1
|
Li C, Huang S, Peng J, Hong T, Zhou C, Tang J. 14-3-3ζ Mediates GABA AR Activation by Interacting with BIG1. Mol Neurobiol 2023; 60:1721-1732. [PMID: 36562883 DOI: 10.1007/s12035-022-03172-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
Most fast synaptic inhibitions in the mammalian brain are mediated by GABAA receptors (GABAARs). An appropriate level of GABAAR expression at the cell surface is essential for neurodevelopment and the efficacy of GABAergic synaptic transmission. We previously reported that brefeldin A-inhibited GDP/GTP exchange factor 1 (BIG1), a binding partner of GABAARs, plays an important role in trafficking GABAARs to the cell surface. However, its regulatory mechanisms remain unknown. In the present study, we identified a new cellular protein, 14-3-3ζ, which can interact with the β subunit of GABAARs and BIG1 both in vitro and in vivo and colocalizes in the soma, dendrites, and axons of hippocampal neurons. Overexpression of 14-3-3ζ-WT increased the surface expression of BIG1 in dendrites and axons, as well as the binding of BIG1 with GABAAR. Depleted 14-3-3ζ with efficacious siRNA attenuated the interaction between BIG1 and GABAARs and resulted in significant decreases in the surface expression levels of BIG1 and GABAAR. GABAAR agonist treatment increased the expression levels of BIG1 and 14-3-3ζ on the surface, indicating that 14-3-3ζ is involved in regulating BIG1-mediated GABAAR surface expression. Depletion of BIG1 or 14-3-3ζ significantly decreased GABAAR expression at the cell surface and suppressed the GABA-gated influx of chloride ions. These data indicate that the combination of 14-3-3ζ and BIG1 is required for GABAAR membrane expression. Our results provide a potential promising therapeutic target for neurological disorders involving GABAergic synaptic transmission.
Collapse
Affiliation(s)
- Cuixian Li
- Experiment Teaching & Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shen Huang
- Experiment Teaching & Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jin Peng
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510515, China
| | - Tianguo Hong
- Experiment Teaching & Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Chun Zhou
- Laboratory of Immunopharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
- SMU-KI United Medical Inflammatory Center, School of Pharmaceutical Sciences; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, 510515, China.
| | - Jie Tang
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, China.
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
2
|
Hsu JW, Bai M, Li K, Yang JS, Chu N, Cole PA, Eck MJ, Li J, Hsu VW. The protein kinase Akt acts as a coat adaptor in endocytic recycling. Nat Cell Biol 2020; 22:927-933. [PMID: 32541877 PMCID: PMC7415567 DOI: 10.1038/s41556-020-0530-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 05/04/2020] [Indexed: 12/30/2022]
Abstract
Coat proteins play a central role in vesicular transport by binding to cargoes for their sorting into intracellular pathways. Cargo recognition is mediated by components of the coat complex known as adaptor proteins1–3. We previously showed that ACAP1 (ArfGAP with Coil-coil Ankyrin repeat Protein 1) functions as an adaptor for a clathrin coat complex acting in endocytic recycling4–6. Here, we find that the protein kinase Akt acts as a co-adaptor in this complex, needed in conjunction with ACAP1 to bind cargo proteins for their recycling. Besides advancing the understanding of endocytic recycling, our findings uncover a fundamentally different way that a kinase acts, being an effector rather than a regulator in a cellular event.
Collapse
Affiliation(s)
- Jia-Wei Hsu
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Ming Bai
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kunhua Li
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jia-Shu Yang
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Nam Chu
- Division of Genetics, Brigham and Women's Hospital, and Departments of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Philip A Cole
- Division of Genetics, Brigham and Women's Hospital, and Departments of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Michael J Eck
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jian Li
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Victor W Hsu
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Walton K, Leier A, Sztul E. Regulating the regulators: role of phosphorylation in modulating the function of the GBF1/BIG family of Sec7 ARF-GEFs. FEBS Lett 2020; 594:2213-2226. [PMID: 32333796 DOI: 10.1002/1873-3468.13798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/15/2022]
Abstract
Membrane traffic between secretory and endosomal compartments is vesicle-mediated and must be tightly balanced to maintain a physiological compartment size. Vesicle formation is initiated by guanine nucleotide exchange factors (GEFs) that activate the ARF family of small GTPases. Regulatory mechanisms, including reversible phosphorylation, allow ARF-GEFs to support vesicle formation only at the right time and place in response to cellular needs. Here, we review current knowledge of how the Golgi-specific brefeldin A-resistance factor 1 (GBF1)/brefeldin A-inhibited guanine nucleotide exchange protein (BIG) family of ARF-GEFs is influenced by phosphorylation and use predictive paradigms to propose new regulatory paradigms. We describe a conserved cluster of phosphorylation sites within the N-terminal domains of the GBF1/BIG ARF-GEFs and suggest that these sites may respond to homeostatic signals related to cell growth and division. In the C-terminal region, GBF1 shows phosphorylation sites clustered differently as compared with the similar configuration found in both BIG1 and BIG2. Despite this similarity, BIG1 and BIG2 phosphorylation patterns are divergent in other domains. The different clustering of phosphorylation sites suggests that the nonconserved sites may represent distinct regulatory nodes and specify the function of GBF1, BIG1, and BIG2.
Collapse
Affiliation(s)
- Kendall Walton
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, AL, USA
| | - Andre Leier
- Department of Genetics, University of Alabama at Birmingham, AL, USA
| | - Elizabeth Sztul
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, AL, USA
| |
Collapse
|
4
|
Luo PM, Boyce M. Directing Traffic: Regulation of COPI Transport by Post-translational Modifications. Front Cell Dev Biol 2019; 7:190. [PMID: 31572722 PMCID: PMC6749011 DOI: 10.3389/fcell.2019.00190] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022] Open
Abstract
The coat protein complex I (COPI) is an essential, highly conserved pathway that traffics proteins and lipids between the endoplasmic reticulum (ER) and the Golgi. Many aspects of the COPI machinery are well understood at the structural, biochemical and genetic levels. However, we know much less about how cells dynamically modulate COPI trafficking in response to changing signals, metabolic state, stress or other stimuli. Recently, post-translational modifications (PTMs) have emerged as one common theme in the regulation of the COPI pathway. Here, we review a range of modifications and mechanisms that govern COPI activity in interphase cells and suggest potential future directions to address as-yet unanswered questions.
Collapse
Affiliation(s)
- Peter M Luo
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
| | - Michael Boyce
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
5
|
Proteomic study of the membrane components of signalling cascades of Botrytis cinerea controlled by phosphorylation. Sci Rep 2019; 9:9860. [PMID: 31285484 PMCID: PMC6614480 DOI: 10.1038/s41598-019-46270-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/26/2019] [Indexed: 12/19/2022] Open
Abstract
Protein phosphorylation and membrane proteins play an important role in the infection of plants by phytopathogenic fungi, given their involvement in signal transduction cascades. Botrytis cinerea is a well-studied necrotrophic fungus taken as a model organism in fungal plant pathology, given its broad host range and adverse economic impact. To elucidate relevant events during infection, several proteomics analyses have been performed in B. cinerea, but they cover only 10% of the total proteins predicted in the genome database of this fungus. To increase coverage, we analysed by LC-MS/MS the first-reported overlapped proteome in phytopathogenic fungi, the "phosphomembranome" of B. cinerea, combining the two most important signal transduction subproteomes. Of the 1112 membrane-associated phosphoproteins identified, 64 and 243 were classified as exclusively identified or overexpressed under glucose and deproteinized tomato cell wall conditions, respectively. Seven proteins were found under both conditions, but these presented a specific phosphorylation pattern, so they were considered as exclusively identified or overexpressed proteins. From bioinformatics analysis, those differences in the membrane-associated phosphoproteins composition were associated with various processes, including pyruvate metabolism, unfolded protein response, oxidative stress response, autophagy and cell death. Our results suggest these proteins play a significant role in the B. cinerea pathogenic cycle.
