1
|
Li M, Yu H, Zhou B, Gan L, Li S, Zhang C, Yu B. JANUS, a spliceosome-associated protein, promotes miRNA biogenesis in Arabidopsis. Nucleic Acids Res 2024; 52:420-430. [PMID: 37994727 PMCID: PMC10783502 DOI: 10.1093/nar/gkad1105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
MicroRNAs (miRNAs) are important regulators of genes expression. Their levels are precisely controlled through modulating the activity of the microprocesser complex (MC). Here, we report that JANUS, a homology of the conserved U2 snRNP assembly factor in yeast and human, is required for miRNA accumulation. JANUS associates with MC components Dicer-like 1 (DCL1) and SERRATE (SE) and directly binds the stem-loop of pri-miRNAs. In a hypomorphic janus mutant, the activity of DCL1, the numbers of MC, and the interaction of primary miRNA transcript (pri-miRNAs) with MC are reduced. These data suggest that JANUS promotes the assembly and activity of MC through its interaction with MC and/or pri-miRNAs. In addition, JANUS modulates the transcription of some pri-miRNAs as it binds the promoter of pri-miRNAs and facilitates Pol II occupancy of at their promoters. Moreover, global splicing defects are detected in janus. Taken together, our study reveals a novel role of a conserved splicing factor in miRNA biogenesis.
Collapse
Affiliation(s)
- Mu Li
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588–0666, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588–0118, USA
| | - Huihui Yu
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588–0666, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588–0118, USA
| | - Bangjun Zhou
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588–0666, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588–0118, USA
| | - Lu Gan
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588–0666, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588–0118, USA
| | - Shengjun Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shangdong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Chi Zhang
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588–0666, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588–0118, USA
| | - Bin Yu
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588–0666, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588–0118, USA
| |
Collapse
|
2
|
Especial JNC, Faísca PFN. Effects of sequence-dependent non-native interactions in equilibrium and kinetic folding properties of knotted proteins. J Chem Phys 2023; 159:065101. [PMID: 37551809 DOI: 10.1063/5.0160886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/24/2023] [Indexed: 08/09/2023] Open
Abstract
Determining the role of non-native interactions in folding dynamics, kinetics, and mechanisms is a classic problem in protein folding. More recently, this question has witnessed a renewed interest in light of the hypothesis that knotted proteins require the assistance of non-native interactions to fold efficiently. Here, we conduct extensive equilibrium and kinetic Monte Carlo simulations of a simple off-lattice C-alpha model to explore the role of non-native interactions in the thermodynamics and kinetics of three proteins embedding a trefoil knot in their native structure. We find that equilibrium knotted conformations are stabilized by non-native interactions that are non-local, and proximal to native ones, thus enhancing them. Additionally, non-native interactions increase the knotting frequency at high temperatures, and in partially folded conformations below the transition temperatures. Although non-native interactions clearly enhance the efficiency of transition from an unfolded conformation to a partially folded knotted one, they are not required to efficiently fold a knotted protein. Indeed, a native-centric interaction potential drives the most efficient folding transition, provided that the simulation temperature is well below the transition temperature of the considered model system.
Collapse
Affiliation(s)
- João N C Especial
- Departamento de Física, Faculdade de Ciências, Ed. C8, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
- BioISI-Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Patrícia F N Faísca
- Departamento de Física, Faculdade de Ciências, Ed. C8, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
- BioISI-Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| |
Collapse
|
3
|
A Note on the Effects of Linear Topology Preservation in Monte Carlo Simulations of Knotted Proteins. Int J Mol Sci 2022; 23:ijms232213871. [PMID: 36430350 PMCID: PMC9695063 DOI: 10.3390/ijms232213871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Monte Carlo simulations are a powerful technique and are widely used in different fields. When applied to complex molecular systems with long chains, such as those in synthetic polymers and proteins, they have the advantage of providing a fast and computationally efficient way to sample equilibrium ensembles and calculate thermodynamic and structural properties under desired conditions. Conformational Monte Carlo techniques employ a move set to perform the transitions in the simulation Markov chain. While accepted conformations must preserve the sequential bonding of the protein chain model and excluded volume among its units, the moves themselves may take the chain across itself. We call this a break in linear topology preservation. In this manuscript, we show, using simple protein models, that there is no difference in equilibrium properties calculated with a move set that preserves linear topology and one that does not. However, for complex structures, such as those of deeply knotted proteins, the preservation of linear topology provides correct equilibrium results but only after long relaxation. In any case, to analyze folding pathways, knotting mechanisms and folding kinetics, the preservation of linear topology may be an unavoidable requirement.
Collapse
|
4
|
Neuhaus D. Zinc finger structure determination by NMR: Why zinc fingers can be a handful. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 130-131:62-105. [PMID: 36113918 PMCID: PMC7614390 DOI: 10.1016/j.pnmrs.2022.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/09/2022] [Accepted: 07/10/2022] [Indexed: 06/07/2023]
Abstract
Zinc fingers can be loosely defined as protein domains containing one or more tetrahedrally-co-ordinated zinc ions whose role is to stabilise the structure rather than to be involved in enzymatic chemistry; such zinc ions are often referred to as "structural zincs". Although structural zincs can occur in proteins of any size, they assume particular significance for very small protein domains, where they are often essential for maintaining a folded state. Such small structures, that sometimes have only marginal stability, can present particular difficulties in terms of sample preparation, handling and structure determination, and early on they gained a reputation for being resistant to crystallisation. As a result, NMR has played a more prominent role in structural studies of zinc finger proteins than it has for many other types of proteins. This review will present an overview of the particular issues that arise for structure determination of zinc fingers by NMR, and ways in which these may be addressed.
