1
|
Koch NG, Budisa N. Evolution of Pyrrolysyl-tRNA Synthetase: From Methanogenesis to Genetic Code Expansion. Chem Rev 2024; 124:9580-9608. [PMID: 38953775 PMCID: PMC11363022 DOI: 10.1021/acs.chemrev.4c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Over 20 years ago, the pyrrolysine encoding translation system was discovered in specific archaea. Our Review provides an overview of how the once obscure pyrrolysyl-tRNA synthetase (PylRS) tRNA pair, originally responsible for accurately translating enzymes crucial in methanogenic metabolic pathways, laid the foundation for the burgeoning field of genetic code expansion. Our primary focus is the discussion of how to successfully engineer the PylRS to recognize new substrates and exhibit higher in vivo activity. We have compiled a comprehensive list of ncAAs incorporable with the PylRS system. Additionally, we also summarize recent successful applications of the PylRS system in creating innovative therapeutic solutions, such as new antibody-drug conjugates, advancements in vaccine modalities, and the potential production of new antimicrobials.
Collapse
Affiliation(s)
- Nikolaj G. Koch
- Department
of Chemistry, Institute of Physical Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Nediljko Budisa
- Biocatalysis
Group, Institute of Chemistry, Technische
Universität Berlin, 10623 Berlin, Germany
- Chemical
Synthetic Biology Chair, Department of Chemistry, University of Manitoba, Winnipeg MB R3T 2N2, Canada
| |
Collapse
|
2
|
Dutta S, Chandra A. A Multiple Proton Transfer Mechanism for the Charging Step of the Aminoacylation Reaction at the Active Site of Aspartyl tRNA Synthetase. J Chem Inf Model 2023; 63:1819-1832. [PMID: 36893463 DOI: 10.1021/acs.jcim.2c01332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Aspartyl-tRNA synthetase catalyzes the attachment of aspartic acid to its cognate tRNA by the aminoacylation reaction during the initiation of the protein biosynthesis process. In the second step of the aminoacylation reaction, known as the charging step, the aspartate moiety is transferred from aspartyl-adenylate to the 3'-OH of A76 of tRNA through a proton transfer process. We have investigated different pathways for the charging step through three separate QM/MM simulations combined with the enhanced sampling method of well-sliced metadynamics and found out the most feasible pathway for the reaction at the active site of the enzyme. In the charging reaction, both the phosphate group and the ammonium group after deprotonation can potentially act as a base for proton transfer in the substrate-assisted mechanism. We have considered three possible mechanisms involving different pathways of proton transfer, and only one of them is determined to be enzymatically feasible. The free energy landscape along reaction coordinates where the phosphate group acts as the general base showed that, in the absence of water, the barrier height is 52.6 kcal/mol. The free energy barrier is reduced to 39.7 kcal/mol when the active site water molecules are also treated quantum mechanically, thus allowing a water mediated proton transfer. The charging reaction involving the ammonium group of the aspartyl adenylate is found to follow a path where first a proton from the ammonium group moves to a water in the vicinity forming a hydronium ion (H3O+) and NH2 group. The hydronium ion subsequently passes the proton to the Asp233 residue, thus minimizing the chance of back proton transfer from hydronium to the NH2 group. The neutral NH2 group subsequently takes the proton from the O3' of A76 with a free energy barrier of 10.7 kcal/mol. In the next step, the deprotonated O3' makes a nucleophilic attack to the carbonyl carbon forming a tetrahedral transition state with a free energy barrier of 24.8 kcal/mol. Thus, the present work shows that the charging step proceeds through a multiple proton transfer mechanism where the amino group formed after deprotonation acts as the base to capture a proton from O3' of A76 rather than the phosphate group. The current study also shows the important role played by Asp233 in the proton transfer process.
Collapse
Affiliation(s)
- Saheb Dutta
- Department of Chemistry, Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Amalendu Chandra
- Department of Chemistry, Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
3
|
Martínez Giménez JA, Tabares Seisdedos R. A Cofactor-Based Mechanism for the Origin of the Genetic Code. ORIGINS LIFE EVOL B 2022; 52:149-163. [PMID: 36071304 DOI: 10.1007/s11084-022-09628-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/02/2022] [Indexed: 11/24/2022]
Abstract
The origin of the genetic code is probably the central problem of the studies on the origin of life. The key question to answer is the molecular mechanism that allows the association of the amino acids with their triplet codons. We proposed that the codon-anticodon duplex located in the acceptor stem of primitive tRNAs would facilitate the chemical reactions required to synthesize cognate amino acids from simple amino acids (glycine, valine, and aspartic acid) linked to the 3' acceptor end. In our view, various nucleotide-A-derived cofactors (with reactive chemical groups) may be attached to the codon-anticodon duplex, which allows group-transferring reactions from cofactors to simple amino acids, thereby producing the final amino acid. The nucleotide-A-derived cofactors could be incorporated into the RNA duplex (helix) by docking Adenosine (cofactor) into the minor groove via an interaction similar to the A-minor motif, forming a base triple between Adenosine and one complementary base pair of the duplex. Furthermore, we propose that this codon-anticodon duplex could initially catalyze a self-aminoacylation reaction with a simple amino acid. Therefore, the sequence of bases in the codon-anticodon duplex would determine the reactions that occurred during the formation of new amino acids for selective binding of nucleotide-A-derived cofactors.
Collapse
Affiliation(s)
| | - Rafael Tabares Seisdedos
- Departamento de Medicina, Facultad de Medicina de Valencia, (CIBERSAM; INCLIVA-UV), Universidad de Valencia, Av. Blasco Ibañez 17, 46010, Valencia, Spain.
| |
Collapse
|
4
|
Comparative QM/MM study on the inhibition mechanism of β-Hydroxynorvaline to Threonyl-tRNA synthetase. J Mol Graph Model 2022; 115:108224. [DOI: 10.1016/j.jmgm.2022.108224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/26/2022] [Accepted: 05/13/2022] [Indexed: 11/18/2022]
|
5
|
Zivkovic I, Ivkovic K, Cvetesic N, Marsavelski A, Gruic-Sovulj I. Negative catalysis by the editing domain of class I aminoacyl-tRNA synthetases. Nucleic Acids Res 2022; 50:4029-4041. [PMID: 35357484 PMCID: PMC9023258 DOI: 10.1093/nar/gkac207] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/14/2022] [Accepted: 03/28/2022] [Indexed: 11/19/2022] Open
Abstract
Aminoacyl-tRNA synthetases (AARS) translate the genetic code by loading tRNAs with the cognate amino acids. The errors in amino acid recognition are cleared at the AARS editing domain through hydrolysis of misaminoacyl-tRNAs. This ensures faithful protein synthesis and cellular fitness. Using Escherichia coli isoleucyl-tRNA synthetase (IleRS) as a model enzyme, we demonstrated that the class I editing domain clears the non-cognate amino acids well-discriminated at the synthetic site with the same rates as the weakly-discriminated fidelity threats. This unveiled low selectivity suggests that evolutionary pressure to optimize the rates against the amino acids that jeopardize translational fidelity did not shape the editing site. Instead, we propose that editing was shaped to safeguard cognate aminoacyl-tRNAs against hydrolysis. Misediting is prevented by the residues that promote negative catalysis through destabilisation of the transition state comprising cognate amino acid. Such powerful design allows broad substrate acceptance of the editing domain along with its exquisite specificity in the cognate aminoacyl-tRNA rejection. Editing proceeds by direct substrate delivery to the editing domain (in cis pathway). However, we found that class I IleRS also releases misaminoacyl-tRNAIle and edits it in trans. This minor editing pathway was up to now recognized only for class II AARSs.
