1
|
Rozenfeld E, Tauber M, Ben-Chaim Y, Parnas M. GPCR voltage dependence controls neuronal plasticity and behavior. Nat Commun 2021; 12:7252. [PMID: 34903750 PMCID: PMC8668892 DOI: 10.1038/s41467-021-27593-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/29/2021] [Indexed: 12/25/2022] Open
Abstract
G-protein coupled receptors (GPCRs) play a paramount role in diverse brain functions. Almost 20 years ago, GPCR activity was shown to be regulated by membrane potential in vitro, but whether the voltage dependence of GPCRs contributes to neuronal coding and behavioral output under physiological conditions in vivo has never been demonstrated. Here we show that muscarinic GPCR mediated neuronal potentiation in vivo is voltage dependent. This voltage dependent potentiation is abolished in mutant animals expressing a voltage independent receptor. Depolarization alone, without a muscarinic agonist, results in a nicotinic ionotropic receptor potentiation that is mediated by muscarinic receptor voltage dependency. Finally, muscarinic receptor voltage independence causes a strong behavioral effect of increased odor habituation. Together, this study identifies a physiological role for the voltage dependency of GPCRs by demonstrating crucial involvement of GPCR voltage dependence in neuronal plasticity and behavior. Thus, this study suggests that GPCR voltage dependency plays a role in many diverse neuronal functions including learning and memory.
Collapse
Affiliation(s)
- Eyal Rozenfeld
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Merav Tauber
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, 43107, Israel
| | - Yair Ben-Chaim
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, 43107, Israel
| | - Moshe Parnas
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
2
|
Abstract
Pain is an essential protective mechanism that the body uses to alert or prevent further damage. Pain sensation is a complex event involving perception, transmission, processing, and response. Neurons at different levels (peripheral, spinal cord, and brain) are responsible for these pro- or antinociceptive activities to ensure an appropriate response to external stimuli. The terminals of these neurons, both in the peripheral endings and in the synapses, are equipped with G protein-coupled receptors (GPCRs), voltage- and ligand-gated ion channels that sense structurally diverse stimuli and inhibitors of neuronal activity. This review will focus on the largest class of sensory proteins, the GPCRs, as they are distributed throughout ascending and descending neurons and regulate activity at each step during pain transmission. GPCR activation also directly or indirectly controls the function of co-localized ion channels. The levels and types of some GPCRs are significantly altered in different pain models, especially chronic pain states, emphasizing that these molecules could be new targets for therapeutic intervention in chronic pain.
Collapse
Affiliation(s)
- Tao Che
- Department of Anesthesiology, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110, United States.,Center for Clinical Pharmacology, St. Louis College of Pharmacology and Washington University in St. Louis, St. Louis, Missouri 63110, United States
| |
Collapse
|
3
|
Moya‐Díaz J, Bayonés L, Montenegro M, Cárdenas AM, Koch H, Doi A, Marengo FD. Ca 2+ -independent and voltage-dependent exocytosis in mouse chromaffin cells. Acta Physiol (Oxf) 2020; 228:e13417. [PMID: 31769918 DOI: 10.1111/apha.13417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022]
Abstract
AIM It is widely accepted that the exocytosis of synaptic and secretory vesicles is triggered by Ca2+ entry through voltage-dependent Ca2+ channels. However, there is evidence of an alternative mode of exocytosis induced by membrane depolarization but lacking Ca2+ current and intracellular Ca2+ increase. In this work we investigated if such a mechanism contributes to secretory vesicle exocytosis in mouse chromaffin cells. METHODS Exocytosis was evaluated by patch-clamp membrane capacitance measurements, carbon fibre amperometry and TIRF. Cytosolic Ca2+ was estimated using epifluorescence microscopy and fluo-8 (salt form). RESULTS Cells stimulated by brief depolatizations in absence of extracellular Ca+2 show moderate but consistent exocytosis, even in presence of high cytosolic BAPTA concentration and pharmacological inhibition of Ca+2 release from intracellular stores. This exocytosis is tightly dependent on membrane potential, is inhibited by neurotoxin Bont-B (cleaves the v-SNARE synaptobrevin), is very fast (saturates with time constant <10 ms), it is followed by a fast endocytosis sensitive to the application of an anti-dynamin monoclonal antibody, and recovers after depletion in <5 s. Finally, this exocytosis was inhibited by: (i) ω-agatoxin IVA (blocks P/Q-type Ca2+ channel gating), (ii) in cells from knock-out P/Q-type Ca2+ channel mice, and (iii) transfection of free synprint peptide (interferes in P/Q channel-exocytic proteins association). CONCLUSION We demonstrated that Ca2+ -independent and voltage-dependent exocytosis is present in chromaffin cells. This process is tightly coupled to membrane depolarization, and is able to support secretion during action potentials at low basal rates. P/Q-type Ca2+ channels can operate as voltage sensors of this process.
