collapse
Affiliation(s)
- Stephanie A. Ragland
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Marίa V. Humbert
- Neisseria Research, Molecular Microbiology, Academic Unit of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Myron Christodoulides
- Neisseria Research, Molecular Microbiology, Academic Unit of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
18
|
Abstract
Lysozyme is a cornerstone of innate immunity. The canonical mechanism for bacterial killing by lysozyme occurs through the hydrolysis of cell wall peptidoglycan (PG). Conventional type (c-type) lysozymes are also highly cationic and can kill certain bacteria independently of PG hydrolytic activity. Reflecting the ongoing arms race between host and invading microorganisms, both gram-positive and gram-negative bacteria have evolved mechanisms to thwart killing by lysozyme. In addition to its direct antimicrobial role, more recent evidence has shown that lysozyme modulates the host immune response to infection. The degradation and lysis of bacteria by lysozyme enhance the release of bacterial products, including PG, that activate pattern recognition receptors in host cells. Yet paradoxically, lysozyme is important for the resolution of inflammation at mucosal sites. This review will highlight recent advances in our understanding of the diverse mechanisms that bacteria use to protect themselves against lysozyme, the intriguing immunomodulatory function of lysozyme, and the relationship between these features in the context of infection.
Collapse
Affiliation(s)
- Stephanie A. Ragland
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
19
|
Targeting the permeability barrier and peptidoglycan recycling pathways to disarm Pseudomonas aeruginosa against the innate immune system. PLoS One 2017; 12:e0181932. [PMID: 28742861 PMCID: PMC5526577 DOI: 10.1371/journal.pone.0181932] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/10/2017] [Indexed: 11/19/2022] Open
Abstract
Antimicrobial resistance is a continuously increasing threat that severely compromises our antibiotic arsenal and causes thousands of deaths due to hospital-acquired infections by pathogens such as Pseudomonas aeruginosa, situation further aggravated by the limited development of new antibiotics. Thus, alternative strategies such as those targeting bacterial resistance mechanisms, virulence or potentiating the activity of our immune system resources are urgently needed. We have recently shown that mutations simultaneously causing the peptidoglycan recycling blockage and the β-lactamase AmpC overexpression impair the virulence of P.aeruginosa. These findings suggested that peptidoglycan metabolism might be a good target not only for fighting antibiotic resistance, but also for the attenuation of virulence and/or potentiation of our innate immune weapons. Here we analyzed the activity of the innate immune elements peptidoglycan recognition proteins (PGRPs) and lysozyme against P. aeruginosa. We show that while lysozyme and PGRPs have a very modest basal effect over P. aeruginosa, their bactericidal activity is dramatically increased in the presence of subinhibitory concentrations of the permeabilizing agent colistin. We also show that the P. aeruginosa lysozyme inhibitors seem to play a very residual protective role even in permeabilizing conditions. In contrast, we demonstrate that, once the permeability barrier is overpassed, the activity of lysozyme and PGRPs is dramatically enhanced when inhibiting key peptidoglycan recycling components (such as the 3 AmpDs, AmpG or NagZ), indicating a decisive protective role for cell-wall recycling and that direct peptidoglycan-binding supports, at least partially, the activity of these enzymes. Finally, we show that recycling blockade when occurring simultaneously with AmpC overexpression determines a further decrease in the resistance against PGRP2 and lysozyme, linked to quantitative changes in the cell-wall. Thus, our results help to delineate new strategies against P. aeruginosa infections, simultaneously targeting β–lactam resistance, cell-wall metabolism and virulence, ultimately enhancing the activity of our innate immune weapons.
Collapse
|
20
|
Synthesis of novel muramic acid derivatives and their interaction with lysozyme: Action of lysozyme revisited. J Colloid Interface Sci 2017; 498:395-404. [DOI: 10.1016/j.jcis.2017.03.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/13/2017] [Accepted: 03/13/2017] [Indexed: 12/16/2022]
|
21
|
Transcriptional Responses of Escherichia coli to a Small-Molecule Inhibitor of LolCDE, an Essential Component of the Lipoprotein Transport Pathway. J Bacteriol 2016; 198:3162-3175. [PMID: 27645386 PMCID: PMC5105897 DOI: 10.1128/jb.00502-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/20/2016] [Indexed: 11/20/2022] Open
Abstract
In Gram-negative bacteria, a dedicated machinery consisting of LolABCDE components targets lipoproteins to the outer membrane. We used a previously identified small-molecule inhibitor of the LolCDE complex of Escherichia coli to assess the global transcriptional consequences of interference with lipoprotein transport. Exposure of E. coli to the LolCDE inhibitor at concentrations leading to minimal and significant growth inhibition, followed by transcriptome sequencing, identified a small group of genes whose transcript levels were decreased and a larger group whose mRNA levels increased 10- to 100-fold compared to those of untreated cells. The majority of the genes whose mRNA concentrations were reduced were part of the flagellar assembly pathway, which contains an essential lipoprotein component. Most of the genes whose transcript levels were elevated encode proteins involved in selected cell stress pathways. Many of these genes are involved with envelope stress responses induced by the mislocalization of outer membrane lipoproteins. Although several of the genes whose RNAs were induced have previously been shown to be associated with the general perturbation of the cell envelope by antibiotics, a small subset was affected only by LolCDE inhibition. Findings from this work suggest that the efficiency of the Lol system function may be coupled to a specific monitoring system, which could be exploited in the development of reporter constructs suitable for use for screening for additional inhibitors of lipoprotein trafficking. IMPORTANCE Inhibition of the lipoprotein transport pathway leads to E. coli death and subsequent lysis. Early significant changes in the levels of RNA for a subset of genes identified to be associated with some periplasmic and envelope stress responses were observed. Together these findings suggest that disruption of this key pathway can have a severe impact on balanced outer membrane synthesis sufficient to affect viability.
Collapse
|
22
|
Hastie JL, Williams KB, Bohr LL, Houtman JC, Gakhar L, Ellermeier CD. The Anti-sigma Factor RsiV Is a Bacterial Receptor for Lysozyme: Co-crystal Structure Determination and Demonstration That Binding of Lysozyme to RsiV Is Required for σV Activation. PLoS Genet 2016; 12:e1006287. [PMID: 27602573 PMCID: PMC5014341 DOI: 10.1371/journal.pgen.1006287] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/09/2016] [Indexed: 01/25/2023] Open
Abstract
σ factors provide RNA polymerase with promoter specificity in bacteria. Some σ factors require activation in order to interact with RNA polymerase and transcribe target genes. The Extra-Cytoplasmic Function (ECF) σ factor, σV, is encoded by several Gram-positive bacteria and is specifically activated by lysozyme. This activation requires the proteolytic destruction of the anti-σ factor RsiV via a process of regulated intramembrane proteolysis (RIP). In many cases proteases that cleave at site-1 are thought to directly sense a signal and initiate the RIP process. We previously suggested binding of lysozyme to RsiV initiated the proteolytic destruction of RsiV and activation of σV. Here we determined the X-ray crystal structure of the RsiV-lysozyme complex at 2.3 Å which revealed that RsiV and lysozyme make extensive contacts. We constructed RsiV mutants with altered abilities to bind lysozyme. We find that mutants that are unable to bind lysozyme block site-1 cleavage of RsiV and σV activation in response to lysozyme. Taken together these data demonstrate that RsiV is a receptor for lysozyme and binding of RsiV to lysozyme is required for σV activation. In addition, the co-structure revealed that RsiV binds to the lysozyme active site pocket. We provide evidence that in addition to acting as a sensor for the presence of lysozyme, RsiV also inhibits lysozyme activity. Thus we have demonstrated that RsiV is a protein with multiple functions. RsiV inhibits σV activity in the absence of lysozyme, RsiV binds lysozyme triggering σV activation and RsiV inhibits the enzymatic activity of lysozyme. The exposed cell wall of Gram-positive bacteria renders them particularly susceptible to the innate immune defense enzyme lysozyme. Several Gram-positive bacteria activate lysozyme resistance via a signal transduction system, σV, which is induced by lysozyme. Here we report the co-structure of lysozyme with its bacterial receptor the anti-σ factor RsiV. In the absence of lysozyme, RsiV inhibits activity of σV. In the presence of lysozyme, RsiV is destroyed via proteolytic cascade. We demonstrate that binding of lysozyme to RsiV triggers the proteolytic destruction of the anti-σ factor RsiV and thus activation of σV. In addition, we demonstrate that RsiV also acts as an inhibitor of lysozyme activity. Thus, the anti-σ factor RsiV allows for the cell to sense lysozyme and inhibit its activity as well as inducing additional lysozyme resistance mechanisms.