Collapse
Affiliation(s)
- Igor Zivkovic
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb 10000, Croatia
| | - Kate Ivkovic
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb 10000, Croatia
| | - Nevena Cvetesic
- Institute for Clinical Sciences, Faculty of Medicine, Imperial College London and MRC London Institute of Medical Sciences, London, SW7 2AZ, UK
| | - Aleksandra Marsavelski
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb 10000, Croatia
| | - Ita Gruic-Sovulj
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb 10000, Croatia
| |
Collapse
|
6
|
Gruic-Sovulj I, Longo LM, Jabłońska J, Tawfik DS. The evolutionary history of the HUP domain. Crit Rev Biochem Mol Biol 2021; 57:1-15. [PMID: 34384295 DOI: 10.1080/10409238.2021.1957764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Among the enzyme lineages that undoubtedly emerged prior to the last universal common ancestor is the so-called HUP, which includes Class I aminoacyl tRNA synthetases (AARSs) as well as enzymes mediating NAD, FAD, and CoA biosynthesis. Here, we provide a detailed analysis of HUP evolution, from emergence to structural and functional diversification. The HUP is a nucleotide binding domain that uniquely catalyzes adenylation via the release of pyrophosphate. In contrast to other ancient nucleotide binding domains with the αβα sandwich architecture, such as P-loop NTPases, the HUP's most conserved feature is not phosphate binding, but rather ribose binding by backbone interactions to the tips of β1 and/or β4. Indeed, the HUP exhibits unusual evolutionary plasticity and, while ribose binding is conserved, the location and mode of binding to the base and phosphate moieties of the nucleotide, and to the substrate(s) reacting with it, have diverged with time, foremost along the emergence of the AARSs. The HUP also beautifully demonstrates how a well-packed scaffold combined with evolvable surface elements promotes evolutionary innovation. Finally, we offer a scenario for the emergence of the HUP from a seed βαβ fragment, and suggest that despite an identical architecture, the HUP and the Rossmann represent independent emergences.
Collapse
Affiliation(s)
- Ita Gruic-Sovulj
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Liam M Longo
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.,Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Jagoda Jabłońska
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Dan S Tawfik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
7
|
Martínez-Giménez JA, Tabares-Seisdedos R. Possible Ancestral Functions of the Genetic and RNA Operational Precodes and the Origin of the Genetic System. ORIGINS LIFE EVOL B 2021; 51:167-183. [PMID: 34097191 DOI: 10.1007/s11084-021-09610-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/17/2021] [Indexed: 11/24/2022]
Abstract
The origin of genetic systems is the central problem in the study of the origin of life for which various explanatory hypotheses have been presented. One model suggests that both ancestral transfer ribonucleic acid (tRNA) molecules and primitive ribosomes were originally involved in RNA replication (Campbell 1991). According to this model the early tRNA molecules catalyzed their own self-loading with a trinucleotide complementary to their anticodon triplet, while the primordial ribosome (protoribosome) catalyzed the transfer of these terminal trinucleotides from one tRNA to another tRNA harboring the growing RNA polymer at the 3´-end.Here we present the notion that the anticodon-codon-like pairs presumably located in the acceptor stem of primordial tRNAs (Rodin et al. 1996) (thus being and remaining, after the code and translation origins, the major contributor to the RNA operational code (Schimmel et al. 1993)) might have originally been used for RNA replication rather than translation; these anticodon and acceptor stem triplets would have been involved in accurately loading the 3'-end of tRNAs with a trinucleotide complementary to their anticodon triplet, thus allowing the accurate repair of tRNAs for their use by the protoribosome during RNA replication.We propose that tRNAs could have catalyzed their own trinucleotide self-loading by forming catalytic tRNA dimers which would have had polymerase activity. Therefore, the loading mechanism and its evolution may have been a basic step in the emergence of new genetic mechanisms such as genetic translation. The evolutionary implications of this proposed loading mechanism are also discussed.
Collapse
Affiliation(s)
| | - Rafael Tabares-Seisdedos
- Departamento de Medicina, Facultad de Medicina de Valencia, Universidad de Valencia, Av. Blasco Ibañez 17, 46010, Valencia, Spain.
| |
Collapse
|
8
|
Abstract
In this chapter we consider the catalytic approaches used by aminoacyl-tRNA synthetase (AARS) enzymes to synthesize aminoacyl-tRNA from cognate amino acid and tRNA. This ligase reaction proceeds through an activated aminoacyl-adenylate (aa-AMP). Common themes among AARSs include use of induced fit to drive catalysis and transition state stabilization by class-conserved sequence and structure motifs. Active site metal ions contribute to the amino acid activation step, while amino acid transfer to tRNA is generally a substrate-assisted concerted mechanism. A distinction between classes is the rate-limiting step for aminoacylation. We present some examples for each aspect of aminoacylation catalysis, including the experimental approaches developed to address questions of AARS chemistry.
Collapse
|
9
|
Kim SH, Choi JH, Wang P, Go CD, Hesketh GG, Gingras AC, Jafarnejad SM, Sonenberg N. Mitochondrial Threonyl-tRNA Synthetase TARS2 Is Required for Threonine-Sensitive mTORC1 Activation. Mol Cell 2020; 81:398-407.e4. [PMID: 33340489 DOI: 10.1016/j.molcel.2020.11.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 05/14/2020] [Accepted: 11/19/2020] [Indexed: 02/02/2023]
Abstract
Mechanistic target of rapamycin complex 1 (mTORC1) controls cell growth and proliferation by sensing fluctuations in environmental cues such as nutrients, growth factors, and energy levels. The Rag GTPases (Rags) serve as a critical module that signals amino acid (AA) availability to modulate mTORC1 localization and activity. Recent studies have demonstrated how AAs regulate mTORC1 activity through Rags. Here, we uncover an unconventional pathway that activates mTORC1 in response to variations in threonine (Thr) levels via mitochondrial threonyl-tRNA synthetase TARS2. TARS2 interacts with inactive Rags, particularly GTP-RagC, leading to increased GTP loading of RagA. mTORC1 activity in cells lacking TARS2 is resistant to Thr repletion, showing that TARS2 is necessary for Thr-dependent mTORC1 activation. The requirement of TARS2, but not cytoplasmic threonyl-tRNA synthetase TARS, for this effect demonstrates an additional layer of complexity in the regulation of mTORC1 activity.
Collapse
Affiliation(s)
- Sung-Hoon Kim
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Jung-Hyun Choi
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Peng Wang
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Christopher D Go
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Geoffrey G Hesketh
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Anne-Claude Gingras
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Seyed Mehdi Jafarnejad
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, UK.
| | - Nahum Sonenberg
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada.
| |
Collapse
|
10
|
Patil PR, Vithani N, Singh V, Kumar A, Prakash B. A revised mechanism for (p)ppGpp synthesis by Rel proteins: The critical role of the 2'-OH of GTP. J Biol Chem 2020; 295:12851-12867. [PMID: 32719004 DOI: 10.1074/jbc.ra120.013636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/15/2020] [Indexed: 11/06/2022] Open
Abstract
Bacterial Rel proteins synthesize hyperphosphorylated guanosine nucleotides, denoted as (p)ppGpp, which by inhibiting energy requiring molecular pathways help bacteria to overcome the depletion of nutrients in its surroundings. (p)ppGpp synthesis by Rel involves transferring a pyrophosphate from ATP to the oxygen of 3'-OH of GTP/GDP. Initially, a conserved glutamate at the active site was believed to generate the nucleophile necessary to accomplish the reaction. Later this role was alluded to a Mg2+ ion. However, no study has unequivocally established a catalytic mechanism for (p)ppGpp synthesis. Here we present a revised mechanism, wherein for the first time we explore a role for 2'-OH of GTP and show how it is important in generating the nucleophile. Through a careful comparison of substrate-bound structures of Rel, we illustrate that the active site does not discriminate GTP from dGTP, for a substrate. Using biochemical studies, we demonstrate that both GTP and dGTP bind to Rel, but only GTP (but not dGTP) can form the product. Reactions performed using GTP analogs substituted with different chemical moieties at the 2' position suggest a clear role for 2'-OH in catalysis by providing an indispensable hydrogen bond; preliminary computational analysis further supports this view. This study elucidating a catalytic role for 2'-OH of GTP in (p)ppGpp synthesis allows us to propose different mechanistic possibilities by which it generates the nucleophile for the synthesis reaction. This study underscores the selection of ribose nucleotides as second messengers and finds its roots in the old RNA world hypothesis.
Collapse
Affiliation(s)
- Pratik Rajendra Patil
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Neha Vithani
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Virender Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Balaji Prakash
- Department of Molecular Nutrition, Council of Scientific and Industrial Research-Central Food Technological Research Institute, Mysore, India.
| |
Collapse
|
11
|
Šponer J, Bussi G, Krepl M, Banáš P, Bottaro S, Cunha RA, Gil-Ley A, Pinamonti G, Poblete S, Jurečka P, Walter NG, Otyepka M. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview. Chem Rev 2018; 118:4177-4338. [PMID: 29297679 PMCID: PMC5920944 DOI: 10.1021/acs.chemrev.7b00427] [Citation(s) in RCA: 336] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Indexed: 12/14/2022]
Abstract
With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA-ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field.
