1
|
Thonnekottu D, Chatterjee D. Probing the modulation in facilitated diffusion guided by DNA-protein interactions in target search processes. Phys Chem Chem Phys 2024. [PMID: 38922594 DOI: 10.1039/d4cp01580k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Many fundamental biophysical processes involving gene regulation and gene editing rely, at the molecular level, on an intricate methodology of searching and locating the precise target base pair sequence on the genome by specific binding proteins. A unique mechanism, known as 'facilitated diffusion', which is a combination of 1D sliding along with 3D movement, is considered to be the key step for such events. This also explains the relatively much shorter timescale of the target searching process, compared to other diffusion-controlled biophysical processes. In this work, we aim to probe the modulation of target search dynamics of a protein moiety by estimating the rate of the target search process, and the statistics of the search rounds and timescales accomplished by the 1D and 3D motions, based on first passage time (FPT) calculations. This is studied with its characteristics getting influenced by various given conditions such as, when the DNA is rigid or flexible, and when the target is placed at different locations on the DNA. The current theoretical framework includes a Brownian dynamics simulation setup adopting a straightforward coarse-grained model for a diffusing protein on DNA. Moreover, this theoretical analysis provides insights into the complex target search dynamics by highlighting the significance of the chain dynamics in the mechanistic details of the facilitated diffusion process.
Collapse
Affiliation(s)
- Diljith Thonnekottu
- Department of Physics, Indian Institute of Technology Palakkad, Kerala 678623, India
| | - Debarati Chatterjee
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala 678623, India.
- Department of Physics, Indian Institute of Technology Palakkad, Kerala 678623, India
| |
Collapse
|
2
|
Malinowska AM, van Mameren J, Peterman EJG, Wuite GJL, Heller I. Introduction to Optical Tweezers: Background, System Designs, and Applications. Methods Mol Biol 2024; 2694:3-28. [PMID: 37823997 DOI: 10.1007/978-1-0716-3377-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Optical tweezers are a means to manipulate objects with light. With the technique, microscopically small objects can be held and steered, allowing for accurate measurement of the forces applied to these objects. Optical tweezers can typically obtain a nanometer spatial resolution, a picoNewton force resolution, and a millisecond time resolution, which makes the technique well suited for the study of biological processes from the single-cell down to the single-molecule level. In this chapter, we aim to provide an introduction to the use of optical tweezers for single-molecule analyses. We start from the basic principles and methodology involved in optical trapping, force calibration, and force measurements. Next, we describe the components of an optical tweezers setup and their experimental relevance. Finally, we will provide an overview of the broad applications in context of biological research, with the emphasis on the measurement modes, experimental assays, and possible combinations with fluorescence microscopy techniques.
Collapse
Affiliation(s)
- Agata M Malinowska
- LaserLaB Amsterdam and Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Joost van Mameren
- Institute of Physics, University of Amsterdam, Amsterdam, The Netherlands
| | - Erwin J G Peterman
- LaserLaB Amsterdam and Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Gijs J L Wuite
- LaserLaB Amsterdam and Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Iddo Heller
- LaserLaB Amsterdam and Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Singh A, Chakrabarti S. Diffusion controls local versus dispersed inheritance of histones during replication and shapes epigenomic architecture. PLoS Comput Biol 2023; 19:e1011725. [PMID: 38109423 PMCID: PMC10760866 DOI: 10.1371/journal.pcbi.1011725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/02/2024] [Accepted: 12/01/2023] [Indexed: 12/20/2023] Open
Abstract
The dynamics of inheritance of histones and their associated modifications across cell divisions can have major consequences on maintenance of the cellular epigenomic state. Recent experiments contradict the long-held notion that histone inheritance during replication is always local, suggesting that active and repressed regions of the genome exhibit fundamentally different histone dynamics independent of transcription-coupled turnover. Here we develop a stochastic model of histone dynamics at the replication fork and demonstrate that differential diffusivity of histones in active versus repressed chromatin is sufficient to quantitatively explain these recent experiments. Further, we use the model to predict patterns in histone mark similarity between pairs of genomic loci that should be developed as a result of diffusion, but cannot originate from either PRC2 mediated mark spreading or transcriptional processes. Interestingly, using a combination of CHIP-seq, replication timing and Hi-C datasets we demonstrate that all the computationally predicted patterns are consistently observed for both active and repressive histone marks in two different cell lines. While direct evidence for histone diffusion remains controversial, our results suggest that dislodged histones in euchromatin and facultative heterochromatin may exhibit some level of diffusion within "Diffusion-Accessible-Domains" (DADs), leading to redistribution of epigenetic marks within and across chromosomes. Preservation of the epigenomic state across cell divisions therefore might be achieved not by passing on strict positional information of histone marks, but by maintaining the marks in somewhat larger DADs of the genome.