Collapse
Affiliation(s)
- Jessica L. Hastie
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Kyle B. Williams
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Lindsey L. Bohr
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Jon C. Houtman
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Lokesh Gakhar
- Department of Biochemistry & Protein Crystallography Facility, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Craig D. Ellermeier
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
23
|
Nguyen LT, Vogel HJ. Staphylokinase has distinct modes of interaction with antimicrobial peptides, modulating its plasminogen-activation properties. Sci Rep 2016; 6:31817. [PMID: 27554435 PMCID: PMC4995489 DOI: 10.1038/srep31817] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/25/2016] [Indexed: 11/09/2022] Open
Abstract
Staphylokinase (Sak) is a plasminogen activator protein that is secreted by many Staphylococcus aureus strains. Sak also offers protection by binding and inhibiting specific antimicrobial peptides (AMPs). Here, we evaluate Sak as a more general interaction partner for AMPs. Studies with melittin, mCRAMP, tritrpticin and bovine lactoferricin indicate that the truncation of the first ten residues of Sak (SakΔN10), which occurs in vivo and uncovers important residues in a bulge region, improves its affinity for AMPs. Melittin and mCRAMP have a lower affinity for SakΔN10, and in docking studies, they bind to the N-terminal segment and bulge region of SakΔN10. By comparison, lactoferricin and tritrpticin form moderately high affinity 1:1 complexes with SakΔN10 and their cationic residues form several electrostatic interactions with the protein's α-helix. Overall, our work identifies two distinct AMP binding surfaces on SakΔN10 whose occupation would lead to either inhibition or promotion of its plasminogen activating properties.
Collapse
Affiliation(s)
- Leonard T Nguyen
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Hans J Vogel
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
24
|
Melo R, Fieldhouse R, Melo A, Correia JDG, Cordeiro MNDS, Gümüş ZH, Costa J, Bonvin AMJJ, Moreira IS. A Machine Learning Approach for Hot-Spot Detection at Protein-Protein Interfaces. Int J Mol Sci 2016; 17:E1215. [PMID: 27472327 PMCID: PMC5000613 DOI: 10.3390/ijms17081215] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/11/2016] [Accepted: 07/18/2016] [Indexed: 12/17/2022] Open
Abstract
Understanding protein-protein interactions is a key challenge in biochemistry. In this work, we describe a more accurate methodology to predict Hot-Spots (HS) in protein-protein interfaces from their native complex structure compared to previous published Machine Learning (ML) techniques. Our model is trained on a large number of complexes and on a significantly larger number of different structural- and evolutionary sequence-based features. In particular, we added interface size, type of interaction between residues at the interface of the complex, number of different types of residues at the interface and the Position-Specific Scoring Matrix (PSSM), for a total of 79 features. We used twenty-seven algorithms from a simple linear-based function to support-vector machine models with different cost functions. The best model was achieved by the use of the conditional inference random forest (c-forest) algorithm with a dataset pre-processed by the normalization of features and with up-sampling of the minor class. The method has an overall accuracy of 0.80, an F1-score of 0.73, a sensitivity of 0.76 and a specificity of 0.82 for the independent test set.
Collapse
Affiliation(s)
- Rita Melo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (ao km 139,7), 2695-066 Bobadela LRS, Portugal.
- CNC-Center for Neuroscience and Cell Biology; Rua Larga, Faculdade de Medicina, Polo I, 1ºandar, Universidade de Coimbra, 3004-504 Coimbra, Portugal.
| | - Robert Fieldhouse
- Department of Genetics and Genomics and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - André Melo
- REQUIMTE (Rede de Química e Tecnologia), Faculdade de Ciências da Universidade do Porto, Departamento de Química e Bioquímica, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| | - João D G Correia
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (ao km 139,7), 2695-066 Bobadela LRS, Portugal.
| | - Maria Natália D S Cordeiro
- REQUIMTE (Rede de Química e Tecnologia), Faculdade de Ciências da Universidade do Porto, Departamento de Química e Bioquímica, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| | - Zeynep H Gümüş
- Department of Genetics and Genomics and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Joaquim Costa
- CMUP/FCUP, Centro de Matemática da Universidade do Porto, Faculdade de Ciências, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| | - Alexandre M J J Bonvin
- Bijvoet Center for Biomolecular Research, Faculty of Science-Chemistry, Utrecht University, Utrecht 3584CH, The Netherlands.
| | - Irina S Moreira
- CNC-Center for Neuroscience and Cell Biology; Rua Larga, Faculdade de Medicina, Polo I, 1ºandar, Universidade de Coimbra, 3004-504 Coimbra, Portugal.
- Bijvoet Center for Biomolecular Research, Faculty of Science-Chemistry, Utrecht University, Utrecht 3584CH, The Netherlands.
| |
Collapse
|
25
|
Hurst MRH, Beattie A, Altermann E, Moraga RM, Harper LA, Calder J, Laugraud A. The Draft Genome Sequence of the Yersinia entomophaga Entomopathogenic Type Strain MH96T. Toxins (Basel) 2016; 8:toxins8050143. [PMID: 27187466 PMCID: PMC4885058 DOI: 10.3390/toxins8050143] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/21/2016] [Accepted: 04/26/2016] [Indexed: 01/28/2023] Open
Abstract
Here we report the draft genome of Yersinia entomophaga type strain MH96T. The genome shows 93.8% nucleotide sequence identity to that of Yersinia nurmii type strain APN3a-cT, and comprises a single chromosome of approximately 4,275,531 bp. In silico analysis identified that, in addition to the previously documented Y. entomophaga Yen-TC gene cluster, the genome encodes a diverse array of toxins, including two type III secretion systems, and five rhs-associated gene clusters. As well as these multicomponent systems, several orthologs of known insect toxins, such as VIP2 toxin and the binary toxin PirAB, and distant orthologs of some mammalian toxins, including repeats-in-toxin, a cytolethal distending toxin, hemolysin-like genes and an adenylate cyclase were identified. The genome also contains a large number of hypothetical proteins and orthologs of known effector proteins, such as LopT, as well as genes encoding a wide range of proteolytic determinants, including metalloproteases and pathogen fitness determinants, such as genes involved in iron metabolism. The bioinformatic data derived from the current in silico analysis, along with previous information on the pathobiology of Y. entomophaga against its insect hosts, suggests that a number of these virulence systems are required for survival in the hemocoel and incapacitation of the insect host.