Collapse
Affiliation(s)
- Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Sandro Bottaro
- Structural Biology and NMR Laboratory, Department of Biology , University of Copenhagen , Copenhagen 2200 , Denmark
| | - Richard A Cunha
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Alejandro Gil-Ley
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Giovanni Pinamonti
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Simón Poblete
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Petr Jurečka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| |
Collapse
|
12
|
Ney Y, Jawad Nasim M, Kharma A, Youssef LA, Jacob C. Small Molecule Catalysts with Therapeutic Potential. Molecules 2018; 23:E765. [PMID: 29584669 PMCID: PMC6017662 DOI: 10.3390/molecules23040765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 01/21/2023] Open
Abstract
Catalysts are employed in many areas of research and development where they combine high efficiency with often astonishing selectivity for their respective substrates. In biology, biocatalysts are omnipresent. Enzymes facilitate highly controlled, sophisticated cellular processes, such as metabolic conversions, sensing and signalling, and are prominent targets in drug development. In contrast, the therapeutic use of catalysts per se is still rather limited. Recent research has shown that small molecule catalytic agents able to modulate the redox state of the target cell bear considerable promise, particularly in the context of inflammatory and infectious diseases, stroke, ageing and even cancer. Rather than being "active" on their own in a more traditional sense, such agents develop their activity by initiating, promoting, enhancing or redirecting reactions between biomolecules already present in the cell, and their activity therefore depends critically on the predisposition of the target cell itself. Redox catalysts, for instance, preferably target cells with a distinct sensitivity towards changes in an already disturbed redox balance and/or increased levels of reactive oxygen species. Indeed, certain transition metal, chalcogen and quinone agents may activate an antioxidant response in normal cells whilst at the same time triggering apoptosis in cancer cells with a different pre-existing "biochemical redox signature" and closer to the internal redox threshold. In pharmacy, catalysts therefore stand out as promising lead structures, as sensor/effector agents which are highly effective, fairly selective, active in catalytic, i.e., often nanomolar concentrations and also very flexible in their structural design.
Collapse
Affiliation(s)
- Yannick Ney
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany.
| | - Muhammad Jawad Nasim
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany.
| | - Ammar Kharma
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany.
| | - Lama A Youssef
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, Damascus University, Damascus, Syria.
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany.
| |
Collapse
|
13
|
Dutta S, Nandi N. Classical molecular dynamics simulation of seryl tRNA synthetase and threonyl tRNA synthetase bound with tRNA and aminoacyl adenylate. J Biomol Struct Dyn 2018; 37:336-358. [PMID: 29320932 DOI: 10.1080/07391102.2018.1426498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Saheb Dutta
- Department of Chemistry, University of Kalyani, Kalyani, Nadia 741235, West Bengal, India
| | - Nilashis Nandi
- Department of Chemistry, University of Kalyani, Kalyani, Nadia 741235, West Bengal, India
| |
Collapse
|
14
|
Aboelnga MM, Gauld JW. Roles of the Active Site Zn(II) and Residues in Substrate Discrimination by Threonyl-tRNA Synthetase: An MD and QM/MM Investigation. J Phys Chem B 2017; 121:6163-6174. [PMID: 28592109 DOI: 10.1021/acs.jpcb.7b03782] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Threonyl-tRNA synthetase (ThrRS) is a Zn(II) containing enzyme that catalyzes the activation of threonine and its subsequent transfer to the cognate tRNA. This process is accomplished with remarkable fidelity, with ThrRS being able to discriminate its cognate substrate from similar analogues such as serine and valine. Molecular dynamics (MD) simulations and hybrid quantum mechanics/molecular mechanics (QM/MM) methods have been used to elucidate the role of Zn(II) in the aminoacylation mechanism of ThrRS. More specifically, the role of Zn(II) and active site residues in ThrRS's ability to discriminate between its cognate substrate l-threonine and the noncognate l-serine, l-valine, and d-threonine has been examined. The present results suggest that a role of the Zn(II) ion, with its Lewis acidity, is to facilitate deprotonation of the side chain hydroxyl groups of the aminoacyl moieties of cognate Thr-AMP and noncognate Ser-AMP substrates. In their deprotonated forms, these substrates are able to adopt a conformation preferable for aminoacyl transfer from aa-AMP onto the Ado-3'OH of the tRNAThr cosubstrate. Relative to the neutral substrates, when the substrates are first deprotonated with the assistance of the Zn(II) ion, the barrier for the rate-limiting step is decreased significantly by 42.0 and 39.2 kJ mol-1 for l-Thr-AMP and l-Ser-AMP, respectively. An active site arginyl also plays a key role in stabilizing the buildup of negative charge on the substrate's bridging phosphate oxygen during the mechanism. For the enantiomeric substrate analogue d-Thr-AMP, product formation is highly disfavored, and as a result, the reverse reaction has a very low barrier of 16.0 kJ mol-1.
Collapse
Affiliation(s)
- Mohamed M Aboelnga
- Department of Chemistry and Biochemistry, University of Windsor , Windsor, Ontario, N9B 3P4, Canada.,Department of Chemistry, Faculty of Science, University of Damietta , New Damietta, Damietta Governorate 34511, Egypt
| | - James W Gauld
- Department of Chemistry and Biochemistry, University of Windsor , Windsor, Ontario, N9B 3P4, Canada
| |
Collapse
|
15
|
Mechanistic Insights Into Catalytic RNA-Protein Complexes Involved in Translation of the Genetic Code. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017. [PMID: 28683922 DOI: 10.1016/bs.apcsb.2017.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The contemporary world is an "RNA-protein world" rather than a "protein world" and tracing its evolutionary origins is of great interest and importance. The different RNAs that function in close collaboration with proteins are involved in several key physiological processes, including catalysis. Ribosome-the complex megadalton cellular machinery that translates genetic information encoded in nucleotide sequence to amino acid sequence-epitomizes such an association between RNA and protein. RNAs that can catalyze biochemical reactions are known as ribozymes. They usually employ general acid-base catalytic mechanism, often involving the 2'-OH of RNA that activates and/or stabilizes a nucleophile during the reaction pathway. The protein component of such RNA-protein complexes (RNPCs) mostly serves as a scaffold which provides an environment conducive for the RNA to function, or as a mediator for other interacting partners. In this review, we describe those RNPCs that are involved at different stages of protein biosynthesis and in which RNA performs the catalytic function; the focus of the account is on highlighting mechanistic aspects of these complexes. We also provide a perspective on such associations in the context of proofreading during translation of the genetic code. The latter aspect is not much appreciated and recent works suggest that this is an avenue worth exploring, since an understanding of the subject can provide useful insights into how RNAs collaborate with proteins to ensure fidelity during these essential cellular processes. It may also aid in comprehending evolutionary aspects of such associations.
Collapse
|
16
|
Abbott JA, Livingston NM, Egri SB, Guth E, Francklyn CS. Characterization of aminoacyl-tRNA synthetase stability and substrate interaction by differential scanning fluorimetry. Methods 2016; 113:64-71. [PMID: 27794454 DOI: 10.1016/j.ymeth.2016.10.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/22/2016] [Accepted: 10/25/2016] [Indexed: 11/30/2022] Open
Abstract
Differential scanning fluorimetry (DSF) is a fluorescence-based assay to evaluate protein stability by determining protein melting temperatures. Here, we describe the application of DSF to investigate aminoacyl-tRNA synthetase (AARS) stability and interaction with ligands. Employing three bacterial AARS enzymes as model systems, methods are presented here for the use of DSF to measure the apparent temperatures at which AARSs undergo melting transitions, and the effect of AARS substrates and inhibitors. One important observation is that the extent of temperature stability realized by an AARS in response to a particular bound ligand cannot be predicted a priori. The DSF method thus serves as a rapid and highly quantitative approach to measure AARS stability, and the ability of ligands to influence the temperature at which unfolding transitions occur.
