1
|
Prud'homme B. The power of proximity: mechanisms and biological roles of transvection. Curr Opin Genet Dev 2024; 89:102269. [PMID: 39368316 DOI: 10.1016/j.gde.2024.102269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 10/07/2024]
Abstract
The phenomenon of transvection, defined as a proximity-dependent interallelic interaction, has been observed in the context of complementation between mutant alleles for numerous Drosophila genes. Cases of transvection-like phenomena have also been observed in other species, including mammals. However, the potential contribution of transvection to wild-type gene regulation and the underlying mechanisms remain uncertain. Here, I review recent evidence demonstrating the relevance of transvection in physiological contexts. These findings suggest that transvection represents an additional layer of gene regulation that allows cells to fine-tune gene expression based on the proximity of homologous alleles. In addition, recent studies have measured the physical distance between interacting alleles, revealing unexpectedly large and variable distances. I will discuss how these distances are compatible with the 'hub' model of transcriptional regulation.
Collapse
Affiliation(s)
- Benjamin Prud'homme
- Aix-Marseille Université, CNRS, IBDM, Institut de Biologie du Développement de Marseille, Campus de Luminy Case 907, Cedex 9, 13288 Marseille, France.
| |
Collapse
|
2
|
Aldrich JC, Vanderlinden LA, Jacobsen TL, Wood C, Saba LM, Britt SG. Genome-Wide Association Study and transcriptome analysis reveals a complex gene network that regulates opsin gene expression and cell fate determination in Drosophila R7 photoreceptor cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606616. [PMID: 39149333 PMCID: PMC11326169 DOI: 10.1101/2024.08.05.606616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Background An animal's ability to discriminate between differing wavelengths of light (i.e., color vision) is mediated, in part, by a subset of photoreceptor cells that express opsins with distinct absorption spectra. In Drosophila R7 photoreceptors, expression of the rhodopsin molecules, Rh3 or Rh4, is determined by a stochastic process mediated by the transcription factor spineless. The goal of this study was to identify additional factors that regulate R7 cell fate and opsin choice using a Genome Wide Association Study (GWAS) paired with transcriptome analysis via RNA-Seq. Results We examined Rh3 and Rh4 expression in a subset of fully-sequenced inbred strains from the Drosophila Genetic Reference Panel and performed a GWAS to identify 42 naturally-occurring polymorphisms-in proximity to 28 candidate genes-that significantly influence R7 opsin expression. Network analysis revealed multiple potential interactions between the associated candidate genes, spineless and its partners. GWAS candidates were further validated in a secondary RNAi screen which identified 12 lines that significantly reduce the proportion of Rh3 expressing R7 photoreceptors. Finally, using RNA-Seq, we demonstrated that all but four of the GWAS candidates are expressed in the pupal retina at a critical developmental time point and that five are among the 917 differentially expressed genes in sevenless mutants, which lack R7 cells. Conclusions Collectively, these results suggest that the relatively simple, binary cell fate decision underlying R7 opsin expression is modulated by a larger, more complex network of regulatory factors. Of particular interest are a subset of candidate genes with previously characterized neuronal functions including neurogenesis, neurodegeneration, photoreceptor development, axon growth and guidance, synaptogenesis, and synaptic function.
Collapse
Affiliation(s)
- John C. Aldrich
- Department of Neurology, Department of Ophthalmology, Dell Medical School; University of Texas at Austin, Austin, TX 78712
- Department of Psychology, University of Texas at Austin, Austin, TX 78712
| | - Lauren A. Vanderlinden
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Thomas L. Jacobsen
- Department of Neurology, Department of Ophthalmology, Dell Medical School; University of Texas at Austin, Austin, TX 78712
| | - Cheyret Wood
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Laura M. Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Steven G. Britt
- Department of Neurology, Department of Ophthalmology, Dell Medical School; University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
3
|
Melnikova L, Molodina V, Georgiev P, Golovnin A. Development of a New Model System to Study Long-Distance Interactions Supported by Architectural Proteins. Int J Mol Sci 2024; 25:4617. [PMID: 38731837 PMCID: PMC11083095 DOI: 10.3390/ijms25094617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/20/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
Chromatin architecture is critical for the temporal and tissue-specific activation of genes that determine eukaryotic development. The functional interaction between enhancers and promoters is controlled by insulators and tethering elements that support specific long-distance interactions. However, the mechanisms of the formation and maintenance of long-range interactions between genome regulatory elements remain poorly understood, primarily due to the lack of convenient model systems. Drosophila became the first model organism in which architectural proteins that determine the activity of insulators were described. In Drosophila, one of the best-studied DNA-binding architectural proteins, Su(Hw), forms a complex with Mod(mdg4)-67.2 and CP190 proteins. Using a combination of CRISPR/Cas9 genome editing and attP-dependent integration technologies, we created a model system in which the promoters and enhancers of two reporter genes are separated by 28 kb. In this case, enhancers effectively stimulate reporter gene promoters in cis and trans only in the presence of artificial Su(Hw) binding sites (SBS), in both constructs. The expression of the mutant Su(Hw) protein, which cannot interact with CP190, and the mutation inactivating Mod(mdg4)-67.2, lead to the complete loss or significant weakening of enhancer-promoter interactions, respectively. The results indicate that the new model system effectively identifies the role of individual subunits of architectural protein complexes in forming and maintaining specific long-distance interactions in the D. melanogaster model.
Collapse
Affiliation(s)
- Larisa Melnikova
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia;
| | - Varvara Molodina
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia;
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia;
| | - Anton Golovnin
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia;
| |
Collapse
|
4
|
Blum JA, Wells M, Huxley-Reicher Z, Johnson JE, Bateman JR. Transvection between nonallelic genomic positions in Drosophila. G3 (BETHESDA, MD.) 2024; 14:jkad255. [PMID: 37949840 PMCID: PMC10849331 DOI: 10.1093/g3journal/jkad255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
In Drosophila, pairing of maternal and paternal homologous chromosomes can permit trans-interactions between enhancers on one homolog and promoters on another, an example of transvection. Although trans-interactions have been observed at many loci in the Drosophila genome and in other organisms, the parameters that govern enhancer action in trans remain poorly understood. Using a transgenic reporter system, we asked whether enhancers and promoters at nonallelic, but nearby, genomic positions can communication in trans. Using one transgenic insertion carrying the synthetic enhancer GMR and another nearby insertion carrying the hsp70 promoter driving a fluorescent reporter, we show that transgenes separated by 2.6 kb of linear distance can support enhancer action in trans at the 53F8 locus. Furthermore, transvection between the nonallelic insertions can be augmented by a small deletion flanking one insert, likely via changes to the paired configuration of the homologs. Subsequent analyses of other insertions in 53F8 that carry different transgenic sequences demonstrate that the capacity to support transvection between nonallelic sites varies greatly, suggesting that factors beyond the linear distance between insertion sites play an important role. Finally, analysis of transvection between nearby nonallelic sites at other genomic locations shows evidence of position effects, where one locus supported GMR action in trans over a linear distance of over 10 kb, whereas another locus showed no evidence of transvection over a span <200 bp. Overall, our data demonstrate that transvection between nonallelic sites represents a complex interplay between genomic context, interallelic distance, and promoter identity.
Collapse
Affiliation(s)
- Jacob A Blum
- Biology Department, 2 Polar Loop, Bowdoin College, Brunswick, ME 04011, USA
| | - Michelle Wells
- Biology Department, 2 Polar Loop, Bowdoin College, Brunswick, ME 04011, USA
| | | | - Justine E Johnson
- Biology Department, 2 Polar Loop, Bowdoin College, Brunswick, ME 04011, USA
| | - Jack R Bateman
- Biology Department, 2 Polar Loop, Bowdoin College, Brunswick, ME 04011, USA
| |
Collapse
|
5
|
Galouzis CC, Prud’homme B. Relevance and mechanisms of transvection. C R Biol 2021; 344:373-387. [DOI: 10.5802/crbiol.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/15/2021] [Indexed: 11/24/2022]
|
6
|
Peterson SC, Samuelson KB, Hanlon SL. Multi-Scale Organization of the Drosophila melanogaster Genome. Genes (Basel) 2021; 12:817. [PMID: 34071789 PMCID: PMC8228293 DOI: 10.3390/genes12060817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 12/16/2022] Open
Abstract
Interphase chromatin, despite its appearance, is a highly organized framework of loops and bends. Chromosomes are folded into topologically associating domains, or TADs, and each chromosome and its homolog occupy a distinct territory within the nucleus. In Drosophila, genome organization is exceptional because homologous chromosome pairing is in both germline and somatic tissues, which promote interhomolog interactions such as transvection that can affect gene expression in trans. In this review, we focus on what is known about genome organization in Drosophila and discuss it from TADs to territory. We start by examining intrachromosomal organization at the sub-chromosome level into TADs, followed by a comprehensive analysis of the known proteins that play a key role in TAD formation and boundary establishment. We then zoom out to examine interhomolog interactions such as pairing and transvection that are abundant in Drosophila but rare in other model systems. Finally, we discuss chromosome territories that form within the nucleus, resulting in a complete picture of the multi-scale organization of the Drosophila genome.