Collapse
Affiliation(s)
- Mark R H Hurst
- AgResearch, Farm Systems & Environment, Lincoln Research Centre, Christchurch 8140, New Zealand.
| | - Amy Beattie
- AgResearch, Farm Systems & Environment, Lincoln Research Centre, Christchurch 8140, New Zealand.
| | - Eric Altermann
- AgResearch Limited, Rumen Microbiology, Palmerston North 4474, New Zealand.
- Riddet Institute, Massey University, Palmerston North 4474, New Zealand.
| | - Roger M Moraga
- AgResearch Limited, Bioinformatics & Statistics, Hamilton 3214, New Zealand.
| | - Lincoln A Harper
- AgResearch, Farm Systems & Environment, Lincoln Research Centre, Christchurch 8140, New Zealand.
| | - Joanne Calder
- AgResearch, Farm Systems & Environment, Lincoln Research Centre, Christchurch 8140, New Zealand.
| | - Aurelie Laugraud
- AgResearch Limited, Bioinformatics & Statistics, Lincoln Research Centre, Christchurch 8140, New Zealand.
| |
Collapse
|
26
|
Lennon CW, Thamsen M, Friman ET, Cacciaglia A, Sachsenhauser V, Sorgenfrei FA, Wasik MA, Bardwell JCA. Folding Optimization In Vivo Uncovers New Chaperones. J Mol Biol 2015; 427:2983-94. [PMID: 26003922 PMCID: PMC4569523 DOI: 10.1016/j.jmb.2015.05.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/22/2015] [Accepted: 05/10/2015] [Indexed: 01/08/2023]
Abstract
By employing a genetic selection that forces the cell to fold an unstable, aggregation-prone test protein in order to survive, we have generated bacterial strains with enhanced periplasmic folding capacity. These strains enhance the soluble steady-state level of the test protein. Most of the bacterial variants we isolated were found to overexpress one or more periplasmic proteins including OsmY, Ivy, DppA, OppA, and HdeB. Of these proteins, only HdeB has convincingly been previously shown to function as chaperone in vivo. By giving bacteria the stark choice between death and stabilizing a poorly folded protein, we have now generated designer bacteria selected for their ability to stabilize specific proteins.
Collapse
Affiliation(s)
- Christopher W Lennon
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Maike Thamsen
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Elias T Friman
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Austin Cacciaglia
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Veronika Sachsenhauser
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Frieda A Sorgenfrei
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Milena A Wasik
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - James C A Bardwell
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
27
|
Javůrková V, Krkavcová E, Kreisinger J, Hyršl P, Hyánková L. Effects of experimentally increased in ovo lysozyme on egg hatchability, chicks complement activity, and phenotype in a precocial bird. ACTA ACUST UNITED AC 2015. [PMID: 26205223 DOI: 10.1002/jez.1935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In birds, spectrum of egg white proteins deposited into the egg during its formation are thought to be essential maternal effects. Particularly, egg white lysozyme (LSM), exhibiting great between and within species variability, is considered to be essential for developing avian embryos due to its physiological, antimicrobial, and innate immune defense functions. However, there have been few studies investigating effects of LSM on early post-hatching phenotype, despite its broad physiological and protective role during embryogenesis. Here, we test how experimentally increased concentrations of egg white LSM affect hatchability in Japanese quail (Coturnix japonica) and chick phenotype immediately after hatching (particularly body weight, tarsus length, plasma LSM concentration, and plasma complement activity). Chicks from eggs with increased LSM concentration displayed reduced tarsus length compared to chicks from control eggs while hatchability, body weight and plasma LSM concentration were unaffected. It is worth noting that no effect of increased in ovo lysozyme on eggs hatchability could be related to pathogen-free environment during artificial incubation of experimental eggs causing minimal pressure on embryo viability. While tangible in vivo mechanisms during avian embryogenesis remain to be tested, our study is the first to document experimentally that egg white LSM appears to have growth-regulation role during embryo development, with possible underlying phenotypic consequences in the early post-hatching period in precocial birds.
Collapse
Affiliation(s)
- Veronika Javůrková
- Department of Zoology, Biodiversity Research Group, Faculty of Science, Charles University in Prague, Prague 2, Czech Republic.,The Czech Academy of Sciences, Institute of Vertebrate Biology v.v.i., Brno, Czech Republic
| | - Eva Krkavcová
- Department of Zoology, Biodiversity Research Group, Faculty of Science, Charles University in Prague, Prague 2, Czech Republic
| | - Jakub Kreisinger
- Department of Zoology, Biodiversity Research Group, Faculty of Science, Charles University in Prague, Prague 2, Czech Republic.,Department of Biodiversity and Molecular Ecology, Fondazione Edmund Mach, Research and Innovation Centre, Trentino, Italy
| | - Pavel Hyršl
- Department of Animal Physiology and Immunology, Institute of Experimental Biology, Masaryk University, Brno, Czech Republic
| | - Ludmila Hyánková
- Department of Genetics and breeding of farm animals, Institute of Animal Science, Prague, Czech Republic
| |
Collapse
|
28
|
Dostal SM, Fang Y, Guerrette JC, Scanlon TC, Griswold KE. Genetically enhanced lysozyme evades a pathogen derived inhibitory protein. ACS Chem Biol 2015; 10:1110-7. [PMID: 25607237 DOI: 10.1021/cb500976y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The accelerating spread of drug-resistant bacteria is creating demand for novel antibiotics. Bactericidal enzymes, such as human lysozyme (hLYZ), are interesting drug candidates due to their inherent catalytic nature and lack of susceptibility to the resistance mechanisms typically directed toward chemotherapeutics. However, natural antibacterial enzymes have their own limitations. For example, hLYZ is susceptible to pathogen derived inhibitory proteins, such as Escherichia coli Ivy. Here, we describe proof of concept studies demonstrating that hLYZ can be effectively redesigned to evade this potent lysozyme inhibitor. Large combinatorial libraries of hLYZ were analyzed using an innovative screening platform based on microbial coculture in hydrogel microdroplets. Isolated hLYZ variants were orders of magnitude less susceptible to E. coli Ivy yet retained high catalytic proficiency and inherent antibacterial activity. Interestingly, the engineered escape variants showed a disadvantageous increase in susceptibility to the related Ivy ortholog from Pseudomonas aeruginosa as well as an unrelated E. coli inhibitory protein, MliC. Thus, while we have achieved our original objective with respect to escaping E. coli Ivy, engineering hLYZ for broad-spectrum evasion of proteinaceous inhibitors will require consideration of the complex and varied determinants that underlie molecular recognition by these emerging virulence factors.