Collapse
Affiliation(s)
- Jamie A Abbott
- Department of Biochemistry, University of Vermont, Burlington, VT 05405, USA.
| | - Nathan M Livingston
- Department of Biochemistry, University of Vermont, Burlington, VT 05405, USA
| | - Shawn B Egri
- Department of Biochemistry, University of Vermont, Burlington, VT 05405, USA
| | - Ethan Guth
- Chemistry & Biochemistry Department, Norwich University, Northfield, VT 05663, USA
| | | |
Collapse
|
17
|
Cvetesic N, Gruic-Sovulj I. Synthetic and editing reactions of aminoacyl-tRNA synthetases using cognate and non-cognate amino acid substrates. Methods 2016; 113:13-26. [PMID: 27713080 DOI: 10.1016/j.ymeth.2016.09.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/29/2016] [Accepted: 09/29/2016] [Indexed: 11/19/2022] Open
Abstract
The covalent coupling of cognate amino acid-tRNA pairs by corresponding aminoacyl-tRNA synthetases (aaRS) defines the genetic code and provides aminoacylated tRNAs for ribosomal protein synthesis. Besides the cognate substrate, some non-cognate amino acids may also compete for tRNA aminoacylation. However, their participation in protein synthesis is generally prevented by an aaRS proofreading activity located in the synthetic site and in a separate editing domain. These mechanisms, coupled with the ability of certain aaRSs to discriminate well against non-cognate amino acids in the synthetic reaction alone, define the accuracy of the aminoacylation reaction. aaRS quality control may also act as a gatekeeper for the standard genetic code and prevents infiltration by natural amino acids that are not normally coded for protein biosynthesis. This latter finding has reinforced interest in understanding the principles that govern discrimination against a range of potential non-cognate amino acids. This paper presents an overview of the kinetic assays that have been established for monitoring synthetic and editing reactions with cognate and non-cognate amino acid substrates. Taking into account the peculiarities of non-cognate reactions, the specific controls needed and the dedicated experimental designs are discussed in detail. Kinetic partitioning within the synthetic and editing sites controls the balance between editing and aminoacylation. We describe in detail steady-state and single-turnover approaches for the analysis of synthetic and editing reactions, which ultimately enable mechanisms of amino acid discrimination to be determined.
Collapse
Affiliation(s)
- Nevena Cvetesic
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Ita Gruic-Sovulj
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia.
| |
Collapse
|
18
|
Aleksandrov A, Palencia A, Cusack S, Field M. Aminoacetylation Reaction Catalyzed by Leucyl-tRNA Synthetase Operates via a Self-Assisted Mechanism Using a Conserved Residue and the Aminoacyl Substrate. J Phys Chem B 2016; 120:4388-98. [PMID: 27115861 DOI: 10.1021/acs.jpcb.6b02387] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Leucyl-tRNA synthetase catalyzes attachment of leucine amino acid to its cognate tRNA. During the second, aminoacetylation, step of the reaction, the leucyl moiety is transferred from leucyl-adenylate to the terminal A76 adenosine of tRNA. In this work, we have investigated the aminoacetylation step catalyzed by leucyl-tRNA synthase, using ab initio quantum chemical/molecular mechanical hybrid potentials in conjunction with reaction-path-location algorithms and molecular dynamics free energy simulations. We have modeled reaction mechanisms arising from both crystallographic studies and computational work. We invoke various groups as potential proton acceptors-namely, the phosphate and leucyl amino groups of leucyl-adenylate, the A76 base of tRNA, and the Asp80 and Glu532 residues of the protein-and consider both metal-assisted and metal-free reactions. Free energy calculations indicate that both the phosphate group of leucyl adenylate and Glu532 are not strong bases. This agrees with the results of the quantum chemical/molecular mechanical reaction path calculations which give high free energy barriers for the studied pathways involving these groups. A self-assisted mechanism with the leucyl amino group and Asp80 as proton acceptors is the most likely. Furthermore, in this mechanism the presence of a metal ion coordinated by the phosphate group and Glu532 strongly activates the reaction.
Collapse
Affiliation(s)
- Alexey Aleksandrov
- Laboratoire de Biochimie, UMR 7654, Ecole Polytechnique, CNRS , F-91128 Palaiseau Cedex, France
| | - Andrés Palencia
- European Molecular Biology Laboratory (EMBL), Grenoble Outstation and Unit of Virus Host-Cell Interactions, University of Grenoble-EMBL-CNRS , 38044 Grenoble, France
| | - Stephen Cusack
- European Molecular Biology Laboratory (EMBL), Grenoble Outstation and Unit of Virus Host-Cell Interactions, University of Grenoble-EMBL-CNRS , 38044 Grenoble, France
| | - Martin Field
- Dynamo Team, DYNAMOP Group, UMR 5075, Université Grenoble 1, CNRS, CEA, Institut de Biologie Structurale , 71 Avenue des Martyrs, CS 10090, 38044 Grenoble Cedex 9, France
| |
Collapse
|
19
|
Zhao H, Palencia A, Seiradake E, Ghaemi Z, Cusack S, Luthey-Schulten Z, Martinis S. Analysis of the Resistance Mechanism of a Benzoxaborole Inhibitor Reveals Insight into the Leucyl-tRNA Synthetase Editing Mechanism. ACS Chem Biol 2015; 10:2277-85. [PMID: 26172575 DOI: 10.1021/acschembio.5b00291] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new class of antimicrobial benzoxaborole compounds was identified as a potent inhibitor of leucyl-tRNA synthetase (LeuRS) and therefore of protein synthesis. In a novel mechanism, AN2690 (5-fluoro-1,3-dihydro-1-hydroxy-2,1-benzoxaborole) blocks fungal cytoplasmic LeuRS by covalently trapping tRNA(Leu) in the editing site of the enzyme's CP1 domain. However, some resistant mutation sites are located outside of the CP1 hydrolytic editing active site. Thus, their mode of action that undermines drug inhibition was not understood. A combination of X-ray crystallography, molecular dynamics, metadynamics, biochemical experiments, and mutational analysis of a distal benzoxaborole-resistant mutant uncovered a eukaryote-specific tyrosine "switch" that is critical to tRNA-dependent post-transfer editing. The tyrosine "switch" has three states that shift between interactions with a lysine and the 3'-hydroxyl of the tRNA terminus, to inhibit or promote post-transfer editing. The oxaborole's mechanism of action capitalizes upon one of these editing active site states. This tunable editing mechanism in eukaryotic and archaeal LeuRSs is proposed to facilitate precise quality control of aminoacylation fidelity. These mechanistic distinctions could also be capitalized upon for development of the benzoxaboroles as a broad spectrum antibacterial.
Collapse
Affiliation(s)
| | - Andres Palencia
- European Molecular Biology Laboratory, Grenoble Outstation and Unit of Virus Host-Cell Interactions, UJF-EMBL-CNRS, UMI 3265, 71 Avenue des Martyrs, BP181, 38042 Grenoble Cedex 9, France
| | - Elena Seiradake
- European Molecular Biology Laboratory, Grenoble Outstation and Unit of Virus Host-Cell Interactions, UJF-EMBL-CNRS, UMI 3265, 71 Avenue des Martyrs, BP181, 38042 Grenoble Cedex 9, France
| | | | - Stephen Cusack
- European Molecular Biology Laboratory, Grenoble Outstation and Unit of Virus Host-Cell Interactions, UJF-EMBL-CNRS, UMI 3265, 71 Avenue des Martyrs, BP181, 38042 Grenoble Cedex 9, France
| | | | | |
Collapse
|
20
|
Mirando AC, Fang P, Williams TF, Baldor LC, Howe AK, Ebert AM, Wilkinson B, Lounsbury KM, Guo M, Francklyn CS. Aminoacyl-tRNA synthetase dependent angiogenesis revealed by a bioengineered macrolide inhibitor. Sci Rep 2015; 5:13160. [PMID: 26271225 PMCID: PMC4536658 DOI: 10.1038/srep13160] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 07/16/2015] [Indexed: 11/23/2022] Open
Abstract
Aminoacyl-tRNA synthetases (AARSs) catalyze an early step in protein synthesis, but also regulate diverse physiological processes in animal cells. These include angiogenesis, and human threonyl-tRNA synthetase (TARS) represents a potent pro-angiogenic AARS. Angiogenesis stimulation can be blocked by the macrolide antibiotic borrelidin (BN), which exhibits a broad spectrum toxicity that has discouraged deeper investigation. Recently, a less toxic variant (BC194) was identified that potently inhibits angiogenesis. Employing biochemical, cell biological, and biophysical approaches, we demonstrate that the toxicity of BN and its derivatives is linked to its competition with the threonine substrate at the molecular level, which stimulates amino acid starvation and apoptosis. By separating toxicity from the inhibition of angiogenesis, a direct role for TARS in vascular development in the zebrafish could be demonstrated. Bioengineered natural products are thus useful tools in unmasking the cryptic functions of conventional enzymes in the regulation of complex processes in higher metazoans.
