1
|
Abrahams L, Hurst LD. Adenine Enrichment at the Fourth CDS Residue in Bacterial Genes Is Consistent with Error Proofing for +1 Frameshifts. Mol Biol Evol 2018; 34:3064-3080. [PMID: 28961919 PMCID: PMC5850271 DOI: 10.1093/molbev/msx223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Beyond selection for optimal protein functioning, coding sequences (CDSs) are under selection at the RNA and DNA levels. Here, we identify a possible signature of “dual-coding,” namely extensive adenine (A) enrichment at bacterial CDS fourth sites. In 99.07% of studied bacterial genomes, fourth site A use is greater than expected given genomic A-starting codon use. Arguing for nucleotide level selection, A-starting serine and arginine second codons are heavily utilized when compared with their non-A starting synonyms. Several models have the ability to explain some of this trend. In part, A-enrichment likely reduces 5′ mRNA stability, promoting translation initiation. However T/U, which may also reduce stability, is avoided. Further, +1 frameshifts on the initiating ATG encode a stop codon (TGA) provided A is the fourth residue, acting either as a frameshift “catch and destroy” or a frameshift stop and adjust mechanism and hence implicated in translation initiation. Consistent with both, genomes lacking TGA stop codons exhibit weaker fourth site A-enrichment. Sequences lacking a Shine–Dalgarno sequence and those without upstream leader genes, that may be more error prone during initiation, have greater utilization of A, again suggesting a role in initiation. The frameshift correction model is consistent with the notion that many genomic features are error-mitigation factors and provides the first evidence for site-specific out of frame stop codon selection. We conjecture that the NTG universal start codon may have evolved as a consequence of TGA being a stop codon and the ability of NTGA to rapidly terminate or adjust a ribosome.
Collapse
Affiliation(s)
- Liam Abrahams
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| | - Laurence D Hurst
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| |
Collapse
|
2
|
Makarova TM, Bogdanov AA. The Ribosome as an Allosterically Regulated Molecular Machine. BIOCHEMISTRY (MOSCOW) 2018. [PMID: 29523059 DOI: 10.1134/s0006297917130016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ribosome as a complex molecular machine undergoes significant conformational rearrangements during the synthesis of polypeptide chains of proteins. In this review, information obtained using various experimental methods on the internal consistency of such rearrangements is discussed. It is demonstrated that allosteric regulation involves all the main stages of the operation of the ribosome and connects functional elements remote by tens and even hundreds of angstroms. Data obtained using Förster resonance energy transfer (FRET) show that translocation is controlled in general by internal mechanisms of the ribosome, and not by the position of the ligands. Chemical probing data revealed the relationship of such remote sites as the decoding, peptidyl transferase, and GTPase centers of the ribosome. Nevertheless, despite the large amount of experimental data accumulated to date, many details and mechanisms of these phenomena are still not understood. Analysis of these data demonstrates that the development of new approaches is necessary for deciphering the mechanisms of allosteric regulation of the operation of the ribosome.
Collapse
Affiliation(s)
- T M Makarova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | | |
Collapse
|
3
|
70S-scanning initiation is a novel and frequent initiation mode of ribosomal translation in bacteria. Proc Natl Acad Sci U S A 2016; 113:E1180-9. [PMID: 26888283 DOI: 10.1073/pnas.1524554113] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
According to the standard model of bacterial translation initiation, the small ribosomal 30S subunit binds to the initiation site of an mRNA with the help of three initiation factors (IF1-IF3). Here, we describe a novel type of initiation termed "70S-scanning initiation," where the 70S ribosome does not necessarily dissociate after translation of a cistron, but rather scans to the initiation site of the downstream cistron. We detailed the mechanism of 70S-scanning initiation by designing unique monocistronic and polycistronic mRNAs harboring translation reporters, and by reconstituting systems to characterize each distinct mode of initiation. Results show that 70S scanning is triggered by fMet-tRNA and does not require energy; the Shine-Dalgarno sequence is an essential recognition element of the initiation site. IF1 and IF3 requirements for the various initiation modes were assessed by the formation of productive initiation complexes leading to synthesis of active proteins. IF3 is essential and IF1 is highly stimulating for the 70S-scanning mode. The task of IF1 appears to be the prevention of untimely interference by ternary aminoacyl (aa)-tRNA•elongation factor thermo unstable (EF-Tu)•GTP complexes. Evidence indicates that at least 50% of bacterial initiation events use the 70S-scanning mode, underscoring the relative importance of this translation initiation mechanism.