Collapse
Affiliation(s)
- José Moya‐Díaz
- Instituto de Fisiología, Biología Molecular y Neurociencias Departamento de Fisiología y Biología Molecular y Celular Facultad de Ciencias Exactas y Naturales Universidad de Buenos AiresConsejo Nacional de Investigaciones Científicas y Técnicas Buenos Aires Argentina
| | - Lucas Bayonés
- Instituto de Fisiología, Biología Molecular y Neurociencias Departamento de Fisiología y Biología Molecular y Celular Facultad de Ciencias Exactas y Naturales Universidad de Buenos AiresConsejo Nacional de Investigaciones Científicas y Técnicas Buenos Aires Argentina
| | - Mauricio Montenegro
- Instituto de Fisiología, Biología Molecular y Neurociencias Departamento de Fisiología y Biología Molecular y Celular Facultad de Ciencias Exactas y Naturales Universidad de Buenos AiresConsejo Nacional de Investigaciones Científicas y Técnicas Buenos Aires Argentina
| | - Ana M. Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso Facultad de Ciencias Universidad de Valparaíso Valparaíso Chile
| | - Henner Koch
- Center for Integrative Brain Research Seattle Children's Research Institute Seattle WA USA
- Department of Neurology and Epileptology Hertie‐Institute for Clinical Brain ResearchUniversity of Tübingen Tübingen Germany
| | - Atsushi Doi
- Department of Rehabilitation Graduate School of Health Science Kumamoto Health Science University Kumamoto Japan
| | - Fernando D. Marengo
- Instituto de Fisiología, Biología Molecular y Neurociencias Departamento de Fisiología y Biología Molecular y Celular Facultad de Ciencias Exactas y Naturales Universidad de Buenos AiresConsejo Nacional de Investigaciones Científicas y Técnicas Buenos Aires Argentina
| |
Collapse
|
4
|
Scofield MD, Heinsbroek JA, Gipson CD, Kupchik YM, Spencer S, Smith ACW, Roberts-Wolfe D, Kalivas PW. The Nucleus Accumbens: Mechanisms of Addiction across Drug Classes Reflect the Importance of Glutamate Homeostasis. Pharmacol Rev 2017; 68:816-71. [PMID: 27363441 DOI: 10.1124/pr.116.012484] [Citation(s) in RCA: 379] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The nucleus accumbens is a major input structure of the basal ganglia and integrates information from cortical and limbic structures to mediate goal-directed behaviors. Chronic exposure to several classes of drugs of abuse disrupts plasticity in this region, allowing drug-associated cues to engender a pathologic motivation for drug seeking. A number of alterations in glutamatergic transmission occur within the nucleus accumbens after withdrawal from chronic drug exposure. These drug-induced neuroadaptations serve as the molecular basis for relapse vulnerability. In this review, we focus on the role that glutamate signal transduction in the nucleus accumbens plays in addiction-related behaviors. First, we explore the nucleus accumbens, including the cell types and neuronal populations present as well as afferent and efferent connections. Next we discuss rodent models of addiction and assess the viability of these models for testing candidate pharmacotherapies for the prevention of relapse. Then we provide a review of the literature describing how synaptic plasticity in the accumbens is altered after exposure to drugs of abuse and withdrawal and also how pharmacological manipulation of glutamate systems in the accumbens can inhibit drug seeking in the laboratory setting. Finally, we examine results from clinical trials in which pharmacotherapies designed to manipulate glutamate systems have been effective in treating relapse in human patients. Further elucidation of how drugs of abuse alter glutamatergic plasticity within the accumbens will be necessary for the development of new therapeutics for the treatment of addiction across all classes of addictive substances.