Collapse
Affiliation(s)
- David Neuhaus
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
5
|
Begum NA, Haque F, Stanlie A, Husain A, Mondal S, Nakata M, Taniguchi T, Taniguchi H, Honjo T. Phf5a regulates DNA repair in class switch recombination via p400 and histone H2A variant deposition. EMBO J 2021; 40:e106393. [PMID: 33938017 PMCID: PMC8204862 DOI: 10.15252/embj.2020106393] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 11/09/2022] Open
Abstract
Antibody class switch recombination (CSR) is a locus-specific genomic rearrangement mediated by switch (S) region transcription, activation-induced cytidine deaminase (AID)-induced DNA breaks, and their resolution by non-homologous end joining (NHEJ)-mediated DNA repair. Due to the complex nature of the recombination process, numerous cofactors are intimately involved, making it important to identify rate-limiting factors that impact on DNA breaking and/or repair. Using an siRNA-based loss-of-function screen of genes predicted to encode PHD zinc-finger-motif proteins, we identify the splicing factor Phf5a/Sf3b14b as a novel modulator of the DNA repair step of CSR. Loss of Phf5a severely impairs AID-induced recombination, but does not perturb DNA breaks and somatic hypermutation. Phf5a regulates NHEJ-dependent DNA repair by preserving chromatin integrity to elicit optimal DNA damage response and subsequent recruitment of NHEJ factors at the S region. Phf5a stabilizes the p400 histone chaperone complex at the locus, which in turn promotes deposition of H2A variant such as H2AX and H2A.Z that are critical for the early DNA damage response and NHEJ, respectively. Depletion of Phf5a or p400 blocks the repair of both AID- and I-SceI-induced DNA double-strand breaks, supporting an important contribution of this axis to programmed as well as aberrant recombination.
Collapse
Affiliation(s)
- Nasim A Begum
- Department of Immunology and Genomic MedicineGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Farazul Haque
- Department of Immunology and Genomic MedicineGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Andre Stanlie
- Department of Immunology and Genomic MedicineGraduate School of MedicineKyoto UniversityKyotoJapan
- BioMedicine DesignPfizer Inc.CambridgeMAUSA
| | - Afzal Husain
- Department of Immunology and Genomic MedicineGraduate School of MedicineKyoto UniversityKyotoJapan
- Department of BiochemistryFaculty of Life SciencesAligarh Muslim UniversityAligarhIndia
| | - Samiran Mondal
- Department of Immunology and Genomic MedicineGraduate School of MedicineKyoto UniversityKyotoJapan
- Department of ChemistryRammohan CollegeKolkataIndia
| | - Mikiyo Nakata
- Department of Immunology and Genomic MedicineGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Takako Taniguchi
- Division of Disease ProteomicsInstitute for Enzyme ResearchUniversity of TokushimaTokushimaJapan
| | - Hisaaki Taniguchi
- Division of Disease ProteomicsInstitute for Enzyme ResearchUniversity of TokushimaTokushimaJapan
| | - Tasuku Honjo
- Department of Immunology and Genomic MedicineGraduate School of MedicineKyoto UniversityKyotoJapan
| |
Collapse
|
6
|
Yazhini A, Sandhya S, Srinivasan N. Rewards of divergence in sequences, 3-D structures and dynamics of yeast and human spliceosome SF3b complexes. Curr Res Struct Biol 2021; 3:133-145. [PMID: 35028595 PMCID: PMC8714771 DOI: 10.1016/j.crstbi.2021.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 12/21/2022] Open
Abstract
The evolution of homologous and functionally equivalent multiprotein assemblies is intriguing considering sequence divergence of constituent proteins. Here, we studied the implications of protein sequence divergence on the structure, dynamics and function of homologous yeast and human SF3b spliceosomal subcomplexes. Human and yeast SF3b comprise of 7 and 6 proteins respectively, with all yeast proteins homologous to their human counterparts at moderate sequence identity. SF3b6, an additional component in the human SF3b, interacts with the N-terminal extension of SF3b1 while the yeast homologue Hsh155 lacks the equivalent region. Through detailed homology studies, we show that SF3b6 is absent not only in yeast but in multiple lineages of eukaryotes implying that it is critical in specific organisms. We probed for the potential role of SF3b6 in the spliceosome assembled form through structural and flexibility analyses. By analysing normal modes derived from anisotropic network models of SF3b1, we demonstrate that when SF3b1 is bound to SF3b6, similarities in the magnitude of residue motions (0.86) and inter-residue correlated motions (0.94) with Hsh155 are significantly higher than when SF3b1 is considered in isolation (0.21 and 0.89 respectively). We observed that SF3b6 promotes functionally relevant 'open-to-close' transition in SF3b1 by enhancing concerted residue motions. Such motions are found to occur in the Hsh155 without SF3b6. The presence of SF3b6 influences motions of 16 residues that interact with U2 snRNA/branchpoint duplex and supports the participation of its interface residues in long-range communication in the SF3b1. These results advocate that SF3b6 potentially acts as an allosteric regulator of SF3b1 for BPS selection and might play a role in alternative splicing. Furthermore, we observe variability in the relative orientation of SF3b4 and in the local structure of three β-propeller domains of SF3b3 with reference to their yeast counterparts. Such differences influence the inter-protein interactions of SF3b between these two organisms. Together, our findings highlight features of SF3b evolution and suggests that the human SF3b may have evolved sophisticated mechanisms to fine tune its molecular function.