Collapse
Affiliation(s)
| | | | - Stacey L. Hanlon
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; (S.C.P.); (K.B.S.)
| |
Collapse
|
7
|
King TD, Johnson JE, Bateman JR. Position Effects Influence Transvection in Drosophila melanogaster. Genetics 2019; 213:1289-1299. [PMID: 31611231 PMCID: PMC6893391 DOI: 10.1534/genetics.119.302583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/03/2019] [Indexed: 01/14/2023] Open
Abstract
Transvection is an epigenetic phenomenon wherein regulatory elements communicate between different chromosomes in trans, and is thereby dependent upon the three-dimensional organization of the genome. Transvection is best understood in Drosophila, where homologous chromosomes are closely paired in most somatic nuclei, although similar phenomena have been observed in other species. Previous data have supported that the Drosophila genome is generally permissive to enhancer action in trans, a form of transvection where an enhancer on one homolog activates gene expression from a promoter on a paired homolog. However, the capacity of different genomic positions to influence the quantitative output of transvection has yet to be addressed. To investigate this question, we employed a transgenic system that assesses and compares enhancer action in cis and in trans at defined chromosomal locations. Using the strong synthetic eye-specific enhancer GMR, we show that loci supporting strong cis-expression tend to support robust enhancer action in trans, whereas locations with weaker cis-expression show reduced transvection in a fluorescent reporter assay. Our subsequent analysis is consistent with a model wherein the chromatin state of the transgenic insertion site is a primary determinant of the degree to which enhancer action in trans will be supported, whereas other factors such as locus-specific variation in somatic homolog pairing are of less importance in influencing position effects on transvection.
Collapse
Affiliation(s)
- Thomas D King
- Biology Department, Bowdoin College, Brunswick, Maine 04011
| | | | - Jack R Bateman
- Biology Department, Bowdoin College, Brunswick, Maine 04011
| |
Collapse
|
8
|
AlHaj Abed J, Erceg J, Goloborodko A, Nguyen SC, McCole RB, Saylor W, Fudenberg G, Lajoie BR, Dekker J, Mirny LA, Wu CT. Highly structured homolog pairing reflects functional organization of the Drosophila genome. Nat Commun 2019; 10:4485. [PMID: 31582763 PMCID: PMC6776532 DOI: 10.1038/s41467-019-12208-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 08/27/2019] [Indexed: 01/14/2023] Open
Abstract
Trans-homolog interactions have been studied extensively in Drosophila, where homologs are paired in somatic cells and transvection is prevalent. Nevertheless, the detailed structure of pairing and its functional impact have not been thoroughly investigated. Accordingly, we generated a diploid cell line from divergent parents and applied haplotype-resolved Hi-C, showing that homologs pair with varying precision genome-wide, in addition to establishing trans-homolog domains and compartments. We also elucidate the structure of pairing with unprecedented detail, observing significant variation across the genome and revealing at least two forms of pairing: tight pairing, spanning contiguous small domains, and loose pairing, consisting of single larger domains. Strikingly, active genomic regions (A-type compartments, active chromatin, expressed genes) correlated with tight pairing, suggesting that pairing has a functional implication genome-wide. Finally, using RNAi and haplotype-resolved Hi-C, we show that disruption of pairing-promoting factors results in global changes in pairing, including the disruption of some interaction peaks.
Collapse
Affiliation(s)
- Jumana AlHaj Abed
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Jelena Erceg
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Anton Goloborodko
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
| | - Son C Nguyen
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6145, USA
| | - Ruth B McCole
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Wren Saylor
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Geoffrey Fudenberg
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
- Gladstone Institutes of Data Science and Biotechnology, San Francisco, CA, 94158, USA
| | - Bryan R Lajoie
- Howard Hughes Medical Institute and Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605-0103, USA
- Illumina, San Diego, CA, USA
| | - Job Dekker
- Howard Hughes Medical Institute and Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605-0103, USA
| | - Leonid A Mirny
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA.
- Department of Physics, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA.
| | - C-Ting Wu
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
9
|
Piwko P, Vitsaki I, Livadaras I, Delidakis C. The Role of Insulators in Transgene Transvection in Drosophila. Genetics 2019; 212:489-508. [PMID: 30948430 PMCID: PMC6553826 DOI: 10.1534/genetics.119.302165] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/02/2019] [Indexed: 12/19/2022] Open
Abstract
Transvection is the phenomenon where a transcriptional enhancer activates a promoter located on the homologous chromosome. It has been amply documented in Drosophila where homologs are closely paired in most, if not all, somatic nuclei, but it has been known to rarely occur in mammals as well. We have taken advantage of site-directed transgenesis to insert reporter constructs into the same genetic locus in Drosophila and have evaluated their ability to engage in transvection by testing many heterozygous combinations. We find that transvection requires the presence of an insulator element on both homologs. Homotypic trans-interactions between four different insulators can support transvection: the gypsy insulator (GI), Wari, Fab-8 and 1A2; GI and Fab-8 are more effective than Wari or 1A2 We show that, in the presence of insulators, transvection displays the characteristics that have been previously described: it requires homolog pairing, but can happen at any of several loci in the genome; a solitary enhancer confronted with an enhancerless reporter is sufficient to drive transcription; it is weaker than the action of the same enhancer-promoter pair in cis, and it is further suppressed by cis-promoter competition. Though necessary, the presence of homotypic insulators is not sufficient for transvection; their position, number and orientation matters. A single GI adjacent to both enhancer and promoter is the optimal configuration. The identity of enhancers and promoters in the vicinity of a trans-interacting insulator pair is also important, indicative of complex insulator-enhancer-promoter interactions.
Collapse
Affiliation(s)
- Pawel Piwko
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion 70013, Crete, Greece
- Department of Biology, University of Crete, Heraklion 70013, Crete, Greece
| | - Ilektra Vitsaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion 70013, Crete, Greece
- Department of Biology, University of Crete, Heraklion 70013, Crete, Greece
| | - Ioannis Livadaras
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion 70013, Crete, Greece
| | - Christos Delidakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion 70013, Crete, Greece
- Department of Biology, University of Crete, Heraklion 70013, Crete, Greece
| |
Collapse
|
10
|
Tian K, Henderson RE, Parker R, Brown A, Johnson JE, Bateman JR. Two modes of transvection at the eyes absent gene of Drosophila demonstrate plasticity in transcriptional regulatory interactions in cis and in trans. PLoS Genet 2019; 15:e1008152. [PMID: 31075100 PMCID: PMC6530868 DOI: 10.1371/journal.pgen.1008152] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/22/2019] [Accepted: 04/23/2019] [Indexed: 01/10/2023] Open
Abstract
For many genes, proper gene expression requires coordinated and dynamic interactions between multiple regulatory elements, each of which can either promote or silence transcription. In Drosophila, the complexity of the regulatory landscape is further complicated by the tight physical pairing of homologous chromosomes, which can permit regulatory elements to interact in trans, a phenomenon known as transvection. To better understand how gene expression can be programmed through cis- and trans-regulatory interactions, we analyzed transvection effects for a collection of alleles of the eyes absent (eya) gene. We find that trans-activation of a promoter by the eya eye-specific enhancers is broadly supported in many allelic backgrounds, and that the availability of an enhancer to act in trans can be predicted based on the molecular lesion of an eya allele. Furthermore, by manipulating promoter availability in cis and in trans, we demonstrate that the eye-specific enhancers of eya show plasticity in their promoter preference between two different transcriptional start sites, which depends on promoter competition between the two potential targets. Finally, we show that certain alleles of eya demonstrate pairing-sensitive silencing resulting from trans-interactions between Polycomb Response Elements (PREs), and genetic and genomic data support a general role for PcG proteins in mediating transcriptional silencing at eya. Overall, our data highlight how eya gene regulation relies upon a complex but plastic interplay between multiple enhancers, promoters, and PREs. Gene regulation requires interactions between regions of DNA known as regulatory elements, which, in combination, determine where and when a gene will be active or silenced. Some genes use just a few regulatory elements, whereas others rely on highly complex interactions between many different elements that are poorly understood. While we typically imagine regulatory elements interacting with one another along the length of a single chromosome, in a curious phenomenon called transvection, elements can communicate between two different chromosomes that are held in close proximity. Here, we use the study of transvection to better understand how different regulatory elements contribute to the expression of eyes absent (eya), a gene required for proper eye development in Drosophila. Our data show that a class of elements that initiate eya gene expression, called promoters, will compete with one another for activation by eya’s enhancers, a second class of regulatory element, with the promoter that is closest to the enhancers being the favored target for activation. Furthermore, our study of transvection uncovers an important role for a silencing element, called a PRE, in opposing eya gene expression. Overall, our study sheds new light on how different elements combine to produce patterned expression of eya.