Collapse
|
4
|
Koch M, Clementi N, Rusca N, Vögele P, Erlacher M, Polacek N. The integrity of the G2421-C2395 base pair in the ribosomal E-site is crucial for protein synthesis. RNA Biol 2015; 12:70-81. [PMID: 25826414 PMCID: PMC4615901 DOI: 10.1080/15476286.2015.1017218] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
During the elongation cycle of protein biosynthesis, tRNAs traverse through the ribosome by consecutive binding to the 3 ribosomal binding sites (A-, P-, and E- sites). While the ribosomal A- and P-sites have been functionally well characterized in the past, the contribution of the E-site to protein biosynthesis is still poorly understood in molecular terms. Previous studies suggested an important functional interaction of the terminal residue A76 of E-tRNA with the nucleobase of the universally conserved 23S rRNA residue C2394. Using an atomic mutagenesis approach to introduce non-natural nucleoside analogs into the 23S rRNA, we could show that removal of the nucleobase or the ribose 2'-OH at C2394 had no effect on protein synthesis. On the other hand, our data disclose the importance of the highly conserved E-site base pair G2421-C2395 for effective translation. Ribosomes with a disrupted G2421-C2395 base pair are defective in tRNA binding to the E-site. This results in an impaired translation of genuine mRNAs, while homo-polymeric templates are not affected. Cumulatively our data emphasize the importance of E-site tRNA occupancy and in particular the intactness of the 23S rRNA base pair G2421-C2395 for productive protein biosynthesis.
Collapse
Affiliation(s)
- Miriam Koch
- a Department of Chemistry and Biochemistry; University of Bern ; Bern , Switzerland
| | | | | | | | | | | |
Collapse
|
5
|
Mondal S, Pathak BK, Ray S, Barat C. Impact of P-Site tRNA and antibiotics on ribosome mediated protein folding: studies using the Escherichia coli ribosome. PLoS One 2014; 9:e101293. [PMID: 25000563 PMCID: PMC4085065 DOI: 10.1371/journal.pone.0101293] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 06/04/2014] [Indexed: 12/22/2022] Open
Abstract
Background The ribosome, which acts as a platform for mRNA encoded polypeptide synthesis, is also capable of assisting in folding of polypeptide chains. The peptidyl transferase center (PTC) that catalyzes peptide bond formation resides in the domain V of the 23S rRNA of the bacterial ribosome. Proper positioning of the 3′ –CCA ends of the A- and P-site tRNAs via specific interactions with the nucleotides of the PTC are crucial for peptidyl transferase activity. This RNA domain is also the center for ribosomal chaperoning activity. The unfolded polypeptide chains interact with the specific nucleotides of the PTC and are released in a folding competent form. In vitro transcribed RNA corresponding to this domain (bDV RNA) also displays chaperoning activity. Results The present study explores the effects of tRNAs, antibiotics that are A- and P-site PTC substrate analogs (puromycin and blasticidin) and macrolide antibiotics (erythromycin and josamycin) on the chaperoning ability of the E. coli ribosome and bDV RNA. Our studies using mRNA programmed ribosomes show that a tRNA positioned at the P-site effectively inhibits the ribosome's chaperoning function. We also show that the antibiotic blasticidin (that mimics the interaction between 3′–CCA end of P/P-site tRNA with the PTC) is more effective in inhibiting ribosome and bDV RNA chaperoning ability than either puromycin or the macrolide antibiotics. Mutational studies of the bDV RNA could identify the nucleotides U2585 and G2252 (both of which interact with P-site tRNA) to be important for its chaperoning ability. Conclusion Both protein synthesis and their proper folding are crucial for maintenance of a functional cellular proteome. The PTC of the ribosome is attributed with both these abilities. The silencing of the chaperoning ability of the ribosome in the presence of P-site bound tRNA might be a way to segregate these two important functions.