Collapse
Affiliation(s)
- M D Scofield
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - J A Heinsbroek
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - C D Gipson
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - Y M Kupchik
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - S Spencer
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - A C W Smith
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - D Roberts-Wolfe
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - P W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| |
Collapse
|
5
|
Khaziev E, Samigullin D, Zhilyakov N, Fatikhov N, Bukharaeva E, Verkhratsky A, Nikolsky E. Acetylcholine-Induced Inhibition of Presynaptic Calcium Signals and Transmitter Release in the Frog Neuromuscular Junction. Front Physiol 2016; 7:621. [PMID: 28018246 PMCID: PMC5149534 DOI: 10.3389/fphys.2016.00621] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/28/2016] [Indexed: 11/29/2022] Open
Abstract
Acetylcholine (ACh), released from axonal terminals of motor neurons in neuromuscular junctions regulates the efficacy of neurotransmission through activation of presynaptic nicotinic and muscarinic autoreceptors. Receptor-mediated presynaptic regulation could reflect either direct action on exocytotic machinery or modulation of Ca2+ entry and resulting intra-terminal Ca2+ dynamics. We have measured free intra-terminal cytosolic Ca2+ ([Ca2+]i) using Oregon-Green 488 microfluorimetry, in parallel with voltage-clamp recordings of spontaneous (mEPC) and evoked (EPC) postsynaptic currents in post-junctional skeletal muscle fiber. Activation of presynaptic muscarinic and nicotinic receptors with exogenous acetylcholine and its non-hydrolized analog carbachol reduced amplitude of the intra-terminal [Ca2+]i transients and decreased quantal content (calculated by dividing the area under EPC curve by the area under mEPC curve). Pharmacological analysis revealed the role of muscarinic receptors of M2 subtype as well as d-tubocurarine-sensitive nicotinic receptor in presynaptic modulation of [Ca2+]i transients. Modulation of synaptic transmission efficacy by ACh receptors was completely eliminated by pharmacological inhibition of N-type Ca2+ channels. We conclude that ACh receptor-mediated reduction of Ca2+ entry into the nerve terminal through N-type Ca2+ channels represents one of possible mechanism of presynaptic modulation in frog neuromuscular junction.
Collapse
Affiliation(s)
- Eduard Khaziev
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center of the Russian Academy of SciencesKazan, Russia; Open Laboratory of Neuropharmacology, Kazan (Volga Region) Federal UniversityKazan, Russia; Institute of Applied Electrodynamics, Photonics and Living Systems, A.N. Tupolev Kazan National Research Technical UniversityKazan, Russia
| | - Dmitry Samigullin
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center of the Russian Academy of SciencesKazan, Russia; Open Laboratory of Neuropharmacology, Kazan (Volga Region) Federal UniversityKazan, Russia; Institute of Applied Electrodynamics, Photonics and Living Systems, A.N. Tupolev Kazan National Research Technical UniversityKazan, Russia
| | - Nikita Zhilyakov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center of the Russian Academy of SciencesKazan, Russia; Open Laboratory of Neuropharmacology, Kazan (Volga Region) Federal UniversityKazan, Russia
| | - Nijaz Fatikhov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center of the Russian Academy of Sciences Kazan, Russia
| | - Ellya Bukharaeva
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center of the Russian Academy of SciencesKazan, Russia; Open Laboratory of Neuropharmacology, Kazan (Volga Region) Federal UniversityKazan, Russia
| | | | - Evgeny Nikolsky
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center of the Russian Academy of SciencesKazan, Russia; Open Laboratory of Neuropharmacology, Kazan (Volga Region) Federal UniversityKazan, Russia; Department of Biophysics, Kazan State Medical UniversityKazan, Russia
| |
Collapse
|
6
|
Johnson KA, Lovinger DM. Presynaptic G Protein-Coupled Receptors: Gatekeepers of Addiction? Front Cell Neurosci 2016; 10:264. [PMID: 27891077 PMCID: PMC5104741 DOI: 10.3389/fncel.2016.00264] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/31/2016] [Indexed: 12/21/2022] Open
Abstract