Collapse
Key Words
- Allostery
- BPS, branch-point sequence
- Bact, activated B spliceosome assembly
- Cryo-EM structure
- Cryo-EM, cryo-electron microscopy
- DOPE, discrete optimized protein energy
- NMA, normal mode analysis
- PDB, protein data bank
- Protein dynamics
- RMSD, root mean square deviation
- RRM, RNA recognition motif
- SF3b complex
- SF3b1
- SF3b1SF3b6−bound, SF3b1 bound to SF3b6
- SF3b1iso, SF3b1 in isolation
- SIP, square inner product
- Spliceosome
Collapse
Affiliation(s)
- Arangasamy Yazhini
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Sankaran Sandhya
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | | |
Collapse
|
7
|
van der Feltz C, Hoskins AA. Structural and functional modularity of the U2 snRNP in pre-mRNA splicing. Crit Rev Biochem Mol Biol 2019; 54:443-465. [PMID: 31744343 DOI: 10.1080/10409238.2019.1691497] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The U2 small nuclear ribonucleoprotein (snRNP) is an essential component of the spliceosome, the cellular machine responsible for removing introns from precursor mRNAs (pre-mRNAs) in all eukaryotes. U2 is an extraordinarily dynamic splicing factor and the most frequently mutated in cancers. Cryo-electron microscopy (cryo-EM) has transformed our structural and functional understanding of the role of U2 in splicing. In this review, we synthesize these and other data with respect to a view of U2 as an assembly of interconnected functional modules. These modules are organized by the U2 small nuclear RNA (snRNA) for roles in spliceosome assembly, intron substrate recognition, and protein scaffolding. We describe new discoveries regarding the structure of U2 components and how the snRNP undergoes numerous conformational and compositional changes during splicing. We specifically highlight large scale movements of U2 modules as the spliceosome creates and rearranges its active site. U2 serves as a compelling example for how cellular machines can exploit the modular organization and structural plasticity of an RNP.
Collapse
Affiliation(s)
| | - Aaron A Hoskins
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
8
|
van Roon AMM, Oubridge C, Obayashi E, Sposito B, Newman AJ, Séraphin B, Nagai K. Crystal structure of U2 snRNP SF3b components: Hsh49p in complex with Cus1p-binding domain. RNA (NEW YORK, N.Y.) 2017; 23:968-981. [PMID: 28348170 PMCID: PMC5435868 DOI: 10.1261/rna.059378.116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/17/2017] [Indexed: 05/02/2023]
Abstract
Spliceosomal proteins Hsh49p and Cus1p are components of SF3b, which together with SF3a, Msl1p/Lea1p, Sm proteins, and U2 snRNA, form U2 snRNP, which plays a crucial role in pre-mRNA splicing. Hsh49p, comprising two RRMs, forms a heterodimer with Cus1p. We determined the crystal structures of Saccharomyces cerevisiae full-length Hsh49p as well as its RRM1 in complex with a minimal binding region of Cus1p (residues 290-368). The structures show that the Cus1 fragment binds to the α-helical surface of Hsh49p RRM1, opposite the four-stranded β-sheet, leaving the canonical RNA-binding surface available to bind RNA. Hsh49p binds the 5' end region of U2 snRNA via RRM1. Its affinity is increased in complex with Cus1(290-368)p, partly because an extended RNA-binding surface forms across the protein-protein interface. The Hsh49p RRM1-Cus1(290-368)p structure fits well into cryo-EM density of the Bact spliceosome, corroborating the biological relevance of our crystal structure.
Collapse
Affiliation(s)
| | - Chris Oubridge
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Eiji Obayashi
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Benedetta Sposito
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Andrew J Newman
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Bertrand Séraphin
- Equipe Labellisée La Ligue, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique (CNRS) UMR 7104/Institut National de la Santé et de la Recherche Médicale (INSERM), U964/Université de Strasbourg, 67404 Illkirch, France
| | - Kiyoshi Nagai
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
9
|
Splicing modulators act at the branch point adenosine binding pocket defined by the PHF5A-SF3b complex. Nat Commun 2017; 8:15522. [PMID: 28541300 PMCID: PMC5458519 DOI: 10.1038/ncomms15522] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/05/2017] [Indexed: 01/28/2023] Open
Abstract
Pladienolide, herboxidiene and spliceostatin have been identified as splicing modulators that target SF3B1 in the SF3b subcomplex. Here we report that PHF5A, another component of this subcomplex, is also targeted by these compounds. Mutations in PHF5A-Y36, SF3B1-K1071, SF3B1-R1074 and SF3B1-V1078 confer resistance to these modulators, suggesting a common interaction site. RNA-seq analysis reveals that PHF5A-Y36C has minimal effect on basal splicing but inhibits the global action of splicing modulators. Moreover, PHF5A-Y36C alters splicing modulator-induced intron-retention/exon-skipping profile, which correlates with the differential GC content between adjacent introns and exons. We determine the crystal structure of human PHF5A demonstrating that Y36 is located on a highly conserved surface. Analysis of the cryo-EM spliceosome Bact complex shows that the resistance mutations cluster in a pocket surrounding the branch point adenosine, suggesting a competitive mode of action. Collectively, we propose that PHF5A–SF3B1 forms a central node for binding to these splicing modulators. A number of natural occurring small-molecule splicing modulators are known. Here, the authors combine chemogenomic, structural and biochemical methods and show that these compounds also target the spliceosome-associated protein PHF5A and propose a potential modulator binding site in the PHF5A–SF3B1 complex.