Collapse
Affiliation(s)
| | - Pengfei Fang
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida
| | | | | | - Alan K Howe
- Department of Pharmacology, University of Vermont
| | | | - Barrie Wilkinson
- Isomerase Therapeutics Ltd, Science Village, Chesterford Research Park, Cambridge CB10 1XL, UK
| | | | - Min Guo
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida
| | | |
Collapse
|
21
|
MD Simulations of tRNA and Aminoacyl-tRNA Synthetases: Dynamics, Folding, Binding, and Allostery. Int J Mol Sci 2015; 16:15872-902. [PMID: 26184179 PMCID: PMC4519929 DOI: 10.3390/ijms160715872] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 07/07/2015] [Accepted: 07/08/2015] [Indexed: 12/21/2022] Open
Abstract
While tRNA and aminoacyl-tRNA synthetases are classes of biomolecules that have been extensively studied for decades, the finer details of how they carry out their fundamental biological functions in protein synthesis remain a challenge. Recent molecular dynamics (MD) simulations are verifying experimental observations and providing new insight that cannot be addressed from experiments alone. Throughout the review, we briefly discuss important historical events to provide a context for how far the field has progressed over the past few decades. We then review the background of tRNA molecules, aminoacyl-tRNA synthetases, and current state of the art MD simulation techniques for those who may be unfamiliar with any of those fields. Recent MD simulations of tRNA dynamics and folding and of aminoacyl-tRNA synthetase dynamics and mechanistic characterizations are discussed. We highlight the recent successes and discuss how important questions can be addressed using current MD simulations techniques. We also outline several natural next steps for computational studies of AARS:tRNA complexes.
Collapse
|
22
|
Ahmad S, Muthukumar S, Kuncha SK, Routh SB, Yerabham ASK, Hussain T, Kamarthapu V, Kruparani SP, Sankaranarayanan R. Specificity and catalysis hardwired at the RNA-protein interface in a translational proofreading enzyme. Nat Commun 2015; 6:7552. [PMID: 26113036 PMCID: PMC4491819 DOI: 10.1038/ncomms8552] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/19/2015] [Indexed: 01/28/2023] Open
Abstract
Proofreading modules of aminoacyl-tRNA synthetases are responsible for enforcing a high fidelity during translation of the genetic code. They use strategically positioned side chains for specifically targeting incorrect aminoacyl-tRNAs. Here, we show that a unique proofreading module possessing a D-aminoacyl-tRNA deacylase fold does not use side chains for imparting specificity or for catalysis, the two hallmark activities of enzymes. We show, using three distinct archaea, that a side-chain-stripped recognition site is fully capable of solving a subtle discrimination problem. While biochemical probing establishes that RNA plays the catalytic role, mechanistic insights from multiple high-resolution snapshots reveal that differential remodelling of the catalytic core at the RNA–peptide interface provides the determinants for correct proofreading activity. The functional crosstalk between RNA and protein elucidated here suggests how primordial enzyme functions could have emerged on RNA–peptide scaffolds before recruitment of specific side chains. The editing domain of aminoacyl-tRNA synthetases is responsible for removing non-cognate amino acids from mischarged tRNAs. Here the authors show that the D-aminoacyl-tRNA deacylase fold of archaeal ThrRS does not rely on protein side chains for substrate specificity and catalysis.
Collapse
Affiliation(s)
- Sadeem Ahmad
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500007, India
| | - Sowndarya Muthukumar
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500007, India
| | - Santosh Kumar Kuncha
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500007, India
| | - Satya Brata Routh
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500007, India
| | - Antony S K Yerabham
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500007, India
| | - Tanweer Hussain
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500007, India
| | - Venu Kamarthapu
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500007, India
| | - Shobha P Kruparani
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500007, India
| | - Rajan Sankaranarayanan
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500007, India
| |
Collapse
|
23
|
Cvetesic N, Bilus M, Gruic-Sovulj I. The tRNA A76 Hydroxyl Groups Control Partitioning of the tRNA-dependent Pre- and Post-transfer Editing Pathways in Class I tRNA Synthetase. J Biol Chem 2015; 290:13981-91. [PMID: 25873392 DOI: 10.1074/jbc.m115.648568] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Indexed: 11/06/2022] Open
Abstract
Aminoacyl-tRNA synthetases catalyze ATP-dependent covalent coupling of cognate amino acids and tRNAs for ribosomal protein synthesis. Escherichia coli isoleucyl-tRNA synthetase (IleRS) exploits both the tRNA-dependent pre- and post-transfer editing pathways to minimize errors in translation. However, the molecular mechanisms by which tRNA(Ile) organizes the synthetic site to enhance pre-transfer editing, an idiosyncratic feature of IleRS, remains elusive. Here we show that tRNA(Ile) affects both the synthetic and editing reactions localized within the IleRS synthetic site. In a complex with cognate tRNA, IleRS exhibits a 10-fold faster aminoacyl-AMP hydrolysis and a 10-fold drop in amino acid affinity relative to the free enzyme. Remarkably, the specificity against non-cognate valine was not improved by the presence of tRNA in either of these processes. Instead, amino acid specificity is determined by the protein component per se, whereas the tRNA promotes catalytic performance of the synthetic site, bringing about less error-prone and kinetically optimized isoleucyl-tRNA(Ile) synthesis under cellular conditions. Finally, the extent to which tRNA(Ile) modulates activation and pre-transfer editing is independent of the intactness of its 3'-end. This finding decouples aminoacylation and pre-transfer editing within the IleRS synthetic site and further demonstrates that the A76 hydroxyl groups participate in post-transfer editing only. The data are consistent with a model whereby the 3'-end of the tRNA remains free to sample different positions within the IleRS·tRNA complex, whereas the fine-tuning of the synthetic site is attained via conformational rearrangement of the enzyme through the interactions with the remaining parts of the tRNA body.
Collapse
Affiliation(s)
- Nevena Cvetesic
- From the Department of Chemistry, University of Zagreb, Faculty of Science, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Mirna Bilus
- From the Department of Chemistry, University of Zagreb, Faculty of Science, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Ita Gruic-Sovulj
- From the Department of Chemistry, University of Zagreb, Faculty of Science, Horvatovac 102a, 10000 Zagreb, Croatia
| |
Collapse
|
24
|
Bernhardt HS. The Juxtaposition of Ribose Hydroxyl Groups: The Root of Biological Catalysis and the RNA World? ORIGINS LIFE EVOL B 2015; 45:15-9. [DOI: 10.1007/s11084-015-9403-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 10/10/2014] [Indexed: 10/24/2022]
|
25
|
Multi-scale computational enzymology: enhancing our understanding of enzymatic catalysis. Int J Mol Sci 2013; 15:401-22. [PMID: 24384841 PMCID: PMC3907816 DOI: 10.3390/ijms15010401] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 12/05/2013] [Accepted: 12/24/2013] [Indexed: 01/23/2023] Open
Abstract
Elucidating the origin of enzymatic catalysis stands as one the great challenges of contemporary biochemistry and biophysics. The recent emergence of computational enzymology has enhanced our atomistic-level description of biocatalysis as well the kinetic and thermodynamic properties of their mechanisms. There exists a diversity of computational methods allowing the investigation of specific enzymatic properties. Small or large density functional theory models allow the comparison of a plethora of mechanistic reactive species and divergent catalytic pathways. Molecular docking can model different substrate conformations embedded within enzyme active sites and determine those with optimal binding affinities. Molecular dynamics simulations provide insights into the dynamics and roles of active site components as well as the interactions between substrate and enzymes. Hybrid quantum mechanical/molecular mechanical (QM/MM) can model reactions in active sites while considering steric and electrostatic contributions provided by the surrounding environment. Using previous studies done within our group, on OvoA, EgtB, ThrRS, LuxS and MsrA enzymatic systems, we will review how these methods can be used either independently or cooperatively to get insights into enzymatic catalysis.