Drug abuse and addiction cause widespread social and public health problems, and the neurobiology underlying drug actions and drug use and abuse is an area of intensive research. Drugs of abuse alter synaptic transmission, and these actions contribute to acute intoxication as well as the chronic effects of abused substances. Transmission at most mammalian synapses involves neurotransmitter activation of two receptor subtypes, ligand-gated ion channels that mediate fast synaptic responses and G protein-coupled receptors (GPCRs) that have slower neuromodulatory actions. The GPCRs represent a large proportion of neurotransmitter receptors involved in almost all facets of nervous system function. In addition, these receptors are targets for many pharmacotherapeutic agents. Drugs of abuse directly or indirectly affect neuromodulation mediated by GPCRs, with important consequences for intoxication, drug taking and responses to prolonged drug exposure, withdrawal and addiction. Among the GPCRs are several subtypes involved in presynaptic inhibition, most of which are coupled to the Gi/o class of G protein. There is increasing evidence that these presynaptic Gi/o-coupled GPCRs have important roles in the actions of drugs of abuse, as well as behaviors related to these drugs. This topic will be reviewed, with particular emphasis on receptors for three neurotransmitters, Dopamine (DA; D1- and D2-like receptors), Endocannabinoids (eCBs; CB1 receptors) and glutamate (group II metabotropic glutamate (mGlu) receptors). The focus is on recent evidence from laboratory animal models (and some evidence in humans) implicating these receptors in the acute and chronic effects of numerous abused drugs, as well as in the control of drug seeking and taking. The ability of drugs targeting these receptors to modify drug seeking behavior has raised the possibility of using compounds targeting these receptors for addiction pharmacotherapy. This topic is also discussed, with emphasis on development of mGlu2 positive allosteric modulators (PAMs).
Collapse
Affiliation(s)
- Kari A. Johnson
- Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesda, MD, USA
| | - David M. Lovinger
- Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesda, MD, USA
| |
Collapse
|
7
|
Huang Y, Thathiah A. Regulation of neuronal communication by G protein-coupled receptors. FEBS Lett 2015; 589:1607-19. [PMID: 25980603 DOI: 10.1016/j.febslet.2015.05.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/05/2015] [Accepted: 05/05/2015] [Indexed: 02/06/2023]
Abstract
Neuronal communication plays an essential role in the propagation of information in the brain and requires a precisely orchestrated connectivity between neurons. Synaptic transmission is the mechanism through which neurons communicate with each other. It is a strictly regulated process which involves membrane depolarization, the cellular exocytosis machinery, neurotransmitter release from synaptic vesicles into the synaptic cleft, and the interaction between ion channels, G protein-coupled receptors (GPCRs), and downstream effector molecules. The focus of this review is to explore the role of GPCRs and G protein-signaling in neurotransmission, to highlight the function of GPCRs, which are localized in both presynaptic and postsynaptic membrane terminals, in regulation of intrasynaptic and intersynaptic communication, and to discuss the involvement of astrocytic GPCRs in the regulation of neuronal communication.
Collapse
Affiliation(s)
- Yunhong Huang
- VIB Center for the Biology of Disease, Leuven, Belgium; Center for Human Genetics (CME) and Leuven Institute for Neurodegenerative Diseases (LIND), University of Leuven (KUL), Leuven, Belgium.
| | - Amantha Thathiah
- VIB Center for the Biology of Disease, Leuven, Belgium; Center for Human Genetics (CME) and Leuven Institute for Neurodegenerative Diseases (LIND), University of Leuven (KUL), Leuven, Belgium.
| |
Collapse
|
8
|
Debanne D, Bialowas A, Rama S. What are the mechanisms for analogue and digital signalling in the brain? Nat Rev Neurosci 2012. [PMID: 23187813 DOI: 10.1038/nrn3361] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Synaptic transmission in the brain generally depends on action potentials. However, recent studies indicate that subthreshold variation in the presynaptic membrane potential also determines spike-evoked transmission. The informational content of each presynaptic action potential is therefore greater than initially expected. The contribution of this synaptic property, which is a fast (from 0.01 to 10 s) and state-dependent modulation of functional coupling, has been largely underestimated and could have important consequences for our understanding of information processing in neural networks. We discuss here how the membrane voltage of the presynaptic terminal might modulate neurotransmitter release by mechanisms that do not involve a change in presynaptic Ca(2+) influx.