Collapse
Affiliation(s)
- Katherine Tian
- Biology Department, Bowdoin College, Brunswick, Maine, United States of America
| | - Rachel E. Henderson
- Biology Department, Bowdoin College, Brunswick, Maine, United States of America
| | - Reyna Parker
- Biology Department, Bowdoin College, Brunswick, Maine, United States of America
| | - Alexia Brown
- Biology Department, Bowdoin College, Brunswick, Maine, United States of America
| | - Justine E. Johnson
- Biology Department, Bowdoin College, Brunswick, Maine, United States of America
| | - Jack R. Bateman
- Biology Department, Bowdoin College, Brunswick, Maine, United States of America
- * E-mail:
| |
Collapse
|
11
|
Li M, Ma Z, Roy S, Patel SK, Lane DC, Duffy CR, Cai HN. Selective interactions between diverse STEs organize the ANT-C Hox cluster. Sci Rep 2018; 8:15158. [PMID: 30310129 PMCID: PMC6181975 DOI: 10.1038/s41598-018-33588-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/01/2018] [Indexed: 11/09/2022] Open
Abstract
The three-dimensional organization of the eukaryotic genome is important for its structure and function. Recent studies indicate that hierarchies of chromatin loops underlie important aspects of both genomic organization and gene regulation. Looping between insulator or boundary elements interferes with enhancer-promoter communications and limits the spread active or repressive organized chromatin. We have used the SF1 insulator in the Drosophila Antennapedia homeotic gene complex (ANT-C) as a model to study the mechanism and regulation of chromatin looping events. We reported previously that SF1 tethers a transient chromatin loop in the early embryo that insulates the Hox gene Sex comb reduce from the neighbor non-Hox gene fushi tarazu for their independent regulation. To further probe the functional range and connectivity of SF1, we used high-resolution chromosomal conformation capture (3C) to search for SF1 looping partners across ANT-C. We report here the identification of three distal SF1 Tether Elements (STEs) located in the labial, Deformed and Antennapedia Hox gene regions, extending the range of SF1 looping network to the entire complex. These novel STEs are bound by four different combinations of insulator proteins and exhibit distinct behaviors in enhancer block, enhancer-bypass and boundary functions. Significantly, the six STEs we identified so far map to all but one of the major boundaries between repressive and active histone domains, underlining the functional relevance of these long-range chromatin loops in organizing the Hox complex. Importantly, SF1 selectively captured with only 5 STEs out of ~20 sites that display similar insulator binding profiles, indicating that presence of insulator proteins alone is not sufficient to determine looping events. These findings suggest that selective interaction among diverse STE insulators organize the Drosophila Hox genes in the 3D nuclear space.
Collapse
Affiliation(s)
- Mo Li
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Zhibo Ma
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Sharmila Roy
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Sapna K Patel
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Derrick C Lane
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Carly R Duffy
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Haini N Cai
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
12
|
Abstract
Fukaya and Levine explain the basic features of the genetic phenomenon of transvection, a special class of genetic complementation of mutant alleles on homologous chromosomes.
Collapse
Affiliation(s)
- Takashi Fukaya
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.
| | - Michael Levine
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
13
|
Epigenetic inheritance mediated by coupling of RNAi and histone H3K9 methylation. Nature 2018; 558:615-619. [PMID: 29925950 PMCID: PMC6312107 DOI: 10.1038/s41586-018-0239-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 04/30/2018] [Indexed: 02/06/2023]
Abstract
Histone posttranslational modifications (PTMs) are associated with epigenetic states that form the basis for cell type specific gene expression1,2. Once established, histone PTMs can be maintained by positive feedback involving enzymes that recognize and catalyze the same modification on newly deposited histones. Recent studies suggest that in wild-type cells, histone PTM-based positive feedback is too weak to mediate epigenetic inheritance in the absence of other inputs3–7. RNAi-mediated histone H3 lysine 9 methylation (H3K9me) and heterochromatin formation define a potential epigenetic inheritance mechanism in which positive feedback involving small interfering RNA (siRNA) amplification can be directly coupled to histone PTM positive feedback8–14. However, it remains unknown whether such a coupling of two feedback loops can maintain epigenetic silencing independently of DNA sequence and in the absence of enabling mutations that disrupt genome-wide chromatin structure or transcription15–17. Here using fission yeast S. pombe, we show that siRNA-induced H3K9me and silencing of a euchromatic gene can be epigenetically inherited in cis during multiple mitotic and meiotic cell divisions in wild-type cells. This inheritance involves the spreading of secondary siRNAs and H3K9me3 to the targeted gene and surrounding areas and requires both RNAi and H3K9me, suggesting that siRNA and H3K9me positive feedback loops act synergistically to maintain silencing. In contrast, when maintained solely by histone PTM positive feedback, silencing is erased by H3K9 demethylation promoted by Epe1, or by interallelic interactions following mating to cells containing an expressed epiallele even in the absence of Epe1. These findings demonstrate that the RNAi machinery can mediate transgenerational epigenetic inheritance independently of DNA sequence or enabling mutations and reveal a role for the coupling of siRNA and H3K9me positive feedback loops in protection of epigenetic alleles from erasure.
Collapse
|
14
|
Le Noir S, Laffleur B, Carrion C, Garot A, Lecardeur S, Pinaud E, Denizot Y, Skok J, Cogné M. The IgH locus 3' cis-regulatory super-enhancer co-opts AID for allelic transvection. Oncotarget 2017; 8:12929-12940. [PMID: 28088785 PMCID: PMC5355067 DOI: 10.18632/oncotarget.14585] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/01/2017] [Indexed: 11/25/2022] Open
Abstract
Immunoglobulin heavy chain (IgH) alleles have ambivalent relationships: they feature both allelic exclusion, ensuring monoallelic expression of a single immunoglobulin (Ig) allele, and frequent inter-allelic class-switch recombination (CSR) reassembling genes from both alleles. The IgH locus 3' regulatory region (3'RR) includes several transcriptional cis-enhancers promoting activation-induced cytidine deaminase (AID)-dependent somatic hypermutation (SHM) and CSR, and altogether behaves as a strong super-enhancer. It can also promote deregulated expression of translocated oncogenes during lymphomagenesis. Besides these rare, illegitimate and pathogenic interactions, we now show that under physiological conditions, the 3'RR super-enhancer supports not only legitimate cis- , but also trans-recruitment of AID, contributing to IgH inter-allelic proximity and enabling the super-enhancer on one allele to stimulate biallelic SHM and CSR. Such inter-allelic activating interactions define transvection, a phenomenon well-known in drosophila but rarely observed in mammalian cells, now appearing as a unique feature of the IgH 3'RR super-enhancer.
Collapse
Affiliation(s)
- Sandrine Le Noir
- UMR 7276 CNRS and Université de Limoges: Contrôle de la Réponse Immune B et Lymphoprolifération, Limoges, France
| | - Brice Laffleur
- UMR 7276 CNRS and Université de Limoges: Contrôle de la Réponse Immune B et Lymphoprolifération, Limoges, France
| | - Claire Carrion
- UMR 7276 CNRS and Université de Limoges: Contrôle de la Réponse Immune B et Lymphoprolifération, Limoges, France
| | - Armand Garot
- UMR 7276 CNRS and Université de Limoges: Contrôle de la Réponse Immune B et Lymphoprolifération, Limoges, France
| | - Sandrine Lecardeur
- UMR 7276 CNRS and Université de Limoges: Contrôle de la Réponse Immune B et Lymphoprolifération, Limoges, France
| | - Eric Pinaud
- UMR 7276 CNRS and Université de Limoges: Contrôle de la Réponse Immune B et Lymphoprolifération, Limoges, France
| | - Yves Denizot
- UMR 7276 CNRS and Université de Limoges: Contrôle de la Réponse Immune B et Lymphoprolifération, Limoges, France
| | - Jane Skok
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Michel Cogné
- UMR 7276 CNRS and Université de Limoges: Contrôle de la Réponse Immune B et Lymphoprolifération, Limoges, France
| |
Collapse
|
15
|
Interallelic Transcriptional Enhancement as an in Vivo Measure of Transvection in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2016; 6:3139-3148. [PMID: 27489208 PMCID: PMC5068936 DOI: 10.1534/g3.116.032300] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Transvection—pairing-dependent interallelic regulation resulting from enhancer action in trans—occurs throughout the Drosophila melanogaster genome, likely as a result of the extensive somatic homolog pairing seen in Dipteran species. Recent studies of transvection in Drosophila have demonstrated important qualitative differences between enhancer action in cisvs.in trans, as well as a modest synergistic effect of cis- and trans-acting enhancers on total tissue transcript levels at a given locus. In the present study, we identify a system in which cis- and trans-acting GAL4-UAS enhancer synergism has an unexpectedly large quantitative influence on gene expression, boosting total tissue transcript levels at least fourfold relative to those seen in the absence of transvection. We exploit this strong quantitative effect by using publicly available UAS-shRNA constructs from the TRiP library to assay candidate genes for transvection activity in vivo. The results of the present study, which demonstrate that in trans activation by simple UAS enhancers can have large quantitative effects on gene expression in Drosophila, have important new implications for experimental design utilizing the GAL4-UAS system.