Collapse
Affiliation(s)
- Archit Singh
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Shaon Chakrabarti
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
4
|
Al Masri C, Wan B, Yu J. Nonspecific vs. specific DNA binding free energetics of a transcription factor domain protein. Biophys J 2023; 122:4476-4487. [PMID: 37897044 PMCID: PMC10722393 DOI: 10.1016/j.bpj.2023.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/06/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Transcription factor (TF) proteins regulate gene expression by binding to specific sites on the genome. In the facilitated diffusion model, an optimized search process is achieved by the TF alternating between 3D diffusion in the bulk and 1D diffusion along DNA. While undergoing 1D diffusion, the protein can switch from a search mode for fast diffusion along nonspecific DNA to a recognition mode for stable binding to specific DNA. It was recently noticed that, for a small TF domain protein, reorientations on DNA happen between the nonspecific and specific DNA binding. We here conducted all-atom molecular dynamics simulations with steering forces to reveal the protein-DNA binding free energetics, confirming that the search and recognition modes are distinguished primarily by protein orientations on the DNA. As the binding free energy difference between the specific and nonspecific DNA system slightly deviates from that being estimated directly from dissociation constants on 15-bp DNA constructs, we hypothesize that the discrepancy can come from DNA sequences flanking the 6-bp central binding sites that impact on the dissociation kinetics measurements. The hypothesis is supported by a simplified spherical protein-DNA model along with stochastic simulations and kinetic modeling.
Collapse
Affiliation(s)
- Carmen Al Masri
- Department of Physics and Astronomy, University of California, Irvine, California
| | - Biao Wan
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Jin Yu
- Department of Physics and Astronomy, University of California, Irvine, California; Department of Physics and Astronomy, Department of Chemistry, NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California.
| |
Collapse
|
5
|
Novel synthesis of porous one-handed helical poly(substituted phenylacetylene) bearing betulin derivatives pendant groups. Polym J 2023. [DOI: 10.1038/s41428-022-00752-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
6
|
Lim W, Randisi F, Doye JPK, Louis AA. The interplay of supercoiling and thymine dimers in DNA. Nucleic Acids Res 2022; 50:2480-2492. [PMID: 35188542 PMCID: PMC8934635 DOI: 10.1093/nar/gkac082] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/21/2022] [Accepted: 02/04/2022] [Indexed: 11/16/2022] Open
Abstract
Thymine dimers are a major mutagenic photoproduct induced by UV radiation. While they have been the subject of extensive theoretical and experimental investigations, questions of how DNA supercoiling affects local defect properties, or, conversely, how the presence of such defects changes global supercoiled structure, are largely unexplored. Here, we introduce a model of thymine dimers in the oxDNA forcefield, parametrized by comparison to melting experiments and structural measurements of the thymine dimer induced bend angle. We performed extensive molecular dynamics simulations of double-stranded DNA as a function of external twist and force. Compared to undamaged DNA, the presence of a thymine dimer lowers the supercoiling densities at which plectonemes and bubbles occur. For biologically relevant supercoiling densities and forces, thymine dimers can preferentially segregate to the tips of the plectonemes, where they enhance the probability of a localized tip-bubble. This mechanism increases the probability of highly bent and denatured states at the thymine dimer site, which may facilitate repair enzyme binding. Thymine dimer-induced tip-bubbles also pin plectonemes, which may help repair enzymes to locate damage. We hypothesize that the interplay of supercoiling and local defects plays an important role for a wider set of DNA damage repair systems.
