1
|
Nowitzke J, Bista S, Raman S, Dahal N, Stirnemann G, Popa I. Mechanical Unfolding of Network Nodes Drives the Stress Response of Protein-Based Materials. ACS NANO 2024. [PMID: 39487800 DOI: 10.1021/acsnano.4c07352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Biomaterials synthesized from cross-linked folded proteins have untapped potential for biocompatible, resilient, and responsive implementations, but face challenges due to costly molecular refinement and limited understanding of their mechanical response. Under a stress vector, these materials combine the gel-like response of cross-linked networks with the mechanical unfolding and extension of proteins from well-defined 3D structures to unstructured polypeptides. Yet the nanoscale dynamics governing their viscoelastic response remains poorly understood. This lack of understanding is further exacerbated by the fact that the mechanical stability of protein domains depends not only on their structure, but also on the direction of the force vector. To this end, here we propose a coarse-grained network model based on the physical characteristics of polyproteins and combine it with the mechanical unfolding response of protein domains, obtained from single molecule measurements and steered molecular dynamics simulations, to explain the macroscopic response of protein-based materials to a stress vector. We find that domains are about 10-fold more stable when force is applied along their end-to-end coordinate than along the other tethering geometries that are possible inside the biomaterial. As such, the macroscopic response of protein-based materials is mainly driven by the unfolding of the node-domains and rearrangement of these nodes inside the material. The predictions from our models are then confirmed experimentally using force-clamp rheometry. This model is a critical step toward developing protein-based materials with predictable response and that can enable applications for shape memory and energy storage and dissipation.
Collapse
Affiliation(s)
- Joel Nowitzke
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N Maryland Avenue, Milwaukee, Wisconsin 53211, United States
| | - Sanam Bista
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N Maryland Avenue, Milwaukee, Wisconsin 53211, United States
| | - Sadia Raman
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N Maryland Avenue, Milwaukee, Wisconsin 53211, United States
| | - Narayan Dahal
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N Maryland Avenue, Milwaukee, Wisconsin 53211, United States
| | - Guillaume Stirnemann
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne University, CNRS, Paris 75005, France
| | - Ionel Popa
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N Maryland Avenue, Milwaukee, Wisconsin 53211, United States
| |
Collapse
|
2
|
Paladino A, Vitagliano L, Graziano G. The Action of Chemical Denaturants: From Globular to Intrinsically Disordered Proteins. BIOLOGY 2023; 12:biology12050754. [PMID: 37237566 DOI: 10.3390/biology12050754] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Proteins perform their many functions by adopting either a minimal number of strictly similar conformations, the native state, or a vast ensemble of highly flexible conformations. In both cases, their structural features are highly influenced by the chemical environment. Even though a plethora of experimental studies have demonstrated the impact of chemical denaturants on protein structure, the molecular mechanism underlying their action is still debated. In the present review, after a brief recapitulation of the main experimental data on protein denaturants, we survey both classical and more recent interpretations of the molecular basis of their action. In particular, we highlight the differences and similarities of the impact that denaturants have on different structural classes of proteins, i.e., globular, intrinsically disordered (IDP), and amyloid-like assemblies. Particular attention has been given to the IDPs, as recent studies are unraveling their fundamental importance in many physiological processes. The role that computation techniques are expected to play in the near future is illustrated.
Collapse
Affiliation(s)
- Antonella Paladino
- Institute of Biostructures and Bioimaging, CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Giuseppe Graziano
- Department of Science and Technology, University of Sannio, via Francesco de Sanctis snc, 82100 Benevento, Italy
| |
Collapse
|
3
|
Liu Z, Thirumalai D. Residue-Dependent Transition Temperatures and Denaturant Midpoints in the Folding of a Multidomain Protein. J Phys Chem B 2022; 126:10684-10688. [PMID: 36512486 DOI: 10.1021/acs.jpcb.2c07093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As a consequence of the finite size of globular proteins, it is expected that there should be dispersions in the global melting temperature (Tm) and the denaturation midpoint (Cm). Thermodynamic considerations dictate that the dispersions, ΔTm in Tm, and ΔCm in Cm, should decrease with N, the number of residues in the protein. We performed coarse-grained simulations of the self-organized polymer (SOP) model of the multidomain protein adenylate kinase (ADK) with N = 214 in order to calculate thermal and denaturation unfolding titration curves. The results show that ΔTm/Tm and ΔCm/Cm are nonzero and follow the previously established ( Phys. Rev. Lett. 2004, 93, 268107) thermodynamic 1/N scaling for proteins accurately. For ADK, the dispersions are small (≈0.004), which implies that the melting temperature is more or less unique, which is unlike in BBL (N = 40) where ΔTm/Tm ≈ 0.03.
Collapse
Affiliation(s)
- Zhenxing Liu
- Department of Physics, Beijing Normal University, Beijing 100875, China
| | - D Thirumalai
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
4
|
Maity H, Baidya L, Reddy G. Salt-Induced Transitions in the Conformational Ensembles of Intrinsically Disordered Proteins. J Phys Chem B 2022; 126:5959-5971. [PMID: 35944496 DOI: 10.1021/acs.jpcb.2c03476] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Salts modulate the behavior of intrinsically disordered proteins (IDPs) and influence the formation of membraneless organelles through liquid-liquid phase separation (LLPS). In low ionic strength solutions, IDP conformations are perturbed by the screening of electrostatic interactions, independent of the salt identity. In this regime, insight into the IDP behavior can be obtained using the theory for salt-induced transitions in charged polymers. However, salt-specific interactions with the charged and uncharged residues, known as the Hofmeister effect, influence IDP behavior in high ionic strength solutions. There is a lack of reliable theoretical models in high salt concentration regimes to predict the salt effect on IDPs. We propose a simulation methodology using a coarse-grained IDP model and experimentally measured water to salt solution transfer free energies of various chemical groups that allowed us to study the salt-specific transitions induced in the IDPs conformational ensemble. We probed the effect of three different monovalent salts on five IDPs belonging to various polymer classes based on charged residue content. We demonstrate that all of the IDPs of different polymer classes behave as self-avoiding walks (SAWs) at physiological salt concentration. In high salt concentrations, the transitions observed in the IDP conformational ensembles are dependent on the salt used and the IDP sequence and composition. Changing the anion with the cation fixed can result in the IDP transition from a SAW-like behavior to a collapsed globule. An important implication of these results is that a suitable salt can be identified to induce condensation of an IDP through LLPS.
Collapse
Affiliation(s)
- Hiranmay Maity
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka, India 560012
| | - Lipika Baidya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka, India 560012
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka, India 560012
| |
Collapse
|
5
|
Arsiccio A, Ganguly P, Shea JE. A Transfer Free Energy Based Implicit Solvent Model for Protein Simulations in Solvent Mixtures: Urea-Induced Denaturation as a Case Study. J Phys Chem B 2022; 126:4472-4482. [PMID: 35679169 DOI: 10.1021/acs.jpcb.2c00889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We developed a method for implicit solvent molecular dynamics simulations of proteins in solvent mixtures (model with implicit solvation thermodynamics, MIST). The MIST method introduces experimental group transfer free energies to the generalized Born formulation for generating molecular trajectories without the need for developing rigorous explicit-solvent force fields for multicomponent solutions. As a test case, we studied the urea-induced denaturation of the Trp-cage miniprotein in water. We demonstrate that our method allows efficient exploration of the conformational space of the protein in only a few hundreds of nanoseconds of all-atom unbiased simulations. Furthermore, selective implementation of the transfer free energies of specific peptide groups, backbone, and side chains enables us to decouple their specific energetic contributions to the conformational changes of the protein. The approach herein developed can readily be extended to the investigation of complex matrices as well as to the characterization of protein aggregation. The MIST method is implemented in Plumed (ver. 2.8) as a separate module called SASA.
Collapse
Affiliation(s)
- Andrea Arsiccio
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Pritam Ganguly
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States.,Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
6
|
Liu Z, Thirumalai D. Cooperativity and Folding Kinetics in a Multidomain Protein with Interwoven Chain Topology. ACS CENTRAL SCIENCE 2022; 8:763-774. [PMID: 35756371 PMCID: PMC9228575 DOI: 10.1021/acscentsci.2c00140] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Indexed: 06/15/2023]
Abstract
Although a large percentage of eukaryotic proteomes consist of proteins with multiple domains, not much is known about their assembly mechanism, especially those with intricate native state architectures. Some have a complex topology in which the structural elements along the sequence are interwoven in such a manner that the domains cannot be separated by cutting at any location along the sequence. Such proteins are multiply connected multidomain proteins (MMPs) with the three-domain (NMP, LID, and CORE) phosphotransferase enzyme adenylate kinase (ADK) being an example. We devised a coarse-grained model to simulate ADK folding initiated by changing either the temperature or guanidinium chloride (GdmCl) concentration. The simulations reproduce the experimentally measured melting temperatures (associated with two equilibrium transitions), FRET efficiency as a function of GdmCl concentration, and the folding times quantitatively. Although the NMP domain orders independently, cooperative interactions between the LID and the CORE domains are required for complete assembly of the enzyme. Kinetic simulations show that, on the collapse time scale, multiple interconnected metastable states are populated, attesting to the folding heterogeneity. The network of kinetically connected states reveals that the CORE domain folds only after the NMP and LID domains, reflecting the interwoven nature of the chain topology.