Collapse
|
16
|
Transvection in Drosophila: trans-interaction between yellow enhancers and promoter is strongly suppressed by a cis-promoter only in certain genomic regions. Chromosoma 2016; 126:431-441. [DOI: 10.1007/s00412-016-0605-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/02/2016] [Accepted: 06/07/2016] [Indexed: 01/26/2023]
|
17
|
Blick AJ, Mayer-Hirshfeld I, Malibiran BR, Cooper MA, Martino PA, Johnson JE, Bateman JR. The Capacity to Act in Trans Varies Among Drosophila Enhancers. Genetics 2016; 203:203-18. [PMID: 26984057 PMCID: PMC4858774 DOI: 10.1534/genetics.115.185645] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/07/2016] [Indexed: 01/10/2023] Open
Abstract
The interphase nucleus is organized such that genomic segments interact in cis, on the same chromosome, and in trans, between different chromosomes. In Drosophila and other Dipterans, extensive interactions are observed between homologous chromosomes, which can permit enhancers and promoters to communicate in trans Enhancer action in trans has been observed for a handful of genes in Drosophila, but it is as yet unclear whether this is a general property of all enhancers or specific to a few. Here, we test a collection of well-characterized enhancers for the capacity to act in trans Specifically, we tested 18 enhancers that are active in either the eye or wing disc of third instar Drosophila larvae and, using two different assays, found evidence that each enhancer can act in trans However, the degree to which trans-action was supported varied greatly between enhancers. Quantitative analysis of enhancer activity supports a model wherein an enhancer's strength of transcriptional activation is a major determinant of its ability to act in trans, but that additional factors may also contribute to an enhancer's trans-activity. In sum, our data suggest that a capacity to activate a promoter on a paired chromosome is common among Drosophila enhancers.
Collapse
Affiliation(s)
- Amanda J Blick
- Biology Department, Bowdoin College, Brunswick, Maine 04011
| | | | | | | | | | | | - Jack R Bateman
- Biology Department, Bowdoin College, Brunswick, Maine 04011
| |
Collapse
|
18
|
Fujioka M, Mistry H, Schedl P, Jaynes JB. Determinants of Chromosome Architecture: Insulator Pairing in cis and in trans. PLoS Genet 2016; 12:e1005889. [PMID: 26910731 PMCID: PMC4765946 DOI: 10.1371/journal.pgen.1005889] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/30/2016] [Indexed: 12/11/2022] Open
Abstract
The chromosomes of multicellular animals are organized into a series of topologically independent looped domains. This domain organization is critical for the proper utilization and propagation of the genetic information encoded by the chromosome. A special set of architectural elements, called boundaries or insulators, are responsible both for subdividing the chromatin into discrete domains and for determining the topological organization of these domains. Central to the architectural functions of insulators are homologous and heterologous insulator:insulator pairing interactions. The former (pairing between copies of the same insulator) dictates the process of homolog alignment and pairing in trans, while the latter (pairing between different insulators) defines the topology of looped domains in cis. To elucidate the principles governing these architectural functions, we use two insulators, Homie and Nhomie, that flank the Drosophila even skipped locus. We show that homologous insulator interactions in trans, between Homie on one homolog and Homie on the other, or between Nhomie on one homolog and Nhomie on the other, mediate transvection. Critically, these homologous insulator:insulator interactions are orientation-dependent. Consistent with a role in the alignment and pairing of homologs, self-pairing in trans is head-to-head. Head-to-head self-interactions in cis have been reported for other fly insulators, suggesting that this is a general principle of self-pairing. Homie and Nhomie not only pair with themselves, but with each other. Heterologous Homie-Nhomie interactions occur in cis, and we show that they serve to delimit a looped chromosomal domain that contains the even skipped transcription unit and its associated enhancers. The topology of this loop is defined by the heterologous pairing properties of Homie and Nhomie. Instead of being head-to-head, which would generate a circular loop, Homie-Nhomie pairing is head-to-tail. Head-to-tail pairing in cis generates a stem-loop, a configuration much like that observed in classical lampbrush chromosomes. These pairing principles provide a mechanistic underpinning for the observed topologies within and between chromosomes. The chromosomes of multicellular animals are organized into a series of topologically independent looped domains. This domain organization is critical for the proper utilization and propagation of the genetic information encoded by the chromosome. A special set of architectural elements, called boundaries or insulators, are responsible for both subdividing the chromatin fiber into discrete domains, and determining the topological organization of these domains. Central to the architectural functions of insulators are heterologous and homologous insulator:insulator pairing interactions. In Drosophila, the former defines the topology of individual looped domains in cis, while the latter dictates the process of homolog alignment and pairing in trans. Here we use two insulators from the even skipped locus to elucidate the principles governing these two architectural functions. These principles align with several longstanding observations, and resolve a number of conundrums regarding chromosome topology and function.
Collapse
Affiliation(s)
- Miki Fujioka
- Deptartment of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Hemlata Mistry
- Departments of Biology and Biochemistry, Widener University, Chester, Pennsylvania, United States of America
| | - Paul Schedl
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- * E-mail: (PS); (JBJ)
| | - James B. Jaynes
- Deptartment of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail: (PS); (JBJ)
| |
Collapse
|
19
|
An Organizational Hub of Developmentally Regulated Chromatin Loops in the Drosophila Antennapedia Complex. Mol Cell Biol 2015; 35:4018-29. [PMID: 26391952 DOI: 10.1128/mcb.00663-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/14/2015] [Indexed: 12/17/2022] Open
Abstract
Chromatin boundary elements (CBEs) are widely distributed in the genome and mediate formation of chromatin loops, but their roles in gene regulation remain poorly understood. The complex expression pattern of the Drosophila homeotic gene Sex combs reduced (Scr) is directed by an unusually long regulatory sequence harboring diverse cis elements and an intervening neighbor gene fushi tarazu (ftz). Here we report the presence of a multitude of CBEs in the Scr regulatory region. Selective and dynamic pairing among these CBEs mediates developmentally regulated chromatin loops. In particular, the SF1 boundary plays a central role in organizing two subsets of chromatin loops: one subset encloses ftz, limiting its access by the surrounding Scr enhancers and compartmentalizing distinct histone modifications, and the other subset subdivides the Scr regulatory sequences into independent enhancer access domains. We show that these CBEs exhibit diverse enhancer-blocking activities that vary in strength and tissue distribution. Tandem pairing of SF1 and SF2, two strong CBEs that flank the ftz domain, allows the distal enhancers to bypass their block in transgenic Drosophila, providing a mechanism for the endogenous Scr enhancer to circumvent the ftz domain. Our study demonstrates how an endogenous CBE network, centrally orchestrated by SF1, could remodel the genomic environment to facilitate gene regulation during development.
Collapse
|
20
|
Chen J, Nolte V, Schlötterer C. Temperature stress mediates decanalization and dominance of gene expression in Drosophila melanogaster. PLoS Genet 2015; 11:e1004883. [PMID: 25719753 PMCID: PMC4342254 DOI: 10.1371/journal.pgen.1004883] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/10/2014] [Indexed: 11/18/2022] Open
Abstract
The regulatory architecture of gene expression remains an area of active research. Here, we studied how the interplay of genetic and environmental variation affects gene expression by exposing Drosophila melanogaster strains to four different developmental temperatures. At 18°C we observed almost complete canalization with only very few allelic effects on gene expression. In contrast, at the two temperature extremes, 13°C and 29°C a large number of allelic differences in gene expression were detected due to both cis- and trans-regulatory effects. Allelic differences in gene expression were mainly dominant, but for up to 62% of the genes the dominance swapped between 13 and 29°C. Our results are consistent with stabilizing selection causing buffering of allelic expression variation in non-stressful environments. We propose that decanalization of gene expression in stressful environments is not only central to adaptation, but may also contribute to genetic disorders in human populations.
Collapse
Affiliation(s)
- Jun Chen
- Institut für Populationsgenetik, Vienna, Austria
| | - Viola Nolte
- Institut für Populationsgenetik, Vienna, Austria
| | | |
Collapse
|
21
|
Transvection-based gene regulation in Drosophila is a complex and plastic trait. G3-GENES GENOMES GENETICS 2014; 4:2175-87. [PMID: 25213691 PMCID: PMC4232543 DOI: 10.1534/g3.114.012484] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transvection, a chromosome pairing-dependent form of trans-based gene regulation, is potentially widespread in the Drosophila melanogaster genome and varies across cell types and within tissues in D. melanogaster, characteristics of a complex trait. Here, we demonstrate that the trans-interactions at the Malic enzyme (Men) locus are, in fact, transvection as classically defined and are plastic with respect to both genetic background and environment. Using chromosomal inversions, we show that trans-interactions at the Men locus are eliminated by changes in chromosomal architecture that presumably disrupt somatic pairing. We further show that the magnitude of transvection at the Men locus is modified by both genetic background and environment (temperature), demonstrating that transvection is a plastic phenotype. Our results suggest that transvection effects in D. melanogaster are shaped by a dynamic interplay between environment and genetic background. Interestingly, we find that cis-based regulation of the Men gene is more robust to genetic background and environment than trans-based. Finally, we begin to uncover the nonlocal factors that may contribute to variation in transvection overall, implicating Abd-B in the regulation of Men in cis and in trans in an allele-specific and tissue-specific manner, driven by differences in expression of the two genes across genetic backgrounds and environmental conditions.