Collapse
Affiliation(s)
- Wilber Lim
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | - Ferdinando Randisi
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
- FabricNano Limited, 192 Drummond St, London NW1 3HP, UK
| | - Jonathan P K Doye
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Ard A Louis
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| |
Collapse
|
7
|
Wan B, Yu J. Two-phase dynamics of DNA supercoiling based on DNA polymer physics. Biophys J 2022; 121:658-669. [PMID: 35016860 PMCID: PMC8873955 DOI: 10.1016/j.bpj.2022.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/11/2021] [Accepted: 01/05/2022] [Indexed: 11/28/2022] Open
Abstract
DNA supercoils are generated in genome regulation processes such as transcription and replication and provide mechanical feedback to such processes. Under tension, a DNA supercoil can present a coexistence state of plectonemic and stretched phases. Experiments have revealed the dynamic behaviors of plectonemes, e.g., diffusion, nucleation, and hopping. To represent these dynamics with conformational changes, we demonstrated first the fast dynamics on the DNA to reach torque equilibrium within the plectonemic and stretched phases, and then identified the two-phase boundaries as collective slow variables to describe the essential dynamics. According to the timescale separation demonstrated here, we developed a two-phase model on the dynamics of DNA supercoiling, which can capture physiologically relevant events across timescales of several orders of magnitudes. In this model, we systematically characterized the slow dynamics between the two phases and compared the numerical results with those from the DNA polymer physics-based worm-like chain model. The supercoiling dynamics, including the nucleation, diffusion, and hopping of plectonemes, have been well represented and reproduced, using the two-phase dynamic model, at trivial computational costs. Our current developments, therefore, can be implemented to explore multiscale physical mechanisms of the DNA supercoiling-dependent physiological processes.
Collapse
Affiliation(s)
- Biao Wan
- Complex Systems Division, Beijing Computational Science Research Center, Beijing, China.
| | - Jin Yu
- Department of Physics and Astronomy, Department of Chemistry, NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California.
| |
Collapse
|
8
|
Wang Z, Deng W. Dynamic transcription regulation at the single-molecule level. Dev Biol 2021; 482:67-81. [PMID: 34896367 DOI: 10.1016/j.ydbio.2021.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023]
Abstract
Cell fate changes during development, differentiation, and reprogramming are largely controlled at the transcription level. The DNA-binding transcription factors (TFs) often act in a combinatorial fashion to alter chromatin states and drive cell type-specific gene expression. Recent advances in fluorescent microscopy technologies have enabled direct visualization of biomolecules involved in the process of transcription and its regulatory events at the single-molecule level in living cells. Remarkably, imaging and tracking individual TF molecules at high temporal and spatial resolution revealed that they are highly dynamic in searching and binding cognate targets, rather than static and binding constantly. In combination with investigation using techniques from biochemistry, structure biology, genetics, and genomics, a more well-rounded view of transcription regulation is emerging. In this review, we briefly cover the technical aspects of live-cell single-molecule imaging and focus on the biological relevance and interpretation of the single-molecule dynamic features of transcription regulatory events observed in the native chromatin environment of living eukaryotic cells. We also discuss how these dynamic features might shed light on mechanistic understanding of transcription regulation.
Collapse
Affiliation(s)
- Zuhui Wang
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Wulan Deng
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China; Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, 100871, China; Peking-Tsinghua Center for Life Sciences (CLS), Peking University, Beijing, 100871, China; School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
9
|
Zhang B, Tan F, Zhao N. Polymer looping kinetics in active heterogeneous environments. SOFT MATTER 2021; 17:10334-10349. [PMID: 34734953 DOI: 10.1039/d1sm01259b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A typical biological environment is usually featured by crowding and heterogeneity, leading to complex reaction kinetics of the immersed macromolecules. In the present work, we adopt Langevin dynamics simulations to systematically investigate polymer looping kinetics in active heterogeneous media crowded with a mixture of mobile active particles and immobile obstacles. For comparison, a parallel study is also performed in the passive heterogeneous media. We explicitly analyze the change of looping time and looping probability with the variation of obstacle ratio, volume fraction and crowder size. We reveal the novel phenomena of inhibition-facilitation transition of the looping rate induced by heterogeneity, crowdedness and activity. In addition, our results demonstrate a very non-trivial crowder size effect on the looping kinetics. The underlying mechanism is rationalized by the interplay of polymer diffusion, conformational change and looping free-energy barrier. The competing effect arising from active particles and obstacles on structural and dynamical properties of the polymer yields a consistent scenario for our observations. Lastly, the non-exponential kinetics of the looping process is also analyzed. We find that both activity and crowding can strengthen the heterogeneity degree of the looping kinetics.