Collapse
Affiliation(s)
- Zhenxing Liu
- Department
of Physics, Beijing Normal University, Beijing 100875, China
| | - D. Thirumalai
- Department
of Chemistry, The University of Texas at
Austin, Austin, Texas 78712, United
States
| |
Collapse
|
7
|
Du J, Yin H, Zhu H, Wan T, Wang B, Qi H, Lu Y, Dai L, Chen T. Forming a Double-Helix Phase of Single Polymer Chains by the Cooperation between Local Structure and Nonlocal Attraction. PHYSICAL REVIEW LETTERS 2022; 128:197801. [PMID: 35622042 DOI: 10.1103/physrevlett.128.197801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/01/2022] [Accepted: 03/25/2022] [Indexed: 06/15/2023]
Abstract
Double-helix structures, such as DNA, are formed in nature to realize many unique functions. Inspired by this, researchers are pursuing strategies to design such structures from polymers. A key question is whether the double helix can be formed from the self-folding of a single polymer chain without specific interactions. Here, using Langevin dynamics simulation and theoretical analysis, we find that a stable double-helix phase can be achieved by the self-folding of single semiflexible polymers as a result of the cooperation between local structure and nonlocal attraction. The critical temperature of double-helix formation approximately follows T^{cri}∼ln(k_{θ}) and T^{cri}∼ln(k_{τ}), where k_{θ} and k_{τ} are the polymer bending and torsion stiffness, respectively. Furthermore, the double helix can exhibit major and minor grooves due to symmetric break for better packing. Our results provide a novel guide to the experimental design of the double helix.
Collapse
Affiliation(s)
- Jiang Du
- College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Hongmei Yin
- College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Haoqi Zhu
- Department of Physics, City University of Hong Kong, Hong Kong 999077, China
| | - Tiantian Wan
- College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Binzhou Wang
- College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Hongtao Qi
- College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Yanfang Lu
- College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Liang Dai
- Department of Physics, City University of Hong Kong, Hong Kong 999077, China
| | - Tao Chen
- College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| |
Collapse
|
8
|
Speer SL, Stewart CJ, Sapir L, Harries D, Pielak GJ. Macromolecular Crowding Is More than Hard-Core Repulsions. Annu Rev Biophys 2022; 51:267-300. [PMID: 35239418 DOI: 10.1146/annurev-biophys-091321-071829] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells are crowded, but proteins are almost always studied in dilute aqueous buffer. We review the experimental evidence that crowding affects the equilibrium thermodynamics of protein stability and protein association and discuss the theories employed to explain these observations. In doing so, we highlight differences between synthetic polymers and biologically relevant crowders. Theories based on hard-core interactions predict only crowding-induced entropic stabilization. However, experiment-based efforts conducted under physiologically relevant conditions show that crowding can destabilize proteins and their complexes. Furthermore, quantification of the temperature dependence of crowding effects produced by both large and small cosolutes, including osmolytes, sugars, synthetic polymers, and proteins, reveals enthalpic effects that stabilize or destabilize proteins. Crowding-induced destabilization and the enthalpic component point to the role of chemical interactions between and among the macromolecules, cosolutes, and water. We conclude with suggestions for future studies. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Shannon L Speer
- Department of Chemistry, University of North Carolina at Chapel Hill, North Carolina, USA;
| | - Claire J Stewart
- Department of Chemistry, University of North Carolina at Chapel Hill, North Carolina, USA;
| | - Liel Sapir
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA
| | - Daniel Harries
- Institute of Chemistry and The Fritz Haber Research Center, The Hebrew University, Jerusalem, Israel
| | - Gary J Pielak
- Department of Chemistry, University of North Carolina at Chapel Hill, North Carolina, USA; .,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, North Carolina, USA.,Lineberger Cancer Research Center, University of North Carolina at Chapel Hill, North Carolina, USA
| |
Collapse
|
9
|
Devi S, Chaturvedi M, Fatima S, Priya S. Environmental factors modulating protein conformations and their role in protein aggregation diseases. Toxicology 2022; 465:153049. [PMID: 34818560 DOI: 10.1016/j.tox.2021.153049] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/12/2021] [Accepted: 11/20/2021] [Indexed: 12/13/2022]
Abstract
The adverse physiological conditions have been long known to impact protein synthesis, folding and functionality. Major physiological factors such as the effect of pH, temperature, salt and pressure are extensively studied for their impact on protein structure and homeostasis. However, in the current scenario, the environmental risk factors (pollutants) have gained impetus in research because of their increasing concentrations in the environment and strong epidemiologic link with protein aggregation disorders. Here, we review the physiological and environmental risk factors for their impact on protein conformational changes, misfolding, aggregation, and associated pathological conditions, especially environmental risk factors associated pathologies.
Collapse
Affiliation(s)
- Shweta Devi
- Systems Toxicology and Health Risk Assessment Group, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, CSIR-Indian Institute of Toxicology Research, Lucknow-226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Minal Chaturvedi
- Systems Toxicology and Health Risk Assessment Group, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, CSIR-Indian Institute of Toxicology Research, Lucknow-226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Siraj Fatima
- Systems Toxicology and Health Risk Assessment Group, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, CSIR-Indian Institute of Toxicology Research, Lucknow-226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Smriti Priya
- Systems Toxicology and Health Risk Assessment Group, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, CSIR-Indian Institute of Toxicology Research, Lucknow-226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
10
|
Qin M, Denesyuk N, Liu Z, Wang W, Thirumalai D. Temperature and Guanidine Hydrochloride Effects on the Folding Thermodynamics of WW Domain and Variants. J Phys Chem B 2021; 125:11386-11391. [PMID: 34612657 DOI: 10.1021/acs.jpcb.1c06340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We used simulations based on an all-atom Go model to calculate the folding temperatures (Tfs) and free energies (ΔGs) of two variants of the WW domain, which is a small all-β-sheet protein. The results, without adjusting any parameter, are in good agreement with experiments, thus validating the simulations. We then used the molecular transfer model to predict the changes in the ΔGs and Tfs as the guanidine hydrochloride concentration is varied. The predictions can be readily tested in experiments.
Collapse
Affiliation(s)
- Meng Qin
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States.,National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University, and Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Natalia Denesyuk
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhenxing Liu
- Department of Physics, Beijing Normal University, Beijing 100875, China
| | - Wei Wang
- School of Physics, Nanjing University, Nanjing 210093, China
| | - D Thirumalai
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
11
|
Alston JJ, Soranno A, Holehouse AS. Integrating single-molecule spectroscopy and simulations for the study of intrinsically disordered proteins. Methods 2021; 193:116-135. [PMID: 33831596 PMCID: PMC8713295 DOI: 10.1016/j.ymeth.2021.03.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 12/21/2022] Open
Abstract
Over the last two decades, intrinsically disordered proteins and protein regions (IDRs) have emerged from a niche corner of biophysics to be recognized as essential drivers of cellular function. Various techniques have provided fundamental insight into the function and dysfunction of IDRs. Among these techniques, single-molecule fluorescence spectroscopy and molecular simulations have played a major role in shaping our modern understanding of the sequence-encoded conformational behavior of disordered proteins. While both techniques are frequently used in isolation, when combined they offer synergistic and complementary information that can help uncover complex molecular details. Here we offer an overview of single-molecule fluorescence spectroscopy and molecular simulations in the context of studying disordered proteins. We discuss the various means in which simulations and single-molecule spectroscopy can be integrated, and consider a number of studies in which this integration has uncovered biological and biophysical mechanisms.
Collapse
Affiliation(s)
- Jhullian J Alston
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis 63110, MO, USA; Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis 63130, MO, USA
| | - Andrea Soranno
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis 63110, MO, USA; Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis 63130, MO, USA.