Collapse
|
22
|
Sass GL, Ostrow BD. Disruption of the protein kinase N gene of drosophila melanogaster results in the recessive delorean allele (pkndln) with a negative impact on wing morphogenesis. G3 (BETHESDA, MD.) 2014; 4:643-56. [PMID: 24531729 PMCID: PMC4059237 DOI: 10.1534/g3.114.010579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 02/07/2014] [Indexed: 12/15/2022]
Abstract
We describe the delorean mutation of the Drosophila melanogaster protein kinase N gene (pkn(dln)) with defects in wing morphology. Flies homozygous for the recessive pkn(dln) allele have a composite wing phenotype that exhibits changes in relative position and shape of the wing blade as well as loss of specific vein and bristle structures. The pkn(dln) allele is the result of a P-element insertion in the first intron of the pkn locus, and the delorean wing phenotype is contingent upon the interaction of insertion-bearing alleles in trans. The presence of the insertion results in production of a novel transcript that initiates from within the 3' end of the P-element. The delorean-specific transcript is predicted to produce a wild-type PKN protein. The delorean phenotype is not the result of a reduction in pkn expression, as it could not be recreated using a variety of wing-specific drivers of pkn-RNAi expression. Rather, it is the presence of the delorean-specific transcript that correlates with the mutant phenotype. We consider the delorean wing phenotype to be due to a pairing-dependent, recessive mutation that behaves as a dosage-sensitive, gain of function. Our analysis of genetic interactions with basket and nemo reflects an involvement of pkn and Jun-terminal kinase signaling in common processes during wing differentiation and places PKN as a potential effector of Rho1's involvement in the Jun-terminal kinase pathway. The delorean phenotype, with its associated defects in wing morphology, provides evidence of a role for PKN in adult morphogenetic processes.
Collapse
Affiliation(s)
- Georgette L. Sass
- Department of Biology, Grand Valley State University, Allendale, Michigan 49401
| | - Bruce D. Ostrow
- Department of Biology, Grand Valley State University, Allendale, Michigan 49401
| |
Collapse
|
23
|
Schoborg T, Kuruganti S, Rickels R, Labrador M. The Drosophila gypsy insulator supports transvection in the presence of the vestigial enhancer. PLoS One 2013; 8:e81331. [PMID: 24236213 PMCID: PMC3827471 DOI: 10.1371/journal.pone.0081331] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/21/2013] [Indexed: 12/17/2022] Open
Abstract
Though operationally defined as cis-regulatory elements, enhancers can also communicate with promoters on a separate homolog in trans, a mechanism that has been suggested to account for the ability of certain alleles of the same gene to complement one another in a process otherwise known as transvection. This homolog-pairing dependent process is facilitated in Drosophila by chromatin-associated pairing proteins, many of which remain unknown and their mechanism of action uncharacterized. Here we have tested the role of the gypsy chromatin insulator in facilitating pairing and communication between enhancers and promoters in trans using a transgenic eGFP reporter system engineered to allow for targeted deletions in the vestigial Boundary Enhancer (vgBE) and the hsp70 minimal promoter, along with one or two flanking gypsy elements. We found a modest 2.5-3x increase in eGFP reporter levels from homozygotes carrying an intact copy of the reporter on each homolog compared to unpaired hemizygotes, although this behavior was independent of gypsy. However, detectable levels of GFP protein along the DV wing boundary in trans-heterozygotes lacking a single enhancer and promoter was only observed in the presence of two flanking gypsy elements. Our results demonstrate that gypsy can stimulate enhancer-promoter communication in trans throughout the genome in a context-dependent manner, likely through modulation of local chromatin dynamics once pairing has been established by other elements and highlights chromatin structure as the master regulator of this phenomenon.
Collapse
Affiliation(s)
- Todd Schoborg
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Srilalitha Kuruganti
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Ryan Rickels
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Mariano Labrador
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| |
Collapse
|
24
|
Kyrchanova O, Georgiev P. Chromatin insulators and long-distance interactions in Drosophila. FEBS Lett 2013; 588:8-14. [PMID: 24211836 DOI: 10.1016/j.febslet.2013.10.039] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 10/25/2013] [Accepted: 10/25/2013] [Indexed: 12/31/2022]
Abstract
Data on long-distance enhancer-mediated activation of gene promoters and complex regulation of gene expression by multiple enhancers have prompted the hypothesis that the action of enhancers is restricted by insulators. Studies with transgenic lines have shown that insulators are responsible for establishing proper local interactions between regulatory elements, but not for defining independent transcriptional domains that restrict the activity of enhancers. It has also become apparent that enhancer blocking is only one of several functional activities of known insulator proteins, which also contribute to the organization of chromosome architecture and the integrity of regulatory elements.
Collapse
Affiliation(s)
- Olga Kyrchanova
- Group of Transcriptional Regulation, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia.
| |
Collapse
|
25
|
Transvection in 2012: site-specific transgenes reveal a plethora of trans-regulatory effects. Genetics 2012; 191:1037-9. [PMID: 22879406 DOI: 10.1534/genetics.112.142893] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
26
|
Abstract
Type II topoisomerases are essential ATP-dependent homodimeric enzymes required for transcription, replication, and chromosome segregation. These proteins alter DNA topology by generating transient enzyme-linked double-strand breaks for passage of one DNA strand through another. The central role of type II topoisomerases in DNA metabolism has made these enzymes targets for anticancer drugs. Here, we describe a genetic screen that generated novel alleles of DrosophilaTopoisomerase 2 (Top2). Fifteen alleles were obtained, resulting from nonsense and missense mutations. Among these, 14 demonstrated recessive lethality, with one displaying temperature-sensitive lethality. Several newly generated missense alleles carry amino acid substitutions in conserved residues within the ATPase, Topoisomerase/Primase, and Winged helix domains, including four that encode proteins with alterations in residues associated with resistance to cancer chemotherapeutics. Animals lacking zygotic Top2 function can survive to pupation and display reduced cell division and altered polytene chromosome structure. Inter se crosses between six strains carrying Top2 missense alleles generated morphologically normal trans-heterozygous adults, which showed delayed development and were female sterile. Complementation occurred between alleles encoding Top2 proteins with amino acid substitutions in the same functional domain and between alleles encoding proteins with substitutions in different functional domains. Two complementing alleles encode proteins with amino acid substitutions associated with drug resistance. These observations suggest that dimerization of mutant Top2 monomers can restore enzymatic function. Our studies establish the first series of Top2 alleles in a multicellular organism. Future analyses of these alleles will enhance our knowledge about the contributions made by type II topoisomerases to development.
Collapse
|
27
|
Mellert DJ, Truman JW. Transvection is common throughout the Drosophila genome. Genetics 2012; 191:1129-41. [PMID: 22649078 PMCID: PMC3415997 DOI: 10.1534/genetics.112.140475] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 05/16/2012] [Indexed: 01/20/2023] Open
Abstract
Higher-order genome organization plays an important role in transcriptional regulation. In Drosophila, somatic pairing of homologous chromosomes can lead to transvection, by which the regulatory region of a gene can influence transcription in trans. We observe transvection between transgenes inserted at commonly used phiC31 integration sites in the Drosophila genome. When two transgenes that carry endogenous regulatory elements driving the expression of either LexA or GAL4 are inserted at the same integration site and paired, the enhancer of one transgene can drive or repress expression of the paired transgene. These transvection effects depend on compatibility between regulatory elements and are often restricted to a subset of cell types within a given expression pattern. We further show that activated UAS transgenes can also drive transcription in trans. We discuss the implication of these findings for (1) understanding the molecular mechanisms that underlie transvection and (2) the design of experiments that utilize site-specific integration.
Collapse
Affiliation(s)
- David J Mellert
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA.
| | | |
Collapse
|
28
|
Abstract
Studies from diverse systems have shown that distinct interchromosomal interactions are a central component of nuclear organization. In some cases, these interactions allow an enhancer to act in trans, modulating the expression of a gene encoded on a separate chromosome held in close proximity. Despite recent advances in uncovering such phenomena, our understanding of how a regulatory element acts on another chromosome remains incomplete. Here, we describe a transgenic approach to better understand enhancer action in trans in Drosophila melanogaster. Using phiC31-based recombinase-mediated cassette exchange (RMCE), we placed transgenes carrying combinations of the simple enhancer GMR, a minimal promoter, and different fluorescent reporters at equivalent positions on homologous chromosomes so that they would pair via the endogenous somatic pairing machinery of Drosophila. Our data demonstrate that the enhancer GMR is capable of activating a promoter in trans and does so in a variegated pattern, suggesting stochastic interactions between the enhancer and the promoter when they are carried on separate chromosomes. Furthermore, we quantitatively assessed the impact of two concurrent promoter targets in cis and in trans to GMR, demonstrating that each promoter is capable of competing for the enhancer's activity, with the presence of one negatively affecting expression from the other. Finally, the single-cell resolution afforded by our approach allowed us to show that promoters in cis and in trans to GMR can both be activated in the same nucleus, implying that a single enhancer can share its activity between multiple promoter targets carried on separate chromosomes.
Collapse
|
29
|
Homologue pairing in flies and mammals: gene regulation when two are involved. GENETICS RESEARCH INTERNATIONAL 2011; 2012:430587. [PMID: 22567388 PMCID: PMC3335585 DOI: 10.1155/2012/430587] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 09/17/2011] [Accepted: 09/26/2011] [Indexed: 01/03/2023]
Abstract
Chromosome pairing is usually discussed in the context of meiosis. Association of homologues in germ cells enables chromosome segregation and is necessary for fertility. A few organisms, such as flies, also pair their entire genomes in somatic cells. Most others, including mammals, display little homologue pairing outside of the germline. Experimental evidence from both flies and mammals suggests that communication between homologues contributes to normal genome regulation. This paper will contrast the role of pairing in transmitting information between homologues in flies and mammals. In mammals, somatic homologue pairing is tightly regulated, occurring at specific loci and in a developmentally regulated fashion. Inappropriate pairing, or loss of normal pairing, is associated with gene misregulation in some disease states. While homologue pairing in flies is capable of influencing gene expression, the significance of this for normal expression remains unknown. The sex chromosomes pose a particularly interesting situation, as females are able to pair X chromosomes, but males cannot. The contribution of homologue pairing to the biology of the X chromosome will also be discussed.