Collapse
Affiliation(s)
- Sarah M. Dostal
- Thayer School of Engineering at Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, United States
| | - Yongliang Fang
- Thayer School of Engineering at Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, United States
| | - Jonathan C. Guerrette
- Thayer School of Engineering at Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, United States
| | - Thomas C. Scanlon
- Thayer School of Engineering at Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, United States
| | - Karl E. Griswold
- Thayer School of Engineering at Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, United States
- Program in Molecular and Cellular Biology, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
29
|
Liu Z, García-Díaz B, Catacchio B, Chiancone E, Vogel HJ. Protecting Gram-negative bacterial cell envelopes from human lysozyme: Interactions with Ivy inhibitor proteins from Escherichia coli and Pseudomonas aeruginosa. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:3032-46. [PMID: 25838125 DOI: 10.1016/j.bbamem.2015.03.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/16/2015] [Accepted: 03/24/2015] [Indexed: 11/15/2022]
Abstract
Lysozymes play an important role in host defense by degrading peptidoglycan in the cell envelopes of pathogenic bacteria. Several Gram-negative bacteria can evade this mechanism by producing periplasmic proteins that inhibit the enzymatic activity of lysozyme. The Escherichia coli inhibitor of vertebrate lysozyme, Ivyc and its Pseudomonas aeruginosa homolog, Ivyp1 have been shown to be potent inhibitors of hen egg white lysozyme (HEWL). Since human lysozyme (HL) plays an important role in the innate immune response, we have examined the binding of HL to Ivyc and Ivyp1. Our results show that Ivyp1 is a weaker inhibitor of HL than Ivyc even though they inhibit HEWL with similar potency. Calorimetry experiments confirm that Ivyp1 interacts more weakly with HL than HEWL. Analytical ultracentrifugation studies revealed that Ivyp1 in solution is a monomer and forms a 30kDa heterodimer with both HL and HEWL, while Ivyc is a homodimer that forms a tetramer with both enzymes. The interaction of Ivyp1 with HL was further characterized by NMR chemical shift perturbation experiments. In addition to the characteristic His-containing Ivy inhibitory loop that binds into the active site of lysozyme, an extended loop (P2) between the final two beta-strands also participates in forming protein-protein interactions. The P2 loop is not conserved in Ivyc and it constitutes a flexible region in Ivyp1 that becomes more rigid in the complex with HL. We conclude that differences in the electrostatic interactions at the binding interface between Ivy inhibitors and distinct lysozymes determine the strength of this interaction. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides.
Collapse
Affiliation(s)
- Zhihong Liu
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Beatriz García-Díaz
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Bruno Catacchio
- Dipartimento di Scienze Biochimiche, Istituto di Biologia e Patologia Molecolari CNR, Università Sapienza, P.le A. Moro, 5-00185 Roma, Italy
| | - Emilia Chiancone
- Dipartimento di Scienze Biochimiche, Istituto di Biologia e Patologia Molecolari CNR, Università Sapienza, P.le A. Moro, 5-00185 Roma, Italy
| | - Hans J Vogel
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
30
|
Duffy FJ, Devocelle M, Croucher DR, Shields DC. Computational survey of peptides derived from disulphide-bonded protein loops that may serve as mediators of protein-protein interactions. BMC Bioinformatics 2014; 15:305. [PMID: 25231912 PMCID: PMC4262234 DOI: 10.1186/1471-2105-15-305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 07/17/2014] [Indexed: 01/04/2023] Open
Abstract
Background Bioactive cyclic peptides derived from natural sources are well studied, particularly those derived from non-ribosomal synthetases in fungi or bacteria. Ribosomally synthesised bioactive disulphide-bonded loops represent a large, naturally enriched library of potential bioactive compounds, worthy of systematic investigation. Results We examined the distribution of short cyclic loops on the surface of a large number of proteins, especially membrane or extracellular proteins. Available three-dimensional structures highlighted a number of disulphide-bonded loops responsible for the majority of the likely binding interactions in a variety of protein complexes, due to their location at protein-protein interfaces. We find that disulphide-bonded loops at protein-protein interfaces may, but do not necessarily, show biological activity independent of their parent protein. Examining the conservation of short disulphide bonded loops in proteins, we find a small but significant increase in conservation inside these loops compared to surrounding residues. We identify a subset of these loops that exhibit a high relative conservation, particularly among peptide hormones. Conclusions We conclude that short disulphide-bonded loops are found in a wide variety of biological interactions. They may retain biological activity outside their parent proteins. Such structurally independent peptides may be useful as biologically active templates for the development of novel modulators of protein-protein interactions. Electronic supplementary material The online version of this article (doi:10.1186/1471-2105-15-305) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Denis C Shields
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
31
|
Lu D, Shang G, Zhang H, Yu Q, Cong X, Yuan J, He F, Zhu C, Zhao Y, Yin K, Chen Y, Hu J, Zhang X, Yuan Z, Xu S, Hu W, Cang H, Gu L. Structural insights into the T6SS effector protein Tse3 and the Tse3-Tsi3 complex fromPseudomonas aeruginosareveal a calcium-dependent membrane-binding mechanism. Mol Microbiol 2014; 92:1092-112. [DOI: 10.1111/mmi.12616] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Defen Lu
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 Shandong China
- The Liver Centre of Fujian Province; MengChao Hepatobiliary Hospital of Fujian Medical University; Fuzhou 350025 Fujian China
| | - Guijun Shang
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 Shandong China
| | - Heqiao Zhang
- Institute of Biophysics; Chinese Academy of Sciences; Beijing 100101 China
- School of Life Sciences; Tsinghua University; Beijing 100084 China
| | - Qian Yu
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 Shandong China
| | - Xiaoyan Cong
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 Shandong China
| | - Jupeng Yuan
- Institute of Medical Genetics; Shandong University School of Medicine; Jinan 250012 Shandong China
| | - Fengjuan He
- Institute of Medical Genetics; Shandong University School of Medicine; Jinan 250012 Shandong China
| | - Chunyuan Zhu
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 Shandong China
| | - Yanyu Zhao
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 Shandong China
| | - Kun Yin
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 Shandong China
| | - Yuanyuan Chen
- Institute of Biophysics; Chinese Academy of Sciences; Beijing 100101 China
| | - Junqiang Hu
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 Shandong China
| | - Xiaodan Zhang
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 Shandong China
| | - Zenglin Yuan
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 Shandong China
| | - Sujuan Xu
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 Shandong China
| | - Wei Hu
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 Shandong China
| | - Huaixing Cang
- Institute of Biophysics; Chinese Academy of Sciences; Beijing 100101 China
| | - Lichuan Gu
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 Shandong China
| |
Collapse
|
32
|
Andryushchenko SV, Perunova NB, Bukharin OV. Periplasmic lysozime inhibitior pliC and its role in antilysozime activity of enterobacteria. Microbiology (Reading) 2014. [DOI: 10.1134/s0026261714030047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
33
|
Weber CG, Mueller M, Vandecandelaere N, Trick I, Burger-Kentischer A, Maucher T, Drouet C. Enzyme-functionalized biomimetic apatites: concept and perspectives in view of innovative medical approaches. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:595-606. [PMID: 24258399 DOI: 10.1007/s10856-013-5097-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 11/11/2013] [Indexed: 06/02/2023]
Abstract
Biomimetic nanocrystalline calcium-deficient apatite compounds are particularly attractive for the setup of bioactive bone-repair scaffolds due to their high similarity to bone mineral in terms of chemical composition, structural and substructural features. As such, along with the increasingly appealing development of moderate temperature engineered routes for sample processing, they have widened the armamentarium of orthopedic and maxillofacial surgeons in the field of bone tissue engineering. This was made possible by exploiting the exceptional surface reactivity of biomimetic apatite nanocrystals, capable of easily exchanging ions or adsorbing (bio)molecules, thus leading to highly-versatile drug delivery systems. In this contribution we focus on the preparation of hybrid materials combining biomimetic nanocrystalline apatites and enzymes (lysozyme and subtilisin). This paper reports physico-chemical data as well as cytotoxicity evaluations towards Cal-72 osteoblast-like cells and finally antimicrobial assessments towards selected strains of interest in bone surgery. Biomimetic apatite/enzyme hybrids could be prepared in varying buffers. They were found to be non-cytotoxic toward osteoblastic cells and the enzymes retained their biological activity (e.g. bond cleavage or antibacterial properties) despite the immobilization and drying processes. Release properties were also examined. Beyond these illustrative examples, the concept of biomimetic apatites functionalized with enzymes is thus shown to be useable in practice, e.g. for antimicrobial purposes, thus widening possible therapeutic perspectives.