Collapse
Affiliation(s)
- Surojit Mondal
- Department of Biotechnology, St. Xavier's College, Kolkata, West Bengal, India
| | - Bani Kumar Pathak
- Department of Biotechnology, St. Xavier's College, Kolkata, West Bengal, India
| | - Sutapa Ray
- Dr. B.C Guha Centre for Genetic Engineering and Department of Biotechnology, Calcutta University, Kolkata, West Bengal, India
| | - Chandana Barat
- Department of Biotechnology, St. Xavier's College, Kolkata, West Bengal, India
- * E-mail:
| |
Collapse
|
6
|
Nierhaus KH, Pech M. Problems with the Analyses of the Ribosomal Allosteric Three-site Model. J Biol Chem 2012; 287:27049. [PMID: 22865895 DOI: 10.1074/jbc.l112.381848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
7
|
Pech M, Nierhaus KH. Three mechanisms in Escherichia coli rescue ribosomes stalled on non-stop mRNAs: one of them requires release factor 2. Mol Microbiol 2012; 86:6-9. [PMID: 22909071 DOI: 10.1111/j.1365-2958.2012.08207.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2012] [Indexed: 11/27/2022]
Abstract
The tmRNA/SmpB system, which is almost universal in bacteria, rescues bacterial ribosomes stalled at the end of non-stop mRNAs (mRNAs lacking a stop codon). In addition, a few bacteria, including Escherichia coli, have developed a second two-component system as reported by Chadani et al. (2012). A small protein, ArfA of 55 amino acids (formerly called YdhL), mediates binding of release factor 2 to the ribosomal A site lacking a complete mRNA codon and thereby triggers translational termination and rescue of the stalled ribosome.
Collapse
Affiliation(s)
- Markus Pech
- Max-Planck-Institut für Molekulare Genetik, Abteilung Vingron, AG Ribosomen, Ihnestr. 73, D-14195, Berlin, Germany
| | | |
Collapse
|
8
|
Petropoulos AD, Green R. Further in vitro exploration fails to support the allosteric three-site model. J Biol Chem 2012; 287:11642-8. [PMID: 22378789 PMCID: PMC3320913 DOI: 10.1074/jbc.c111.330068] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ongoing debate in the ribosome field has focused on the role of bound E-site tRNA and the Shine-Dalgarno-anti-Shine-Dalgarno (SD-aSD) interaction on A-site tRNA interactions and the fidelity of tRNA selection. Here we use an in vitro reconstituted Escherichia coli translation system to explore the reported effects of E-site-bound tRNA and SD-aSD interactions on tRNA selection events and find no evidence for allosteric coupling. A large set of experiments exploring the role of the E-site tRNA in miscoding failed to recapitulate the observations of earlier studies (Di Giacco, V., Márquez, V., Qin, Y., Pech, M., Triana-Alonso, F. J., Wilson, D. N., and Nierhaus, K. H. (2008) Proc. Natl. Acad. Sci. U.S.A. 105, 10715-10720 and Geigenmüller, U., and Nierhaus, K. H. (1990) EMBO J. 9, 4527-4533); the frequency of miscoding was unaffected by the presence of E-site-bound cognate tRNA. Moreover, our data provide clear evidence that the reported effects of the SD-aSD interaction on fidelity can be attributed to the binding of ribosomes to an unanticipated site on the mRNA (in the absence of the SD sequence) that provides a cognate pairing codon leading naturally to incorporation of the purported "noncognate" amino acid.
Collapse
Affiliation(s)
- Alexandros D Petropoulos
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
9
|
Abstract
Selection of correct start codons on messenger RNAs is a key step required for faithful translation of the genetic message. Such a selection occurs in a complex process, during which a translation-competent ribosome assembles, eventually having in its P site a specialized methionyl-tRNAMet base-paired with the start codon on the mRNA. This chapter summarizes recent advances describing at the molecular level the successive steps involved in the process. Special emphasis is put on the roles of the three initiation factors and of the initiator tRNA, which are crucial for the efficiency and the specificity of the process. In particular, structural analyses concerning complexes containing ribosomal subunits, as well as detailed kinetic studies, have shed new light on the sequence of events leading to faithful initiation of protein synthesis in Bacteria.