Collapse
Affiliation(s)
- Dominique Debanne
- INSERM, UMR_S 1072, and Aix-Marseille Université, UNIS, 13015, Marseille, France.
| | | | | |
Collapse
|
9
|
Sahlholm K, Barchad-Avitzur O, Marcellino D, Gómez-Soler M, Fuxe K, Ciruela F, Arhem P. Agonist-specific voltage sensitivity at the dopamine D2S receptor--molecular determinants and relevance to therapeutic ligands. Neuropharmacology 2011; 61:937-49. [PMID: 21752340 DOI: 10.1016/j.neuropharm.2011.06.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Revised: 05/20/2011] [Accepted: 06/24/2011] [Indexed: 10/18/2022]
Abstract
Voltage sensitivity has been demonstrated for some GPCRs. At the dopamine D(2S) receptor, this voltage sensitivity is agonist-specific; some agonists, including dopamine, exhibit decreased potency at depolarized potentials, whereas others are not significantly affected. In the present study, we examined some of the receptor-agonist interactions contributing to these differences, and investigated how dopamine D(2S) receptor voltage sensitivity affects clinically used dopamine agonists. GIRK channel activation in voltage-clamped Xenopus oocytes was used as readout of receptor activation. Structurally distinct agonists and complementary site-directed mutagenesis of the receptor's binding site were used to investigate the role of agonist-receptor interactions. We also confirmed that the depolarization-induced decrease of dopamine potency in GIRK activation is correlated by decreased binding of radiolabeled dopamine, and by decreased potency in G protein activation. In the mutagenesis experiments, a conserved serine residue as well as the conserved aspartate in the receptor's binding site were found to be important for voltage sensitive potency of dopamine. Furthermore, the voltage sensitivity of the receptor had distinct effects on different therapeutic D(2) agonists. Depolarization decreased the potency of several compounds, whereas for others, efficacy was reduced. For some agonists, both potency and efficacy were diminished, whereas for others still, neither parameter was significantly altered. The present work identifies some of the ligand-receptor interactions which determine agonist-specific effects of voltage at the dopamine D(2S) receptor. The observed differences between therapeutic agonists might be clinically relevant, and make them potential tools for investigating the roles of dopamine D(2) receptor voltage sensitivity in native tissue.
Collapse
|
10
|
Tsentsevitsky A, Nikolsky E, Giniatullin R, Bukharaeva E. Opposite modulation of time course of quantal release in two parts of the same synapse by reactive oxygen species. Neuroscience 2011; 189:93-9. [PMID: 21627983 DOI: 10.1016/j.neuroscience.2011.05.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 05/11/2011] [Accepted: 05/12/2011] [Indexed: 10/18/2022]
Abstract
Reactive oxygen species (ROS) are potent regulators of transmitter release in chemical synapses, but the mechanism of this action remains almost unknown. Presynaptic modulation can change either the release probability or the time course of quantal release, which was recently recognized as an efficient mechanism determining synaptic efficiency. The nonuniform structure and a big size of the frog neuromuscular junction make it a useful model to study the action of ROS in compartments different in release probability and in time course of transmitter release. The time course (or kinetics) of quantal release could be estimated by measuring the dispersion of the synaptic delays for evoked uniquantal endplate currents (EPCs) under low release probability. Using two-electrode recording technique, the action of ROS on kinetics and release probabilities were studied at the proximal and distal parts within the same neuromuscular junction. The stable ROS hydrogen peroxide (H2O2) increased the dispersion of synaptic delays of EPCs (i.e. desynchronized quantal release) within the distal part but decreased delay dispersion (synchronized quantal release) within the proximal part of the same synapse. Unlike the opposite modulation of kinetics, H2O2 reduced release probability in both distal and proximal parts. Since ATP is released from motor nerve terminals together with acetylcholine and can be involved in ROS signaling, we tested the presynaptic action of ATP. In the presence of the pro-oxidant Fe2+, extracellular ATP, similarly to H2O2, induced significant desynchronization of release in the distal regions. The antioxidant N-acetyl-cysteine attenuated the inhibitory action of ATP on release probability and abolished the action of H2O2 and ATP in the presence of Fe2+, on release kinetics. Our data suggest that ROS induced during muscle activity could change the time course of transmitter release along the motor nerve terminal to provide fine tuning of synaptic efficacy.