Collapse
|
34
|
Derde M, Guérin-Dubiard C, Lechevalier V, Cochet MF, Jan S, Baron F, Gautier M, Vié V, Nau F. Dry-heating of lysozyme increases its activity against Escherichia coli membranes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:1692-1700. [PMID: 24450740 DOI: 10.1021/jf405155p] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
For food as well as for medical applications, there is a growing interest in novel and natural antimicrobial molecules. Lysozyme is a promising candidate for the development of such molecules. This protein is largely studied and known for its muramidase activity against Gram-positive bacteria, but it also shows antimicrobial activity against Gram-negative bacteria, especially when previously modified. In this study, the activity of dry-heated lysozyme (DH-L) against Escherichia coli has been investigated and compared to that of native lysozyme (N-L). Whereas N-L only delays bacterial growth, DH-L causes an early-stage population decrease. The accompanying membrane permeabilization suggests that DH-L induces either larger pores or more pores in the outer membrane as compared to N-L, as well as more ion channels in the inner membrane. The strong morphological modifications observed by optical microscopy and atomic force microscopy when E. coli cells are treated with DH-L are consistent with the suggested disturbances of membrane integrity. The higher hydrophobicity, surface activity, and positive charge induced by dry-heating could be responsible for the increased activity of DH-L on the E. coli membranes.
Collapse
Affiliation(s)
- Melanie Derde
- Agrocampus Ouest, UMR1253 Science et technologie du lait et de l'œuf , F-35042 Rennes, France
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Um SH, Kim JS, Kim K, Kim N, Cho HS, Ha NC. Structural basis for the inhibition of human lysozyme by PliC from Brucella abortus. Biochemistry 2013; 52:9385-93. [PMID: 24308818 DOI: 10.1021/bi401241c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lysozymes are the first line of defense for a diverse range of organisms that catalyze the degradation of bacterial peptidoglycan. Gram-negative bacteria produce proteinaceous lysozyme inhibitors to protect themselves from the action of lysozymes. To date, MliC or PliC (membrane-bound or periplasmic inhibitor of c-type lysozyme, respectively) has been found in various Gram-negative bacteria. Here, we report the crystal structures of Brucella abortus PliC and its complex with human c-type lysozyme. The complex structure demonstrates that the invariant loop of MliC/PliC plays a crucial role in the inhibition of lysozyme via its insertion into the active site cleft of the lysozyme, as previously observed in the complex structure of Pseudomonas aeruginosa MliC and chicken c-type lysozyme. We identified a new binding interface between a loop adjacent to the active site of human lysozyme and a loop carrying Glu112 of B. abortus PliC, the structure of which was disordered in P. aeruginosa MliC. Because MliC/PliC family members have been implicated as putative colonization or virulence factors, the structures and mechanism of action of MliC/PliC will be relevant to the control of bacterial growth in animal hosts.
Collapse
Affiliation(s)
- Si-Hyeon Um
- College of Pharmacy and Research Institute for Drug Development, Pusan National University , Busan 609-735, Republic of Korea
| | | | | | | | | | | |
Collapse
|
36
|
Abergel C. Molecular replacement: tricks and treats. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2167-73. [PMID: 24189227 PMCID: PMC3817689 DOI: 10.1107/s0907444913015291] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 06/02/2013] [Indexed: 11/16/2022]
Abstract
Molecular replacement is the method of choice for X-ray crystallographic structure determination provided that suitable structural homologues are available in the PDB. Presently, there are ~80,000 structures in the PDB (8074 were deposited in the year 2012 alone), of which ~70% have been solved by molecular replacement. For successful molecular replacement the model must cover at least 50% of the total structure and the Cα r.m.s.d. between the core model and the structure to be solved must be less than 2 Å. Here, an approach originally implemented in the CaspR server (http://www.igs.cnrs-mrs.fr/Caspr2/index.cgi) based on homology modelling to search for a molecular-replacement solution is discussed. How the use of as much information as possible from different sources can improve the model(s) is briefly described. The combination of structural information with distantly related sequences is crucial to optimize the multiple alignment that will define the boundaries of the core domains. PDB clusters (sequences with ≥30% identical residues) can also provide information on the eventual changes in conformation and will help to explore the relative orientations assumed by protein subdomains. Normal-mode analysis can also help in generating series of conformational models in the search for a molecular-replacement solution. Of course, finding a correct solution is only the first step and the accuracy of the identified solution is as important as the data quality to proceed through refinement. Here, some possible reasons for failure are discussed and solutions are proposed using a set of successful examples.
Collapse
Affiliation(s)
- Chantal Abergel
- Information Génomique et Structurale, IGS UMR 7256, CNRS, Aix-Marseille Université, IMM, FR3479, 163 Avenue de Luminy – case 934, 13288 Marseille CEDEX 09, France
| |
Collapse
|
37
|
Wang C, Hu YH, Sun BG, Li J, Sun L. Edwardsiella tarda Ivy, a lysozyme inhibitor that blocks the lytic effect of lysozyme and facilitates host infection in a manner that is dependent on the conserved cysteine residue. Infect Immun 2013; 81:3527-33. [PMID: 23817616 PMCID: PMC3811778 DOI: 10.1128/iai.00503-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 06/22/2013] [Indexed: 02/04/2023] Open
Abstract
Edwardsiella tarda is a Gram-negative bacterial pathogen with a broad host range that includes fish and humans. In this study, we examined the activity and function of the lysozyme inhibitor Ivy (named IvyEt) identified in the pathogenic E. tarda strain TX01. IvyEt possesses the Ivy signature motif CKPHDC in the form of (82)CQPHNC(87) and contains several highly conserved residues, including a tryptophan (W55). For the purpose of virulence analysis, an isogenic TX01 mutant, TXivy, was created. TXivy bears an in-frame deletion of the ivyEt gene. A live infection study in a turbot (Scophthalmus maximus) model showed that, compared to TX01, TXivy exhibited attenuated overall virulence, reduced tissue dissemination and colonization capacity, an impaired ability to replicate in host macrophages, and decreased resistance against the bactericidal effect of host serum. To facilitate functional analysis, recombinant IvyEt (rIvy) and three mutant proteins, i.e., rIvyW55A, rIvyC82S, and rIvyH85D, which bear Ala, Ser, and Asp substitutions at W55, C82, and H85, respectively, were prepared. In vitro studies showed that rIvy, rIvyW55A, and rIvyH85D were able to block the lytic effect of lysozyme on a Gram-positive bacterium, whereas rIvyC82S could not do so. Likewise, rIvy, but not rIvyC82S, inhibited the serum-facilitated killing effect of lysozyme on E. tarda. In vivo analysis showed that rIvy, but not rIvyC82S, restored the lost pathogenicity of TXivy and enhanced the infectivity of TX01. Together these results indicate that IvyEt is a lysozyme inhibitor and a virulence factor that depends on the conserved C82 for biological activity.