Collapse
Affiliation(s)
- Bingjie Zhang
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Fei Tan
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Nanrong Zhao
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
10
|
Lin SN, Dame RT, Wuite GJL. Direct visualization of the effect of DNA structure and ionic conditions on HU-DNA interactions. Sci Rep 2021; 11:18492. [PMID: 34531428 PMCID: PMC8446073 DOI: 10.1038/s41598-021-97763-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/04/2021] [Indexed: 11/17/2022] Open
Abstract
Architectural DNA–binding proteins are involved in many important DNA transactions by virtue of their ability to change DNA conformation. Histone-like protein from E. coli strain U93, HU, is one of the most studied bacterial architectural DNA–binding proteins. Nevertheless, there is still a limited understanding of how the interactions between HU and DNA are affected by ionic conditions and the structure of DNA. Here, using optical tweezers in combination with fluorescent confocal imaging, we investigated how ionic conditions affect the interaction between HU and DNA. We directly visualized the binding and the diffusion of fluorescently labelled HU dimers on DNA. HU binds with high affinity and exhibits low mobility on the DNA in the absence of Mg2+; it moves 30-times faster and stays shorter on the DNA with 8 mM Mg2+ in solution. Additionally, we investigated the effect of DNA tension on HU–DNA complexes. On the one hand, our studies show that binding of HU enhances DNA helix stability. On the other hand, we note that the binding affinity of HU for DNA in the presence of Mg2+ increases at tensions above 50 pN, which we attribute to force-induced structural changes in the DNA. The observation that HU diffuses faster along DNA in presence of Mg2+ compared to without Mg2+ suggests that the free energy barrier for rotational diffusion along DNA is reduced, which can be interpreted in terms of reduced electrostatic interaction between HU and DNA, possibly coinciding with reduced DNA bending.
Collapse
Affiliation(s)
- Szu-Ning Lin
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.,Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Remus T Dame
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands. .,Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands.
| | - Gijs J L Wuite
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands. .,LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Papale A, Smrek J, Rosa A. Nanorheology of active-passive polymer mixtures differentiates between linear and ring polymer topology. SOFT MATTER 2021; 17:7111-7117. [PMID: 34254620 DOI: 10.1039/d1sm00665g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We study the motion of dispersed nanoprobes in entangled active-passive polymer mixtures. By comparing the two architectures of linear vs. unconcatenated and unknotted circular polymers, we demonstrate that novel, rich physics emerge. For both polymer architectures, nanoprobes of size smaller than the entanglement threshold of the solution move faster as activity is increased and more energy is pumped in the system. For larger nanoprobes, a surprising phenomenon occurs: while in linear solutions they move qualitatively as before, in active-passive ring solutions nanoprobes decelerate with respect to the purely passive conditions. We rationalize this effect in terms of the non-equilibrium, topology-dependent association (clustering) of nanoprobes to the cold component of the ring mixture reminiscent of the recently discovered [Weber et al., Phys. Rev. Lett., 2016, 116, 058301] phase separation in scalar active-passive mixtures. We conclude with a potential connection to the microrheology of the chromatin in the nuclei of the cells.
Collapse
Affiliation(s)
- Andrea Papale
- SISSA - Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136 Trieste, Italy.
| | - Jan Smrek
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria.
| | - Angelo Rosa
- SISSA - Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136 Trieste, Italy.
| |
Collapse
|
12
|
Zhang B, Lei T, Zhao N. Comparative study of polymer looping kinetics in passive and active environments. Phys Chem Chem Phys 2021; 23:12171-12190. [PMID: 34008649 DOI: 10.1039/d1cp00591j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Intra-chain looping in complex environments is significant in advancing our understanding of biological processes in life. We adopt Langevin dynamics simulations to perform a comparative study of polymer looping kinetics in passive and active environments. From the analysis of looping quantities, including looping-unlooping times and looping probabilities, we unraveled the intriguing effects of active crowder size, activity and crowding. Firstly, we figured out the phase diagram involving a novel facilitation-inhibition transition in the parameter space of active crowder size and active force, and the two-fold roles of activity are clarified. In particular, we find that active particles of a size comparable to the polymer monomer are most favorable for facilitated looping, while those with a similar size to the polymer gyration radius impede the looping most seriously. Secondly, the underlying looping mechanisms in different active crowder size regimes are rationalized by the interplay among diffusion, polymer conformational change and the free-energy barrier. For small active crowders, activity significantly promotes end-to-end distance diffusion, which dominantly facilitates both looping and unlooping processes. In the case of moderate active crowders, the polymer chain suffers from prominent swelling, and thus inevitable inhibited looping will occur. For large active crowders, activity induces a counterintuitive non-cage effect on the looping kinetics, through yielding a higher effective temperature and larger unlooping free-energy barrier. This is in sharp contrast to the caging phenomena observed in passive media. Lastly, the volume-fraction dependence of the looping quantities in an active bath demonstrates dramatic discrepancies from that in a passive bath, which highlights the contrasting effects of activity and crowding.