Collapse
|
10
|
Dabrowski-Tumanski P, Stasiak A, Sulkowska JI. In Search of Functional Advantages of Knots in Proteins. PLoS One 2016; 11:e0165986. [PMID: 27806097 PMCID: PMC5091781 DOI: 10.1371/journal.pone.0165986] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/20/2016] [Indexed: 11/30/2022] Open
Abstract
We analysed the structure of deeply knotted proteins representing three unrelated families of knotted proteins. We looked at the correlation between positions of knotted cores in these proteins and such local structural characteristics as the number of intra-chain contacts, structural stability and solvent accessibility. We observed that the knotted cores and especially their borders showed strong enrichment in the number of contacts. These regions showed also increased thermal stability, whereas their solvent accessibility was decreased. Interestingly, the active sites within these knotted proteins preferentially located in the regions with increased number of contacts that also have increased thermal stability and decreased solvent accessibility. Our results suggest that knotting of polypeptide chains provides a favourable environment for the active sites observed in knotted proteins. Some knotted proteins have homologues without a knot. Interestingly, these unknotted homologues form local entanglements that retain structural characteristics of the knotted cores.
Collapse
Affiliation(s)
- Pawel Dabrowski-Tumanski
- Centre of New Technologies, Banacha 2c, 02–097, Warsaw, Poland
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02–093, Warsaw, Poland
- Center for Integrative Genomics, University of Lausanne, 1015-Lausanne, Switzerland
| | - Andrzej Stasiak
- Center for Integrative Genomics, University of Lausanne, 1015-Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, 1015-Lausanne, Switzerland
- * E-mail: (AS); (JIS)
| | - Joanna I. Sulkowska
- Centre of New Technologies, Banacha 2c, 02–097, Warsaw, Poland
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02–093, Warsaw, Poland
- * E-mail: (AS); (JIS)
| |
Collapse
|
11
|
Cretu C, Schmitzová J, Ponce-Salvatierra A, Dybkov O, De Laurentiis EI, Sharma K, Will CL, Urlaub H, Lührmann R, Pena V. Molecular Architecture of SF3b and Structural Consequences of Its Cancer-Related Mutations. Mol Cell 2016; 64:307-319. [PMID: 27720643 DOI: 10.1016/j.molcel.2016.08.036] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/25/2016] [Accepted: 08/30/2016] [Indexed: 11/17/2022]
Abstract
SF3b is a heptameric protein complex of the U2 small nuclear ribonucleoprotein (snRNP) that is essential for pre-mRNA splicing. Mutations in the largest SF3b subunit, SF3B1/SF3b155, are linked to cancer and lead to alternative branch site (BS) selection. Here we report the crystal structure of a human SF3b core complex, revealing how the distinctive conformation of SF3b155's HEAT domain is maintained by multiple contacts with SF3b130, SF3b10, and SF3b14b. Protein-protein crosslinking enabled the localization of the BS-binding proteins p14 and U2AF65 within SF3b155's HEAT-repeat superhelix, which together with SF3b14b forms a composite RNA-binding platform. SF3b155 residues, the mutation of which leads to cancer, contribute to the tertiary structure of the HEAT superhelix and its surface properties in the proximity of p14 and U2AF65. The molecular architecture of SF3b reveals the spatial organization of cancer-related SF3b155 mutations and advances our understanding of their effects on SF3b structure and function.
Collapse
Affiliation(s)
- Constantin Cretu
- Research Group Macromolecular Crystallography, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Jana Schmitzová
- Research Group Macromolecular Crystallography, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Almudena Ponce-Salvatierra
- Research Group Macromolecular Crystallography, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany; Max Planck Research Group Nucleic Acid Chemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Olexandr Dybkov
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Evelina I De Laurentiis
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Kundan Sharma
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany; Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Cindy L Will
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany; Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Reinhard Lührmann
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Vladimir Pena
- Research Group Macromolecular Crystallography, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
12
|
Classification of the treble clef zinc finger: noteworthy lessons for structure and function evolution. Sci Rep 2016; 6:32070. [PMID: 27562564 PMCID: PMC4999995 DOI: 10.1038/srep32070] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/02/2016] [Indexed: 11/08/2022] Open
Abstract
Treble clef (TC) zinc fingers constitute a large fold-group of structural zinc-binding protein domains that mediate numerous cellular functions. We have analysed the sequence, structure, and function relationships among all TCs in the Protein Data Bank. This led to the identification of novel TCs, such as lsr2, YggX and TFIIIC τ 60 kDa subunit, and prediction of a nuclease-like function for the DUF1364 family. The structural malleability of TCs is evident from the many examples with variations to the core structural elements of the fold. We observe domains wherein the structural core of the TC fold is circularly permuted, and also some examples where the overall fold resembles both the TC motif and another unrelated fold. All extant TC families do not share a monophyletic origin, as several TC proteins are known to have been present in the last universal common ancestor and the last eukaryotic common ancestor. We identify several TCs where the zinc-chelating site and residues are not merely responsible for structure stabilization but also perform other functions, such as being redox active in C1B domain of protein kinase C, a nucleophilic acceptor in Ada and catalytic in organomercurial lyase, MerB.