Collapse
|
6
|
Wan C, Wu M, Zhang S, Chen Y, Lu C. α7nAChR-mediated recruitment of PP1γ promotes TRAF6/NF-κB cascade to facilitate the progression of Hepatocellular Carcinoma. Mol Carcinog 2018; 57:1626-1639. [PMID: 30074282 DOI: 10.1002/mc.22885] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 07/23/2018] [Accepted: 07/30/2018] [Indexed: 12/13/2022]
Abstract
The cholinergic signaling pathways have been recently implicated in the development of various human cancers. However, the underlying molecular mechanism remains largely unclear. In the present study, we reported that α7 nicotinic acetylcholine receptor (α7nAChR), an important member of nicotinic acetylcholine receptors, interacts with Protein Phosphatase-1γ (PP1γ) in human Hepatocellular Carcinoma (HCC) tissues. In addition, we found that α7nAChR facilitates the ubiquitination and activation of TRAF6 in a PP1γ-dependent manner in HCC cells. Furthermore, we showed that ligand-bounded α7nAChR induces the degradation of IκBα, leading to resultant phosphorylation and nuclear accumulation of NF-κB p65. Accordingly, acetylcholine triggers the expression of critical NF-κB target genes, such as Cyclin D1 and PCNA, as well as the proliferation of HCC cells in a PP1γ- and α7nAChR-dependent manner. Furthermore, we revealed that nicotine-triggered α7nAChR activation promotes oncosphere formation and in vivo tumor growth of HCC cells. Moreover, we showed that the protein levels of both α7nAChR and PP1γ are significantly upregulated in human HCC specimens compared with adjacent non-cancerous ones, and that upregulated expression of the two proteins predict significantly worsened prognosis in HCC patients. These findings together indicate that the cholinergic receptor α7nAChR exerts a facilitating role in HCC development through PP1γ-dependent TRAF6/NF-κB signaling.
Collapse
Affiliation(s)
- Chunhua Wan
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Miaomiao Wu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| | - Shusen Zhang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China.,Department of Respiratory Medicine, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, Hebei, China
| | - Yuyan Chen
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, China
| | - Cuihua Lu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
7
|
Ma XH, Duan WJ, Mo YS, Chen JL, Li S, Zhao W, Yang L, Mi SQ, Mao XL, Wang H, Wang Q. Neuroprotective effect of paeoniflorin on okadaic acid-induced tau hyperphosphorylation via calpain/Akt/GSK-3β pathway in SH-SY5Y cells. Brain Res 2018; 1690:1-11. [PMID: 29596798 DOI: 10.1016/j.brainres.2018.03.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 12/13/2022]
Abstract
Abnormal phosphorylation of tau, one of the most common symptoms of dementia, has become increasingly important in the study of the etiology and development of Alzheimer's disease. Paeoniflorin, the main bioactive component of herbaceous peony, is a monoterpene glycoside, which has been reported to exert beneficial effects on neurodegenerative disease. However, the effect of paeoniflorin on tauopathies remains ambiguous. SH-SY5Y cells were treated with okadaic acid (OA) for 8 h to induce tau phosphorylation and no cell death was observed. Optical microscopy results showed that paeoniflorin ameliorated okadaic acid induced morphological changes, including cell swelling and synapsis shortening. Western blotting data illustrated that paeoniflorin reversed okadaic acid induced tau hyperphosphorylation, which was enhanced by inhibiting the activities of calpain, Akt and GSK-3β. Transmission electron microscopy results showed that paeoniflorin alone can reduce the number of autophagosomes and stabilize the microtubule structure. In addition, calpastain and paeoniflorin enhance the effect of paeoniflorin on stabilizing microtubules. In addition, calpastain markedly enhanced the effect of paeoniflorin on reversing okadaic acid-lowered fluorescence intensity of both MAP-2 and β III-tubulin, two microtubule-associated proteins. This study shows that paeoniflorin protected SH-SY5Y cells against okadaic acid assault by interfering with the calpain/Akt/GSK-3β-related pathways, in which autophagy might be involved. Besides, paeoniflorin is found to relieve the stress response of the microtubule structure system caused by okadaic acid treatment. The results presented in this study suggest that paeoniflorin potentially plays an important role in tauopathies.
Collapse
Affiliation(s)
- Xiao-Hui Ma
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Wen-Jun Duan
- College of Pharmacy, Jinan University, Guangzhou 510080, China
| | - You-Sheng Mo
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jun-Li Chen
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Shi Li
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Wei Zhao
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Lei Yang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Sui-Qing Mi
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xin-Liang Mao
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Hong Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| |
Collapse
|
8
|
Yoshimaru T, Ono M, Bando Y, Chen YA, Mizuguchi K, Shima H, Komatsu M, Imoto I, Izumi K, Honda J, Miyoshi Y, Sasa M, Katagiri T. A-kinase anchoring protein BIG3 coordinates oestrogen signalling in breast cancer cells. Nat Commun 2017; 8:15427. [PMID: 28555617 PMCID: PMC5512694 DOI: 10.1038/ncomms15427] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 03/30/2017] [Indexed: 12/21/2022] Open
Abstract
Approximately 70% of breast cancer cells express oestrogen receptor alpha (ERα). Previous studies have shown that the Brefeldin A-inhibited guanine nucleotide-exchange protein 3–prohibitin 2 (BIG3-PHB2) complex has a crucial role in these cells. However, it remains unclear how BIG3 regulates the suppressive activity of PHB2. Here we demonstrate that BIG3 functions as an A-kinase anchoring protein that binds protein kinase A (PKA) and the α isoform of the catalytic subunit of protein phosphatase 1 (PP1Cα), thereby dephosphorylating and inactivating PHB2. E2-induced PKA-mediated phosphorylation of BIG3-S305 and -S1208 serves to enhance PP1Cα activity, resulting in E2/ERα signalling activation via PHB2 inactivation due to PHB2-S39 dephosphorylation. Furthermore, an analysis of independent cohorts of ERα-positive breast cancers patients reveal that both BIG3 overexpression and PHB2-S39 dephosphorylation are strongly associated with poor prognosis. This is the first demonstration of the mechanism of E2/ERα signalling activation via the BIG3–PKA–PP1Cα tri-complex in breast cancer cells. BIG3 is highly expressed in breast cancers and its interaction with PHB2 results in constitutive activation of E2/ERa signalling. Here the authors unveil the mechanistic details of this regulation showing that BIG3 binds PKA and regulates PP1Ca activity in an oestrogen-dependent manner.