Collapse
Affiliation(s)
- Bingjie Zhang
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Ting Lei
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Nanrong Zhao
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
13
|
Belotserkovskii BP. Effects of isolated nonspecific binders upon the search for specific targets: Absolute rates versus competition between the targets. Phys Rev E 2021; 103:022413. [PMID: 33735998 DOI: 10.1103/physreve.103.022413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/03/2021] [Indexed: 11/07/2022]
Abstract
Many biological processes involve macromolecules searching for their specific targets that are surrounded by other objects, and binding to these objects affects the target search. Acceleration of the target search by nonspecific binders was observed experimentally and analyzed theoretically, for example, for DNA-binding proteins. According to existing theories this acceleration requires continuous transfer between the nonspecific binders and the specific target. In contrast, our analysis predicts that (i) nonspecific binders could accelerate the search without continuous transfer to the specific target provided that the searching particle is capable of sliding along the binder; (ii) in some cases such binders could decelerate the target search, but provide an advantage in competition with the "binder-free" target; (iii) nonbinding objects decelerate the target search. We also show that although the target search in the presence of binders could be considered as diffusion in inhomogeneous media, in the general case it cannot be described by the effective diffusion coefficient.
Collapse
|
14
|
Martini L, Brameyer S, Hoyer E, Jung K, Gerland U. Dynamics of chromosomal target search by a membrane-integrated one-component receptor. PLoS Comput Biol 2021; 17:e1008680. [PMID: 33539417 PMCID: PMC7888679 DOI: 10.1371/journal.pcbi.1008680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 02/17/2021] [Accepted: 01/07/2021] [Indexed: 12/03/2022] Open
Abstract
Membrane proteins account for about one third of the cellular proteome, but it is still unclear how dynamic they are and how they establish functional contacts with cytoplasmic interaction partners. Here, we consider a membrane-integrated one-component receptor that also acts as a transcriptional activator, and analyze how it kinetically locates its specific binding site on the genome. We focus on the case of CadC, the pH receptor of the acid stress response Cad system in E. coli. CadC is a prime example of a one-component signaling protein that directly binds to its cognate target site on the chromosome to regulate transcription. We combined fluorescence microscopy experiments, mathematical analysis, and kinetic Monte Carlo simulations to probe this target search process. Using fluorescently labeled CadC, we measured the time from activation of the receptor until successful binding to the DNA in single cells, exploiting that stable receptor-DNA complexes are visible as fluorescent spots. Our experimental data indicate that CadC is highly mobile in the membrane and finds its target by a 2D diffusion and capture mechanism. DNA mobility is constrained due to the overall chromosome organization, but a labeled DNA locus in the vicinity of the target site appears sufficiently mobile to randomly come close to the membrane. Relocation of the DNA target site to a distant position on the chromosome had almost no effect on the mean search time, which was between four and five minutes in either case. However, a mutant strain with two binding sites displayed a mean search time that was reduced by about a factor of two. This behavior is consistent with simulations of a coarse-grained lattice model for the coupled dynamics of DNA within a cell volume and proteins on its surface. The model also rationalizes the experimentally determined distribution of search times. Overall our findings reveal that DNA target search does not present a much bigger kinetic challenge for membrane-integrated proteins than for cytoplasmic proteins. More generally, diffusion and capture mechanisms may be sufficient for bacterial membrane proteins to establish functional contacts with cytoplasmic targets. Adaptation to changing environments is vital to bacteria and is enabled by sophisticated signal transduction systems. While signal transduction by two-component systems is well studied, the signal transduction of membrane-integrated one-component systems, where one protein performs both sensing and response regulation, are insufficiently understood. How can a membrane-integrated protein bind to specific sites on the genome to regulate transcription? Here, we study the kinetics of this process, which involves both protein diffusion within the membrane and conformational fluctuations of the genomic DNA. A well-suited model system for this question is CadC, the signaling protein of the E. coli Cad system involved in pH stress response. Fluorescently labeled CadC forms visible spots in single cells upon stable DNA-binding, marking the end of the protein-DNA search process. Moreover, the start of the search is triggered by a medium shift exposing cells to pH stress. We probe the underlying mechanism by varying the number and position of DNA target sites. We combine these experiments with mathematical analysis and kinetic Monte Carlo simulations of lattice models for the search process. Our results suggest that CadC diffusion in the membrane is pivotal for this search, while the DNA target site is just mobile enough to reach the membrane.