Collapse
|
13
|
Folding analysis of the most complex Stevedore's protein knot. Sci Rep 2016; 6:31514. [PMID: 27527519 PMCID: PMC4985754 DOI: 10.1038/srep31514] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/21/2016] [Indexed: 12/21/2022] Open
Abstract
DehI is a homodimeric haloacid dehalogenase from Pseudomonas putida that contains the most complex 61 Stevedore's protein knot within its folding topology. To examine how DehI attains such an intricate knotted topology we combined far-UV circular dichroism (CD), intrinsic fluorescence spectroscopy and small angle X-ray scattering (SAXS) to investigate its folding mechanism. Equilibrium unfolding of DehI by chemical denaturation indicated the presence of two highly populated folding intermediates, I and I'. While the two intermediates vary in secondary structure contents and tertiary packing according to CD and intrinsic fluorescence, respectively, their overall dimension and compactness are similar according to SAXS. Three single-tryptophan variants (W34, W53, and W196) were generated to probe non-cooperative unfolding events localized around the three fluorophores. Kinetic fluorescence measurements indicated that the transition from the intermediate I' to the unfolded state is rate limiting. Our multiparametric folding analyses suggest that DehI unfolds through a linear folding pathway with two distinct folding intermediates by initial hydrophobic collapse followed by nucleation condensation, and that knotting precedes the formation of secondary structures.
Collapse
|
14
|
Rakesh R, Joseph AP, Bhaskara RM, Srinivasan N. Structural and mechanistic insights into human splicing factor SF3b complex derived using an integrated approach guided by the cryo-EM density maps. RNA Biol 2016; 13:1025-1040. [PMID: 27618338 DOI: 10.1080/15476286.2016.1218590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Pre-mRNA splicing in eukaryotes is performed by the spliceosome, a highly complex macromolecular machine. SF3b is a multi-protein complex which recognizes the branch point adenosine of pre-mRNA as part of a larger U2 snRNP or U11/U12 di-snRNP in the dynamic spliceosome machinery. Although a cryo-EM map is available for human SF3b complex, the structure and relative spatial arrangement of all components in the complex are not yet known. We have recognized folds of domains in various proteins in the assembly and generated comparative models. Using an integrative approach involving structural and other experimental data, guided by the available cryo-EM density map, we deciphered a pseudo-atomic model of the closed form of SF3b which is found to be a "fuzzy complex" with highly flexible components and multiplicity of folds. Further, the model provides structural information for 5 proteins (SF3b10, SF3b155, SF3b145, SF3b130 and SF3b14b) and localization information for 4 proteins (SF3b10, SF3b145, SF3b130 and SF3b14b) in the assembly for the first time. Integration of this model with the available U11/U12 di-snRNP cryo-EM map enabled elucidation of an open form. This now provides new insights on the mechanistic features involved in the transition between closed and open forms pivoted by a hinge region in the SF3b155 protein that also harbors cancer causing mutations. Moreover, the open form guided model of the 5' end of U12 snRNA, which includes the branch point duplex, shows that the architecture of SF3b acts as a scaffold for U12 snRNA: pre-mRNA branch point duplex formation with potential implications for branch point adenosine recognition fidelity.
Collapse
Affiliation(s)
- Ramachandran Rakesh
- a Molecular Biophysics Unit, Indian Institute of Science , Bangalore , India
| | - Agnel Praveen Joseph
- b National Center for Biological Sciences, TIFR, GKVK Campus , Bangalore , India
| | - Ramachandra M Bhaskara
- a Molecular Biophysics Unit, Indian Institute of Science , Bangalore , India.,b National Center for Biological Sciences, TIFR, GKVK Campus , Bangalore , India
| | | |
Collapse
|
15
|
Schneider C, Agafonov DE, Schmitzová J, Hartmuth K, Fabrizio P, Lührmann R. Dynamic Contacts of U2, RES, Cwc25, Prp8 and Prp45 Proteins with the Pre-mRNA Branch-Site and 3' Splice Site during Catalytic Activation and Step 1 Catalysis in Yeast Spliceosomes. PLoS Genet 2015; 11:e1005539. [PMID: 26393790 PMCID: PMC4579134 DOI: 10.1371/journal.pgen.1005539] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/27/2015] [Indexed: 01/10/2023] Open
Abstract
Little is known about contacts in the spliceosome between proteins and intron nucleotides surrounding the pre-mRNA branch-site and their dynamics during splicing. We investigated protein-pre-mRNA interactions by UV-induced crosslinking of purified yeast B(act) spliceosomes formed on site-specifically labeled pre-mRNA, and analyzed their changes after conversion to catalytically-activated B* and step 1 C complexes, using a purified splicing system. Contacts between nucleotides upstream and downstream of the branch-site and the U2 SF3a/b proteins Prp9, Prp11, Hsh49, Cus1 and Hsh155 were detected, demonstrating that these interactions are evolutionarily conserved. The RES proteins Pml1 and Bud13 were shown to contact the intron downstream of the branch-site. A comparison of the B(act) crosslinking pattern versus that of B* and C complexes revealed that U2 and RES protein interactions with the intron are dynamic. Upon step 1 catalysis, Cwc25 contacts with the branch-site region, and enhanced crosslinks of Prp8 and Prp45 with nucleotides surrounding the branch-site were observed. Cwc25's step 1 promoting activity was not dependent on its interaction with pre-mRNA, indicating it acts via protein-protein interactions. These studies provide important insights into the spliceosome's protein-pre-mRNA network and reveal novel RNP remodeling events during the catalytic activation of the spliceosome and step 1 of splicing.