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis 63110, MO, USA; Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis 63130, MO, USA.
| |
Collapse
|
12
|
Atomic view of cosolute-induced protein denaturation probed by NMR solvent paramagnetic relaxation enhancement. Proc Natl Acad Sci U S A 2021; 118:2112021118. [PMID: 34404723 DOI: 10.1073/pnas.2112021118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cosolvent effect arises from the interaction of cosolute molecules with a protein and alters the equilibrium between native and unfolded states. Denaturants shift the equilibrium toward the latter, while osmolytes stabilize the former. The molecular mechanism whereby cosolutes perturb protein stability is still the subject of considerable debate. Probing the molecular details of the cosolvent effect is experimentally challenging as the interactions are very weak and transient, rendering them invisible to most conventional biophysical techniques. Here, we probe cosolute-protein interactions by means of NMR solvent paramagnetic relaxation enhancement together with a formalism we recently developed to quantitatively describe, at atomic resolution, the energetics and dynamics of cosolute-protein interactions in terms of a concentration normalized equilibrium average of the interspin distance, [Formula: see text], and an effective correlation time, τc The system studied is the metastable drkN SH3 domain, which exists in dynamic equilibrium between native and unfolded states, thereby permitting us to probe the interactions of cosolutes with both states simultaneously under the same conditions. Two paramagnetic cosolute denaturants were investigated, one neutral and the other negatively charged, differing in the presence of a carboxyamide group versus a carboxylate. Our results demonstrate that attractive cosolute-protein backbone interactions occur largely in the unfolded state and some loop regions in the native state, electrostatic interactions reduce the [Formula: see text] values, and temperature predominantly impacts interactions with the unfolded state. Thus, destabilization of the native state in this instance arises predominantly as a consequence of interactions of the cosolutes with the unfolded state.
Collapse
|
13
|
Nguyen H, Lan PD, Nissley DA, O’Brien EP, Li MS. Electrostatic Interactions Explain the Higher Binding Affinity of the CR3022 Antibody for SARS-CoV-2 than the 4A8 Antibody. J Phys Chem B 2021; 125:7368-7379. [PMID: 34228472 PMCID: PMC8276604 DOI: 10.1021/acs.jpcb.1c03639] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/30/2021] [Indexed: 12/23/2022]
Abstract
A structural understanding of the mechanism by which antibodies bind SARS-CoV-2 at the atomic level is highly desirable as it can tell the development of more effective antibodies to treat Covid-19. Here, we use steered molecular dynamics (SMD) and coarse-grained simulations to estimate the binding affinity of the monoclonal antibodies CR3022 and 4A8 to the SARS-CoV-2 receptor-binding domain (RBD) and SARS-CoV-2 N-terminal domain (NTD). Consistent with experiments, our SMD and coarse-grained simulations both indicate that CR3022 has a higher affinity for SARS-CoV-2 RBD than 4A8 for the NTD, and the coarse-grained simulations indicate the former binds three times stronger to its respective epitope. This finding shows that CR3022 is a candidate for Covid-19 therapy and is likely a better choice than 4A8. Energetic decomposition of the interaction energies between these two complexes reveals that electrostatic interactions explain the difference in the observed binding affinity between the two complexes. This result could lead to a new approach for developing anti-Covid-19 antibodies in which good candidates must contain charged amino acids in the area of contact with the virus.
Collapse
Affiliation(s)
- Hung Nguyen
- Institute
of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Pham Dang Lan
- Life
Science Lab, Institute for Computational Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
- Faculty
of Physics and Engineering Physics, VNUHCM-University
of Science, 227, Nguyen
Van Cu Street, District 5, Ho Chi Minh City, Vietnam
| | - Daniel A. Nissley
- Department
of Statistics, University of Oxford, Oxford
Protein Bioinformatics Group, Oxford OX1 2JD, United Kingdom
| | - Edward P. O’Brien
- Department
of Chemistry, Penn State University, University Park, Pennsylvania 16802, United States
- Bioinformatics
and Genomics Graduate Program, The Huck
Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania 16802, United States
- Institute
for Computational and Data Sciences, Penn
State University, University Park, Pennsylvania 16802, United States
| | - Mai Suan Li
- Institute
of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
14
|
Cozzolino S, Tortorella A, Del Vecchio P, Graziano G. General Counteraction Exerted by Sugars against Denaturants. Life (Basel) 2021; 11:652. [PMID: 34357025 PMCID: PMC8303697 DOI: 10.3390/life11070652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
The conformational stability of globular proteins is strongly influenced by the addition to water of different co-solutes. Some of the latter destabilize the native state, while others stabilize it. It is emerging that stabilizing agents are able to counteract the action of destabilizing agents. We have already provided experimental evidence that this counteraction is a general phenomenon and offered a rationalization. In the present work, we show that four different sugars, namely fructose, glucose, sucrose, and trehalose, counteract the effect of urea, tetramethylurea, sodium perchlorate, guanidinium chloride, and guanidinium thiocyanate despite the chemical and structural differences of those destabilizing agents. The rationalization we provide is as follows: (a) the solvent-excluded volume effect, a purely entropic effect, stabilizes the native state, whose solvent-accessible surface area is smaller than the one of denatured conformations; (b) the magnitude of the solvent-excluded volume effect increases markedly in ternary solutions because the experimental density of such solutions is larger than that of pure water.
Collapse
Affiliation(s)
- Serena Cozzolino
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia, 80126 Napoli, Italy; (S.C.); (A.T.); (P.D.V.)
| | - Attila Tortorella
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia, 80126 Napoli, Italy; (S.C.); (A.T.); (P.D.V.)
| | - Pompea Del Vecchio
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia, 80126 Napoli, Italy; (S.C.); (A.T.); (P.D.V.)
| | - Giuseppe Graziano
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Via Francesco de Sanctis snc, 82100 Benevento, Italy
| |
Collapse
|
15
|
Song J, Li J, Chan HS. Small-Angle X-ray Scattering Signatures of Conformational Heterogeneity and Homogeneity of Disordered Protein Ensembles. J Phys Chem B 2021; 125:6451-6478. [PMID: 34115515 DOI: 10.1021/acs.jpcb.1c02453] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An accurate account of disordered protein conformations is of central importance to deciphering the physicochemical basis of biological functions of intrinsically disordered proteins and the folding-unfolding energetics of globular proteins. Physically, disordered ensembles of nonhomopolymeric polypeptides are expected to be heterogeneous, i.e., they should differ from those homogeneous ensembles of homopolymers that harbor an essentially unique relationship between average values of end-to-end distance REE and radius of gyration Rg. It was posited recently, however, that small-angle X-ray scattering (SAXS) data on conformational dimensions of disordered proteins can be rationalized almost exclusively by homopolymer ensembles. Assessing this perspective, chain-model simulations are used to evaluate the discriminatory power of SAXS-determined molecular form factors (MFFs) with regard to homogeneous versus heterogeneous ensembles. The general approach adopted here is not bound by any assumption about ensemble encodability, in that the postulated heterogeneous ensembles we evaluated are not restricted to those entailed by simple interaction schemes. Our analysis of MFFs for certain heterogeneous ensembles with more narrowly distributed REE and Rg indicates that while they deviate from MFFs of homogeneous ensembles, the differences can be rather small. Remarkably, some heterogeneous ensembles with asphericity and REE drastically different from those of homogeneous ensembles can nonetheless exhibit practically identical MFFs, demonstrating that SAXS MFFs do not afford unique characterizations of basic properties of conformational ensembles in general. In other words, the ensemble to MFF mapping is practically many-to-one and likely nonsmooth. Heteropolymeric variations of the REE-Rg relationship were further showcased using an analytical perturbation theory developed here for flexible heteropolymers. Ramifications of our findings for interpretation of experimental data are discussed.
Collapse
Affiliation(s)
- Jianhui Song
- School of Polymer Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Jichen Li
- School of Polymer Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Hue Sun Chan
- Department of Biochemistry, University of Toronto Faculty of Medicine, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
16
|
Fossat M, Zeng X, Pappu RV. Uncovering Differences in Hydration Free Energies and Structures for Model Compound Mimics of Charged Side Chains of Amino Acids. J Phys Chem B 2021; 125:4148-4161. [PMID: 33877835 PMCID: PMC8154595 DOI: 10.1021/acs.jpcb.1c01073] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/07/2021] [Indexed: 02/07/2023]
Abstract
Free energies of hydration are of fundamental interest for modeling and understanding conformational and phase equilibria of macromolecular solutes in aqueous phases. Of particular relevance to systems such as intrinsically disordered proteins are the free energies of hydration and hydration structures of model compounds that mimic charged side chains of Arg, Lys, Asp, and Glu. Here, we deploy a Thermodynamic Cycle-based Proton Dissociation (TCPD) approach in conjunction with data from direct measurements to obtain estimates for the free energies of hydration for model compounds that mimic the side chains of Arg+, Lys+, Asp-, and Glu-. Irrespective of the choice made for the hydration free energy of the proton, the TCPD approach reveals clear trends regarding the free energies of hydration for Arg+, Lys+, Asp-, and Glu-. These trends include asymmetries between the hydration free energies of acidic (Asp- and Glu-) and basic (Arg+ and Lys+) residues. Further, the TCPD analysis, which relies on a combination of experimental data, shows that the free energy of hydration of Arg+ is less favorable than that of Lys+. We sought a physical explanation for the TCPD-derived trends in free energies of hydration. To this end, we performed temperature-dependent calculations of free energies of hydration and analyzed hydration structures from simulations that use the polarizable Atomic Multipole Optimized Energetics for Biomolecular Applications (AMOEBA) force field and water model. At 298 K, the AMOEBA model generates estimates of free energies of hydration that are consistent with TCPD values with a free energy of hydration for the proton of ca. -259 kcal/mol. Analysis of temperature-dependent simulations leads to a structural explanation for the observed differences in free energies of hydration of ionizable residues and reveals that the heat capacity of hydration is positive for Arg+ and Lys+ and negative for Asp- and Glu-.