Collapse
Affiliation(s)
- Chong Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong-hua Hu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Bo-guang Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Jun Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- School of Biological Sciences, Lake Superior State University, Sault Ste Marie, Michigan, USA
| | - Li Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
38
|
Robert-Genthon M, Casabona MG, Neves D, Couté Y, Cicéron F, Elsen S, Dessen A, Attrée I. Unique features of a Pseudomonas aeruginosa α2-macroglobulin homolog. mBio 2013; 4:e00309-13. [PMID: 23919994 PMCID: PMC3735191 DOI: 10.1128/mbio.00309-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/11/2013] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Human pathogens frequently use protein mimicry to manipulate host cells in order to promote their survival. Here we show that the opportunistic pathogen Pseudomonas aeruginosa synthesizes a structural homolog of the human α2-macroglobulin, a large-spectrum protease inhibitor and important player of innate immunity. Small-angle X-ray scattering analysis demonstrated that the fold of P. aeruginosa MagD (PA4489) is similar to that of the human macroglobulin and undergoes a conformational modification upon binding of human neutrophil elastase. MagD synthesis is under the control of a general virulence regulatory pathway including the inner membrane sensor RetS and the RNA-binding protein RsmA, and MagD undergoes cleavage from a 165-kDa to a 100-kDa form in all clinical isolates tested. Fractionation and immunoprecipitation experiments showed that MagD is translocated to the bacterial periplasm and resides within the inner membrane in a complex with three other molecular partners, MagA, MagB, and MagF, all of them encoded by the same six-gene genetic element. Inactivation of the whole 10-kb operon on the PAO1 genome resulted in mislocalization of uncleaved, in trans-provided MagD as well as its rapid degradation. Thus, pathogenic bacteria have acquired a homolog of human macroglobulin that plays roles in host-pathogen interactions potentially through recognition of host proteases and/or antimicrobial peptides; it is thus essential for bacterial defense. IMPORTANCE The pathogenesis of Pseudomonas aeruginosa is multifactorial and relies on surface-associated and secreted proteins with different toxic activities. Here we show that the bacterium synthesizes a 160-kDa structural homolog of the human large-spectrum protease inhibitor α2-macroglobulin. The bacterial protein is localized in the periplasm and is associated with the inner membrane through the formation of a multimolecular complex. Its synthesis is coregulated at the posttranscriptional level with other virulence determinants, suggesting that it has a role in bacterial pathogenicity and/or in defense against the host immune system. Thus, this new P. aeruginosa macromolecular complex may represent a future target for antibacterial developments.
Collapse
Affiliation(s)
| | | | - David Neves
- Brazilian National Laboratory for Biosciences (LNBio), CNPEM, Campinas, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
39
|
Whitney JC, Chou S, Russell AB, Biboy J, Gardiner TE, Ferrin MA, Brittnacher M, Vollmer W, Mougous JD. Identification, structure, and function of a novel type VI secretion peptidoglycan glycoside hydrolase effector-immunity pair. J Biol Chem 2013; 288:26616-24. [PMID: 23878199 DOI: 10.1074/jbc.m113.488320] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacteria employ type VI secretion systems (T6SSs) to facilitate interactions with prokaryotic and eukaryotic cells. Despite the widespread identification of T6SSs among Gram-negative bacteria, the number of experimentally validated substrate effector proteins mediating these interactions remains small. Here, employing an informatics approach, we define novel families of T6S peptidoglycan glycoside hydrolase effectors. Consistent with the known intercellular self-intoxication exhibited by the T6S pathway, we observe that each effector gene is located adjacent to a hypothetical open reading frame encoding a putative periplasmically localized immunity determinant. To validate our sequence-based approach, we functionally investigate a representative family member from the soil-dwelling bacterium Pseudomonas protegens. We demonstrate that this protein is secreted in a T6SS-dependent manner and that it confers a fitness advantage in growth competition assays with Pseudomonas putida. In addition, we determined the 1.4 Å x-ray crystal structure of this effector in complex with its cognate immunity protein. The structure reveals the effector shares highest overall structural similarity to a glycoside hydrolase family associated with peptidoglycan N-acetylglucosaminidase activity, suggesting that T6S peptidoglycan glycoside hydrolase effector families may comprise significant enzymatic diversity. Our structural analyses also demonstrate that self-intoxication is prevented by the immunity protein through direct occlusion of the effector active site. This work significantly expands our current understanding of T6S effector diversity.
Collapse
|
40
|
Schumann S, Alpert C, Engst W, Klopfleisch R, Loh G, Bleich A, Blaut M. Mild gut inflammation modulates the proteome of intestinal Escherichia coli. Environ Microbiol 2013; 16:2966-79. [PMID: 23855897 DOI: 10.1111/1462-2920.12192] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 06/11/2013] [Accepted: 06/11/2013] [Indexed: 01/07/2023]
Abstract
Using interleukin 10-deficient (IL-10(-/-) ) and wild-type mice monoassociated with either the adherent-invasive Escherichia coli UNC or the probiotic E. coli Nissle, the effect of a mild intestinal inflammation on the bacterial proteome was studied. Within 8 weeks, IL-10(-/-) mice monoassociated with E. coli UNC exhibited an increased expression of several proinflammatory markers in caecal mucosa. Escherichia coli Nissle-associated IL-10(-/-) mice did not do so. As observed previously for E. coli from mice with acute colitis, glycolytic enzymes were downregulated in intestinal E. coli UNC from IL-10(-/-) mice. In addition, the inhibitor of vertebrate C-type lysozyme, Ivy, was upregulated on messenger RNA (mRNA) and protein level in E. coli Nissle from IL-10(-/-) mice compared with E. coli UNC from these mice. Higher expression of Ivy in E. coli Nissle correlated with an improved growth of this probiotic strain in the presence of lysozyme-ethylenediaminetetraacetic acid (EDTA). By overexpressing Ivy, we demonstrated that Ivy contributes to a higher lysozyme resistance of E. coli, supporting the role of Ivy as a potential fitness factor. However, deletion of Ivy did not alter the growth phenotype of E. coli Nissle in the presence of lysozyme-EDTA, suggesting the existence of additional lysozyme inhibitors that can take over the function of Ivy.
Collapse
Affiliation(s)
- Sara Schumann
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal , 14558, Germany
| | | | | | | | | | | | | |
Collapse
|
41
|
Procko E, Hedman R, Hamilton K, Seetharaman J, Fleishman SJ, Su M, Aramini J, Kornhaber G, Hunt JF, Tong L, Montelione GT, Baker D. Computational design of a protein-based enzyme inhibitor. J Mol Biol 2013; 425:3563-75. [PMID: 23827138 DOI: 10.1016/j.jmb.2013.06.035] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/15/2013] [Accepted: 06/25/2013] [Indexed: 01/30/2023]
Abstract
While there has been considerable progress in designing protein-protein interactions, the design of proteins that bind polar surfaces is an unmet challenge. We describe the computational design of a protein that binds the acidic active site of hen egg lysozyme and inhibits the enzyme. The design process starts with two polar amino acids that fit deep into the enzyme active site, identifies a protein scaffold that supports these residues and is complementary in shape to the lysozyme active-site region, and finally optimizes the surrounding contact surface for high-affinity binding. Following affinity maturation, a protein designed using this method bound lysozyme with low nanomolar affinity, and a combination of NMR studies, crystallography, and knockout mutagenesis confirmed the designed binding surface and orientation. Saturation mutagenesis with selection and deep sequencing demonstrated that specific designed interactions extending well beyond the centrally grafted polar residues are critical for high-affinity binding.