Collapse
Affiliation(s)
- Cornelius Schneider
- Max Planck Institute for Biophysical Chemistry, Department of Cellular Biochemistry, Göttingen, Germany
| | - Dmitry E. Agafonov
- Max Planck Institute for Biophysical Chemistry, Department of Cellular Biochemistry, Göttingen, Germany
| | - Jana Schmitzová
- Max Planck Institute for Biophysical Chemistry, Department of Cellular Biochemistry, Göttingen, Germany
| | - Klaus Hartmuth
- Max Planck Institute for Biophysical Chemistry, Department of Cellular Biochemistry, Göttingen, Germany
| | - Patrizia Fabrizio
- Max Planck Institute for Biophysical Chemistry, Department of Cellular Biochemistry, Göttingen, Germany
| | - Reinhard Lührmann
- Max Planck Institute for Biophysical Chemistry, Department of Cellular Biochemistry, Göttingen, Germany
| |
Collapse
|
16
|
Lim NCH, Jackson SE. Molecular knots in biology and chemistry. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:354101. [PMID: 26291690 DOI: 10.1088/0953-8984/27/35/354101] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Knots and entanglements are ubiquitous. Beyond their aesthetic appeal, these fascinating topological entities can be either useful or cumbersome. In recent decades, the importance and prevalence of molecular knots have been increasingly recognised by scientists from different disciplines. In this review, we provide an overview on the various molecular knots found in naturally occurring biological systems (DNA, RNA and proteins), and those created by synthetic chemists. We discuss the current knowledge in these fields, including recent developments in experimental and, in some cases, computational studies which are beginning to shed light into the complex interplay between the structure, formation and properties of these topologically intricate molecules.
Collapse
Affiliation(s)
- Nicole C H Lim
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK. Faculty of Sciences, Universiti Brunei Darussalam, Gadong BE 1410, Brunei Darussalam
| | | |
Collapse
|
17
|
Kaur G, Subramanian S. The UBR-box and its relationship to binuclear RING-like treble clef zinc fingers. Biol Direct 2015; 10:36. [PMID: 26185100 PMCID: PMC4506424 DOI: 10.1186/s13062-015-0066-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/02/2015] [Indexed: 11/30/2022] Open
Abstract
Background The N-end rule pathway is a part of the ubiquitin–dependent proteolytic system wherein N-recognin proteins recognize the amino terminal degradation signals (N-degrons) of the substrate. The type 1 N-degron recognizing UBR-box domain of the eukaryotic Arg/N-end rule pathway is known to possess a novel three-zinc-stabilized heart-shaped fold. Results Using sequence and structure analysis we argue that the UBR-box fold emerged from a binuclear RING-like treble clef zinc finger. The RING-like core is preserved in the UBR-box and the metal-chelating motifs display significant sequence and structural similarity to B-box and ZZ domains. UBR-box domains retrieved in our analysis co-occur with a variety of other protein domains, suggestive of its involvement in diverse biological roles. The UBR-box is a unique family of RING-like treble clefs as it displays a distinct circular permutation at the zinc-knuckle of the first zinc-binding site unlike other documented permutations of the RING-like domains which occur at the second zinc-binding site. The circular permutation of the RING-like treble clef scaffold has possibly aided the gain of a novel and relatively deep cleft suited for binding N-degrons. The N- and C-terminal extensions to the circularly permuted RING-like region bind a third zinc ion, which likely provides additional stability to the domain by keeping the two halves of the permuted zinc-knuckle together. Conclusions Structural modifications and extensions to the RING-like core have resulted in a novel UBR-box fold, which can recognize and target the type 1 N-degron containing proteins for ubiquitin-mediated proteolysis. The UBR-box appears to have emerged during the expansion of ubiquitin system pathway-related functions in eukaryotes, but is also likely to have other non-N-recognin functions as well. Reviewers This article was reviewed by Eugene Koonin, Balaji Santhanam, Kira S. Makarova. Electronic supplementary material The online version of this article (doi:10.1186/s13062-015-0066-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gurmeet Kaur
- CSIR-Institute of Microbial Technology (IMTECH), Sector 39-A, Chandigarh, 160036, India.
| | - Srikrishna Subramanian
- CSIR-Institute of Microbial Technology (IMTECH), Sector 39-A, Chandigarh, 160036, India.