Collapse
Affiliation(s)
| | | | - Rohit V. Pappu
- Department of Biomedical Engineering
and Center for Science & Engineering of Living Systems, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
17
|
Abstract
Modern experimental kinetics of protein folding began in the early 1990s with the introduction of nanosecond laser pulses to trigger the folding reaction, providing an almost 106-fold improvement in time resolution over the stopped-flow method being employed at the time. These experiments marked the beginning of the "fast-folding" subfield that enabled investigation of the kinetics of formation of secondary structural elements and disordered loops for the first time, as well as the fastest folding proteins. When I started to work on this subject, a fast folding protein was one that folded in milliseconds. There were, moreover, no analytical theoretical models and no atomistic or coarse-grained molecular dynamics simulations to describe the mechanism. Two of the most important discoveries from my lab since then are a protein that folds in hundreds of nanoseconds, as determined from nanosecond laser temperature experiments, and the discovery that the theoretically predicted barrier crossing time is about the same for proteins that differ in folding rates by 104-fold, as determined from single molecule fluorescence measurements. We also developed what has been called the "Hückel model" of protein folding, which quantitatively explains a wide range of equilibrium and kinetic measurements. This retrospective traces the history of contributions to the "fast folding" subfield from my lab until about 3 years ago, when I left protein folding to spend the rest of my research career trying to discover an inexpensive drug for treating sickle cell disease.
Collapse
Affiliation(s)
- William A Eaton
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| |
Collapse
|
18
|
Mugnai ML, Thirumalai D. Molecular Transfer Model for pH Effects on Intrinsically Disordered Proteins: Theory and Applications. J Chem Theory Comput 2021; 17:1944-1954. [PMID: 33566618 DOI: 10.1021/acs.jctc.0c01316] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a theoretical method to study how changes in pH shape the heterogeneous conformational ensemble explored by intrinsically disordered proteins (IDPs). The theory is developed in the context of coarse-grained models, which enable a fast, accurate, and extensive exploration of conformational space at a given protonation state. In order to account for pH effects, we generalize the molecular transfer model (MTM), in which conformations are re-weighted using the transfer free energy, which is the free energy necessary for bringing to equilibrium in a new environment a "frozen" conformation of the system. Using the semi-grand ensemble, we derive an exact expression of the transfer free energy, which amounts to the appropriate summation over all the protonation states. Because the exact result is computationally too demanding to be useful for large polyelectrolytes or IDPs, we introduce a mean-field (MF) approximation of the transfer free energy. Using a lattice model, we compare the exact and MF results for the transfer free energy and a variety of observables associated with the model IDP. We find that the precise location of the charged groups (the sequence), and not merely the net charge, determines the structural properties. We demonstrate that some of the limitations previously noted for MF theory in the context of globular proteins are mitigated when disordered polymers are studied. The excellent agreement between the exact and MF results poises us to use the method presented here as a computational tool to study the properties of IDPs and other biological systems as a function of pH.
Collapse
Affiliation(s)
- Mauro Lorenzo Mugnai
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - D Thirumalai
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
19
|
Moses D, Yu F, Ginell GM, Shamoon NM, Koenig PS, Holehouse AS, Sukenik S. Revealing the Hidden Sensitivity of Intrinsically Disordered Proteins to their Chemical Environment. J Phys Chem Lett 2020; 11:10131-10136. [PMID: 33191750 PMCID: PMC8092420 DOI: 10.1021/acs.jpclett.0c02822] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Intrinsically disordered protein-regions (IDRs) make up roughly 30% of the human proteome and are central to a wide range of biological processes. Given a lack of persistent tertiary structure, all residues in IDRs are, to some extent, solvent exposed. This extensive surface area, coupled with the absence of strong intramolecular contacts, makes IDRs inherently sensitive to their chemical environment. We report a combined experimental, computational, and analytical framework for high-throughput characterization of IDR sensitivity. Our framework reveals that IDRs can expand or compact in response to changes in their solution environment. Importantly, the direction and magnitude of conformational change depend on both protein sequence and cosolute identity. For example, some solutes such as short polyethylene glycol chains exert an expanding effect on some IDRs and a compacting effect on others. Despite this complex behavior, we can rationally interpret IDR responsiveness to solution composition changes using relatively simple polymer models. Our results imply that solution-responsive IDRs are ubiquitous and can provide an additional layer of regulation to biological systems.
Collapse
Affiliation(s)
- David Moses
- Chemistry and Chemical Biology Program, University of California, Merced, CA
- Center for Cellular and Biomolecular Machines (CCBM), University of California, Merced, CA
| | - Feng Yu
- Center for Cellular and Biomolecular Machines (CCBM), University of California, Merced, CA
- Quantitative Systems Biology Program, University of California, Merced, CA
| | - Garrett M. Ginell
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | | | - Patrick S. Koenig
- Quantitative Systems Biology Program, University of California, Merced, CA
| | - Alex S. Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO
| | - Shahar Sukenik
- Chemistry and Chemical Biology Program, University of California, Merced, CA
- Center for Cellular and Biomolecular Machines (CCBM), University of California, Merced, CA
- Quantitative Systems Biology Program, University of California, Merced, CA
| |
Collapse
|
20
|
Valente D, Werlang T. Frustration and inhomogeneous environments in relaxation of open chains with Ising-type interactions. Phys Rev E 2020; 102:022114. [PMID: 32942439 DOI: 10.1103/physreve.102.022114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/21/2020] [Indexed: 11/07/2022]
Abstract
Frustration can contribute to very slow relaxation times in large open chains, as in spin glasses and in biopolymers. However, frustration may not be sufficient to produce broken ergodicity in finite systems. Here we employ a system-plus-reservoir approach to investigate how strongly inhomogeneous environments and frustration compete in the relaxation of finite open chains. We find a sufficient condition for our inhomogeneous environments to break ergodicity. We use the microscopic model to derive a Markovian quantum master equation for a generic chain with ultrastrong intrachain couplings. We show that this microscopic model avoids a spurious broken ergodicity we find in the phenomenological model. We work out an explicit example of broken ergodicity due to the inhomogeneous environment of an unfrustrated spin chain as far as simulating a recent experiment on protein denaturation (where environment inhomogeneity is especially relevant). We finally show that an inhomogeneous environment can mitigate the effects of frustration-induced degeneracies.
Collapse
Affiliation(s)
- D Valente
- Instituto de Física, Universidade Federal de Mato Grosso, CEP 78060-900, Cuiabá, MT, Brazil
| | - T Werlang
- Instituto de Física, Universidade Federal de Mato Grosso, CEP 78060-900, Cuiabá, MT, Brazil
| |
Collapse
|
21
|
Canepa J, Torgerson J, Kim DK, Lindahl E, Takahashi R, Whitelock K, Heying M, Wilkinson SP. Characterizing osmolyte chemical class hierarchies and functional group requirements for thermal stabilization of proteins. Biophys Chem 2020; 264:106410. [PMID: 32574923 DOI: 10.1016/j.bpc.2020.106410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/25/2020] [Accepted: 05/31/2020] [Indexed: 12/20/2022]
Abstract
Osmolytes are naturally occurring organic compounds that protect cellular proteins and other macromolecules against various forms of stress including temperature extremes. While biological studies have correlated the accumulation of certain classes of osmolytes with specific forms of stress, including thermal stress, it remains unclear whether or not these observations reflect an intrinsic chemical class hierarchy amongst the osmolytes with respect to effects on protein stability. In addition, very little is known in regards to the molecular elements of the osmolytes themselves that are essential for their functions. In this study, we use differential scanning fluorimetry to quantify the thermal stabilizing effects of members from each of the three main classes of protecting osmolytes on two model protein systems, C-reactive protein and tumor necrosis factor alpha. Our data reveals the absence of a strict chemical class hierarchy amongst the osmolytes with respect to protein thermal stabilization, and indicates differential responses of these proteins to certain osmolytes. In the second part of this investigation we dissected the molecular elements of amino acid osmolytes required for thermal stabilization of myoglobin and C-reactive protein. We show that the complete amino acid zwitterion is required for thermal stabilization of myoglobin, whereas removal of the osmolyte amino group does not diminish stabilizing effects on C-reactive protein. These disparate responses of proteins to osmolytes and other small molecules are consistent with previous observations that osmolyte effects on protein stability are protein-specific. Moreover, the data reported in this study support the view that osmolyte effects cannot be fully explained by considering only the solvent accessibility of the polypeptide backbone in the native and denatured states, and corroborate the need for more complex models that take into account the entire protein fabric.