Collapse
Affiliation(s)
- Tetsuro Yoshimaru
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Masaya Ono
- Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yoshimi Bando
- Division of Pathology, Tokushima University Hospital, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yi-An Chen
- National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Kenji Mizuguchi
- National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Hiroshi Shima
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, 47-1 Nodayama, Medeshimashiote, Natori, Miyagi 981-1293, Japan
| | - Masato Komatsu
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Issei Imoto
- Department of Human Genetics, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Keisuke Izumi
- Department of Molecular and Environmental Pathology, Graduate School of Medicine, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Junko Honda
- Department of Surgery, National Hospital Organization Higashitokushima Medical Center, 1-1 Ohmukai-kita, Ootera, Itano, Tokushima 779-0193, Japan
| | - Yasuo Miyoshi
- Department of Surgery, Division of Breast and Endocrine Surgery, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Mitsunori Sasa
- Department of Surgery, Tokushima Breast Care Clinic, 4-7-7 Nakashimada-cho, Tokushima 770-0052, Japan
| | - Toyomasa Katagiri
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| |
Collapse
|
9
|
Enhancement of β-catenin activity by BIG1 plus BIG2 via Arf activation and cAMP signals. Proc Natl Acad Sci U S A 2016; 113:5946-51. [PMID: 27162341 DOI: 10.1073/pnas.1601918113] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Multifunctional β-catenin, with critical roles in both cell-cell adhesion and Wnt-signaling pathways, was among HeLa cell proteins coimmunoprecipitated by antibodies against brefeldin A-inhibited guanine nucleotide-exchange factors 1 and 2 (BIG1 or BIG2) that activate ADP-ribosylation factors (Arfs) by accelerating the replacement of bound GDP with GTP. BIG proteins also contain A-kinase anchoring protein (AKAP) sequences that can act as scaffolds for multimolecular assemblies that facilitate and limit cAMP signaling temporally and spatially. Direct interaction of BIG1 N-terminal sequence with β-catenin was confirmed using yeast two-hybrid assays and in vitro synthesized proteins. Depletion of BIG1 and/or BIG2 or overexpression of guanine nucleotide-exchange factor inactive mutant, but not wild-type, proteins interfered with β-catenin trafficking, leading to accumulation at perinuclear Golgi structures. Both phospholipase D activity and vesicular trafficking were required for effects of BIG1 and BIG2 on β-catenin activation. Levels of PKA-phosphorylated β-catenin S675 and β-catenin association with PKA, BIG1, and BIG2 were also diminished after BIG1/BIG2 depletion. Inferring a requirement for BIG1 and/or BIG2 AKAP sequence in PKA modification of β-catenin and its effect on transcription activation, we confirmed dependence of S675 phosphorylation and transcription coactivator function on BIG2 AKAP-C sequence.
Collapse
|
10
|
Unfolded protein response regulates yeast small GTPase Arl1p activation at late Golgi via phosphorylation of Arf GEF Syt1p. Proc Natl Acad Sci U S A 2016; 113:E1683-90. [PMID: 26966233 DOI: 10.1073/pnas.1518260113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
ADP ribosylation factor (Arf) GTPases are key regulators of membrane traffic at the Golgi complex. In yeast, Arf guanine nucleotide-exchange factor (GEF) Syt1p activates Arf-like protein Arl1p, which was accompanied by accumulation of golgin Imh1p at late Golgi, but whether and how this function of Syt1p is regulated remains unclear. Here, we report that the inositol-requiring kinase 1 (Ire1p)-mediated unfolded protein response (UPR) modulated Arl1p activation at late Golgi. Arl1p activation was dependent on both kinase and endo-RNase activities of Ire1p. Moreover, constitutively active transcription factor Hac1p restored the Golgi localization of Arl1p and Imh1p inIRE1-deleted cells. Elucidating the mechanism of Ire1p-Hac1p axis actions, we found that it regulated phosphorylation of Syt1p, which enhances Arl1p activation, recruitment of Imh1p to the Golgi, and Syt1p interaction with Arl1p. Consistent with these findings, the induction of UPR by tunicamycin treatment increases phosphorylation of Syt1p, resulting in Arl1p activation. Thus, these findings clarify how the UPR influences the roles of Syt1p, Arl1p, and Imh1p in Golgi transport.
Collapse
|
11
|
Münzberg C, Höhn K, Krndija D, Maaß U, Bartsch DK, Slater EP, Oswald F, Walther P, Seufferlein T, von Wichert G. IGF-1 drives chromogranin A secretion via activation of Arf1 in human neuroendocrine tumour cells. J Cell Mol Med 2015; 19:948-59. [PMID: 25754106 PMCID: PMC4420598 DOI: 10.1111/jcmm.12473] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 09/15/2014] [Indexed: 01/18/2023] Open
Abstract
Hypersecretion is the major symptom of functional neuroendocrine tumours. The mechanisms that contribute to this excessive secretion of hormones are still elusive. A key event in secretion is the exit of secretory products from the Golgi apparatus. ADP-ribosylation factor (Arf) GTPases are known to control vesicle budding and trafficking, and have a leading function in the regulation of formation of secretory granula at the Golgi. Here, we show that Arf1 is the predominant Arf protein family member expressed in the neuroendocrine pancreatic tumour cell lines BON and QGP-1. In BON cells Arf1 colocalizes with Golgi markers as well as chromogranin A, and shows significant basal activity. The inhibition of Arf1 activity or expression significantly impaired secretion of chromogranin A. Furthermore, we show that the insulin-like growth factor 1 (IGF-1), a major regulator of growth and secretion in BON cells, induces Arf1 activity. We found that activation of Arf1 upon IGF-1 receptor stimulation is mediated by MEK/ERK signalling pathway in BON and QGP-1 cells. Moreover, the activity of Arf1 in BON cells is mediated by autocrinely secreted IGF-1, and concomitantly, autocrine IGF1 secretion is maintained by Arf1 activity. In summary, our data indicate an important regulatory role for Arf1 at the Golgi in hypersecretion in neuroendocrine cancer cells.
Collapse
|
12
|
Korrodi-Gregório L, Esteves SLC, Fardilha M. Protein phosphatase 1 catalytic isoforms: specificity toward interacting proteins. Transl Res 2014; 164:366-91. [PMID: 25090308 DOI: 10.1016/j.trsl.2014.07.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/26/2014] [Accepted: 07/01/2014] [Indexed: 01/21/2023]
Abstract
The coordinated and reciprocal action of serine-threonine protein kinases and protein phosphatases produces transitory phosphorylation, a fundamental regulatory mechanism for many biological processes. Phosphoprotein phosphatase 1 (PPP1), a major serine-threonine phosphatase, in particular, is ubiquitously distributed and regulates a broad range of cellular functions, including glycogen metabolism, cell cycle progression, and muscle relaxation. PPP1 has evolved effective catalytic machinery but in vitro lacks substrate specificity. In vivo, its specificity is achieved not only by the existence of different PPP1 catalytic isoforms, but also by binding of the catalytic moiety to a large number of regulatory or targeting subunits. Here, we will address exhaustively the existence of diverse PPP1 catalytic isoforms and the relevance of their specific partners and consequent functions.