Collapse
|
26
|
Kumar S, Das M, Hadad CM, Musier-Forsyth K. Aminoacyl-tRNA substrate and enzyme backbone atoms contribute to translational quality control by YbaK. J Phys Chem B 2013; 117:4521-7. [PMID: 23185990 PMCID: PMC3601562 DOI: 10.1021/jp308628y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amino acids are covalently attached to their corresponding transfer RNAs (tRNAs) by aminoacyl-tRNA synthetases. Proofreading mechanisms exist to ensure that high fidelity is maintained in this key step in protein synthesis. Prolyl-tRNA synthetase (ProRS) can misacylate cognate tRNA(Pro) with Ala and Cys. The cis-editing domain of ProRS (INS) hydrolyzes Ala-tRNA(Pro), whereas Cys-tRNA(Pro) is hydrolyzed by a single domain editing protein, YbaK, in trans. Previous studies have proposed a model of substrate-binding by bacterial YbaK and elucidated a substrate-assisted mechanism of catalysis. However, the microscopic steps in this mechanism have not been investigated. In this work, we carried out biochemical experiments together with a detailed hybrid quantum mechanics/molecular mechanics study to investigate the mechanism of catalysis by Escherichia coli YbaK. The results support a mechanism wherein cyclization of the substrate Cys results in cleavage of the Cys-tRNA ester bond. Protein side chains do not play a significant role in YbaK catalysis. Instead, protein backbone atoms play crucial roles in stabilizing the transition state, while the product is stabilized by the 2'-OH of the tRNA.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210
- Center for RNA Biology, Ohio State University, Columbus, Ohio 43210
| | - Mom Das
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210
- Ohio State Biochemistry Program, Ohio State University, Columbus, Ohio 43210
- Center for RNA Biology, Ohio State University, Columbus, Ohio 43210
| | - Christopher M. Hadad
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210
- Ohio State Biochemistry Program, Ohio State University, Columbus, Ohio 43210
- Center for RNA Biology, Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
27
|
Perona JJ, Gruic-Sovulj I. Synthetic and editing mechanisms of aminoacyl-tRNA synthetases. Top Curr Chem (Cham) 2013; 344:1-41. [PMID: 23852030 DOI: 10.1007/128_2013_456] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRS) ensure the faithful transmission of genetic information in all living cells. The 24 known aaRS families are divided into 2 structurally distinct classes (class I and class II), each featuring a catalytic domain with a common fold that binds ATP, amino acid, and the 3'-terminus of tRNA. In a common two-step reaction, each aaRS first uses the energy stored in ATP to synthesize an activated aminoacyl adenylate intermediate. In the second step, either the 2'- or 3'-hydroxyl oxygen atom of the 3'-A76 tRNA nucleotide functions as a nucleophile in synthesis of aminoacyl-tRNA. Ten of the 24 aaRS families are unable to distinguish cognate from noncognate amino acids in the synthetic reactions alone. These enzymes possess additional editing activities for hydrolysis of misactivated amino acids and misacylated tRNAs, with clearance of the latter species accomplished in spatially separate post-transfer editing domains. A distinct class of trans-acting proteins that are homologous to class II editing domains also perform hydrolytic editing of some misacylated tRNAs. Here we review essential themes in catalysis with a view toward integrating the kinetic, stereochemical, and structural mechanisms of the enzymes. Although the aaRS have now been the subject of investigation for many decades, it will be seen that a significant number of questions regarding fundamental catalytic functioning still remain unresolved.
Collapse
Affiliation(s)
- John J Perona
- Department of Chemistry, Portland State University, 751, Portland, OR, 97207, USA,
| | | |
Collapse
|
28
|
Perona JJ, Hadd A. Structural diversity and protein engineering of the aminoacyl-tRNA synthetases. Biochemistry 2012; 51:8705-29. [PMID: 23075299 DOI: 10.1021/bi301180x] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRS) are the enzymes that ensure faithful transmission of genetic information in all living cells, and are central to the developing technologies for expanding the capacity of the translation apparatus to incorporate nonstandard amino acids into proteins in vivo. The 24 known aaRS families are divided into two classes that exhibit functional evolutionary convergence. Each class features an active site domain with a common fold that binds ATP, the amino acid, and the 3'-terminus of tRNA, embellished by idiosyncratic further domains that bind distal portions of the tRNA and enhance specificity. Fidelity in the expression of the genetic code requires that the aaRS be selective for both amino acids and tRNAs, a substantial challenge given the presence of structurally very similar noncognate substrates of both types. Here we comprehensively review central themes concerning the architectures of the protein structures and the remarkable dual-substrate selectivities, with a view toward discerning the most important issues that still substantially limit our capacity for rational protein engineering. A suggested general approach to rational design is presented, which should yield insight into the identities of the protein-RNA motifs at the heart of the genetic code, while also offering a basis for improving the catalytic properties of engineered tRNA synthetases emerging from genetic selections.
Collapse
Affiliation(s)
- John J Perona
- Department of Chemistry, Portland State University, Portland, Oregon 97207, United States.
| | | |
Collapse
|
29
|
Cvetesic N, Perona JJ, Gruic-Sovulj I. Kinetic partitioning between synthetic and editing pathways in class I aminoacyl-tRNA synthetases occurs at both pre-transfer and post-transfer hydrolytic steps. J Biol Chem 2012; 287:25381-94. [PMID: 22648413 DOI: 10.1074/jbc.m112.372151] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Comprehensive steady-state and transient kinetic studies of the synthetic and editing activities of Escherichia coli leucyl-tRNA synthetase (LeuRS) demonstrate that the enzyme depends almost entirely on post-transfer editing to endow the cell with specificity against incorporation of norvaline into protein. Among the three class I tRNA synthetases possessing a dedicated post-transfer editing domain (connective peptide 1; CP1 domain), LeuRS resembles valyl-tRNA synthetase in its reliance on post-transfer editing, whereas isoleucyl-tRNA synthetase differs in retaining a distinct tRNA-dependent synthetic site pre-transfer editing activity to clear noncognate amino acids before misacylation. Further characterization of the post-transfer editing activity in LeuRS by single-turnover kinetics demonstrates that the rate-limiting step is dissociation of deacylated tRNA and/or amino acid product and highlights the critical role of a conserved aspartate residue in mediating the first-order hydrolytic steps on the enzyme. Parallel analyses of adenylate and aminoacyl-tRNA formation reactions by wild-type and mutant LeuRS demonstrate that the efficiency of post-transfer editing is controlled by kinetic partitioning between hydrolysis and dissociation of misacylated tRNA and shows that trans editing after rebinding is a competent kinetic pathway. Together with prior analyses of isoleucyl-tRNA synthetase and valyl-tRNA synthetase, these experiments provide the basis for a comprehensive model of editing by class I tRNA synthetases, in which kinetic partitioning plays an essential role at both pre-transfer and post-transfer steps.