Collapse
Affiliation(s)
- J Canepa
- Department of Chemistry & Biochemistry, California Polytechnic State University, San Luis Obispo, CA, USA
| | - J Torgerson
- Department of Chemistry & Biochemistry, California Polytechnic State University, San Luis Obispo, CA, USA
| | - D K Kim
- Department of Chemistry & Biochemistry, California Polytechnic State University, San Luis Obispo, CA, USA
| | - E Lindahl
- Department of Chemistry & Biochemistry, California Polytechnic State University, San Luis Obispo, CA, USA
| | - R Takahashi
- Department of Chemistry & Biochemistry, California Polytechnic State University, San Luis Obispo, CA, USA
| | - K Whitelock
- Department of Chemistry & Biochemistry, California Polytechnic State University, San Luis Obispo, CA, USA
| | - M Heying
- Department of Chemistry & Biochemistry, California Polytechnic State University, San Luis Obispo, CA, USA
| | - S P Wilkinson
- Department of Chemistry & Biochemistry, California Polytechnic State University, San Luis Obispo, CA, USA.
| |
Collapse
|
22
|
Soranno A. Physical basis of the disorder-order transition. Arch Biochem Biophys 2020; 685:108305. [DOI: 10.1016/j.abb.2020.108305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 12/29/2022]
|
23
|
Nissley DA, Vu QV, Trovato F, Ahmed N, Jiang Y, Li MS, O'Brien EP. Electrostatic Interactions Govern Extreme Nascent Protein Ejection Times from Ribosomes and Can Delay Ribosome Recycling. J Am Chem Soc 2020; 142:6103-6110. [PMID: 32138505 DOI: 10.1021/jacs.9b12264] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The ejection of nascent proteins out of the ribosome exit tunnel, after their covalent bond to transfer-RNA has been broken, has not been experimentally studied due to challenges in sample preparation. Here, we investigate this process using a combination of multiscale modeling, ribosome profiling, and gene ontology analyses. Simulating the ejection of a representative set of 122 E. coli proteins we find a greater than 1000-fold variation in ejection times. Nascent proteins enriched in negatively charged residues near their C-terminus eject the fastest, while nascent chains enriched in positively charged residues tend to eject much more slowly. More work is required to pull slowly ejecting proteins out of the exit tunnel than quickly ejecting proteins, according to all-atom simulations. An energetic decomposition reveals, for slowly ejecting proteins, that this is due to the strong attractive electrostatic interactions between the nascent chain and the negatively charged ribosomal-RNA lining the exit tunnel, and for quickly ejecting proteins, it is due to their repulsive electrostatic interactions with the exit tunnel. Ribosome profiling data from E. coli reveals that the presence of slowly ejecting sequences correlates with ribosomes spending more time at stop codons, indicating that the ejection process might delay ribosome recycling. Proteins that have the highest positive charge density at their C-terminus are overwhelmingly ribosomal proteins, suggesting the possibility that this sequence feature may aid in the cotranslational assembly of ribosomes by delaying the release of nascent ribosomal proteins into the cytosol. Thus, nascent chain ejection times from the ribosome can vary greatly between proteins due to differential electrostatic interactions, can influence ribosome recycling, and could be particularly relevant to the synthesis and cotranslational behavior of some proteins.
Collapse
Affiliation(s)
| | - Quyen V Vu
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | | | | | | | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland.,Institute for Computational Sciences and Technology, Ho Chi Minh City, Vietnam
| | | |
Collapse
|
24
|
Clark PL, Plaxco KW, Sosnick TR. Water as a Good Solvent for Unfolded Proteins: Folding and Collapse are Fundamentally Different. J Mol Biol 2020; 432:2882-2889. [PMID: 32044346 DOI: 10.1016/j.jmb.2020.01.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/30/2022]
Abstract
The argument that the hydrophobic effect is the primary effect driving the folding of globular proteins is nearly universally accepted (including by the authors). But does this view also imply that water is a "poor" solvent for the unfolded states of these same proteins? Here we argue that the answer is "no," that is, folding to a well-packed, extensively hydrogen-bonded native structure differs fundamentally from the nonspecific chain collapse that defines a poor solvent. Thus, the observation that a protein folds in water does not necessitate that water is a poor solvent for its unfolded state. Indeed, chain-solvent interactions that are marginally more favorable than nonspecific intrachain interactions are beneficial to protein function because they destabilize deleterious misfolded conformations and inter-chain interactions.
Collapse
Affiliation(s)
- Patricia L Clark
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA.
| | - Kevin W Plaxco
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA.
| | - Tobin R Sosnick
- Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
25
|
Cosolvent effects on the growth of amyloid fibrils. Curr Opin Struct Biol 2020; 60:101-109. [DOI: 10.1016/j.sbi.2019.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/08/2019] [Accepted: 12/16/2019] [Indexed: 02/05/2023]
|
26
|
Folding perspectives of an intrinsically disordered transactivation domain and its single mutation breaking the folding propensity. Int J Biol Macromol 2019; 155:1359-1372. [PMID: 31733244 DOI: 10.1016/j.ijbiomac.2019.11.111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/01/2019] [Accepted: 11/12/2019] [Indexed: 12/23/2022]
Abstract
Transcriptional regulation is a critical facet of cellular development controlled by numerous transcription factors, among which are E-proteins (E2A, HEB, and E2-2) that play important roles in lymphopoiesis. For example, primary hematopoietic cells immortalisation is promoted by interaction of the conserved PCET motif consisting of the Leu-X-X-Leu-Leu (LXXLL) and Leu-Asp-Phe-Ser (LDFS) sequences of the transactivation domains (AD1) of E-proteins with the KIX domain of CBP/p300 transcriptional co-activators. Earlier, it was shown that the LXXLL motif is essential for the PCET-KIX interaction driven by the PCET helical transition. In this study, we analyzed the dehydration-driven gain of helicity in the conserved region (residues 11-28) of the AD1 domain of E-protein. Particularly, we showed that AD1 structure was dramatically affected by alcohols, but was insensitive to changes in pH or the presence of osmolytes sarcosine and taurine, or high polyethylene glycol (PEG) concentrations and DOPC Liposomes. These structure-forming effects of solvents were almost completely absent in the case of L21P AD1 mutant characterized by weakened interaction with KIX. This indicates that KIX interaction-induced AD1 ordering is driven by PCET motif dehydration. The L21P mutation-caused loss of molecular recognition function of AD1 is due to the mutation-induced disruption of the AD1 helical propensity.
Collapse
|
27
|
Thirumalai D, Samanta HS, Maity H, Reddy G. Universal Nature of Collapsibility in the Context of Protein Folding and Evolution. Trends Biochem Sci 2019; 44:675-687. [DOI: 10.1016/j.tibs.2019.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 12/21/2022]
|
28
|
Commonly used FRET fluorophores promote collapse of an otherwise disordered protein. Proc Natl Acad Sci U S A 2019; 116:8889-8894. [PMID: 30992378 DOI: 10.1073/pnas.1813038116] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The dimensions that unfolded proteins, including intrinsically disordered proteins (IDPs), adopt in the absence of denaturant remain controversial. We developed an analysis procedure for small-angle X-ray scattering (SAXS) profiles and used it to demonstrate that even relatively hydrophobic IDPs remain nearly as expanded in water as they are in high denaturant concentrations. In contrast, as demonstrated here, most fluorescence resonance energy transfer (FRET) measurements have indicated that relatively hydrophobic IDPs contract significantly in the absence of denaturant. We use two independent approaches to further explore this controversy. First, using SAXS we show that fluorophores employed in FRET can contribute to the observed discrepancy. Specifically, we find that addition of Alexa-488 to a normally expanded IDP causes contraction by an additional 15%, a value in reasonable accord with the contraction reported in FRET-based studies. Second, using our simulations and analysis procedure to accurately extract both the radius of gyration (Rg) and end-to-end distance (Ree) from SAXS profiles, we tested the recent suggestion that FRET and SAXS results can be reconciled if the Rg and Ree are "uncoupled" (i.e., no longer simply proportional), in contrast to the case for random walk homopolymers. We find, however, that even for unfolded proteins, these two measures of unfolded state dimensions remain proportional. Together, these results suggest that improved analysis procedures and a correction for significant, fluorophore-driven interactions are sufficient to reconcile prior SAXS and FRET studies, thus providing a unified picture of the nature of unfolded polypeptide chains in the absence of denaturant.