Collapse
Affiliation(s)
- A Tsentsevitsky
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan, 420111, Russia
| | | | | | | |
Collapse
|
11
|
Kupchik YM, Barchad-Avitzur O, Wess J, Ben-Chaim Y, Parnas I, Parnas H. A novel fast mechanism for GPCR-mediated signal transduction--control of neurotransmitter release. ACTA ACUST UNITED AC 2011; 192:137-51. [PMID: 21200029 PMCID: PMC3019563 DOI: 10.1083/jcb.201007053] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In addition to calcium influx, charge movement in the G protein–coupled M2-muscarinic receptor is required for the control of acetylcholine release. Reliable neuronal communication depends on accurate temporal correlation between the action potential and neurotransmitter release. Although a requirement for Ca2+ in neurotransmitter release is amply documented, recent studies have shown that voltage-sensitive G protein–coupled receptors (GPCRs) are also involved in this process. However, how slow-acting GPCRs control fast neurotransmitter release is an unsolved question. Here we examine whether the recently discovered fast depolarization-induced charge movement in the M2-muscarinic receptor (M2R) is responsible for M2R-mediated control of acetylcholine release. We show that inhibition of the M2R charge movement in Xenopus oocytes correlated well with inhibition of acetylcholine release at the mouse neuromuscular junction. Our results suggest that, in addition to Ca2+ influx, charge movement in GPCRs is also necessary for release control.
Collapse
Affiliation(s)
- Yonatan M Kupchik
- Department of Neurobiology, Institute of Life Sciences, Hebrew University, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
12
|
Kupchik Y, Parnas H, Parnas I. A novel, extremely fast, feedback inhibition of glutamate release in the crayfish neuromuscular junction. Neuroscience 2011; 172:44-54. [DOI: 10.1016/j.neuroscience.2010.10.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 10/19/2010] [Accepted: 10/19/2010] [Indexed: 11/27/2022]
|
13
|
Zohar A, Dekel N, Rubinsky B, Parnas H. New mechanism for voltage induced charge movement revealed in GPCRs--theory and experiments. PLoS One 2010; 5:e8752. [PMID: 20107506 PMCID: PMC2809744 DOI: 10.1371/journal.pone.0008752] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Accepted: 12/16/2009] [Indexed: 11/18/2022] Open
Abstract
Depolarization induced charge movement associated currents, analogous to gating currents in channels, were recently demonstrated in G-protein coupled receptors (GPCRs), and were found to affect the receptor's Agonist binding Affinity, hence denoted AA-currents. Here we study, employing a combined theoretical-experimental approach, the properties of the AA-currents using the m2-muscarinic receptor (m2R) as a case study. We found that the AA-currents are characterized by a “bump”, a distinct rise followed by a slow decline, which appears both in the On and the Off responses. The cumulative features implied a directional behavior of the AA-currents. This forced us to abandon the classical chemical reaction type of models and develop instead a model that includes anisotropic processes, thus producing directionality. This model fitted well the experimental data. Our main findings are that the AA-currents include two components. One is extremely fast, , at all voltages. The other is slow, at all voltages. Surprisingly, the slow component includes a process which strongly depends on voltage and can be as fast as at . The reason that it does not affect the overall time constant of the slow component is that it carries very little charge. The two fast processes are suitable candidates to link between charge movement and agonist binding affinity under physiological conditions.