Collapse
|
30
|
Abstract
Metazoan genomes encode an abundant collection of mRNA-like, long noncoding (lnc)RNAs. Although lncRNAs greatly expand the transcriptional repertoire, we have a limited understanding of how these RNAs contribute to developmental regulation. Here, we investigate the function of the Drosophila lncRNA called yellow-achaete intergenicRNA (yar). Comparative sequence analyses show that the yar gene is conserved in Drosophila species representing 40–60 million years of evolution, with one of the conserved sequence motifs encompassing the yar promoter. Further, the timing of yar expression in Drosophila virilis parallels that in D. melanogaster, suggesting that transcriptional regulation of yar is conserved. The function of yar was defined by generating null alleles. Flies lacking yar RNAs are viable and show no overt morphological defects, consistent with maintained transcriptional regulation of the adjacent yellow (y) and achaete (ac) genes. The location of yar within a neural gene cluster led to the investigation of effects of yar in behavioral assays. These studies demonstrated that loss of yar alters sleep regulation in the context of a normal circadian rhythm. Nighttime sleep was reduced and fragmented, with yar mutants displaying diminished sleep rebound following sleep deprivation. Importantly, these defects were rescued by a yar transgene. These data provide the first example of a lncRNA gene involved in Drosophila sleep regulation. We find that yar is a cytoplasmic lncRNA, suggesting that yar may regulate sleep by affecting stabilization or translational regulation of mRNAs. Such functions of lncRNAs may extend to vertebrates, as lncRNAs are abundant in neural tissues.
Collapse
|
31
|
When needles look like hay: how to find tissue-specific enhancers in model organism genomes. Dev Biol 2010; 350:239-54. [PMID: 21130761 DOI: 10.1016/j.ydbio.2010.11.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 11/11/2010] [Accepted: 11/22/2010] [Indexed: 01/22/2023]
Abstract
A major prerequisite for the investigation of tissue-specific processes is the identification of cis-regulatory elements. No generally applicable technique is available to distinguish them from any other type of genomic non-coding sequence. Therefore, researchers often have to identify these elements by elaborate in vivo screens, testing individual regions until the right one is found. Here, based on many examples from the literature, we summarize how functional enhancers have been isolated from other elements in the genome and how they have been characterized in transgenic animals. Covering computational and experimental studies, we provide an overview of the global properties of cis-regulatory elements, like their specific interactions with promoters and target gene distances. We describe conserved non-coding elements (CNEs) and their internal structure, nucleotide composition, binding site clustering and overlap, with a special focus on developmental enhancers. Conflicting data and unresolved questions on the nature of these elements are highlighted. Our comprehensive overview of the experimental shortcuts that have been found in the different model organism communities and the new field of high-throughput assays should help during the preparation phase of a screen for enhancers. The review is accompanied by a list of general guidelines for such a project.
Collapse
|
32
|
Ou SA, Chang E, Lee S, So K, Wu CT, Morris JR. Effects of chromosomal rearrangements on transvection at the yellow gene of Drosophila melanogaster. Genetics 2009; 183:483-96. [PMID: 19667134 PMCID: PMC2766311 DOI: 10.1534/genetics.109.106559] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 08/05/2009] [Indexed: 11/18/2022] Open
Abstract
Homologous chromosomes are paired in somatic cells of Drosophila melanogaster. This pairing can lead to transvection, which is a process by which the proximity of homologous genes can lead to a change in gene expression. At the yellow gene, transvection is the basis for several examples of intragenic complementation involving the enhancers of one allele acting in trans on the promoter of a paired second allele. Using complementation as our assay, we explored the chromosomal requirements for pairing and transvection at yellow. Following a protocol established by Ed Lewis, we generated and characterized chromosomal rearrangements to define a region in cis to yellow that must remain intact for complementation to occur. Our data indicate that homolog pairing at yellow is efficient, as complementation was disrupted only in the presence of chromosomal rearrangements that break
Collapse
Affiliation(s)
- Sharon A Ou
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Soshnev AA, Li X, Wehling MD, Geyer PK. Context differences reveal insulator and activator functions of a Su(Hw) binding region. PLoS Genet 2008; 4:e1000159. [PMID: 18704163 PMCID: PMC2493044 DOI: 10.1371/journal.pgen.1000159] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Accepted: 07/10/2008] [Indexed: 11/19/2022] Open
Abstract
Insulators are DNA elements that divide chromosomes into independent transcriptional domains. The Drosophila genome contains hundreds of binding sites for the Suppressor of Hairy-wing [Su(Hw)] insulator protein, corresponding to locations of the retroviral gypsy insulator and non-gypsy binding regions (BRs). The first non-gypsy BR identified, 1A-2, resides in cytological region 1A. Using a quantitative transgene system, we show that 1A-2 is a composite insulator containing enhancer blocking and facilitator elements. We discovered that 1A-2 separates the yellow (y) gene from a previously unannotated, non-coding RNA gene, named yar for y-achaete (ac) intergenic RNA. The role of 1A-2 was elucidated using homologous recombination to excise these sequences from the natural location, representing the first deletion of any Su(Hw) BR in the genome. Loss of 1A-2 reduced yar RNA accumulation, without affecting mRNA levels from the neighboring y and ac genes. These data indicate that within the 1A region, 1A-2 acts an activator of yar transcription. Taken together, these studies reveal that the properties of 1A-2 are context-dependent, as this element has both insulator and enhancer activities. These findings imply that the function of non-gypsy Su(Hw) BRs depends on the genomic environment, predicting that Su(Hw) BRs represent a diverse collection of genomic regulatory elements.
Collapse
Affiliation(s)
- Alexey A. Soshnev
- Program in Molecular and Cellular Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Xingguo Li
- Department of Biochemistry, University of Iowa, Iowa City, Iowa, United States of America
| | - Misty D. Wehling
- Program in Molecular and Cellular Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Pamela K. Geyer
- Program in Molecular and Cellular Biology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Biochemistry, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
35
|
Abstract
Intra- and interchromosomal interactions have been implicated in a number of genetic phenomena in diverse organisms, suggesting that the higher-order structural organization of chromosomes in the nucleus can have a profound impact on gene regulation. In Drosophila, homologous chromosomes remain paired in somatic tissues, allowing for trans interactions between genes and regulatory elements on the two homologs. One consequence of homolog pairing is the phenomenon of transvection, in which regulatory elements on one homolog can affect the expression of a gene in trans. We report a new instance of transvection at the Drosophila apterous (ap) locus. Two different insertions of boundary elements in the ap regulatory region were identified. The boundaries are inserted between the ap wing enhancer and the ap promoter and have highly penetrant wing defects typical of mutants in ap. When crossed to an ap promoter deletion, both boundary inserts exhibit the interallelic complementation characteristic of transvection. To confirm that transvection occurs at ap, we generated a deletion of the ap wing enhancer by FRT-mediated recombination. When the wing-enhancer deletion is crossed to the ap promoter deletion, strong transvection is observed. Interestingly, the two boundary elements, which are inserted approximately 10 kb apart, fail to block enhancer action when they are present in trans to one another. We demonstrate that this is unlikely to be due to insulator bypass. The transvection effects described here may provide insight into the role that boundary element pairing plays in enhancer blocking both in cis and in trans.
Collapse
|
36
|
Melnikova L, Kostuchenko M, Silicheva M, Georgiev P. Drosophila gypsy insulator and yellow enhancers regulate activity of yellow promoter through the same regulatory element. Chromosoma 2007; 117:137-45. [PMID: 17994318 DOI: 10.1007/s00412-007-0132-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 10/09/2007] [Accepted: 10/16/2007] [Indexed: 11/25/2022]
Abstract
There is ample evidence that the enhancers of a promoterless yellow locus in one homologous chromosome can activate the yellow promoter in the other chromosome where the enhancers are inactive or deleted, which is indicative of a high specificity of the enhancer-promoter interaction in yellow. In this paper, we have found that the yellow sequence from -100 to -69 is essential for stimulation of the heterologous eve (TATA-containing) and white (TATA-less) promoters by the yellow enhancers from a distance. However, the presence of this sequence is not required when the yellow enhancers are directly fused to the heterologous promoters or are activated by the yeast GAL4 activator. Unexpectedly, the same promoter proximal region defines previously described promoter-specific, long-distance repression of the yellow promoter by the gypsy insulator on the mod(mdg4) ( u1 ) background. These finding suggest that proteins bound to the -100 to -69 sequence are essential for communication between the yellow promoter and upstream regulatory elements.
Collapse
Affiliation(s)
- Larisa Melnikova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | | | | | | |
Collapse
|
37
|
Anguera MC, Sun BK, Xu N, Lee JT. X-chromosome kiss and tell: how the Xs go their separate ways. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 71:429-37. [PMID: 17381325 DOI: 10.1101/sqb.2006.71.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Loci associated with noncoding RNAs have important roles in X-chromosome inactivation (XCI), the dosage compensation mechanism by which one of two X chromosomes in female cells becomes transcriptionally silenced. The Xs start out as epigenetically equivalent chromosomes, but XCI requires a cell to treat two identical X chromosomes in completely different ways: One X chromosome must remain transcriptionally active while the other becomes repressed. In the embryo of eutherian mammals, the choice to inactivate the maternal or paternal X chromosome is random. The fact that the Xs always adopt opposite fates hints at the existence of a trans-sensing mechanism to ensure the mutually exclusive silencing of one of the two Xs. This paper highlights recent evidence supporting a model for mutually exclusive choice that involves homologous chromosome pairing and the placement of asymmetric chromatin marks on the two Xs.