Collapse
|
29
|
Mondal B, Reddy G. Cosolvent Effects on the Growth of Protein Aggregates Formed by a Single Domain Globular Protein and an Intrinsically Disordered Protein. J Phys Chem B 2019; 123:1950-1960. [DOI: 10.1021/acs.jpcb.8b11128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Balaka Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, Karnataka, India
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, Karnataka, India
| |
Collapse
|
30
|
Lan PD, Kouza M, Kloczkowski A, Li MS. A topological order parameter for describing folding free energy landscapes of proteins. J Chem Phys 2018; 149:175101. [DOI: 10.1063/1.5050483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Pham Dang Lan
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
- Faculty of Physics and Engineering Physics, VNUHCM-University of Science, 227, Nguyen Van Cu Street, District 5, Ho Chi Minh City, Vietnam
| | - Maksim Kouza
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
- Nationwide Children’s Hospital, Battelle Center for Mathematical Medicine, Columbus, Ohio 43215, USA
| | - Andrzej Kloczkowski
- Nationwide Children’s Hospital, Battelle Center for Mathematical Medicine, Columbus, Ohio 43215, USA
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Science, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
31
|
Nissley DA, O’Brien EP. Structural Origins of FRET-Observed Nascent Chain Compaction on the Ribosome. J Phys Chem B 2018; 122:9927-9937. [PMID: 30265800 PMCID: PMC11260357 DOI: 10.1021/acs.jpcb.8b07726] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A fluorescence signal arising from a Förster resonance energy transfer process was used to monitor conformational changes of a domain within the E. coli protein HemK during its synthesis by the ribosome. An increase in fluorescence was observed to begin 10 s after translation was initiated, indicating the domain became more compact in size. Since fluorescence only reports a single value at each time point it contains very little information about the structural ensemble that gives rise to it. Here, we supplement this experimental information with coarse-grained simulations that describe protein conformations and transitions at a spatial resolution of 3.8 Å. We use these simulations to test three hypotheses that might explain the cause of domain compaction: (1) that poor solvent quality conditions drive the unfolded state to compact, (2) that a change in the dimension of the space the domain occupies upon moving outside the exit tunnel causes compaction, or (3) that domain folding causes compaction. We find that domain folding and dimensional collapse are both consistent with the experimental data, while poor-solvent collapse is inconsistent. We identify alternative dye labeling positions on HemK that upon fluorescence can differentiate between the domain folding and dimensional collapse mechanisms. Partial folding of domains has been observed in C-terminally truncated forms of proteins. Therefore, it is likely that the experimentally observed compact state is a partially folded intermediate consisting, according to our simulations, of the first three helices of the HemK N-terminal domain adopting a native, tertiary configuration. With these simulations we also identify the possible cotranslational folding pathways of HemK.
Collapse
Affiliation(s)
- Daniel A. Nissley
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, United States
| | - Edward P. O’Brien
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, United States
- Bioinformatics and Genomics Graduate Program, The Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania 16802, United States
- Institute for CyberScience, Penn State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
32
|
Abstract
Salts differ in their ability to stabilize protein conformations, thereby affecting the thermodynamics and kinetics of protein folding. We developed a coarse-grained protein model that can predict salt-induced changes in protein properties by using the transfer free-energy data of various chemical groups from water to salt solutions. Using this model and molecular dynamics simulations, we probed the effect of seven different salts on the folding thermodynamics of the DNA binding domain of lac repressor protein ( lac-DBD) and N-terminal domain of ribosomal protein (NTL9). We show that a salt can act as a protein stabilizing or destabilizing agent depending on the protein sequence and folded state topology. The computed thermodynamic properties, especially the m values for various salts, which reveal the relative ability of a salt to stabilize the protein folded state, are in quantitative agreement with the experimentally measured values. The computations show that the degree of protein compaction in the denatured ensemble strongly depends on the salt identity, and for the same variation in salt concentration, the compaction in the protein dimensions varies from ∼4% to ∼30% depending on the salt. The transition-state ensemble (TSE) of lac-DBD is homogeneous and polarized, while the TSE of NTL9 is heterogeneous and diffusive. Salts induce subtle structural changes in the TSE that are in agreement with Hammond's postulate. The barrier to protein folding tends to disappear in the presence of moderate concentrations (∼3-4 m) of strongly stabilizing salts.
Collapse
Affiliation(s)
- Hiranmay Maity
- Solid State and Structural Chemistry Unit , Indian Institute of Science , Bengaluru , Karnataka , India 560012
| | - Aswathy N Muttathukattil
- Solid State and Structural Chemistry Unit , Indian Institute of Science , Bengaluru , Karnataka , India 560012
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit , Indian Institute of Science , Bengaluru , Karnataka , India 560012
| |
Collapse
|
33
|
Poltash ML, McCabe JW, Shirzadeh M, Laganowsky A, Clowers BH, Russell DH. Fourier Transform-Ion Mobility-Orbitrap Mass Spectrometer: A Next-Generation Instrument for Native Mass Spectrometry. Anal Chem 2018; 90:10472-10478. [PMID: 30091588 PMCID: PMC6464636 DOI: 10.1021/acs.analchem.8b02463] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A new instrument configuration for native ion mobility-mass spectrometry (IM-MS) is described. Macromolecule ions are generated by using a static ESI source coupled to an RF ion funnel, and these ions are then mobility and mass analyzed using a periodic focusing drift tube IM analyzer and an Orbitrap mass spectrometer. The instrument design retains the capabilities for first-principles determination of rotationally averaged ion-neutral collision cross sections and high-resolution measurements in both mobility and mass analysis modes for intact protein complexes. Operation in the IM mode utilizes FT-IMS modes (originally described by Knorr ( Knorr , F. J. Anal. Chem . 1985 , 57 ( 2 ), 402 - 406 )), which provides a means to overcome the inherent duty cycle mismatch for drift tube (DT)-IM and Orbitrap mass analysis. The performance of the native ESI-FT-DT-IM-Orbitrap MS instrument was evaluated using the protein complexes Gln K (MW 44 kDa) and streptavidin (MW 53 kDa) bound to small molecules (ADP and biotin, respectively) and transthyretin (MW 56 kDa) bound to thyroxine and zinc.
Collapse
Affiliation(s)
- Michael L. Poltash
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Jacob W. McCabe
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Mehdi Shirzadeh
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Brian H. Clowers
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - David H. Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
34
|
Das A, Makarov DE. Dynamics of Disordered Proteins under Confinement: Memory Effects and Internal Friction. J Phys Chem B 2018; 122:9049-9060. [PMID: 30092636 DOI: 10.1021/acs.jpcb.8b06112] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Many proteins are disordered under physiological conditions. How efficiently they can search for their cellular targets and how fast they can fold upon target binding is determined by their intrinsic dynamics, which have thus attracted much recent attention. Experiments and molecular simulations show that the inherent reconfiguration timescale for unfolded proteins has a solvent friction component and an internal friction component, and the microscopic origin of the latter, along with its proper mathematical description, has been a topic of considerable debate. Internal friction varies across different proteins of comparable length and increases with decreasing denaturant concentration, showing that it depends on how compact the protein is. Here we report on a systematic atomistic simulation study of how confinement, which induces a more compact unfolded state, affects dynamics and friction in disordered peptides. We find that the average reconfiguration timescales increase exponentially as the peptide's spatial dimensions are reduced; at the same time, confinement broadens the spectrum of relaxation timescales exhibited by the peptide. There are two important implications of this broadening: First, it limits applicability of the common Rouse and Zimm models with internal friction, as those models attempt to capture internal friction effects by introducing a single internal friction timescale. Second, the long-tailed distribution of relaxation times leads to anomalous diffusion effects in the dynamics of intramolecular distances. Analysis and interpretation of experimental signals from various measurements that probe intramolecular protein dynamics (such as single-molecule fluorescence correlation spectroscopy and single-molecule force spectroscopy) rely on the assumption of diffusive dynamics along the distances being probed; hence, our results suggest the need for more general models allowing for anomalous diffusion effects.
Collapse
Affiliation(s)
- Atanu Das
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Dmitrii E Makarov
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States.,Institute for Computational Engineering and Sciences , University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
35
|
Sukenik S, Salam M, Wang Y, Gruebele M. In-Cell Titration of Small Solutes Controls Protein Stability and Aggregation. J Am Chem Soc 2018; 140:10497-10503. [DOI: 10.1021/jacs.8b04809] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Shahar Sukenik
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Mohammed Salam
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Yuhan Wang
- Center for Biophysics and Quantitative Biology, University of Illinois, Urbana, Illinois 61801, United States
| | - Martin Gruebele
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Center for Biophysics and Quantitative Biology, University of Illinois, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
36
|
Schuler B. Perspective: Chain dynamics of unfolded and intrinsically disordered proteins from nanosecond fluorescence correlation spectroscopy combined with single-molecule FRET. J Chem Phys 2018; 149:010901. [PMID: 29981536 DOI: 10.1063/1.5037683] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The dynamics of unfolded proteins are important both for the process of protein folding and for the behavior of intrinsically disordered proteins. However, methods for investigating the global chain dynamics of these structurally diverse systems have been limited. A versatile experimental approach is single-molecule spectroscopy in combination with Förster resonance energy transfer and nanosecond fluorescence correlation spectroscopy. The concepts of polymer physics offer a powerful framework both for interpreting the results and for understanding and classifying the properties of unfolded and intrinsically disordered proteins. This information on long-range chain dynamics can be complemented with spectroscopic techniques that probe different length scales and time scales, and integration of these results greatly benefits from recent advances in molecular simulations. This increasing convergence between the experiment, theory, and simulation is thus starting to enable an increasingly detailed view of the dynamics of disordered proteins.