Collapse
Affiliation(s)
- Linda Martini
- Physics of Complex Biosystems, Technical University of Munich, Garching, Germany
| | - Sophie Brameyer
- Microbiology, Ludwig-Maximilians-University Munich, Martinsried, Germany
| | - Elisabeth Hoyer
- Microbiology, Ludwig-Maximilians-University Munich, Martinsried, Germany
| | - Kirsten Jung
- Microbiology, Ludwig-Maximilians-University Munich, Martinsried, Germany
- * E-mail: (KJ); (UG)
| | - Ulrich Gerland
- Physics of Complex Biosystems, Technical University of Munich, Garching, Germany
- * E-mail: (KJ); (UG)
| |
Collapse
|
15
|
Murugan R. A lattice model on the rate of in vivo site-specific DNA-protein interactions. Phys Biol 2020; 18:016005. [PMID: 33022664 DOI: 10.1088/1478-3975/abbe9a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We develop a lattice model of site-specific DNA-protein interactions under in vivo conditions where DNA is modelled as a self-avoiding random walk that is embedded in a cubic lattice box resembling the living cell. The protein molecule searches for its cognate site on DNA via a combination of three dimensional (3D) and one dimensional (1D) random walks. Hopping and intersegmental transfers occur depending on the conformational state of DNA. Results show that the search acceleration ratio (= search time in pure 3D route/search time in 3D and 1D routes) asymptotically increases towards a limiting value as the dilution factor of DNA (= volume of the cell/the volume of DNA) tends towards infinity. When the dilution ratio is low, then hopping and intersegmental transfers significantly enhance the search efficiency over pure sliding. At high dilution ratio, hopping does not enhance the search efficiency much since under such situation DNA will be in a relaxed conformation that favors only sliding. In the absence of hopping and intersegmental transfers, there exists an optimum sliding time at which the search acceleration ratio attains a maximum in line with the current theoretical results. However, existence of such optimum sliding length disappears in the presence of hopping. When the DNA is confined in a small volume inside the cell resembling a natural cell system, then there exists an optimum dilution and compression ratios (= total cell volume/volume in which DNA is confined) at which the search acceleration factor attains a maximum especially in the presence of hopping and intersegmental transfers. These optimum values are consistent with the values observed in the Escherichia coli cell system. In the absence of confinement of DNA, position of the specific binding site on the genomic DNA significantly influences the search acceleration. However, such position dependent changes in the search acceleration ratio will be nullified in the presence of hopping and intersegmental transfers especially when the DNA is confined in a small volume that is embedded in an outer cell.
Collapse
Affiliation(s)
- R Murugan
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
16
|
Goswami K, Sebastian KL. Exact solution to the first-passage problem for a particle with a dichotomous diffusion coefficient. Phys Rev E 2020; 102:042103. [PMID: 33212715 DOI: 10.1103/physreve.102.042103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/17/2020] [Indexed: 11/07/2022]
Abstract
We consider the problem of first-passage time for reaching a boundary of a particle which diffuses in one dimension and is confined to the region x∈(0,L), with a diffusion coefficient that switches randomly between two states, having diffusivities that are different. Exact analytical expressions are found for the survival probability of the particle as a function of time. The survival probability has a multiexponential decay, and to characterize it, we use the average rate constant k, as well as the instantaneous rate r(t). Our approach can easily be extended to the case where the diffusion coefficient takes n different values. The model should be of interest to biological processes, in which a reactant searches for a target in a heterogeneous environment, making the diffusion coefficient a random function of time. The best example for this is a protein searching for a target site on the DNA.
Collapse
Affiliation(s)
- Koushik Goswami
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - K L Sebastian
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India.,Indian Institute of Technology, Kozhippara P.O., Palakkad 678557, Kerala, India
| |
Collapse
|
17
|
Ferreira RM, Ware AD, Matozel E, Price AC. Salt concentration modulates the DNA target search strategy of NdeI. Biochem Biophys Res Commun 2020; 534:1059-1063. [PMID: 33121681 DOI: 10.1016/j.bbrc.2020.10.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 10/14/2020] [Indexed: 11/29/2022]
Abstract
DNA target search is a key step in cellular transactions that access genomic information. How DNA binding proteins combine 3D diffusion, sliding and hopping into an overall search strategy remains poorly understood. Here we report the use of a single molecule DNA tethering method to characterize the target search kinetics of the type II restriction endonuclease NdeI. The measured search rate depends strongly on DNA length as well as salt concentration. Using roadblocks, we show that there are significant changes in the DNA sliding length over the salt concentrations in our study. To explain our results, we propose a model including cycles of 3D and 1D search in which salt concentration modulates the strategy by varying the length of DNA probed per 1D scan. At low salt NdeI makes a single non-specific encounter with DNA followed by an effective and complete 1D scan. At higher salt, NdeI must execute multiple cycles of target search due to the reduced efficacy of 1D search.