Collapse
Affiliation(s)
- Luís Korrodi-Gregório
- Laboratório de Transdução de Sinais, Departamento de Biologia, Secção Autónoma de Ciências de Saúde, Centro de Biologia Celular, Universidade de Aveiro, Aveiro, Portugal
| | - Sara L C Esteves
- Laboratório de Transdução de Sinais, Departamento de Biologia, Secção Autónoma de Ciências de Saúde, Centro de Biologia Celular, Universidade de Aveiro, Aveiro, Portugal
| | - Margarida Fardilha
- Laboratório de Transdução de Sinais, Departamento de Biologia, Secção Autónoma de Ciências de Saúde, Centro de Biologia Celular, Universidade de Aveiro, Aveiro, Portugal.
| |
Collapse
|
13
|
Sheen VL. Filamin A mediated Big2 dependent endocytosis: From apical abscission to periventricular heterotopia. Tissue Barriers 2014; 2:e29431. [PMID: 25097827 PMCID: PMC4117685 DOI: 10.4161/tisb.29431] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 05/29/2014] [Accepted: 06/02/2014] [Indexed: 01/23/2023] Open
Abstract
Periventricular heterotopia (PH) is one of the most common malformations of cortical development (MCD). Nodules along the lateral ventricles of the brain, disruption of the ventricular lining, and a reduced brain size are hallmarks of this disorder. PH results in a disruption of the neuroependyma, inhibition of neural proliferation and differentiation, and altered neuronal migration. Human mutations in the genes encoding the actin-binding Filamin A (FLNA) and the vesicle trafficking Brefeldin A-associated guanine exchange factor 2 (BIG2 is encoded by the ARFGEF2 gene) proteins are implicated in PH formation. Recent studies have shown that the transition from proliferating neural progenitors to post-mitotic neurons relies on apical abscission along the neuroepithelium. This mechanism involves an actin dependent contraction of the apical portion of a neural progenitor along the ventricular lining to complete abscission. Actin also maintains stability of various cell adhesion molecules along the neuroependyma. Loss of cadherin directs disassembly of the primary cilium, which transduces sonic-hedgehog (Shh) signaling. Shh signaling is required for continued proliferation. In this context, apical abscission regulates neuronal progenitor exit and migration from the ventricular zone by detachment from the neuroependyma, relies on adhesion molecules that maintain the integrity of the neuroepithelial lining, and directs neural proliferation. Each of these processes is disrupted in PH, suggesting that genes causal for this MCD, may fundamentally mediate apical abscission in cortical development. Here we discuss several recent reports that demonstrate a coordinated role for actin and vesicle trafficking in modulating neural development along the neurepithelium, and potentially the neural stem cell to neuronal transition.
Collapse
Affiliation(s)
- Volney L Sheen
- Department of Neurology; Beth Israel Deaconess Medical Center and Harvard Medical School; Boston, MA USA
| |
Collapse
|
14
|
Regulating the large Sec7 ARF guanine nucleotide exchange factors: the when, where and how of activation. Cell Mol Life Sci 2014; 71:3419-38. [PMID: 24728583 DOI: 10.1007/s00018-014-1602-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 02/27/2014] [Accepted: 03/03/2014] [Indexed: 10/25/2022]
Abstract
Eukaryotic cells require selective sorting and transport of cargo between intracellular compartments. This is accomplished at least in part by vesicles that bud from a donor compartment, sequestering a subset of resident protein "cargos" destined for transport to an acceptor compartment. A key step in vesicle formation and targeting is the recruitment of specific proteins that form a coat on the outside of the vesicle in a process requiring the activation of regulatory GTPases of the ARF family. Like all such GTPases, ARFs cycle between inactive, GDP-bound, and membrane-associated active, GTP-bound, conformations. And like most regulatory GTPases the activating step is slow and thought to be rate limiting in cells, requiring the use of ARF guanine nucleotide exchange factor (GEFs). ARF GEFs are characterized by the presence of a conserved, catalytic Sec7 domain, though they also contain motifs or additional domains that confer specificity to localization and regulation of activity. These domains have been used to define and classify five different sub-families of ARF GEFs. One of these, the BIG/GBF1 family, includes three proteins that are each key regulators of the secretory pathway. GEF activity initiates the coating of nascent vesicles via the localized generation of activated ARFs and thus these GEFs are the upstream regulators that define the site and timing of vesicle production. Paradoxically, while we have detailed molecular knowledge of how GEFs activate ARFs, we know very little about how GEFs are recruited and/or activated at the right time and place to initiate transport. This review summarizes the current knowledge of GEF regulation and explores the still uncertain mechanisms that position GEFs at "budding ready" membrane sites to generate highly localized activated ARFs.
Collapse
|
15
|
Abstract
Neural proliferation, migration and differentiation require reorganization of the actin cytoskeleton and regulation of vesicle trafficking to provide stability in maintaining cell adhesions, allow for changes in cell shape, and establishing cell polarity. Human disorders involving the actin-binding Filamin A (FLNA) and vesicle trafficking Brefeldin-associated guanine exchange factor 2 (BIG2 is encoded by the ARFGEF2 gene) proteins are implicated in these various developmental processes, resulting in a malformation of cortical development called periventricular heterotopia (nodules along the ventricular lining) and microcephaly (small brain). Here we discuss several recent reports from our laboratory that demonstrate a shared role for both proteins in actin-associated vesicle trafficking, which is required to maintain the expression and stability of cell adhesion and cell cycle associated molecules during cortical development. While changes in FLNA and BIG2 have first been linked to disorders involving the central nervous system, increasing reports suggest they are associated with aberrant development of various other organ systems in the body. These studies suggest that vesicle trafficking defects in FLN-GEF dependent pathways may contribute to a much broader phenotype than previously realized.
Collapse
Affiliation(s)
- Volney L Sheen
- Department of Neurology; Beth Israel Deaconess Medical Center and Harvard Medical School; Boston, MA USA
| |
Collapse
|
16
|
Arf guanine nucleotide-exchange factors BIG1 and BIG2 regulate nonmuscle myosin IIA activity by anchoring myosin phosphatase complex. Proc Natl Acad Sci U S A 2013; 110:E3162-70. [PMID: 23918382 DOI: 10.1073/pnas.1312531110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Brefeldin A-inhibited guanine nucleotide-exchange factors BIG1 and BIG2 activate, through their Sec7 domains, ADP ribosylation factors (Arfs) by accelerating the replacement of Arf-bound GDP with GTP for initiation of vesicular transport or activation of specific enzymes that modify important phospholipids. They are also implicated in regulation of cell polarization and actin dynamics for directed migration. Reciprocal coimmunoprecipitation of endogenous HeLa cell BIG1 and BIG2 with myosin IIA was demonstrably independent of Arf guanine nucleotide-exchange factor activity, because effects of BIG1 and BIG2 depletion were reversed by overexpression of the cognate BIG molecule C-terminal sequence that follows the Arf activation site. Selective depletion of BIG1 or BIG2 enhanced specific phosphorylation of myosin regulatory light chain (T18/S19) and F-actin content, which impaired cell migration in Transwell assays. Our data are clear evidence of these newly recognized functions for BIG1 and BIG2 in transduction or integration of mechanical signals from integrin adhesions and myosin IIA-dependent actin dynamics. Thus, by anchoring or scaffolding the assembly, organization, and efficient operation of multimolecular myosin phosphatase complexes that include myosin IIA, protein phosphatase 1δ, and myosin phosphatase-targeting subunit 1, BIG1 and BIG2 serve to integrate diverse biophysical and biochemical events in cells.
Collapse
|
17
|
Regulation of Golgi signaling and trafficking by the KDEL receptor. Histochem Cell Biol 2013; 140:395-405. [DOI: 10.1007/s00418-013-1130-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2013] [Indexed: 12/31/2022]
|
18
|
Lowery J, Szul T, Styers M, Holloway Z, Oorschot V, Klumperman J, Sztul E. The Sec7 guanine nucleotide exchange factor GBF1 regulates membrane recruitment of BIG1 and BIG2 guanine nucleotide exchange factors to the trans-Golgi network (TGN). J Biol Chem 2013; 288:11532-45. [PMID: 23386609 PMCID: PMC3630886 DOI: 10.1074/jbc.m112.438481] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Three Sec7 guanine nucleotide exchange factors (GEFs) activate ADP-ribosylation factors (ARFs) to facilitate coating of transport vesicles within the secretory and endosomal pathways. GBF1 recruits COPI to pre-Golgi and Golgi compartments, whereas BIG1 and BIG2 recruit AP1 and GGA clathrin adaptors to the trans-Golgi network (TGN) and endosomes. Here, we report a functional cascade between these GEFs by showing that GBF1-activated ARFs (ARF4 and ARF5, but not ARF3) facilitate BIG1 and BIG2 recruitment to the TGN. We localize GBF1 ultrastructurally to the pre-Golgi, the Golgi, and also the TGN. Our findings suggest a model in which GBF1 localized within pre-Golgi and Golgi compartments mediates ARF activation to facilitate recruitment of COPI to membranes, whereas GBF1 localized at the TGN mediates ARF activation that leads to the recruitment of BIG1 and BIG2 to the TGN. Membrane-associated BIG1/2 then activates ARFs that recruit clathrin adaptors. In this cascade, an early acting GEF (GBF1) activates ARFs that mediate recruitment of late acting GEFs (BIG1/2) to coordinate coating events within the pre-Golgi/Golgi/TGN continuum. Such coordination may optimize the efficiency and/or selectivity of cargo trafficking through the compartments of the secretory pathway.