Collapse
Affiliation(s)
- Erik Procko
- Department of Biochemistry and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
The Rcs stress response and accessory envelope proteins are required for de novo generation of cell shape in Escherichia coli. J Bacteriol 2013; 195:2452-62. [PMID: 23543719 DOI: 10.1128/jb.00160-13] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Interactions with immune responses or exposure to certain antibiotics can remove the peptidoglycan wall of many Gram-negative bacteria. Though the spheroplasts thus created usually lyse, some may survive by resynthesizing their walls and shapes. Normally, bacterial morphology is generated by synthetic complexes directed by FtsZ and MreBCD or their homologues, but whether these classic systems can recreate morphology in the absence of a preexisting template is unknown. To address this question, we treated Escherichia coli with lysozyme to remove the peptidoglycan wall while leaving intact the inner and outer membranes and periplasm. The resulting lysozyme-induced (LI) spheroplasts recovered a rod shape after four to six generations. Recovery proceeded via a series of cell divisions that produced misshapen and branched intermediates before later progeny assumed a normal rod shape. Importantly, mutants defective in mounting the Rcs stress response and those lacking penicillin binding protein 1B (PBP1B) or LpoB could not divide or recover their cell shape but instead enlarged until they lysed. LI spheroplasts from mutants lacking the Lpp lipoprotein or PBP6 produced spherical daughter cells that did not recover a normal rod shape or that did so only after a significant delay. Thus, to regenerate normal morphology de novo, E. coli must supplement the classic FtsZ- and MreBCD-directed cell wall systems with activities that are otherwise dispensable for growth under normal laboratory conditions. The existence of these auxiliary mechanisms implies that they may be required for survival in natural environments, where bacterial walls can be damaged extensively or removed altogether.
Collapse
|
43
|
Leysen S, Vanderkelen L, Weeks SD, Michiels CW, Strelkov SV. Structural basis of bacterial defense against g-type lysozyme-based innate immunity. Cell Mol Life Sci 2013; 70:1113-22. [PMID: 23086131 PMCID: PMC11113182 DOI: 10.1007/s00018-012-1184-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 09/21/2012] [Accepted: 09/27/2012] [Indexed: 10/27/2022]
Abstract
Gram-negative bacteria can produce specific proteinaceous inhibitors to defend themselves against the lytic action of host lysozymes. So far, four different lysozyme inhibitor families have been identified. Here, we report the crystal structure of the Escherichia coli periplasmic lysozyme inhibitor of g-type lysozyme (PliG-Ec) in complex with Atlantic salmon g-type lysozyme (SalG) at a resolution of 0.95 Å, which is exceptionally high for a complex of two proteins. The structure reveals for the first time the mechanism of g-type lysozyme inhibition by the PliG family. The latter contains two specific conserved regions that are essential for its inhibitory activity. The inhibitory complex formation is based on a double 'key-lock' mechanism. The first key-lock element is formed by the insertion of two conserved PliG regions into the active site of the lysozyme. The second element is defined by a distinct pocket of PliG accommodating a lysozyme loop. Computational analysis indicates that this pocket represents a suitable site for small molecule binding, which opens an avenue for the development of novel antibacterial agents that suppress the inhibitory activity of PliG.
Collapse
Affiliation(s)
- S. Leysen
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, Herestraat 49 bus 822, 3000 Leuven, Belgium
| | - L. Vanderkelen
- Laboratory of Food Microbiology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium
| | - S. D. Weeks
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, Herestraat 49 bus 822, 3000 Leuven, Belgium
| | - C. W. Michiels
- Laboratory of Food Microbiology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium
| | - S. V. Strelkov
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, Herestraat 49 bus 822, 3000 Leuven, Belgium
| |
Collapse
|
44
|
Derbise A, Pierre F, Merchez M, Pradel E, Laouami S, Ricard I, Sirard JC, Fritz J, Lemaître N, Akinbi H, Boneca IG, Sebbane F. Inheritance of the lysozyme inhibitor Ivy was an important evolutionary step by Yersinia pestis to avoid the host innate immune response. J Infect Dis 2013; 207:1535-43. [PMID: 23402825 DOI: 10.1093/infdis/jit057] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Yersinia pestis (the plague bacillus) and its ancestor, Yersinia pseudotuberculosis (which causes self-limited bowel disease), encode putative homologues of the periplasmic lysozyme inhibitor Ivy and the membrane-bound lysozyme inhibitor MliC. The involvement of both inhibitors in virulence remains subject to debate. METHODS Mutants lacking ivy and/or mliC were generated. We evaluated the mutants' ability to counter lysozyme, grow in serum, and/or counter leukocytes; to produce disease in wild-type, neutropenic, or lysozyme-deficient rodents; and to induce host inflammation. RESULTS MliC was not required for lysozyme resistance and the development of plague. Deletion of ivy decreased Y. pestis' ability to counter lysozyme and polymorphonuclear neutrophils, but it did not affect the bacterium's ability to grow in serum or resist macrophages. Y. pestis lacking Ivy had attenuated virulence, unless animals were neutropenic or lysozyme deficient. The Ivy mutant induced inflammation to a degree similar to that of the parental strain. Last, Y. pseudotuberculosis did not require Ivy to counter lysozyme and for virulence. CONCLUSIONS Ivy is required to counter lysozyme during infection, but its role as a virulence factor is species dependent. Our study also shows that a gene that is not necessary for the virulence of an ancestral bacterium may become essential in the emergence of a new pathogen.
Collapse
Affiliation(s)
- Anne Derbise
- Equipe Peste et Yersinia pestis, INSERM U1019, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Sureshan V, Deshpande CN, Boucher Y, Koenig JE, Stokes HW, Harrop SJ, Curmi PMG, Mabbutt BC. Integron gene cassettes: a repository of novel protein folds with distinct interaction sites. PLoS One 2013; 8:e52934. [PMID: 23349695 PMCID: PMC3548836 DOI: 10.1371/journal.pone.0052934] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 11/26/2012] [Indexed: 11/19/2022] Open
Abstract
Mobile gene cassettes captured within integron arrays encompass a vast and diverse pool of genetic novelty. In most cases, functional annotation of gene cassettes directly recovered by cassette-PCR is obscured by their characteristically high sequence novelty. This inhibits identification of those specific functions or biological features that might constitute preferential factors for lateral gene transfer via the integron system. A structural genomics approach incorporating x-ray crystallography has been utilised on a selection of cassettes to investigate evolutionary relationships hidden at the sequence level. Gene cassettes were accessed from marine sediments (pristine and contaminated sites), as well as a range of Vibrio spp. We present six crystal structures, a remarkably high proportion of our survey of soluble proteins, which were found to possess novel folds. These entirely new structures are diverse, encompassing all-α, α+β and α/β fold classes, and many contain clear binding pocket features for small molecule substrates. The new structures emphasise the large repertoire of protein families encoded within the integron cassette metagenome and which remain to be characterised. Oligomeric association is a notable recurring property common to these new integron-derived proteins. In some cases, the protein–protein contact sites utilised in homomeric assembly could instead form suitable contact points for heterogeneous regulator/activator proteins or domains. Such functional features are ideal for a flexible molecular componentry needed to ensure responsive and adaptive bacterial functions.