Collapse
Affiliation(s)
- Raquel M Ferreira
- Department of Biology, Emmanuel College, 400 the Fenway, Boston, MA, 02115, United States
| | - Anna D Ware
- Department of Biology, Emmanuel College, 400 the Fenway, Boston, MA, 02115, United States
| | - Emily Matozel
- Department of Biology, Emmanuel College, 400 the Fenway, Boston, MA, 02115, United States
| | - Allen C Price
- Department of Chemistry and Physics, Emmanuel College, 400 the Fenway, Boston, MA, 02115, United States.
| |
Collapse
|
18
|
Thonnekottu D, Chatterjee D. CRISPR-Cas9 Genome Interrogation: A Facilitated Subdiffusive Target Search Strategy. J Phys Chem B 2020; 124:3271-3282. [PMID: 32212662 DOI: 10.1021/acs.jpcb.0c00086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The functional application of RNA-guided CRISPR-associated Cas9 protein, a bacterial immune system-based protein complex, via which in vivo, highly specific, and well-regulated, gene-editing processes are being monitored at an unprecedented level, has led to remarkable progress in genetic engineering and technology. The complicated in vivo process of genome interrogation followed by gene editing by the Cas9 complex was recently reported by Knight et al. (Science, 2015, 350, 823-826) using an elegant single-particle tracking method, aided by the two-photon fluorescence correlation spectroscopic technique. In contrast to the usually observed fast target-searching and protein-binding events in biophysical systems, an interesting slow genome-interrogation process by the RNA-guided CRISPR-Cas9 system through a crowded chromatin environment of a mammalian cell has been revealed in Knight et al.'s study. Motivated by this experiment, in this paper, we provide a generalized theoretical framework to capture this particular target-searching mechanism of the CRISPR-Cas9 protein complex. We show that an analysis on the basis of 3D subdiffusion under a cylindrical volume, created by several nonspecific off-target interactions from the DNA strands, can capture the essential details of the process. Moreover, on the basis of this model, we quantify the dynamics of this process and estimate the survival probability, first passage time, and the intensity correlation function of the tagged proteins of the experiment. The results from our theoretical predictions are found to be consistent with the experimental observations, and hence, seem to provide a plausible microscopic picture of the process.
Collapse
Affiliation(s)
- Diljith Thonnekottu
- Department of Physics, Indian Institute of Technology Palakkad, Palakkad, Kerala 678557, India
| | - Debarati Chatterjee
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678557, India
| |
Collapse
|
19
|
Dey P, Bhattacherjee A. Structural Basis of Enhanced Facilitated Diffusion of DNA-Binding Protein in Crowded Cellular Milieu. Biophys J 2020; 118:505-517. [PMID: 31862109 PMCID: PMC6976804 DOI: 10.1016/j.bpj.2019.11.3388] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/03/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023] Open
Abstract
Although the fast association between DNA-binding proteins (DBPs) and DNA is explained by a facilitated diffusion mechanism, in which DBPs adopt a weighted combination of three-dimensional diffusion and one-dimensional (1D) sliding and hopping modes of transportation, the role of cellular environment that contains many nonspecifically interacting proteins and other biomolecules is mostly overlooked. By performing large-scale computational simulations with an appropriately tuned model of protein and DNA in the presence of nonspecifically interacting bulk and DNA-bound crowders (genomic crowders), we demonstrate the structural basis of the enhanced facilitated diffusion of DBPs inside a crowded cellular milieu through, to our knowledge, novel 1D scanning mechanisms. In this one-dimensional scanning mode, the protein can float along the DNA under the influence of nonspecific interactions of bulk crowder molecules. The search mode is distinctly different compared to usual 1D sliding and hopping dynamics in which protein diffusion is regulated by the DNA electrostatics. In contrast, the presence of genomic crowders expedites the target search process by transporting the protein over DNA segments through the formation of a transient protein-crowder bridged complex. By analyzing the ruggedness of the associated potential energy landscape, we underpin the molecular origin of the kinetic advantages of these search modes and show that they successfully explain the experimentally observed acceleration of facilitated diffusion of DBPs by molecular crowding agents and crowder-concentration-dependent enzymatic activity of transcription factors. Our findings provide crucial insights into gene regulation kinetics inside the crowded cellular milieu.