Collapse
Affiliation(s)
- Jason Lowery
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Cancino J, Luini A. Signaling Circuits on the Golgi Complex. Traffic 2012; 14:121-34. [DOI: 10.1111/tra.12022] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 10/12/2012] [Accepted: 10/12/2012] [Indexed: 01/21/2023]
|
20
|
Sheen VL. Periventricular Heterotopia: Shuttling of Proteins through Vesicles and Actin in Cortical Development and Disease. SCIENTIFICA 2012; 2012:480129. [PMID: 24278701 PMCID: PMC3820590 DOI: 10.6064/2012/480129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 10/14/2012] [Indexed: 06/02/2023]
Abstract
During cortical development, proliferating neural progenitors exhibit polarized apical and basolateral membranes that are maintained by tightly controlled and membrane-specific vesicular trafficking pathways. Disruption of polarity through impaired delivery of proteins can alter cell fate decisions and consequent expansion of the progenitor pool, as well as impact the integrity of the neuroependymal lining. Loss of neuroependymal integrity disrupts radial glial scaffolding and alters initial neuronal migration from the ventricular zone. Vesicle trafficking is also required for maintenance of lipid and protein cycling within the leading and trailing edge of migratory neurons, as well as dendrites and synapses of mature neurons. Defects in this transport machinery disrupt neuronal identity, migration, and connectivity and give rise to a malformation of cortical development termed as periventricular heterotopia (PH). PH is characterized by a reduction in brain size, ectopic clusters of neurons localized along the lateral ventricle, and epilepsy and dyslexia. These anatomical anomalies correlate with developmental impairments in neural progenitor proliferation and specification, migration from loss of neuroependymal integrity and neuronal motility, and aberrant neuronal process extension. Genes causal for PH regulate vesicle-mediated endocytosis along an actin cytoskeletal network. This paper explores the role of these dynamic processes in cortical development and disease.
Collapse
Affiliation(s)
- Volney L. Sheen
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
21
|
Brefeldin A-inhibited ADP-ribosylation factor activator BIG2 regulates cell migration via integrin β1 cycling and actin remodeling. Proc Natl Acad Sci U S A 2012; 109:14464-9. [PMID: 22908276 DOI: 10.1073/pnas.1211877109] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Brefeldin A-inhibited guanine nucleotide-exchange protein (BIG)2 activates ADP-ribosylation factors, ∼20-kDa GTPase proteins critical for continuity of intracellular vesicular trafficking by accelerating the replacement of ADP-ribosylation factor-bound GDP with GTP. Mechanisms of additional BIG2 function(s) are less clear. Here, the participation of BIG2 in integrin β1 cycling through actin dynamics during cell migration was identified using small interfering RNA (siRNA) and difference gel electrophoresis analyses. After a 72-h incubation with BIG2 siRNA, levels of cytosolic Arp2, Arp3, cofilin-1, phosphocofilin, vinculin, and Grb2, known to be involved in the effects of integrin β1-extracellular matrix interactions on actin function and cell translocation, were increased. Treatment of HeLa cells with BIG2 siRNA resulted in perinuclear accumulation of integrin β1 and its delayed return to the cell surface. Motility of BIG2-depleted cells was simultaneously decreased, as were actin-based membrane protrusions and accumulations of Arp2, Arp3, cofilin, and phosphocofilin at the leading edges of migrating cells, in wound-healing assays. Taken together, these data reveal a mechanism(s) through which BIG2 may coordinate actin cytoskeleton mechanics and membrane traffic in cell migration via integrin β1 action and actin functions.
Collapse
|
22
|
The guanine-nucleotide-exchange factor P-Rex1 is activated by protein phosphatase 1α. Biochem J 2012; 443:173-83. [PMID: 22242915 DOI: 10.1042/bj20112078] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
P-Rex1 is a GEF (guanine-nucleotide-exchange factor) for the small G-protein Rac that is activated by PIP3 (phosphatidylinositol 3,4,5-trisphosphate) and Gβγ subunits and inhibited by PKA (protein kinase A). In the present study we show that PP1α (protein phosphatase 1α) binds P-Rex1 through an RVxF-type docking motif. PP1α activates P-Rex1 directly in vitro, both independently of and additively to PIP3 and Gβγ. PP1α also substantially activates P-Rex1 in vivo, both in basal and PDGF (platelet-derived growth factor)- or LPA (lysophosphatidic acid)-stimulated cells. The phosphatase activity of PP1α is required for P-Rex1 activation. PP1β, a close homologue of PP1α, is also able to activate P-Rex1, but less effectively. PP1α stimulates P-Rex1-mediated Rac-dependent changes in endothelial cell morphology. MS analysis of wild-type P-Rex1 and a PP1α-binding-deficient mutant revealed that endogenous PP1α dephosphorylates P-Rex1 on at least three residues, Ser834, Ser1001 and Ser1165. Site-directed mutagenesis of Ser1165 to alanine caused activation of P-Rex1 to a similar degree as did PP1α, confirming Ser1165 as a dephosphorylation site important in regulating P-Rex1 Rac-GEF activity. In summary, we have identified a novel mechanism for direct activation of P-Rex1 through PP1α-dependent dephosphorylation.
Collapse
|
23
|
Krndija D, Münzberg C, Maass U, Hafner M, Adler G, Kestler HA, Seufferlein T, Oswald F, von Wichert G. The phosphatase of regenerating liver 3 (PRL-3) promotes cell migration through Arf-activity-dependent stimulation of integrin α5 recycling. J Cell Sci 2012; 125:3883-92. [PMID: 22595524 DOI: 10.1242/jcs.104885] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The formation of metastasis is one of the most critical problems in oncology. The phosphatase of regenerating liver 3 (PRL-3) is a new target in colorectal cancer, mediating metastatic behavior through a promigratory function. However, detailed explanations for this effect have remained elusive. Here we show that PRL-3 interacts with the ADP-ribosylation factor 1 (Arf1). PRL-3 colocalizes with Arf1 in an endosomal compartment and associates with transmembrane proteins such as the transferrin receptor and α5 integrins. PRL-3 interacts with Arf1 through a distinct motif and regulates activation of Arf1. PRL-3-mediated migration depends on expression and activation of Arf1 and is sensitive to treatment with Brefeldin A. We also demonstrate that PRL-3 modulates recycling of α5 integrins and that its phosphatase activity as well as Arf activation and compartmentalization with Arf1 are required for this effect. In summary our data identify a new function for PRL-3 and show that Arf1 is a new PRL-3-dependent mediator of enhanced migration of cancer cells through enhanced recycling of matrix receptors.