| |
Collapse
|
18
|
Stepanenko OV, Bublikov GS, Stepanenko OV, Shcherbakova DM, Verkhusha VV, Turoverov KK, Kuznetsova IM. A knot in the protein structure - probing the near-infrared fluorescent protein iRFP designed from a bacterial phytochrome. FEBS J 2014; 281:2284-98. [PMID: 24628916 DOI: 10.1111/febs.12781] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/18/2014] [Accepted: 03/11/2014] [Indexed: 11/30/2022]
Abstract
The possibility of engineering near-infrared fluorescent proteins and biosensors from bacterial phytochrome photoreceptors (BphPs) has led to substantial interest in this family of proteins. The near-infrared fluorescent proteins have allowed non-invasive bio-imaging of deep tissues and whole organs in living animals. BphPs and derived near-infrared fluorescent proteins contain a structural element, called a knot, in their polypeptide chains. The formation of knot structures in proteins was refuted for a long time. Here, we studied the denaturation and renaturation processes of the near-infrared fluorescent probe iRFP, engineered from RpBphP2, which utilizes a heme-derived tetrapyrrole compound biliverdin as a chromophore. iRFP contains a unique figure-of-eight knot. The denaturation and renaturation curves of the iRFP apoform coincided well, suggesting efficient refolding. However, the iRFP holoform exhibited irreversible unfolding and aggregation associated with the bound chromophore. The knot structure in the apoform did not prevent subsequent binding of biliverdin, resulting in the functional iRFP holoform. We suggest that the irreversibility of protein unfolding is caused by post-translational protein modifications, such as chromophore binding, rather than the presence of the knot. These results are essential for future design of BphP-based near-infrared probes, and add important features to our knowledge of protein folding.
Collapse
Affiliation(s)
- Olesya V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia
| | | | | | | | | | | | | |
Collapse
|
19
|
Mohazab AR, Plotkin SS. Polymer uncrossing and knotting in protein folding, and their role in minimal folding pathways. PLoS One 2013; 8:e53642. [PMID: 23365638 PMCID: PMC3554774 DOI: 10.1371/journal.pone.0053642] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 11/30/2012] [Indexed: 11/19/2022] Open
Abstract
We introduce a method for calculating the extent to which chain non-crossing is important in the most efficient, optimal trajectories or pathways for a protein to fold. This involves recording all unphysical crossing events of a ghost chain, and calculating the minimal uncrossing cost that would have been required to avoid such events. A depth-first tree search algorithm is applied to find minimal transformations to fold [Formula: see text], [Formula: see text], [Formula: see text], and knotted proteins. In all cases, the extra uncrossing/non-crossing distance is a small fraction of the total distance travelled by a ghost chain. Different structural classes may be distinguished by the amount of extra uncrossing distance, and the effectiveness of such discrimination is compared with other order parameters. It was seen that non-crossing distance over chain length provided the best discrimination between structural and kinetic classes. The scaling of non-crossing distance with chain length implies an inevitable crossover to entanglement-dominated folding mechanisms for sufficiently long chains. We further quantify the minimal folding pathways by collecting the sequence of uncrossing moves, which generally involve leg, loop, and elbow-like uncrossing moves, and rendering the collection of these moves over the unfolded ensemble as a multiple-transformation "alignment". The consensus minimal pathway is constructed and shown schematically for representative cases of an [Formula: see text], [Formula: see text], and knotted protein. An overlap parameter is defined between pathways; we find that [Formula: see text] proteins have minimal overlap indicating diverse folding pathways, knotted proteins are highly constrained to follow a dominant pathway, and [Formula: see text] proteins are somewhere in between. Thus we have shown how topological chain constraints can induce dominant pathway mechanisms in protein folding.
Collapse
Affiliation(s)
- Ali R. Mohazab
- Department of Physics and Astronomy, University of British Columbia, Vancouver, B.C, Canada
| | - Steven S. Plotkin
- Department of Physics and Astronomy, University of British Columbia, Vancouver, B.C, Canada
| |
Collapse
|
20
|
Comoglio F, Rinaldi M. A topological framework for the computation of the HOMFLY polynomial and its application to proteins. PLoS One 2011; 6:e18693. [PMID: 21533239 PMCID: PMC3076383 DOI: 10.1371/journal.pone.0018693] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 03/08/2011] [Indexed: 01/22/2023] Open
Abstract
Polymers can be modeled as open polygonal paths and their closure generates knots. Knotted proteins detection is currently achieved via high-throughput methods based on a common framework insensitive to the handedness of knots. Here we propose a topological framework for the computation of the HOMFLY polynomial, an handedness-sensitive invariant. Our approach couples a multi-component reduction scheme with the polynomial computation. After validation on tabulated knots and links the framework was applied to the entire Protein Data Bank along with a set of selected topological checks that allowed to discard artificially entangled structures. This led to an up-to-date table of knotted proteins that also includes two newly detected right-handed trefoil knots in recently deposited protein structures. The application range of our framework is not limited to proteins and it can be extended to the topological analysis of biological and synthetic polymers and more generally to arbitrary polygonal paths.
Collapse
Affiliation(s)
- Federico Comoglio
- Department of Chemical, Food, Pharmaceutical and Pharmacological Sciences (DiSCAFF), University of Piemonte Orientale “Amedeo Avogadro”, Novara, Italy
| | - Maurizio Rinaldi
- Department of Chemical, Food, Pharmaceutical and Pharmacological Sciences (DiSCAFF), University of Piemonte Orientale “Amedeo Avogadro”, Novara, Italy
- * E-mail:
| |
Collapse
|
21
|
Virnau P, Mallam A, Jackson S. Structures and folding pathways of topologically knotted proteins. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2011; 23:033101. [PMID: 21406854 DOI: 10.1088/0953-8984/23/3/033101] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In the last decade, a new class of proteins has emerged that contain a topological knot in their backbone. Although these structures are rare, they nevertheless challenge our understanding of protein folding. In this review, we provide a short overview of topologically knotted proteins with an emphasis on newly discovered structures. We discuss the current knowledge in the field, including recent developments in both experimental and computational studies that have shed light on how these intricate structures fold.