Collapse
Affiliation(s)
- M C Anguera
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
38
|
Parnell TJ, Kuhn EJ, Gilmore BL, Helou C, Wold MS, Geyer PK. Identification of genomic sites that bind the Drosophila suppressor of Hairy-wing insulator protein. Mol Cell Biol 2006; 26:5983-93. [PMID: 16880510 PMCID: PMC1592791 DOI: 10.1128/mcb.00698-06] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Eukaryotic genomes are divided into independent transcriptional domains by DNA elements known as insulators. The gypsy insulator, a 350-bp element isolated from the Drosophila gypsy retrovirus, contains twelve degenerate binding sites for the Suppressor of Hairy-wing [Su(Hw)] protein. Su(Hw) associates with over 500 non-gypsy genomic sites, the functions of which are largely unknown. Using a bioinformatics approach, we identified 37 putative Su(Hw) insulators (pSIs) that represent regions containing clustered matches to the gypsy insulator Su(Hw) consensus binding sequence. The majority of these pSIs contain fewer than four Su(Hw) binding sites, with only seven showing in vivo Su(Hw) association, as demonstrated by chromatin immunoprecipitation. To understand the properties of the pSIs, these elements were tested for enhancer-blocking capabilities using a transgene assay system. In a complementary set of experiments, effects of the pSIs on transcriptional regulation of genes at the natural genomic location were determined. Our data suggest that pSIs have complex genomic functions and, in some cases, establish insulators. These studies provide the first direct evidence that the Su(Hw) protein contributes to the regulation of gene expression in the Drosophila genome through the establishment of endogenous insulators.
Collapse
Affiliation(s)
- Timothy J Parnell
- 3135E MERF, Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
39
|
Rodin S, Georgiev P. Handling three regulatory elements in one transgene: combined use of cre-lox, FLP-FRT, and I-Scel recombination systems. Biotechniques 2006; 39:871-6. [PMID: 16382906 DOI: 10.2144/000112031] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Studies of regulatory systems in transgenic Drosophila are often compromised by possible genomic position effects on gene expression. As a result, it is desirable to be able to manipulate multiple regulatory elements in a single transgene construct. We developed an I-SceI endonuclease-based method to efficiently delete preassigned sequences from transgenes with the use of direct repeat sequences of just 126 nucleotides. This system can be used in combination with the existing cre-lox and FLP-FRT recombinational mechanisms in order to modify up to three regulatory regions in a given transgene. We validated the utility of our combination approach by demonstrating new properties of the Fab-7 insulator.
Collapse
|
40
|
Rodin SA, Georgiev PG. A new method of deleting a specified sequence in transgenic lines of Drosophila melanogaster. DOKL BIOCHEM BIOPHYS 2006; 404:342-4. [PMID: 16392752 DOI: 10.1007/s10628-005-0109-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- S A Rodin
- Institute of Gene Biology, Russian Academy of Sciences, ul. Vavilova 34/5, Moscow, 119334 Russia
| | | |
Collapse
|
41
|
Kravchenko E, Savitskaya E, Kravchuk O, Parshikov A, Georgiev P, Savitsky M. Pairing between gypsy insulators facilitates the enhancer action in trans throughout the Drosophila genome. Mol Cell Biol 2005; 25:9283-91. [PMID: 16227580 PMCID: PMC1265844 DOI: 10.1128/mcb.25.21.9283-9291.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Suppressor of the Hairy wing [Su(Hw)] binding region within the gypsy retrotransposon is the best known chromatin insulator in Drosophila melanogaster. According to previous data, two copies of the gypsy insulator inserted between an enhancer and a promoter neutralize each other's actions, which is indicative of an interaction between the protein complexes bound to the insulators. We have investigated the role of pairing between the gypsy insulators located on homologous chromosomes in trans interaction between yellow enhancers and a promoter. It has been shown that trans activation of the yellow promoter strongly depends on the site of the transposon insertion, which is evidence for a role of surrounding chromatin in homologous pairing. The presence of the gypsy insulators in both homologous chromosomes even at a distance of 9 kb downstream from the promoter dramatically improves the trans activation of yellow. Moreover, the gypsy insulators have proved to stabilize trans activation between distantly located enhancers and a promoter. These data suggest that gypsy insulator pairing is involved in communication between loci in the Drosophila genome.
Collapse
Affiliation(s)
- Elena Kravchenko
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | | | | | | | | | | |
Collapse
|
42
|
Yang W, Jefferson RA, Huttner E, Moore JM, Gagliano WB, Grossniklaus U. An egg apparatus-specific enhancer of Arabidopsis, identified by enhancer detection. PLANT PHYSIOLOGY 2005; 139:1421-32. [PMID: 16258010 PMCID: PMC1283777 DOI: 10.1104/pp.105.068262] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Despite a central role in angiosperm reproduction, few gametophyte-specific genes and promoters have been isolated, particularly for the inaccessible female gametophyte (embryo sac). Using the Ds-based enhancer-detector line ET253, we have cloned an egg apparatus-specific enhancer (EASE) from Arabidopsis (Arabidopsis thaliana). The genomic region flanking the Ds insertion site was further analyzed by examining its capability to control gusA and GFP reporter gene expression in the embryo sac in a transgenic context. Through analysis of a 5' and 3' deletion series in transgenic Arabidopsis, the sequence responsible for egg apparatus-specific expression was delineated to 77 bp. Our data showed that this enhancer is unique in the Arabidopsis genome, is conserved among different accessions, and shows an unusual pattern of sequence variation. This EASE works independently of position and orientation in Arabidopsis but is probably not associated with any nearby gene, suggesting either that it acts over a large distance or that a cryptic element was detected. Embryo-specific ablation in Arabidopsis was achieved by transactivation of a diphtheria toxin gene under the control of the EASE. The potential application of the EASE element and similar control elements as part of an open-source biotechnology toolkit for apomixis is discussed.
Collapse
Affiliation(s)
- Wei Yang
- CAMBIA, Canberra, Australian Capital Territory 2601, Australia
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
In this review, we look at the most recent studies of DNA elements that function over long genomic distances to regulate gene transcription and will discuss the mechanisms genes employ to overcome the positive and negative influences of their genomic neighbourhood in order to achieve accurate programmes of expression. Enhancer elements activate high levels of transcription of linked genes from distal locations. Recent technological advances have demonstrated chromatin loop interactions between enhancers and their target promoters. Moreover, there is increasing evidence that these dynamic interactions regulate the repositioning of genes to foci of active transcription within the nucleus. Enhancers have the potential to activate a number of neighbouring genes over a large chromosomal region, hence, their action must be restricted in order to prevent activation of non-target genes. This is achieved by specialized DNA sequences, termed enhancer blockers (or insulators), that interfere with an enhancer's ability to communicate with a target promoter when positioned between the two. Here, we summarize current models of enhancer blocking activity and discuss recent findings of how it can be dynamically regulated. It has become clear that enhancer blocking elements should not be considered only as structural elements on the periphery of gene loci, but as regulatory elements that are crucial to the outcome of gene expression. The transcription potential of a gene can also be susceptible to heterochromatic silencing originating from its chromatin environment. Insulator elements can act as barriers to the spread of heterochromatin. We discuss recent evidence supporting a number of non-exclusive mechanisms of barrier action, which mostly describe the modulation of chromatin structure or modification.
Collapse
Affiliation(s)
- Adam G West
- Division of Cancer Sciences and Molecular Pathology, University of Glasgow, Western Infirmary, Glasgow, UK.
| | | |
Collapse
|
44
|
Coulthard AB, Nolan N, Bell JB, Hilliker AJ. Transvection at the vestigial locus of Drosophila melanogaster. Genetics 2005; 170:1711-21. [PMID: 15944352 PMCID: PMC1449749 DOI: 10.1534/genetics.105.041400] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transvection is a phenomenon wherein gene expression is effected by the interaction of alleles in trans and often results in partial complementation between mutant alleles. Transvection is dependent upon somatic pairing between homologous chromosome regions and is a form of interallelic complementation that does not occur at the polypeptide level. In this study we demonstrated that transvection could occur at the vestigial (vg) locus by revealing that partial complementation between two vg mutant alleles could be disrupted by changing the genomic location of the alleles through chromosome rearrangement. If chromosome rearrangements affect transvection by disrupting somatic pairing, then combining chromosome rearrangements that restore somatic pairing should restore transvection. We were able to restore partial complementation in numerous rearrangement trans-heterozygotes, thus providing substantial evidence that the observed complementation at vg results from a transvection effect. Cytological analyses revealed this transvection effect to have a large proximal critical region, a feature common to other transvection effects. In the Drosophila interphase nucleus, paired chromosome arms are separated into distinct, nonoverlapping domains. We propose that if the relative position of each arm in the nucleus is determined by the centromere as a relic of chromosome positions after the last mitotic division, then a locus will be displaced to a different territory of the interphase nucleus relative to its nonrearranged homolog by any rearrangement that links that locus to a different centromere. This physical displacement in the nucleus hinders transvection by disrupting the somatic pairing of homologous chromosomes and gives rise to proximal critical regions.