Collapse
|
10
|
Allosteric vs. spontaneous exit-site (E-site) tRNA dissociation early in protein synthesis. Proc Natl Acad Sci U S A 2011; 108:16980-5. [PMID: 21969541 DOI: 10.1073/pnas.1106999108] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During protein synthesis, deacylated transfer RNAs leave the ribosome via an exit (E) site after mRNA translocation. How the ribosome regulates tRNA dissociation and whether functional linkages between the aminoacyl (A) and E sites modulate the dynamics of protein synthesis have long been debated. Using single molecule fluorescence resonance energy transfer experiments, we find that, during early cycles of protein elongation, tRNAs are often held in the E site until being allosterically released when the next aminoacyl tRNA binds to the A site. This process is regulated by the length and sequence of the nascent peptide and by the conformational state, detected by tRNA proximity, prior to translocation. In later cycles, E-site tRNA dissociates spontaneously. Our results suggest that the distribution of pretranslocation tRNA states and posttranslocation pathways are correlated within each elongation cycle via communication between distant subdomains in the ribosome, but that this correlation between elongation cycle intermediates does not persist into succeeding cycles.
Collapse
|
11
|
|
12
|
Erdmann VA, Barciszewski J. 2011: 50th Anniversary of the Discovery of the Genetic Code. Angew Chem Int Ed Engl 2011; 50:9546-52. [DOI: 10.1002/anie.201103895] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Indexed: 11/10/2022]
|
13
|
Payoe R, Fahlman RP. Dependence of RelA-mediated (p)ppGpp formation on tRNA identity. Biochemistry 2011; 50:3075-83. [PMID: 21410133 DOI: 10.1021/bi1015309] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The bacterial stringent response is a cellular response to amino acid limitations and is characterized by the accumulation of the alarmone polyphosphate guanosine ((p)ppGpp). A key molecular event leading to (p)ppGpp synthesis is the binding of a deacylated tRNA to the vacant A-Site of a ribosome. The resulting ribosomal complex is recognized by and activates RelA, the (p)ppGpp synthetase. Activated RelA catalyzes (p)ppGpp formation until the deacylated tRNA passively dissociates from the ribosomal A-Site. In this report, we have investigated a novel role for the identity of A-Site bound tRNA in RelA-mediated (p)ppGpp synthesis. A comparison in the stimulation of RelA activity was made using ribosome complexes with either a tightly or weakly binding deacylated tRNA occupying the A-Site. In vitro analysis reveals that ribosome complexes formed with tight binding tRNA(Val) stimulate RelA activity at lower concentrations than that required for ribosome complexes formed with the weaker binding tRNA(Phe). The data suggest that the recovery from the stringent response may be dependent on the identity of the amino acid that was initially limiting for the bacteria.
Collapse
Affiliation(s)
- Roshani Payoe
- Department of Biochemistry, School of Molecular and Systems Medicine, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | |
Collapse
|
14
|
Elongation factor 4 (EF4/LepA) accelerates protein synthesis at increased Mg2+ concentrations. Proc Natl Acad Sci U S A 2011; 108:3199-203. [PMID: 21300907 DOI: 10.1073/pnas.1012994108] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Elongation factor 4 (EF4) is one of the most conserved proteins present in bacteria as well as in mitochondria and chloroplasts of eukaryotes. Although EF4 has the unique ability to catalyze the back-translocation reaction on posttranslocation state ribosomes, the physiological role of EF4 remains unclear. Here we demonstrate that EF4 is stored at the membrane of Escherichia coli cells and released into the cytoplasm upon conditions of high ionic strength or low temperature. Under such conditions, wild-type E. coli cells overgrow mutant cells lacking the EF4 gene within 5-10 generations. Elevated intracellular Mg(2+) concentrations or low temperature retard bacterial growth and inhibit protein synthesis, probably because of formation of aberrant elongating ribosomal states. We suggest that EF4 binds to these stuck ribosomes and remobilizes them, consistent with the EF4-dependent enhancement (fivefold) in protein synthesis observed under these unfavorable conditions. The strong selective advantage conferred by the presence of EF4 at high intracellular ionic strength or low temperatures explains the ubiquitous distribution and high conservation of EF4.