Collapse
Affiliation(s)
- Denis Krndija
- Department of Internal Medicine I, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Fieber LA, Greer JB, Guo F, Crawford DC, Rein KS. GENE EXPRESSION PROFILING OF HUMAN LIVER CARCINOMA (HepG2) CELLS EXPOSED TO THE MARINE TOXIN OKADAIC ACID. TOXICOLOGICAL AND ENVIRONMENTAL CHEMISTRY 2012; 24:1805-1821. [PMID: 23172983 PMCID: PMC3500632 DOI: 10.1080/02772248.2012.730199] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The marine toxin, okadaic acid (OA) is produced by dinoflagellates of the genera Prorocentrum and Dinophysis and is the causative agent of the syndrome known as diarrheic shellfish poisoning (DSP). In addition, OA acts as both a tumor promoter, attributed to OA-induced inhibition of protein phosphatases as well as an inducer of apoptosis. To better understand the potentially divergent toxicological profile of OA, the concentration dependent cytotoxicity and alterations in gene expression on the human liver tumor cell line HepG2 upon OA exposure were determined using RNA microarrays, DNA fragmentation, and cell proliferation assays as well as determinations of cell detachment and cell death in different concentrations of OA. mRNA expression was quantified for approximately 15,000 genes. Cell attachment and proliferation were both negatively correlated with OA concentration. Detached cells displayed necrotic DNA signatures but apoptosis also was broadly observed. Data suggest that OA has a concentration dependent effect on cell cycle, which might explain the divergent effects that at low concentration OA stimulates genes involved in the cell cycle and at high concentrations it stimulates apoptosis.
Collapse
Affiliation(s)
- Lynne A. Fieber
- Division of Marine Biology and Fisheries, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, USA 33149
| | - Justin B. Greer
- Division of Marine Biology and Fisheries, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, USA 33149
| | - Fujiang Guo
- Department of Chemistry and Biochemistry, 11200 SW 8 St, Florida International University, Miami, FL, USA33199
| | - Douglas C. Crawford
- Division of Marine Biology and Fisheries, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, USA 33149
| | - Kathleen S. Rein
- Department of Chemistry and Biochemistry, 11200 SW 8 St, Florida International University, Miami, FL, USA33199
| |
Collapse
|
25
|
Effects of brefeldin A-inhibited guanine nucleotide-exchange (BIG) 1 and KANK1 proteins on cell polarity and directed migration during wound healing. Proc Natl Acad Sci U S A 2011; 108:19228-33. [PMID: 22084092 DOI: 10.1073/pnas.1117011108] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Brefeldin A-inhibited guanine nucleotide-exchange protein (BIG) 1 activates class I ADP ribosylation factors (ARFs) by accelerating the replacement of bound GDP with GTP to initiate recruitment of coat proteins for membrane vesicle formation. Among proteins that interact with BIG1, kinesin family member 21A (KIF21A), a plus-end-directed motor protein, moves cargo away from the microtubule-organizing center (MTOC) on microtubules. Because KANK1, a protein containing N-terminal KN, C-terminal ankyrin-repeat, and intervening coiled-coil domains, has multiple actions in cells and also interacts with KIF21A, we explored a possible interaction between it and BIG1. We obtained evidence for a functional and physical association between these proteins, and found that the effects of BIG1 and KANK1 depletion on cell migration in wound-healing assays were remarkably similar. Treatment of cells with BIG1- or KANK1-specific siRNA interfered significantly with directed cell migration and initial orientation of Golgi/MTOC toward the leading edge, which was not mimicked by KIF21A depletion. Although colocalization of overexpressed KANK1 and endogenous BIG1 in HeLa cells was not clear microscopically, their reciprocal immunoprecipitation (IP) is compatible with the presence of small percentages of each protein in the same complexes. Depletion or overexpression of BIG1 protein appeared not to affect KANK1 distribution. Our data identify actions of both BIG1 and KANK1 in regulating cell polarity during directed migration; these actions are consistent with the presence of both BIG1 and KANK1 in dynamic multimolecular complexes that maintain Golgi/MTOC orientation, differ from those that might contain all three proteins (BIG1, KIF21A, and KANK1), and function in directed transport along microtubules.
Collapse
|
26
|
Lowery J, Szul T, Seetharaman J, Jian X, Su M, Forouhar F, Xiao R, Acton TB, Montelione GT, Lin H, Wright JW, Lee E, Holloway ZG, Randazzo PA, Tong L, Sztul E. Novel C-terminal motif within Sec7 domain of guanine nucleotide exchange factors regulates ADP-ribosylation factor (ARF) binding and activation. J Biol Chem 2011; 286:36898-906. [PMID: 21828055 DOI: 10.1074/jbc.m111.230631] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
ADP-ribosylation factors (ARFs) and their activating guanine nucleotide exchange factors (GEFs) play key roles in membrane traffic and signaling. All ARF GEFs share a ∼200-residue Sec7 domain (Sec7d) that alone catalyzes the GDP to GTP exchange that activates ARF. We determined the crystal structure of human BIG2 Sec7d. A C-terminal loop immediately following helix J (loop>J) was predicted to form contacts with helix H and the switch I region of the cognate ARF, suggesting that loop>J may participate in the catalytic reaction. Indeed, we identified multiple alanine substitutions within loop>J of the full length and/or Sec7d of two large brefeldin A-sensitive GEFs (GBF1 and BIG2) and one small brefeldin A-resistant GEF (ARNO) that abrogated binding of ARF and a single alanine substitution that allowed ARF binding but inhibited GDP to GTP exchange. Loop>J sequences are highly conserved, suggesting that loop>J plays a crucial role in the catalytic activity of all ARF GEFs. Using GEF mutants unable to bind ARF, we showed that GEFs associate with membranes independently of ARF and catalyze ARF activation in vivo only when membrane-associated. Our structural, cell biological, and biochemical findings identify loop>J as a key regulatory motif essential for ARF binding and GDP to GTP exchange by GEFs and provide evidence for the requirement of membrane association during GEF activity.
Collapse
Affiliation(s)
- Jason Lowery
- Department of Cell Biology, University of Alabama, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Boal F, Stephens DJ. Specific functions of BIG1 and BIG2 in endomembrane organization. PLoS One 2010; 5:e9898. [PMID: 20360857 PMCID: PMC2845624 DOI: 10.1371/journal.pone.0009898] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 03/04/2010] [Indexed: 11/29/2022] Open
Abstract
Background Transport of molecules from one subcellular compartment to another involves the recruitment of cytosolic coat protein complexes to a donor membrane to concentrate cargo, deform the membrane and ultimately to form an independent carrier. Small-GTP-binding proteins of the Arf family are central to many membrane trafficking events. Arfs are activated by guanine nucleotide exchange factors (GEFs) which results in their recruitment to membranes and subsequent engagement with Arf-effectors, many of which are coat proteins. Among the human BFA-sensitive large Arf-GEFs, the function of the two closely related BIG1 and BIG2 is still not clear, and recent studies have raised the question of functional redundancy between the two proteins. Methodology/Principal Findings Here we have used small-interfering RNA on human cells and a combination of fixed and live-cell imaging to investigate the differential functions of BIG1 and BIG2 in endomembrane organization and function. Importantly, in this direct comparative study, we show discrete functions for BIG1 and BIG2. Our results show that depletion of BIG2 but not of BIG1 induces a tubulation of the recycling endosomal compartment, consistent with a specific role for BIG2 here. In contrast, suppression of BIG1 induces the formation of Golgi mini-stacks still polarized and functional in terms of cargo export. Conclusions A key finding from our work is that suppression of BIG1 expression results in a fragmentation of the Golgi apparatus. Our data indicate that the human BFA-sensitive large Arf-GEFs have non-redundant functions in cell organization and membrane trafficking. BIG1 is required to maintain the normal morphology of the Golgi; BIG2 is important for endosomal compartment integrity and cannot replace the function of BIG1 in Golgi organization.