Collapse
|
45
|
Shimizu T, Oishi T, Omori A, Sugiura A, Hirota K, Aoyama H, Saito T, Sugaya T, Kon Y, Engel JD, Fukamizu A, Tanimoto K. Identification of cis-regulatory sequences in the human angiotensinogen gene by transgene coplacement and site-specific recombination. Mol Cell Biol 2005; 25:2938-45. [PMID: 15798183 PMCID: PMC1069595 DOI: 10.1128/mcb.25.8.2938-2945.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The function of putative regulatory sequences identified in cell transfection experiments can be elucidated only through in vivo experimentation. However, studies of gene regulation in transgenic mice (TgM) are often compromised by the position effects, in which independent transgene insertions differ in expression depending on their location in the genome. In order to overcome such a dilemma, a method called transgene coplacement has been developed in Drosophila melanogaster. In this method, any two sequences can be positioned at exactly the same genomic site by making use of Cre/loxP recombination. Here we applied this method to mouse genetics to characterize the function of direct repeat (DR) sequences in the promoter of the human angiotensinogen (hAGT) gene, the precursor of the vasoactive octapeptide angiotensin II. We modified a hAGT bacterial artificial chromosome to use Cre/loxP recombination in utero to generate TgM lines bearing a wild-type or a mutant promoter-driven hAGT locus integrated at a single chromosomal position. The expression analyses revealed that DR sequences contribute 50 or >95% to hAGT transcription in the liver and kidneys, respectively, whereas same sequences are not required in the heart and brain. This is the first in vivo dissection of DNA cis elements that are demonstrably indispensable for regulating both the level and cell type specificity of hAGT gene transcription.
Collapse
Affiliation(s)
- Taku Shimizu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Parsch J. Functional analysis of Drosophila melanogaster gene regulatory sequences by transgene coplacement. Genetics 2005; 168:559-61. [PMID: 15454566 PMCID: PMC1448109 DOI: 10.1534/genetics.104.028498] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The function of putative regulatory sequences identified by comparative genomics can be elucidated only through experimentation. Here the effectiveness of using heterologous gene constructs and transgene coplacement to characterize regulatory sequence function is demonstrated. This method shows that a sequence in the Adh 3'-untranslated region negatively regulates expression, independent of gene or chromosomal context.
Collapse
Affiliation(s)
- John Parsch
- Department of Biology II, Section of Evolutionary Biology, University of Munich (LMU), 80333, Germany.
| |
Collapse
|
47
|
Morris JR, Petrov DA, Lee AM, Wu CT. Enhancer choice in cis and in trans in Drosophila melanogaster: role of the promoter. Genetics 2005; 167:1739-47. [PMID: 15342512 PMCID: PMC1471007 DOI: 10.1534/genetics.104.026955] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Eukaryotic enhancers act over very long distances, yet still show remarkable specificity for their own promoter. To better understand mechanisms underlying this enhancer-promoter specificity, we used transvection to analyze enhancer choice between two promoters, one located in cis to the enhancer and the other in trans to the enhancer, at the yellow gene of Drosophila melanogaster. Previously, we demonstrated that enhancers at yellow prefer to act on the cis-linked promoter, but that mutation of core promoter elements in the cis-linked promoter releases enhancers to act in trans. Here, we address the mechanism by which these elements affect enhancer choice. We consider and explicitly test three models that are based on promoter competency, promoter pairing, and promoter identity. Through targeted gene replacement of the endogenous yellow gene, we show that competency of the cis-linked promoter is a key parameter in the cis-trans choice of an enhancer. In fact, complete replacement of the yellow promoter with both TATA-containing and TATA-less heterologous promoters maintains enhancer action in cis.
Collapse
Affiliation(s)
- James R Morris
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | |
Collapse
|
48
|
Ishikawa T, Lee EJ, Jameson JL. Nonhomologous end-joining ligation transfers DNA regulatory elements between cointroduced plasmids. Mol Cell Biol 2004; 24:8323-31. [PMID: 15367654 PMCID: PMC516743 DOI: 10.1128/mcb.24.19.8323-8331.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cointroduction of plasmids into mammalian cells is commonly used to investigate transcription factor regulation of reporter genes or to normalize transfection efficiency. We report here that cotransfected DNA molecules commonly transfer enhancer elements from one plasmid to another. Using separate Renilla or Firefly luciferase reporters, we found that an estrogen response element (ERE) originally linked to one of the reporters stimulated expression of the non-ERE-containing reporter. Similar enhancer transfer was seen with the cytomegalovirus enhancer. This enhancer transfer effect was not seen when cells were transfected separately with the reporters and the extracts were then combined before luciferase assays. The degree of enhancer transfer increased with transfected plasmid concentration and was greater when linearized rather than circular plasmid DNA was used. We hypothesized that double-strand breaks and heteroligation of cointroduced DNA molecules mediated the transfer of regulatory elements from one molecule to another. PCR of transfected plasmid DNA confirmed nonhomologous end-joining (NHEJ) ligation of DNA fragments originally present in separate plasmids. The NHEJ reaction was enhanced by UV light treatment to introduce double-strand breaks, and it was greater after liposome-mediated transfection than after calcium-phosphate-mediated transfection. NHEJ also occurred after adenoviral transfer of DNA into cells. We conclude that NHEJ mediates the transfer of regulatory DNA elements among cointroduced DNA molecules. These findings indicate the need for caution when interpreting results of transfection experiments containing more than one plasmid and suggest a mechanism whereby viruses or other exogenous DNA might recombine to activate unrelated genes.
Collapse
Affiliation(s)
- Toshio Ishikawa
- Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | | |
Collapse
|
49
|
Viswanathan P, Venkaiah B, Kumar MS, Rasheedi S, Vrati S, Bashyam MD, Hasnain SE. The homologous region sequence (hr1) of Autographa californica multinucleocapsid polyhedrosis virus can enhance transcription from non-baculoviral promoters in mammalian cells. J Biol Chem 2003; 278:52564-71. [PMID: 14570875 DOI: 10.1074/jbc.m309351200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Autographa californica multinucleocapsid polyhedrosis virus homologous region sequence hr1 enhances transcription from the viral polyhedrin promoter in Spodoptera frugiperda insect cells and independently functions as an origin of replication (ori) sequence. The binding of the host nuclear protein, hr1-binding protein (hr1-BP), is crucial for the enhancer activity (Habib, S., Pandey, S., Chatterji, U., Burma, S., Ahmad, R., Jain, A., and Hasnain, S. E. (1996) DNA Cell Biol. 15, 737-747 and Habib, S., and Hasnain, S. E. (1996) J. Biol. Chem. 271, 28250-28258). We demonstrate that hr1 can also enhance transcription from non-baculoviral promoters like cytomegalovirus and hsp70 in mammalian cells but does not support ori activity in these cells. Unlike insect cells, hr1 can also function in mammalian cells as an enhancer when present in trans. hr1 DNA sequence binds with high affinity and specificity to nuclear factors in the mammalian cells. The insect hr1-BP- and the hr1-BP-like proteins from mammalian cells (mhr1-BP) have different properties with respect to ion requirements, DNA groove binding, and molecular size. When mammalian cells are infected with a recombinant baculovirus containing two promoters, the baculovirus polyhedrin and Drosophila hsp70 gene promoter, the hsp70 gene promoter alone is active in these cells, and this activity is further enhanced by the presence of an additional hr1 in the recombinant virus. hr1 may thus also have a role in baculovirus-mediated gene delivery in mammalian cells.
Collapse
Affiliation(s)
- Priya Viswanathan
- Laboratory of Molecular and Cellular Biology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500076, India
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
An unusual feature of the Diptera is that homologous chromosomes are intimately synapsed in somatic cells. At a number of loci in Drosophila, this pairing can significantly influence gene expression. Such influences were first detected within the bithorax complex (BX-C) by E.B. Lewis, who coined the term transvection to describe them. Most cases of transvection involve the action of enhancers in trans. At several loci deletion of the promoter greatly increases this action in trans, suggesting that enhancers are normally tethered in cis by the promoter region. Transvection can also occur by the action of silencers in trans or by the spreading of position effect variegation from rearrangements having heterochromatic breakpoints to paired unrearranged chromosomes. Although not demonstrated, other cases of transvection may involve the production of joint RNAs by trans-splicing. Several cases of transvection require Zeste, a DNA-binding protein that is thought to facilitate homolog interactions by self-aggregation. Genes showing transvection can differ greatly in their response to pairing disruption. In several cases, transvection appears to require intimate synapsis of homologs. However, in at least one case (transvection of the iab-5,6,7 region of the BX-C), transvection is independent of synapsis within and surrounding the interacting gene. The latter example suggests that transvection could well occur in organisms that lack somatic pairing. In support of this, transvection-like phenomena have been described in a number of different organisms, including plants, fungi, and mammals.
Collapse
Affiliation(s)
- Ian W Duncan
- Department of Biology, Washington University, Campus Box 1229, St. Louis, Missouri 63130, USA.
| |
Collapse
|