Collapse
|
15
|
Pech M, Yamamoto H, Karim Z, Nierhaus K. Unusual Features of the Unusual Ribosomal Elongation Factor EF4 (LepA). Isr J Chem 2010. [DOI: 10.1002/ijch.201000008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Nierhaus KH. Nobel Prize for the elucidation of ribosome structure and insight into the translation mechanism. Angew Chem Int Ed Engl 2010; 48:9225-8. [PMID: 19899182 DOI: 10.1002/anie.200905795] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Knud H Nierhaus
- Max-Planck-Institut für Molekulare Genetik, AG Ribosomen, Ihnestrasse 73, 14195 Berlin, Germany.
| |
Collapse
|
17
|
Nierhaus K. Nobelpreiswürdig: Aufklärung der Ribosomenstruktur und Einblicke in den Mechanismus der Translation. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200905795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Munro JB, Sanbonmatsu KY, Spahn CMT, Blanchard SC. Navigating the ribosome's metastable energy landscape. Trends Biochem Sci 2009; 34:390-400. [PMID: 19647434 DOI: 10.1016/j.tibs.2009.04.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 04/28/2009] [Accepted: 04/28/2009] [Indexed: 12/30/2022]
Abstract
The molecular mechanisms by which tRNA molecules enter and transit the ribosome during mRNA translation remains elusive. However, recent genetic, biochemical and structural studies offer important new findings into the ordered sequence of events underpinning the translocation process that help place the molecular mechanism within reach. In particular, new structural and kinetic insights have been obtained regarding tRNA movements through 'hybrid state' configurations. These dynamic views reveal that the macromolecular ribosome particle, like many smaller proteins, has an intrinsic capacity to reversibly sample an ensemble of similarly stable native states. Such perspectives suggest that substrates, factors and environmental cues contribute to translation regulation by helping the dynamic system navigate through a highly complex and metastable energy landscape.
Collapse
Affiliation(s)
- James B Munro
- Department of Physiology and Biophysics, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10021, USA
| | | | | | | |
Collapse
|
19
|
Tenson T, Hauryliuk V. Does the ribosome have initiation and elongation modes of translation? Mol Microbiol 2009; 72:1310-5. [PMID: 19486296 DOI: 10.1111/j.1365-2958.2009.06741.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
RNA polymerases differ functionally and structurally in the initiation phase of transcription, when polymerization of 8-12 nucleotides occurs, from the later phases of transcription. Here we argue that the ribosome also might have different properties when translating the first codons in open reading frames, as compared with the later phases of translation.
Collapse
Affiliation(s)
- Tanel Tenson
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia.
| | | |
Collapse
|
20
|
Abstract
The faithful and rapid translation of genetic information into peptide sequences is an indispensable property of the ribosome. The mechanistic understanding of strategies used by the ribosome to achieve both speed and fidelity during translation results from nearly a half century of biochemical and structural studies. Emerging from these studies is the common theme that the ribosome uses local as well as remote conformational switches to govern induced-fit mechanisms that ensure accuracy in codon recognition during both tRNA selection and translation termination.
Collapse
|
21
|
Abstract
Proofreading mechanisms intrinsic to DNA and RNA polymers that contribute substantially to overall fidelity are lacking in the ribosome. New evidence, however, suggests that quality control in translation can occur after substrate incorporation by an abortive mechanism entailing premature release factor-catalyzed termination. These data shed new light on the importance and ubiquity of retrospective quality control mechanisms in ensuring the overall fidelity of nature's processive enzymes and demonstrate that competitive elongation reactions on the ribosome are kinetically sensitive to compositional features of the translating particle.
Collapse
Affiliation(s)
- Scott C. Blanchard
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, 1300 York Avenue, Whitney 205, New York, New York 10021
| |
Collapse
|