Collapse
Affiliation(s)
- Frédéric Boal
- Department of Biochemistry, Cell Biology Laboratories, University of Bristol School of Medical Sciences, Bristol, United Kingdom.
| | | |
Collapse
|
28
|
Mechanisms of protein kinase A anchoring. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 283:235-330. [PMID: 20801421 DOI: 10.1016/s1937-6448(10)83005-9] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The second messenger cyclic adenosine monophosphate (cAMP), which is produced by adenylyl cyclases following stimulation of G-protein-coupled receptors, exerts its effect mainly through the cAMP-dependent serine/threonine protein kinase A (PKA). Due to the ubiquitous nature of the cAMP/PKA system, PKA signaling pathways underlie strict spatial and temporal control to achieve specificity. A-kinase anchoring proteins (AKAPs) bind to the regulatory subunit dimer of the tetrameric PKA holoenzyme and thereby target PKA to defined cellular compartments in the vicinity of its substrates. AKAPs promote the termination of cAMP signals by recruiting phosphodiesterases and protein phosphatases, and the integration of signaling pathways by binding additional signaling proteins. AKAPs are a heterogeneous family of proteins that only display similarity within their PKA-binding domains, amphipathic helixes docking into a hydrophobic groove formed by the PKA regulatory subunit dimer. This review summarizes the current state of information on compartmentalized cAMP/PKA signaling with a major focus on structural aspects, evolution, diversity, and (patho)physiological functions of AKAPs and intends to outline newly emerging directions of the field, such as the elucidation of AKAP mutations and alterations of AKAP expression in human diseases, and the validation of AKAP-dependent protein-protein interactions as new drug targets. In addition, alternative PKA anchoring mechanisms employed by noncanonical AKAPs and PKA catalytic subunit-interacting proteins are illustrated.
Collapse
|
29
|
|
30
|
Bui QT, Golinelli-Cohen MP, Jackson CL. Large Arf1 guanine nucleotide exchange factors: evolution, domain structure, and roles in membrane trafficking and human disease. Mol Genet Genomics 2009; 282:329-50. [PMID: 19669794 PMCID: PMC7088145 DOI: 10.1007/s00438-009-0473-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 07/19/2009] [Indexed: 12/16/2022]
Abstract
The Sec7 domain ADP-ribosylation factor (Arf) guanine nucleotide exchange factors (GEFs) are found in all eukaryotes, and are involved in membrane remodeling processes throughout the cell. This review is focused on members of the GBF/Gea and BIG/Sec7 subfamilies of Arf GEFs, all of which use the class I Arf proteins (Arf1-3) as substrates, and play a fundamental role in trafficking in the endoplasmic reticulum (ER)—Golgi and endosomal membrane systems. Members of the GBF/Gea and BIG/Sec7 subfamilies are large proteins on the order of 200 kDa, and they possess multiple homology domains. Phylogenetic analyses indicate that both of these subfamilies of Arf GEFs have members in at least five out of the six eukaryotic supergroups, and hence were likely present very early in eukaryotic evolution. The homology domains of the large Arf1 GEFs play important functional roles, and are involved in interactions with numerous protein partners. The large Arf1 GEFs have been implicated in several human diseases. They are crucial host factors for the replication of several viral pathogens, including poliovirus, coxsackievirus, mouse hepatitis coronavirus, and hepatitis C virus. Mutations in the BIG2 Arf1 GEF have been linked to autosomal recessive periventricular heterotopia, a disorder of neuronal migration that leads to severe malformation of the cerebral cortex. Understanding the roles of the Arf1 GEFs in membrane dynamics is crucial to a full understanding of trafficking in the secretory and endosomal pathways, which in turn will provide essential insights into human diseases that arise from misregulation of these pathways.
Collapse
Affiliation(s)
- Quynh Trang Bui
- Laboratoire d'Enzymologie et Biochimie Structurales, Bat 34, CNRS, 1, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | | | | |
Collapse
|
31
|
Interaction of phosphodiesterase 3A with brefeldin A-inhibited guanine nucleotide-exchange proteins BIG1 and BIG2 and effect on ARF1 activity. Proc Natl Acad Sci U S A 2009; 106:6158-63. [PMID: 19332778 DOI: 10.1073/pnas.0901558106] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ADP-ribosylation factors (ARFs) have crucial roles in vesicular trafficking. Brefeldin A-inhibited guanine nucleotide-exchange proteins (BIG)1 and BIG2 catalyze the activation of class I ARFs by accelerating replacement of bound GDP with GTP. Several additional and differing actions of BIG1 and BIG2 have been described. These include the presence in BIG2 of 3 A kinase-anchoring protein (AKAP) domains, one of which is identical in BIG1. Proteins that contain AKAP sequences act as scaffolds for the assembly of PKA with other enzymes, substrates, and regulators in complexes that constitute molecular machines for the reception, transduction, and integration of signals from cAMP or other sources, which are initiated, propagated, and transmitted by chemical, electrical, or mechanical means. Specific depletion of HeLa cell PDE3A with small interfering RNA significantly decreased membrane-associated BIG1 and BIG2, which by confocal immunofluorescence microscopy were widely dispersed from an initial perinuclear Golgi concentration. Concurrently, activated ARF1-GTP was significantly decreased. Selective inhibition of PDE3A by 1-h incubation of cells with cilostamide similarly decreased membrane-associated BIG1. We suggest that decreasing PDE3A allowed cAMP to accumulate in microdomains where its enzymatic activity limited cAMP concentration. There, cAMP-activated PKA phosphorylated BIG1 and BIG2 (AKAPs for assembly of PKA, PDE3A, and other molecules), which decreased their GEP activity and thereby amounts of activated ARF1-GTP. Thus, PDE3A in these BIG1 and BIG2 AKAP complexes may contribute to the regulation of ARF function via limitation of cAMP effects with spatial and temporal specificity.
Collapse
|
32
|
Interaction of brefeldin A-inhibited guanine nucleotide-exchange protein (BIG) 1 and kinesin motor protein KIF21A. Proc Natl Acad Sci U S A 2008; 105:18788-93. [PMID: 19020088 DOI: 10.1073/pnas.0810104105] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Brefeldin A-inhibited guanine nucleotide-exchange protein (BIG) 1 activates human ADP-ribosylation factor (ARF) 1 and 3 by accelerating the replacement of ARF-bound GDP with GTP to initiate recruitment of coat proteins for membrane vesicle formation. Liquid chromatography MS/MS analysis of peptides from proteins that co-precipitated with BIG1 antibodies identified "kinesin family member 21A" (KIF21A), a plus-end-directed motor protein that moves cargo on microtubules away from the microtubule-organizing center. Reciprocal immunoprecipitation (IP) of endogenous proteins and microscopically apparent overlap of immunoreactive BIG1 with overexpressed GFP-KIF21A in the perinuclear region were consistent with an interaction of KIF21A-BIG1. Overexpression of full-length KIF21A and BIG1 and their fragments in HEK293 cells followed by reciprocal IP revealed that the C-terminal tail of KIF21A, with seven WD-40 repeats, may interact with structure in the C-terminal region of BIG1. Interfering with cyclic activation and inactivation of ARF1 by overexpressing constitutively active ARF1(Q71L) or dominant inactive ARF1(T31N) altered the distribution of BIG1 as well as its interaction with KIF21A. A requirement for ARF1 was confirmed by its selective depletion with siRNA. Unlike disruption of microtubules with nocodazole, selective inhibition of transport by depletion of KIF21A with specific siRNA altered BIG1 distribution without changing that of intrinsic Golgi membrane proteins. These newly recognized interactions of BIG1 and KIF21A should enable us to understand better the mechanisms through which, acting together, they may integrate local events in membrane trafficking with longer-range transport processes and to relate those processes to the diverse signaling and scaffold functions of BIG1.