Collapse
Affiliation(s)
- Nevena Cvetesic
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | | | | |
Collapse
|
30
|
Bushnell EAC, Huang W, Llano J, Gauld JW. Molecular Dynamics Investigation into Substrate Binding and Identity of the Catalytic Base in the Mechanism of Threonyl-tRNA Synthetase. J Phys Chem B 2012; 116:5205-12. [DOI: 10.1021/jp302556e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Eric A. C. Bushnell
- Department of Chemistry and
Biochemistry, University of Windsor, Windsor,
Ontario N9B 3P4, Canada
| | - WenJuan Huang
- Department of Chemistry and
Biochemistry, University of Windsor, Windsor,
Ontario N9B 3P4, Canada
| | - Jorge Llano
- Department of Physical Sciences, Grant MacEwan University, Edmonton, Alberta T5J 4S2,
Canada
| | - James W. Gauld
- Department of Chemistry and
Biochemistry, University of Windsor, Windsor,
Ontario N9B 3P4, Canada
| |
Collapse
|
31
|
Kumar S, Das M, Hadad CM, Musier-Forsyth K. Substrate and enzyme functional groups contribute to translational quality control by bacterial prolyl-tRNA synthetase. J Phys Chem B 2012; 116:6991-9. [PMID: 22458656 DOI: 10.1021/jp300845h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Aminoacyl-tRNA synthetases activate specific amino acid substrates and attach them via an ester linkage to cognate tRNA molecules. In addition to cognate proline, prolyl-tRNA synthetase (ProRS) can activate cysteine and alanine and misacylate tRNA(Pro). Editing of the misacylated aminoacyl-tRNA is required for error-free protein synthesis. An editing domain (INS) appended to bacterial ProRS selectively hydrolyzes Ala-tRNA(Pro), whereas Cys-tRNA(Pro) is cleared by a freestanding editing domain, YbaK, through a unique mechanism involving substrate sulfhydryl chemistry. The detailed mechanism of catalysis by INS is currently unknown. To understand the alanine specificity and mechanism of catalysis by INS, we have explored several possible mechanisms of Ala-tRNA(Pro) deacylation via hybrid QM/MM calculations. Experimental studies were also performed to test the role of several residues in the INS active site as well as various substrate functional groups in catalysis. Our results support a critical role for the tRNA 2'-OH group in substrate binding and catalytic water activation. A role is also proposed for the protein's conserved GXXXP loop in transition state stabilization and for the main chain atoms of Gly261 in a proton relay that contributes substantially to catalysis.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
32
|
The phylogenomic roots of modern biochemistry: origins of proteins, cofactors and protein biosynthesis. J Mol Evol 2012; 74:1-34. [PMID: 22210458 DOI: 10.1007/s00239-011-9480-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 12/12/2011] [Indexed: 12/20/2022]
Abstract
The complexity of modern biochemistry developed gradually on early Earth as new molecules and structures populated the emerging cellular systems. Here, we generate a historical account of the gradual discovery of primordial proteins, cofactors, and molecular functions using phylogenomic information in the sequence of 420 genomes. We focus on structural and functional annotations of the 54 most ancient protein domains. We show how primordial functions are linked to folded structures and how their interaction with cofactors expanded the functional repertoire. We also reveal protocell membranes played a crucial role in early protein evolution and show translation started with RNA and thioester cofactor-mediated aminoacylation. Our findings allow elaboration of an evolutionary model of early biochemistry that is firmly grounded in phylogenomic information and biochemical, biophysical, and structural knowledge. The model describes how primordial α-helical bundles stabilized membranes, how these were decorated by layered arrangements of β-sheets and α-helices, and how these arrangements became globular. Ancient forms of aminoacyl-tRNA synthetase (aaRS) catalytic domains and ancient non-ribosomal protein synthetase (NRPS) modules gave rise to primordial protein synthesis and the ability to generate a code for specificity in their active sites. These structures diversified producing cofactor-binding molecular switches and barrel structures. Accretion of domains and molecules gave rise to modern aaRSs, NRPS, and ribosomal ensembles, first organized around novel emerging cofactors (tRNA and carrier proteins) and then more complex cofactor structures (rRNA). The model explains how the generation of protein structures acted as scaffold for nucleic acids and resulted in crystallization of modern translation.
Collapse
|
33
|
Guo M, Schimmel P. Structural analyses clarify the complex control of mistranslation by tRNA synthetases. Curr Opin Struct Biol 2011; 22:119-26. [PMID: 22155179 DOI: 10.1016/j.sbi.2011.11.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 11/13/2011] [Accepted: 11/15/2011] [Indexed: 12/24/2022]
Abstract
Proteins are precisely assembled with amino acids by matching the anticodons of charged transfer RNAs to nucleotide triplets in mRNA sequences. Accurate translation depends on the specific coupling of cognate amino acids and tRNAs - a step carried out by aminoacyl-tRNA synthetases (aaRSs) and that generates the genetic code. Owing to their intrinsic similarity, aaRSs developed highly differentiated structures to discriminate between amino acids at the active site for aminoacylation. Because this discrimination is not sufficient to prevent toxic mistranslation, aaRSs developed separate structures to further refine recognition by proofreading. From comprehensive structural studies on aaRSs, many of the molecular details have been elucidated for the recognition of cognate amino acids and for the misactivation and editing of noncognate amino acids, Here we review recent advances in the structural description of the binding, activation and editing of amino acids, which collectively reveal many aspects of the fine-tuned systems that resulted in a robust and universal genetic code.
Collapse
Affiliation(s)
- Min Guo
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, United States
| | | |
Collapse
|
34
|
Huang W, Bushnell EAC, Francklyn CS, Gauld JW. The α-amino group of the threonine substrate as the general base during tRNA aminoacylation: a new version of substrate-assisted catalysis predicted by hybrid DFT. J Phys Chem A 2011; 115:13050-60. [PMID: 21942566 PMCID: PMC3773706 DOI: 10.1021/jp205037a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Density functional theory-based methods in combination with large chemical models have been used to investigate the mechanism of the second half-reaction catalyzed by Thr-tRNA synthetase: aminoacyl transfer from Thr-AMP onto the (A76)3'OH of the cognate tRNA. In particular, we have examined pathways in which an active site His309 residue is either protonated or neutral (i.e., potentially able to act as a base). In the protonated His309-assisted mechanism, the rate-limiting step is formation of the tetrahedral intermediate. The barrier for this step is 155.0 kJ mol(-1), and thus, such a pathway is concluded to not be enzymatically feasible. For the neutral His309-assisted mechanism, two models were used with the difference being whether Lys465 was included. For either model, the barrier of the rate-limiting step is below the upper thermodynamic enzymatic limit of ~125 kJ mol(-1). Specifically, without Lys465, the rate-limiting barrier is 122.1 kJ mol(-1) and corresponds to a rotation about the tetrahedral intermediate C(carb)-OH bond. For the model with Lys465, the rate-limiting barrier is slightly lower and corresponds to the formation of the tetrahedral intermediate. Importantly, for both "neutral His309" models, the neutral amino group of the threonyl substrate directly acts as the proton acceptor; in the formation of the tetrahedral intermediate, the (A76)3'OH proton is directly transferred onto the Thr-NH(2). Therefore, the overall mechanism follows a general substrate-assisted catalytic mechanism.
Collapse
Affiliation(s)
- WenJuan Huang
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Eric A. C. Bushnell
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Christopher S. Francklyn
- Department of Biochemistry, College of Medicine, Health Sciences Complex, 89 Beaumont Avenue, University of Vermont, Burlington, Vermont 05405, United States
| | - James W. Gauld
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| |
Collapse
|
35
|
Dulic M, Pozar J, Bilokapic S, Weygand-Durasevic I, Gruic-Sovulj I. An idiosyncratic serine ordering loop in methanogen seryl-tRNA synthetases guides substrates through seryl-tRNASer formation. Biochimie 2011; 93:1761-9. [DOI: 10.1016/j.biochi.2011.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 06/10/2011] [Indexed: 10/18/2022]
|
36
|
Minajigi A, Deng B, Francklyn CS. Fidelity escape by the unnatural amino acid β-hydroxynorvaline: an efficient substrate for Escherichia coli threonyl-tRNA synthetase with toxic effects on growth. Biochemistry 2011; 50:1101-9. [PMID: 21222438 DOI: 10.1021/bi101360a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In all living systems, the fidelity of translation is maintained in part by the editing mechanisms of aminoacyl-tRNA synthetases (ARSs). Some nonproteogenic amino acids, including β-hydroxynorvaline (HNV) are nevertheless efficiently aminoacylated and become incorporated into proteins. To investigate the basis of HNV's ability to function in protein synthesis, the utilization of HNV by Escherichia coli threonyl-tRNA synthetase (ThrRS) was investigated through both in vitro functional experiments and bacterial growth studies. The measured specificity constant (k(cat)/K(M)) for HNV was found to be only 20-30-fold less than that of cognate threonine. The rate of aminoacyl transfer (10.4 s(-1)) was 10-fold higher than the multiple turnover k(cat) value (1 s(-1)), indicating that, as for cognate threonine, amino acid activation is likely to be the rate-limiting step. Like noncognate serine, HNV enhances the ATPase function of the synthetic site, at a rate not increased by nonaminoacylatable (3'-dA76) tRNA. ThrRS also failed to exhibit posttransfer editing activity against HNV. In growing bacteria, the addition of HNV dramatically suppressed growth rates, which indicates either negative phenotypic consequences associated with its incorporation into protein or inhibition of an unidentified metabolic reaction. The inability of wild ThrRS to prevent utilization of HNV as a substrate illustrates that, for at least one ARS, the naturally occurring enzyme lacks the capability to effectively discriminate against nonproteogenic amino acids that are not encountered under normal physiological conditions. Other examples of "fidelity escape" in the ARSs may serve as useful starting points in the design of ARSs with specificity for unnatural amino acids.