Collapse
Affiliation(s)
- Visaahini Sureshan
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Chandrika N. Deshpande
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Yan Boucher
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Jeremy E. Koenig
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - H. W. Stokes
- ithree institute, University of Technology, Sydney, New South Wales, Australia
| | - Stephen J. Harrop
- School of Physics, University of New South Wales, New South Wales, Australia
| | - Paul M. G. Curmi
- School of Physics, University of New South Wales, New South Wales, Australia
- Centre for Applied Medical Research, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Bridget C. Mabbutt
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
46
|
Lamppa JW, Tanyos SA, Griswold KE. Engineering Escherichia coli for soluble expression and single step purification of active human lysozyme. J Biotechnol 2012; 164:1-8. [PMID: 23220215 DOI: 10.1016/j.jbiotec.2012.11.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 11/07/2012] [Accepted: 11/15/2012] [Indexed: 10/27/2022]
Abstract
Genetically engineered variants of human lysozyme represent promising leads in the battle against drug-resistant bacterial pathogens, but early stage development and testing of novel lysozyme variants is constrained by the lack of a robust, scalable and facile expression system. While wild type human lysozyme is reportedly produced at 50–80 kg per hectare of land in recombinant rice, this plant-based system is not readily scaled down to bench top production, and it is therefore not suitable for development and characterization of novel lysozyme variants. Here, we describe a novel and efficient expression system capable of producing folded, soluble and functional human lysozyme in Escherichia coli cells. To achieve this goal, we simultaneously co-express multiple protein folding chaperones as well as harness the lysozyme inhibitory protein, Ivy. Our strategy exploits E. coli's ease of culture, short doubling time, and facile genetics to yield upwards of 30 mg/l of soluble lysozyme in a bioreactor system, a 3000-fold improvement over prior efforts in E. coli. Additionally, molecular interactions between lysozyme and a his-tagged Ivy allows for one-step purification by IMAC, yielding as much as 21 mg/l of purified enzyme. We anticipate that our expression and purification platform will facilitate further development of engineered lysozymes having utility in disease treatment and other practical applications.
Collapse
Affiliation(s)
- John W Lamppa
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | | | | |
Collapse
|
47
|
Arai R, Fukui S, Kobayashi N, Sekiguchi J. Solution structure of IseA, an inhibitor protein of DL-endopeptidases from Bacillus subtilis, reveals a novel fold with a characteristic inhibitory loop. J Biol Chem 2012; 287:44736-48. [PMID: 23091053 DOI: 10.1074/jbc.m112.414763] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Bacillus subtilis, LytE, LytF, CwlS, and CwlO are vegetative autolysins, DL-endopeptidases in the NlpC/P60 family, and play essential roles in cell growth and separation. IseA (YoeB) is a proteinaceous inhibitor against the DL-endopeptidases, peptidoglycan hydrolases. Overexpression of IseA caused significantly long chained cell morphology, because IseA inhibits the cell separation DL-endopeptidases post-translationally. Here, we report the first three-dimensional structure of IseA, determined by NMR spectroscopy. The structure includes a single domain consisting of three α-helices, one 3(10)-helix, and eight β-strands, which is a novel fold like a "hacksaw." Noteworthy is a dynamic loop between β4 and the 3(10)-helix, which resembles a "blade." The electrostatic potential distribution shows that most of the surface is positively charged, but the region around the loop is negatively charged. In contrast, the LytF active-site cleft is expected to be positively charged. NMR chemical shift perturbation of IseA interacting with LytF indicated that potential interaction sites are located around the loop. Furthermore, the IseA mutants D100K/D102K and G99P/G101P at the loop showed dramatic loss of inhibition activity against LytF, compared with wild-type IseA, indicating that the β4-3(10) loop plays an important role in inhibition. Moreover, we built a complex structure model of IseA-LytF by docking simulation, suggesting that the β4-3(10) loop of IseA gets stuck deep in the cleft of LytF, and the active site is occluded. These results suggest a novel inhibition mechanism of the hacksaw-like structure, which is different from known inhibitor proteins, through interactions around the characteristic loop regions with the active-site cleft of enzymes.
Collapse
Affiliation(s)
- Ryoichi Arai
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan.
| | | | | | | |
Collapse
|
48
|
Callewaert L, Van Herreweghe JM, Vanderkelen L, Leysen S, Voet A, Michiels CW. Guards of the great wall: bacterial lysozyme inhibitors. Trends Microbiol 2012; 20:501-10. [DOI: 10.1016/j.tim.2012.06.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 06/22/2012] [Accepted: 06/29/2012] [Indexed: 10/28/2022]
|
49
|
The lysozyme-induced peptidoglycan N-acetylglucosamine deacetylase PgdA (EF1843) is required for Enterococcus faecalis virulence. J Bacteriol 2012; 194:6066-73. [PMID: 22961856 DOI: 10.1128/jb.00981-12] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Lysozyme is a key component of the innate immune response in humans that provides a first line of defense against microbes. The bactericidal effect of lysozyme relies both on the cell wall lytic activity of this enzyme and on a cationic antimicrobial peptide activity that leads to membrane permeabilization. Among Gram-positive bacteria, the opportunistic pathogen Enterococcus faecalis has been shown to be extremely resistant to lysozyme. This unusual resistance is explained partly by peptidoglycan O-acetylation, which inhibits the enzymatic activity of lysozyme, and partly by d-alanylation of teichoic acids, which is likely to inhibit binding of lysozyme to the bacterial cell wall. Surprisingly, combined mutations abolishing both peptidoglycan O-acetylation and teichoic acid alanylation are not sufficient to confer lysozyme susceptibility. In this work, we identify another mechanism involved in E. faecalis lysozyme resistance. We show that exposure to lysozyme triggers the expression of EF1843, a protein that is not detected under normal growth conditions. Analysis of peptidoglycan structure from strains with EF1843 loss- and gain-of-function mutations, together with in vitro assays using recombinant protein, showed that EF1843 is a peptidoglycan N-acetylglucosamine deacetylase. EF1843-mediated peptidoglycan deacetylation was shown to contribute to lysozyme resistance by inhibiting both lysozyme enzymatic activity and, to a lesser extent, lysozyme cationic antimicrobial activity. Finally, EF1843 mutation was shown to reduce the ability of E. faecalis to cause lethality in the Galleria mellonella infection model. Taken together, our results reveal that peptidoglycan deacetylation is a component of the arsenal that enables E. faecalis to thrive inside mammalian hosts, as both a commensal and a pathogen.
Collapse
|
50
|
Structural characterization of the PliG lysozyme inhibitor family. J Struct Biol 2012; 180:235-42. [PMID: 22634186 DOI: 10.1016/j.jsb.2012.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 05/08/2012] [Accepted: 05/15/2012] [Indexed: 11/22/2022]
Abstract
Several Gram-negative bacteria protect themselves against the lytic action of host lysozymes by producing specific proteinaceous inhibitors. So far, four different families of lysozyme inhibitors have been identified including Ivy (Inhibitor of vertebrate lysozyme), MliC/PliC (Membrane associated/periplasmic inhibitor of C-type lysozyme), PliI and PliG (periplasmic inhibitors of I- and G-type lysozymes, respectively). Here we provide the first crystallographic description of the PliG family. Crystal structures were obtained for the PliG homologues from Escherichia coli, Salmonella enterica serotype Typhimurium and Aeromonas hydrophila. These structures show that the fold of the PliG family is very distinct from that of all other families of lysozyme inhibitors. Small-angle X-ray scattering studies reveal that PliG is monomeric in solution as opposed to the dimeric PliC and PliI. The PliG family shares a highly conserved SG(x)xY sequence motif with the MliC/PliC and PliI families where it was shown to reside on a loop that blocks the active site of lysozyme leading to inhibition. Surprisingly, we found that in PliG this motif is not well exposed and not involved in the inhibitory action. Instead, we could identify a distinct cluster of surface residues that are conserved across the PliG family and are essential for efficient G-type lysozyme inhibition, as evidenced by mutagenesis studies.
Collapse
|