Collapse
|
33
|
Wojtal KA, Hoekstra D, van Ijzendoorn SCD. cAMP-dependent protein kinase A and the dynamics of epithelial cell surface domains: moving membranes to keep in shape. Bioessays 2008; 30:146-55. [PMID: 18200529 DOI: 10.1002/bies.20705] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cyclic adenosine monophosphate (cAMP) and cAMP-dependent protein kinase A (PKA) are evolutionary conserved molecules with a well-established position in the complex network of signal transduction pathways. cAMP/PKA-mediated signaling pathways are implicated in many biological processes that cooperate in organ development including the motility, survival, proliferation and differentiation of epithelial cells. Cell surface polarity, here defined as the anisotropic organisation of cellular membranes, is a critical parameter for most of these processes. Changes in the activity of cAMP/PKA elicit a variety of effects on intracellular membrane dynamics, including membrane sorting and trafficking. One of the most intriguing aspects of cAMP/PKA signaling is its evolutionary conserved abundance on the one hand and its precise spatial-temporal actions on the other. Here, we review recent developments with regard to the role of cAMP/PKA in the regulation of intracellular membrane trafficking in relation to the dynamics of epithelial surface domains.
Collapse
Affiliation(s)
- Kacper A Wojtal
- Division of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
34
|
Muñoz J, Fernández-Irigoyen J, Santamaría E, Parbel A, Obeso J, Corrales FJ. Mass spectrometric characterization of mitochondrial complex I NDUFA10 variants. Proteomics 2008; 8:1898-908. [DOI: 10.1002/pmic.200701085] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Padilla PI, Uhart M, Pacheco-Rodriguez G, Peculis BA, Moss J, Vaughan M. Association of guanine nucleotide-exchange protein BIG1 in HepG2 cell nuclei with nucleolin, U3 snoRNA, and fibrillarin. Proc Natl Acad Sci U S A 2008; 105:3357-61. [PMID: 18292223 PMCID: PMC2265132 DOI: 10.1073/pnas.0712387105] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Indexed: 01/01/2023] Open
Abstract
BIG1, a brefeldin A-inhibited guanine nucleotide-exchange protein, activates class I ADP-ribosylation factors (ARF1-3) by catalyzing the replacement of bound GDP by GTP, an action critical for the regulation of protein transport in eukaryotic cells. Our earlier report [Padilla PI, Pancheco-Rodriguez G, Moss J, Vaughan M (2004) Proc Natl Acad Sci USA 101:2752-2757] that BIG1 concentrated in nucleoli of serum-starved HepG2 cells prompted us to identify molecules associated with BIG1 in dynamic nucleolar structures. Antibodies against BIG1 or nucleolin coprecipitated both proteins from nuclei, which was abolished by the incubation of nuclei with RNase A or DNase, indicating that the interaction depended on nucleic acids. (32)P labeling of RNAs immunoprecipitated with BIG1 or nucleolin from nuclei revealed bands of approximately 210 bases that also hybridized with U3 small nucleolar (sno)RNA-specific oligonucleotides. Clones of U3 snoRNA cDNAs from the material precipitated by antibodies against BIG1 or nucleolin yielded identical nucleotide sequences that also were found in genomic DNA. Later analyses revealed the presence of fibrillarin, nucleoporin p62, and La in BIG1 and nucleolin immunoprecipitates. Our data demonstrate that BIG1, nucleolin, U3, the U3-binding protein fibrillarin, and the RNA-binding protein La may exist together in nuclear complexes, consistent with a potential role for BIG1 in nucleolar processes. Evidence that BIG1 and nucleolin, but not fibrillarin, can be present with p62 at the nuclear envelope confirms the presence of BIG1 and nucleolin in dynamic molecular complexes that change in composition while moving through nuclei. Nuclear functions of BIG1 remain to be determined.
Collapse
Affiliation(s)
- Philip Ian Padilla
- *Translational Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Marina Uhart
- *Translational Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Gustavo Pacheco-Rodriguez
- *Translational Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Brenda A. Peculis
- Department of Biochemistry, University of Missouri, Columbia, MO 65211
| | - Joel Moss
- *Translational Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Martha Vaughan
- *Translational Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and
| |
Collapse
|
36
|
McSorley T, Ort S, Hazra S, Lavie A, Konrad M. Mimicking phosphorylation of Ser-74 on human deoxycytidine kinase selectively increases catalytic activity for dC and dC analogues. FEBS Lett 2008; 582:720-4. [PMID: 18258203 DOI: 10.1016/j.febslet.2008.01.048] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Revised: 01/21/2008] [Accepted: 01/29/2008] [Indexed: 11/26/2022]
Abstract
Intracellular phosphorylation of dCK on Ser-74 results in increased nucleoside kinase activity. We mimicked this phosphorylation by a Ser-74-Glu mutation in bacterially produced dCK and investigated kinetic parameters using various nucleoside substrates. The S74E mutation increases the k(cat) values 11-fold for dC, and 3-fold for the anti-cancer analogues dFdC and AraC. In contrast, the rate is decreased for the purine substrates. In HEK293 cells, we found that by comparing transiently transfected dCK(S74E)-GFP and wild-type dCK-GFP, mimicking the phosphorylation of Ser-74 has no effect on cellular localisation. We note that phosphorylation may represent a mechanism to enhance the catalytic activity of the relatively slow dCK enzyme.
Collapse
Affiliation(s)
- Theresa McSorley
- Max-Planck-Institute for Biophysical Chemistry, Research Group Enzyme Biochemistry, Am Fassberg 11, Göttingen, Germany
| | | | | | | | | |
Collapse
|
37
|
Anders N, Nielsen M, Keicher J, Stierhof YD, Furutani M, Tasaka M, Skriver K, Jürgens G. Membrane association of the Arabidopsis ARF exchange factor GNOM involves interaction of conserved domains. THE PLANT CELL 2008; 20:142-51. [PMID: 18203920 PMCID: PMC2254928 DOI: 10.1105/tpc.107.056515] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 12/19/2007] [Accepted: 12/30/2007] [Indexed: 05/22/2023]
Abstract
The GNOM protein plays a fundamental role in Arabidopsis thaliana development by regulating endosome-to-plasma membrane trafficking required for polar localization of the auxin efflux carrier PIN1. GNOM is a family member of large ARF guanine nucleotide exchange factors (ARF-GEFs), which regulate vesicle formation by activating ARF GTPases on specific membranes in animals, plants, and fungi. However, apart from the catalytic exchange activity of the SEC7 domain, the functional significance of other conserved domains is virtually unknown. Here, we show that a distinct N-terminal domain of GNOM mediates dimerization and in addition interacts heterotypically with two other conserved domains in vivo. In contrast with N-terminal dimerization, the heterotypic interaction is essential for GNOM function, as mutations abolishing this interaction inactivate the GNOM protein and compromise its membrane association. Our results suggest a general model of large ARF-GEF function in which regulated changes in protein conformation control membrane association of the exchange factor and, thus, activation of ARFs.
Collapse
Affiliation(s)
- Nadine Anders
- Center of Molecular Biology of Plants, University of Tübingen, 72076 Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|