Collapse
Affiliation(s)
- Assaf Zohar
- Department of Neurobiology, Hebrew University, Jerusalem, Israel
| | - Noa Dekel
- Department of Neurobiology, Hebrew University, Jerusalem, Israel
| | - Boris Rubinsky
- School of Computer Science and Engineering, Center for Bioengineering in the Service of Humanity and Society, Hebrew University, Jerusalem, Israel
| | - Hanna Parnas
- Department of Neurobiology, Hebrew University, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
14
|
Abstract
Of all clinically marketed drugs, greater than thirty percent are modulators of G protein-coupled receptors (GPCRs). Nearly 400 GPCRs (i.e., excluding odorant and light receptors) are encoded within the human genome, but only a small fraction of these seven-transmembrane proteins have been identified as drug targets. Chronic pain affects more than one-third of the population, representing a substantial societal burden in use of health care resources and lost productivity. Furthermore, currently available treatments are often inadequate, underscoring the significant need for better therapeutic strategies. The expansion of the identified human GPCR repertoire, coupled with recent insights into the function and structure of GPCRs, offers new opportunities for the development of novel analgesic therapeutics.
Collapse
Affiliation(s)
- Laura S Stone
- Faculty of Dentistry, Alan Edwards Centre for Research on Pain, Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada.
| | | |
Collapse
|
15
|
Dudel J. Depolarization amplitude and Ca2+ -inflow control the time course of quantal releases at murine motor nerve terminals. Eur J Neurosci 2009; 30:1219-26. [PMID: 19769588 DOI: 10.1111/j.1460-9568.2009.06915.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In order to test whether the time courses of quantal releases after a depolarization pulse are affected by the depolarization amplitude, time courses were measured for small depolarization pulses that elicited close to threshold releases and for large depolarizations that elicited releases approaching saturation level. Diaphragms of young mice were excised and superfused with Bretag's solution at 18 degrees C. Synaptic currents were elicited and recorded through a perfused macropatch pipette. Releases elicited by threshold depolarizations rose earlier than releases elicited by saturation depolarizations. The short delays in the rising phases of release after large depolarizations may be due to the shift of Ca(2+) currents flowing during the pulse to tail currents. After its peak, release decayed with a time constant tau. For saturation depolarizations tau was about 0.3 ms, and for threshold depolarizations tau increased up to 0.8 ms. In order to differentiate between the effects of variations in Ca(2+) inflow and in depolarization, the amplitudes of large depolarization pulses were held constant while the amount of release was depressed by halving the Ca(2+) concentration at the terminal. The time course of the lowered releases was slightly delayed while tau remained at 0.3 ms as typical for saturation depolarizations. Double pulse facilitation unexpectedly revealed a short phase of depression of release after the pulse. This depression may contribute to the rapid decay (tau) of release after large depolarizations. The dependence of tau on depolarization amplitude indicates that the final phase of the time course of release is largely controlled by the amplitude of the preceding depolarization.
Collapse
Affiliation(s)
- Josef Dudel
- Friedrich-Schedel-Institut für Neurowissenschaften, Biedersteinerstrasse 29, Munich, Germany.
| |
Collapse
|
16
|
Mahaut-Smith MP, Martinez-Pinna J, Gurung IS. A role for membrane potential in regulating GPCRs? Trends Pharmacol Sci 2008; 29:421-9. [PMID: 18621424 DOI: 10.1016/j.tips.2008.05.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 05/16/2008] [Accepted: 05/28/2008] [Indexed: 10/21/2022]
Abstract
G-protein-coupled receptors (GPCRs) have ubiquitous roles in transducing extracellular signals into cellular responses. Therefore, the concept that members of this superfamily of surface proteins are directly modulated by changes in membrane voltage could have widespread consequences for cell signalling. Although several studies have indicated that GPCRs can be voltage dependent, particularly P2Y(1) receptors in the non-excitable megakaryocyte, the evidence has been mostly indirect. Recent work on muscarinic receptors has stimulated substantial interest in this field by reporting the first voltage-dependent charge movements for a GPCR. An underlying mechanism is proposed whereby a voltage-induced conformational change in the receptor alters its ability to couple to the G protein and thereby influences its affinity for an agonist. We discuss the strength of the evidence behind this hypothesis and include suggestions for future work. We also describe other examples in which direct voltage control of GPCRs can account for effects of membrane potential on downstream signals and highlight the possible physiological consequences of this phenomenon.
Collapse
Affiliation(s)
- Martyn P Mahaut-Smith
- Department of Cell Physiology and Pharmacology, University of Leicester, LE1 9HN, UK.
| | | | | |
Collapse
|