Collapse
Affiliation(s)
- Anand Minajigi
- Cell and Molecular Biology Program, College of Medicine, Health Sciences Complex, University of Vermont, Burlington, Vermont 05405-0068, United States
| | | | | |
Collapse
|
37
|
Minajigi A, Francklyn CS. Aminoacyl transfer rate dictates choice of editing pathway in threonyl-tRNA synthetase. J Biol Chem 2010; 285:23810-7. [PMID: 20504770 DOI: 10.1074/jbc.m110.105320] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aminoacyl-tRNA synthetases hydrolyze aminoacyl adenylates and aminoacyl-tRNAs formed from near-cognate amino acids, thereby increasing translational fidelity. The contributions of pre- and post-transfer editing pathways to the fidelity of Escherichia coli threonyl-tRNA synthetase (ThrRS) were investigated by rapid kinetics. In the pre-steady state, asymmetric activation of cognate threonine and noncognate serine was observed in the active sites of dimeric ThrRS, with similar rates of activation. In the absence of tRNA, seryl-adenylate was hydrolyzed 29-fold faster by the ThrRS catalytic domain than threonyl-adenylate. The rate of seryl transfer to cognate tRNA was only 2-fold slower than threonine. Experiments comparing the rate of ATP consumption to the rate of aminoacyl-tRNA(AA) formation demonstrated that pre-transfer hydrolysis contributes to proofreading only when the rate of transfer is slowed significantly. Thus, the relative contributions of pre- and post-transfer editing in ThrRS are subject to modulation by the rate of aminoacyl transfer.
Collapse
Affiliation(s)
- Anand Minajigi
- Cell and Molecular Biology Program, University of Vermont, Burlington, VT 05405, USA
| | | |
Collapse
|
38
|
Dulic M, Cvetesic N, Perona JJ, Gruic-Sovulj I. Partitioning of tRNA-dependent editing between pre- and post-transfer pathways in class I aminoacyl-tRNA synthetases. J Biol Chem 2010; 285:23799-809. [PMID: 20498377 DOI: 10.1074/jbc.m110.133553] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hydrolytic editing activities are present in aminoacyl-tRNA synthetases possessing reduced amino acid discrimination in the synthetic reactions. Post-transfer hydrolysis of misacylated tRNA in class I editing enzymes occurs in a spatially separate domain inserted into the catalytic Rossmann fold, but the location and mechanisms of pre-transfer hydrolysis of misactivated amino acids have been uncertain. Here, we use novel kinetic approaches to distinguish among three models for pre-transfer editing by Escherichia coli isoleucyl-tRNA synthetase (IleRS). We demonstrate that tRNA-dependent hydrolysis of noncognate valyl-adenylate by IleRS is largely insensitive to mutations in the editing domain of the enzyme and that noncatalytic hydrolysis after release is too slow to account for the observed rate of clearing. Measurements of the microscopic rate constants for amino acid transfer to tRNA in IleRS and the related valyl-tRNA synthetase (ValRS) further suggest that pre-transfer editing in IleRS is an enzyme-catalyzed activity residing in the synthetic active site. In this model, the balance between pre-transfer and post-transfer editing pathways is controlled by kinetic partitioning of the noncognate aminoacyl-adenylate. Rate constants for hydrolysis and transfer of a noncognate intermediate are roughly equal in IleRS, whereas in ValRS transfer to tRNA is 200-fold faster than hydrolysis. In consequence, editing by ValRS occurs nearly exclusively by post-transfer hydrolysis in the editing domain, whereas in IleRS both pre- and post-transfer editing are important. In both enzymes, the rates of amino acid transfer to tRNA are similar for cognate and noncognate aminoacyl-adenylates, providing a significant contrast with editing DNA polymerases.
Collapse
Affiliation(s)
- Morana Dulic
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | | | | | | |
Collapse
|
39
|
Francklyn CS, Minajigi A. tRNA as an active chemical scaffold for diverse chemical transformations. FEBS Lett 2009; 584:366-75. [PMID: 19925795 DOI: 10.1016/j.febslet.2009.11.045] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 11/11/2009] [Accepted: 11/11/2009] [Indexed: 10/20/2022]
Abstract
During protein synthesis, tRNA serves as the intermediary between cognate amino acids and their corresponding RNA trinucleotide codons. Aminoacyl-tRNA is also a biosynthetic precursor and amino acid donor for other macromolecules. AA-tRNAs allow transformations of acidic amino acids into their amide-containing counterparts, and seryl-tRNA(Ser) donates serine for antibiotic synthesis. Aminoacyl-tRNA is also used to cross-link peptidoglycan, to lysinylate the lipid bilayer, and to allow proteolytic turnover via the N-end rule. These alternative functions may signal the use of RNA in early evolution as both a biological scaffold and a catalyst to achieve a wide variety of chemical transformations.
Collapse
Affiliation(s)
- Christopher S Francklyn
- Cell and Molecular Biology Program, University of Vermont, Burlington, VT 05405, United States.
| | | |
Collapse
|
40
|
Abstract
Translating the 4-letter code of RNA into the 22-letter alphabet of proteins is a central feature of cellular life. The fidelity with which mRNA is translated during protein synthesis is determined by two factors: the availability of aminoacyl-tRNAs composed of cognate amino acid:tRNA pairs and the accurate selection of aminoacyl-tRNAs on the ribosome. The role of aminoacyl-tRNA synthetases in translation is to define the genetic code by accurately pairing cognate tRNAs with their corresponding amino acids. Synthetases achieve the amino acid substrate specificity necessary to keep errors in translation to an acceptable level in two ways: preferential binding of the cognate amino acid and selective editing of near-cognate amino acids. Editing significantly decreases the frequency of errors and is important for translational quality control, and many details of the various editing mechanisms and their effect on different cellular systems are now starting to emerge.
Collapse
Affiliation(s)
- Jiqiang Ling
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
41
|
Guth E, Farris M, Bovee M, Francklyn CS. Asymmetric amino acid activation by class II histidyl-tRNA synthetase from Escherichia coli. J Biol Chem 2009; 284:20753-62. [PMID: 19487703 DOI: 10.1074/jbc.m109.021311] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) join amino acids to their cognate tRNAs to initiate protein synthesis. Class II ARS possess a unique catalytic domain fold, possess active site signature sequences, and are dimers or tetramers. The dimeric class I enzymes, notably TyrRS, exhibit half-of-sites reactivity, but its mechanistic basis is unclear. In class II histidyl-tRNA synthetase (HisRS), amino acid activation occurs at different rates in the two active sites when tRNA is absent, but half-of-sites reactivity has not been observed. To investigate the mechanistic basis of the asymmetry, and explore the relationship between adenylate formation and conformational events in HisRS, a fluorescently labeled version of the enzyme was developed by conjugating 7-diethylamino-3-((((2-maleimidyl)ethyl)amino)carbonyl)coumarin (MDCC) to a cysteine introduced at residue 212, located in the insertion domain. The binding of the substrates histidine, ATP, and 5'-O-[N-(l-histidyl)sulfamoyl]adenosine to MDCC-HisRS produced fluorescence quenches on the order of 6-15%, allowing equilibrium dissociation constants to be measured. The rates of adenylate formation measured by rapid quench and domain closure as measured by stopped-flow fluorescence were similar and asymmetric with respect to the two active sites of the dimer, indicating that conformational change may be rate-limiting for product formation. Fluorescence resonance energy transfer experiments employing differential labeling of the two monomers in the dimer suggested that rigid body rotation of the insertion domain accompanies adenylate formation. The results support an alternating site model for catalysis in HisRS that may prove to be common to other class II aminoacyl-tRNA synthetases.
Collapse
Affiliation(s)
- Ethan Guth
- Department of Biochemistry, College of Medicine, Health Sciences Complex, University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | |
Collapse
|