Collapse
Affiliation(s)
- Peter Virnau
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudinger Weg 7, 55128 Mainz, Germany.
| | | | | |
Collapse
|
22
|
Bölinger D, Sułkowska JI, Hsu HP, Mirny LA, Kardar M, Onuchic JN, Virnau P. A Stevedore's protein knot. PLoS Comput Biol 2010; 6:e1000731. [PMID: 20369018 PMCID: PMC2848546 DOI: 10.1371/journal.pcbi.1000731] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 03/02/2010] [Indexed: 11/23/2022] Open
Abstract
Protein knots, mostly regarded as intriguing oddities, are gradually being recognized as significant structural motifs. Seven distinctly knotted folds have already been identified. It is by and large unclear how these exceptional structures actually fold, and only recently, experiments and simulations have begun to shed some light on this issue. In checking the new protein structures submitted to the Protein Data Bank, we encountered the most complex and the smallest knots to date: A recently uncovered alpha-haloacid dehalogenase structure contains a knot with six crossings, a so-called Stevedore knot, in a projection onto a plane. The smallest protein knot is present in an as yet unclassified protein fragment that consists of only 92 amino acids. The topological complexity of the Stevedore knot presents a puzzle as to how it could possibly fold. To unravel this enigma, we performed folding simulations with a structure-based coarse-grained model and uncovered a possible mechanism by which the knot forms in a single loop flip.
Collapse
Affiliation(s)
- Daniel Bölinger
- Department of Physics, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Joanna I. Sułkowska
- CTBP, University of California San Diego, San Diego, California, United States of America
| | - Hsiao-Ping Hsu
- Department of Physics, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Leonid A. Mirny
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, United States of America
| | - Mehran Kardar
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - José N. Onuchic
- CTBP, University of California San Diego, San Diego, California, United States of America
| | - Peter Virnau
- Department of Physics, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| |
Collapse
|
23
|
Affiliation(s)
- Wolfgang Maret
- Department of Preventive Medicine & Community Health, The University of Texas Medical Branch, Galveston, Texas 77555-1109, USA.
| | | |
Collapse
|
24
|
Dzubiella J. Sequence-specific size, structure, and stability of tight protein knots. Biophys J 2009; 96:831-9. [PMID: 19186124 PMCID: PMC2716640 DOI: 10.1016/j.bpj.2008.10.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 10/20/2008] [Indexed: 11/19/2022] Open
Abstract
Approximately 1% of known protein structures display knotted configurations in their native fold, but the function of these configurations is not understood. It has been speculated that the entanglement may inhibit mechanical protein unfolding or transport, e.g., as in cellular threading or translocation processes through narrow biological pores. Protein knot manipulation, e.g., knot tightening and localization, has become possible in single-molecule experiments. Here, we investigate tight peptide knot (TPK) characteristics in detail by pulling selected 3(1) and 4(1)-knotted peptides using all-atom molecular dynamics computer simulations. We find that the 3(1)- and 4(1)-TPK lengths are typically Deltal approximately 47+/- 4 A and 69 +/- 4 A, respectively, for a wide range of tensions (0.1 nN less, similarF less, similar 1.5 nN). The 4(1)-knot length is in agreement with recent atomic force microscopy pulling experiments. Calculated TPK radii of gyration point to a pore diameter of approximately 20 A, below which a translocated knotted protein might get stuck. TPK characteristics, however, may be sequence-specific: we find a different size and structural behavior in polyglycines, and, strikingly, a strong hydrogen bonding and water trapping capability of hydrophobic TPKs. Water capture and release is found to be controllable by the tightening force in a few cases. These mechanisms result in a sequence-specific "locking" and metastability of TPKs, which might lead to a blocking of knotted peptide transport at designated sequence positions. We observe that macroscopic tight 4(1)-knot structures are reproduced microscopically ("figure of eight" versus the "pretzel") and can be tuned by sequence, in contrast to mathematical predictions. Our findings may explain a function of knots in native proteins, challenge previous studies on macromolecular knots, and prove useful in bio- and nanotechnology.
Collapse
|
25
|
Abstract
The issue of how a newly synthesized polypeptide chain folds to form a protein with a unique three-dimensional structure, otherwise known as the 'protein-folding problem', remains a fundamental question in the life sciences. Over the last few decades, much information has been gathered about the mechanisms by which proteins fold. However, despite the vast topological diversity observed in biological structures, it was thought improbable, if not impossible, that a polypeptide chain could 'knot' itself to form a functional protein. Nevertheless, such knotted structures have since been identified, raising questions about how such complex topologies can arise during folding. Their formation does not fit any current folding models or mechanisms, and therefore represents an important piece of the protein-folding puzzle. This article reviews the progress made towards discovering how nature codes for, and contends with, knots during protein folding, and examines the insights gained from both experimental and computational studies. Mechanisms to account for the formation of knotted structures that were previously thought unfeasible, and their implications for protein folding, are also discussed.
Collapse
Affiliation(s)
- Anna L Mallam
- St John's College and University Chemical Laboratory, Cambridge, UK.
| |
Collapse
|