Collapse
Affiliation(s)
- Benjamin Schuler
- Department of Biochemistry and Department of Physics, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
| |
Collapse
|
37
|
Farhadian S, Shareghi B, Momeni L, Abou-Zied OK, Sirotkin VA, Tachiya M, Saboury AA. Insights into the molecular interaction between sucrose and α-chymotrypsin. Int J Biol Macromol 2018; 114:950-960. [DOI: 10.1016/j.ijbiomac.2018.03.143] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/19/2018] [Accepted: 03/23/2018] [Indexed: 12/12/2022]
|
38
|
Abstract
Up to 40% of intracellular water is confined due to the dense packing of macromolecules, ions, and osmolytes. Despite the large body of work concerning the effect of additives on the biomolecular structure and stability, the role of crowding and heterogeneity in these interactions is not well understood. Here, infrared spectroscopy and molecular dynamics simulations are used to describe the mechanisms by which crowding modulates hydrogen bonding interactions between water and dimethyl sulfoxide (DMSO). Specifically, we use formamide and dimethylformamide (DMF) as molecular crowders and show that the S═O hydrogen bond populations in aqueous mixtures are increased by both amides. These additives increase the amount of water within the DMSO first solvation shell through two mechanisms: (a) directly stabilizing water-DMSO hydrogen bonds; (b) increasing water exposure by destabilizing DMSO-DMSO self-interactions. Further, we quantified the hydrogen bond enthalpies between the different components: DMSO-water (61 kJ/mol) > DMSO-formamide (32 kJ/mol) > water-water (23 kJ/mol) ≫ formamide-water (4.7 kJ/mol). Spectra of carbonyl stretching vibrations show that DMSO induces the dehydration of amides as a result of strong DMSO-water interactions, which has been suggested as the main mechanism of protein destabilization.
Collapse
Affiliation(s)
- Kwang-Im Oh
- Department of Chemistry , University of Texas at Austin , 105 E 24th St. Stop A5300 , Austin , TX 78712 , United States
| | - Carlos R Baiz
- Department of Chemistry , University of Texas at Austin , 105 E 24th St. Stop A5300 , Austin , TX 78712 , United States
| |
Collapse
|
39
|
Remsing RC, Xi E, Patel AJ. Protein Hydration Thermodynamics: The Influence of Flexibility and Salt on Hydrophobin II Hydration. J Phys Chem B 2018; 122:3635-3646. [DOI: 10.1021/acs.jpcb.7b12060] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Richard C. Remsing
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Erte Xi
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Amish J. Patel
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
40
|
Maity H, Reddy G. Thermodynamics and Kinetics of Single-Chain Monellin Folding with Structural Insights into Specific Collapse in the Denatured State Ensemble. J Mol Biol 2018; 430:465-478. [DOI: 10.1016/j.jmb.2017.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/28/2017] [Accepted: 09/09/2017] [Indexed: 01/21/2023]
|
41
|
Liu Z, Thirumalai D. Denaturants Alter the Flux through Multiple Pathways in the Folding of PDZ Domain. J Phys Chem B 2018; 122:1408-1416. [PMID: 29303586 DOI: 10.1021/acs.jpcb.7b11408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although we understand many aspects of how small proteins (number of residues less than about hundred) fold, it is a major challenge to quantitatively describe how large proteins self-assemble. To partially overcome this challenge, we performed simulations using the self-organized polymer model with side chains (SOP-SC) in guanidinium chloride (GdmCl), using the molecular transfer model (MTM), to describe the folding of the 110-residue PDZ3 domain. The simulations reproduce the folding thermodynamics accurately including the melting temperature (Tm), the stability of the folded state with respect to the unfolded state. We show that the calculated dependence of ln kobs (kobs is the relaxation rate) has the characteristic chevron shape. The slopes of the chevron plots are in good agreement with experiments. We show that PDZ3 folds by four major pathways populating two metastable intermediates, in accord with the kinetic partitioning mechanism. The structure of one of the intermediates, populated after polypeptide chain collapse, is structurally similar to an equilibrium intermediate. Surprisingly, the connectivities between the intermediates and hence, the fluxes through the pathways depend on the concentration of GdmCl. The results are used to predict possible outcomes for unfolding of PDZ domain subject to mechanical forces. Our study demonstrates that, irrespective of the size or topology, simulations based on MTM and SOP-SC offer a theoretical framework for describing the folding of proteins, mimicking precisely the conditions used in experiments.
Collapse
Affiliation(s)
- Zhenxing Liu
- Department of Physics, Beijing Normal University , Beijing 100875, China
| | - D Thirumalai
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
42
|
Rani A, Venkatesu P. Changing relations between proteins and osmolytes: a choice of nature. Phys Chem Chem Phys 2018; 20:20315-20333. [DOI: 10.1039/c8cp02949k] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The stabilization and destabilization of the protein in the presence of any additive is mainly attributed to its preferential exclusion from protein surface and its preferential binding to the protein surface, respectively.
Collapse
Affiliation(s)
- Anjeeta Rani
- Department of Chemistry
- University of Delhi
- Delhi 110 007
- India
| | | |
Collapse
|
43
|
Abstract
In vitro, computational, and theoretical studies of protein folding have converged to paint a rich and complex energy landscape. This landscape is sensitively modulated by environmental conditions and subject to evolutionary pressure on protein function. Of these environments, none is more complex than the cell itself, where proteins function in the cytosol, in membranes, and in different compartments. A wide variety of kinetic and thermodynamics experiments, ranging from single-molecule studies to jump kinetics and from nuclear magnetic resonance to imaging on the microscope, have elucidated how protein energy landscapes facilitate folding and how they are subject to evolutionary constraints and environmental perturbation. Here we review some recent developments in the field and refer the reader to some original work and additional reviews that cover this broad topic in protein science.
Collapse
Affiliation(s)
- Martin Gruebele
- Center for Biophysics and Quantitative Biology, University of Illinois, Urbana, Illinois 61801; , .,Department of Chemistry, University of Illinois, Urbana, Illinois 61801; .,Department of Physics, University of Illinois, Urbana, Illinois 61801
| | - Kapil Dave
- Center for Biophysics and Quantitative Biology, University of Illinois, Urbana, Illinois 61801; ,
| | - Shahar Sukenik
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801;
| |
Collapse
|
44
|
Fast Protein Translation Can Promote Co- and Posttranslational Folding of Misfolding-Prone Proteins. Biophys J 2017; 112:1807-1819. [PMID: 28494952 DOI: 10.1016/j.bpj.2017.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 03/08/2017] [Accepted: 04/03/2017] [Indexed: 01/09/2023] Open
Abstract
Chemical kinetic modeling has previously been used to predict that fast-translating codons can enhance cotranslational protein folding by helping to avoid misfolded intermediates. Consistent with this prediction, protein aggregation in yeast and worms was observed to increase when translation was globally slowed down, possibly due to increased cotranslational misfolding. Observation of similar behavior in molecular simulations would confirm predictions from the simpler chemical kinetic model and provide a molecular perspective on cotranslational folding, misfolding, and the impact of translation speed on these processes. All-atom simulations cannot reach the timescales relevant to protein synthesis, and most conventional structure-based coarse-grained models do not allow for nonnative structure formation. Here, we introduce a protocol to incorporate misfolding using the functional forms of publicly available force fields. With this model we create two artificial proteins that are capable of undergoing structural transitions between a native and a misfolded conformation and simulate their synthesis by the ribosome. Consistent with the chemical kinetic predictions, we find that rapid synthesis of misfolding-prone nascent-chain segments increases the fraction of folded proteins by kinetically partitioning more molecules through on-pathway intermediates, decreasing the likelihood of sampling misfolded conformations. Novel to this study, to our knowledge, we observe that differences in protein dynamics, arising from different translation-elongation schedules, can persist long after the nascent protein has been released from the ribosome, and that a sufficient level of energetic frustration is needed for fast-translating codons to be beneficial for folding. These results provide further evidence that fast-translating codons can be as biologically important as pause sites in coordinating cotranslational folding.
Collapse
|
45
|
Exploring the Denatured State Ensemble by Single-Molecule Chemo-Mechanical Unfolding: The Effect of Force, Temperature, and Urea. J Mol Biol 2017; 430:450-464. [PMID: 28782558 DOI: 10.1016/j.jmb.2017.07.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/29/2017] [Accepted: 07/31/2017] [Indexed: 11/22/2022]
Abstract
While it is widely appreciated that the denatured state of a protein is a heterogeneous conformational ensemble, there is still debate over how this ensemble changes with environmental conditions. Here, we use single-molecule chemo-mechanical unfolding, which combines force and urea using the optical tweezers, together with traditional protein unfolding studies to explore how perturbants commonly used to unfold proteins (urea, force, and temperature) affect the denatured-state ensemble. We compare the urea m-values, which report on the change in solvent accessible surface area for unfolding, to probe the denatured state as a function of force, temperature, and urea. We find that while the urea- and force-induced denatured states expose similar amounts of surface area, the denatured state at high temperature and low urea concentration is more compact. To disentangle these two effects, we use destabilizing mutations that shift the Tm and Cm. We find that the compaction of the denatured state is related to changing temperature as the different variants of acyl-coenzyme A binding protein have similar m-values when they are at the same temperature but different urea concentration. These results have important implications for protein folding and stability under different environmental conditions.
Collapse
|
46
|
Li M, Sun T, Jin F, Yu D, Liu Z. Dimension conversion and scaling of disordered protein chains. MOLECULAR BIOSYSTEMS 2017; 12:2932-40. [PMID: 27440558 DOI: 10.1039/c6mb00415f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
To extract protein dimension and energetics information from single-molecule fluorescence resonance energy transfer spectroscopy (smFRET) data, it is essential to establish the relationship between the distributions of the radius of gyration (Rg) and the end-to-end (donor-to-acceptor) distance (Ree). Here, we performed a coarse-grained molecular dynamics simulation to obtain a conformational ensemble of denatured proteins and intrinsically disordered proteins. For any disordered chain with fixed length, there is an excellent linear correlation between the average values of Rg and Ree under various solvent conditions, but the relationship deviates from the prediction of a Gaussian chain. A modified conversion formula was proposed to analyze smFRET data. The formula reduces the discrepancy between the results obtained from FRET and small-angle X-ray scattering (SAXS). The scaling law in a coil-globule transition process was examined where a significant finite-size effect was revealed, i.e., the scaling exponent may exceed the theoretical critical boundary [1/3, 3/5] and the prefactor changes notably during the transition. The Sanchez chain model was also tested and it was shown that the mean-field approximation works well for expanded chains.
Collapse
Affiliation(s)
- Maodong Li
- Center for Quantitative Biology, Peking University, Beijing 100871, China.
| | - Tanlin Sun
- Center for Quantitative Biology, Peking University, Beijing 100871, China.
| | - Fan Jin
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Daqi Yu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhirong Liu
- Center for Quantitative Biology, Peking University, Beijing 100871, China. and College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China and Beijing National Laboratory for Molecular Sciences (BNLMS), Peking University, Beijing 100871, China
| |
Collapse
|
47
|
Decoupling of size and shape fluctuations in heteropolymeric sequences reconciles discrepancies in SAXS vs. FRET measurements. Proc Natl Acad Sci U S A 2017; 114:E6342-E6351. [PMID: 28716919 DOI: 10.1073/pnas.1704692114] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Unfolded states of proteins and native states of intrinsically disordered proteins (IDPs) populate heterogeneous conformational ensembles in solution. The average sizes of these heterogeneous systems, quantified by the radius of gyration (RG ), can be measured by small-angle X-ray scattering (SAXS). Another parameter, the mean dye-to-dye distance (RE ) for proteins with fluorescently labeled termini, can be estimated using single-molecule Förster resonance energy transfer (smFRET). A number of studies have reported inconsistencies in inferences drawn from the two sets of measurements for the dimensions of unfolded proteins and IDPs in the absence of chemical denaturants. These differences are typically attributed to the influence of fluorescent labels used in smFRET and to the impact of high concentrations and averaging features of SAXS. By measuring the dimensions of a collection of labeled and unlabeled polypeptides using smFRET and SAXS, we directly assessed the contributions of dyes to the experimental values RG and RE For chemically denatured proteins we obtain mutual consistency in our inferences based on RG and RE , whereas for IDPs under native conditions, we find substantial deviations. Using computations, we show that discrepant inferences are neither due to methodological shortcomings of specific measurements nor due to artifacts of dyes. Instead, our analysis suggests that chemical heterogeneity in heteropolymeric systems leads to a decoupling between RE and RG that is amplified in the absence of denaturants. Therefore, joint assessments of RG and RE combined with measurements of polymer shapes should provide a consistent and complete picture of the underlying ensembles.
Collapse
|
48
|
Pandey RB, Jacobs DJ, Farmer BL. Preferential binding effects on protein structure and dynamics revealed by coarse-grained Monte Carlo simulation. J Chem Phys 2017; 146:195101. [PMID: 28527439 PMCID: PMC5438306 DOI: 10.1063/1.4983222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 04/26/2017] [Indexed: 11/14/2022] Open
Abstract
The effect of preferential binding of solute molecules within an aqueous solution on the structure and dynamics of the histone H3.1 protein is examined by a coarse-grained Monte Carlo simulation. The knowledge-based residue-residue and hydropathy-index-based residue-solvent interactions are used as input to analyze a number of local and global physical quantities as a function of the residue-solvent interaction strength (f). Results from simulations that treat the aqueous solution as a homogeneous effective solvent medium are compared to when positional fluctuations of the solute molecules are explicitly considered. While the radius of gyration (Rg) of the protein exhibits a non-monotonic dependence on solvent interaction over a wide range of f within an effective medium, an abrupt collapse in Rg occurs in a narrow range of f when solute molecules rapidly bind to a preferential set of sites on the protein. The structure factor S(q) of the protein with wave vector (q) becomes oscillatory in the collapsed state, which reflects segmental correlations caused by spatial fluctuations in solute-protein binding. Spatial fluctuations in solute binding also modify the effective dimension (D) of the protein in fibrous (D ∼ 1.3), random-coil (D ∼ 1.75), and globular (D ∼ 3) conformational ensembles as the interaction strength increases, which differ from an effective medium with respect to the magnitude of D and the length scale.
Collapse
Affiliation(s)
- R B Pandey
- Department of Physics and Astronomy, University of Southern Mississippi, Hattiesburg, Mississippi 39406, USA
| | - D J Jacobs
- Department of Physics and Optical Science, University of North Carolina, Charlotte, North Carolina 28223, USA
| | - B L Farmer
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright Patterson Air Force Base, Ohio 45433, USA and Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27606, USA
| |
Collapse
|
49
|
Wei S, Brooks CL, Frank AT. A rapid solvent accessible surface area estimator for coarse grained molecular simulations. J Comput Chem 2017; 38:1270-1274. [DOI: 10.1002/jcc.24709] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/08/2016] [Accepted: 11/17/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Shuai Wei
- Department of Chemistry; University of Michigan; Ann Arbor MI 48109
| | - Charles L. Brooks
- Departments of Biophysics and Chemistry; University of Michigan; Ann Arbor MI 48109
| | - Aaron T. Frank
- Departments of Biophysics and Chemistry; University of Michigan; Ann Arbor MI 48109
| |
Collapse
|
50
|
Evidence for the principle of minimal frustration in the evolution of protein folding landscapes. Proc Natl Acad Sci U S A 2017; 114:E1627-E1632. [PMID: 28196883 DOI: 10.1073/pnas.1613892114] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Theoretical and experimental studies have firmly established that protein folding can be described by a funneled energy landscape. This funneled energy landscape is the result of foldable protein sequences evolving following the principle of minimal frustration, which allows proteins to rapidly fold to their native biologically functional conformations. For a protein family with a given functional fold, the principle of minimal frustration suggests that, independent of sequence, all proteins within this family should fold with similar rates. However, depending on the optimal living temperature of the organism, proteins also need to modulate their thermodynamic stability. Consequently, the difference in thermodynamic stability should be primarily caused by differences in the unfolding rates. To test this hypothesis experimentally, we performed comprehensive thermodynamic and kinetic analyses of 15 different proteins from the thioredoxin family. Eight of these thioredoxins were extant proteins from psychrophilic, mesophilic, or thermophilic organisms. The other seven protein sequences were obtained using ancestral sequence reconstruction and can be dated back over 4 billion years. We found that all studied proteins fold with very similar rates but unfold with rates that differ up to three orders of magnitude. The unfolding rates correlate well with the thermodynamic stability of the proteins. Moreover, proteins that unfold slower are more resistant to proteolysis. These results provide direct experimental support to the principle of minimal frustration hypothesis.
Collapse
|