Collapse
Affiliation(s)
- Pinki Dey
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Arnab Bhattacherjee
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
20
|
Hansen AS, Amitai A, Cattoglio C, Tjian R, Darzacq X. Guided nuclear exploration increases CTCF target search efficiency. Nat Chem Biol 2019; 16:257-266. [PMID: 31792445 PMCID: PMC7036004 DOI: 10.1038/s41589-019-0422-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 10/30/2019] [Indexed: 12/11/2022]
Abstract
The enormous size of mammalian genomes means that for a DNA-binding protein, the number of non-specific, off-target sites vastly exceeds the number of specific, cognate sites. How mammalian DNA-binding proteins overcome this challenge to efficiently locate their target sites is not known. Here through live-cell single-molecule tracking, we show that CCCTC-binding factor, CTCF, is repeatedly trapped in small zones that likely correspond to CTCF clusters, in a manner that is largely dependent on an internal RNA-binding region (RBRi). We develop a new theoretical model, Anisotropic Diffusion through transient Trapping in Zones (ADTZ), to explain CTCF dynamics. Functionally, transient RBRi-mediated trapping increases the efficiency of CTCF target search by ~2.5 fold. Overall, our results suggest a “guided” mechanism where CTCF clusters concentrate diffusing CTCF proteins near cognate binding sites, thus increasing the local ON-rate. We suggest that local guiding may allow DNA-binding proteins to more efficiently locate their target sites.
Collapse
Affiliation(s)
- Anders S Hansen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.,Li Ka Shing Center for Biomedical and Health Sciences, Berkeley, CA, USA.,CIRM Center of Excellence, University of California, Berkeley, Berkeley, CA, USA.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA.,Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Assaf Amitai
- Department of Chemical Engineering, MIT, Cambridge, MA, USA
| | - Claudia Cattoglio
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.,Li Ka Shing Center for Biomedical and Health Sciences, Berkeley, CA, USA.,CIRM Center of Excellence, University of California, Berkeley, Berkeley, CA, USA.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Robert Tjian
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA. .,Li Ka Shing Center for Biomedical and Health Sciences, Berkeley, CA, USA. .,CIRM Center of Excellence, University of California, Berkeley, Berkeley, CA, USA. .,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA.
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA. .,Li Ka Shing Center for Biomedical and Health Sciences, Berkeley, CA, USA. .,CIRM Center of Excellence, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
21
|
Cui TJ, Klein M, Hegge JW, Chandradoss SD, van der Oost J, Depken M, Joo C. Argonaute bypasses cellular obstacles without hindrance during target search. Nat Commun 2019; 10:4390. [PMID: 31558728 PMCID: PMC6763497 DOI: 10.1038/s41467-019-12415-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022] Open
Abstract
Argonaute (Ago) proteins are key players in both gene regulation (eukaryotes) and host defense (prokaryotes). Acting on single-stranded nucleic-acid substrates, Ago relies on base pairing between a small nucleic-acid guide and its complementary target sequences for specificity. To efficiently scan nucleic-acid chains for targets, Ago diffuses laterally along the substrate and must bypass secondary structures as well as protein barriers. Using single-molecule FRET in conjunction with kinetic modelling, we reveal that target scanning is mediated through loose protein-nucleic acid interactions, allowing Ago to slide short distances over secondary structures, as well as to bypass protein barriers via intersegmental transfer. Our combined single-molecule experiment and kinetic modelling approach may serve as a platform to dissect search processes and study the effect of sequence on search kinetics for other nucleic acid-guided proteins.
Collapse
Affiliation(s)
- Tao Ju Cui
- Kavli Institute of Nanoscience and Department of Bionanoscience, Delft University of Technology, Delft, The Netherlands
| | - Misha Klein
- Kavli Institute of Nanoscience and Department of Bionanoscience, Delft University of Technology, Delft, The Netherlands
| | - Jorrit W Hegge
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, The Netherlands
| | - Stanley D Chandradoss
- Kavli Institute of Nanoscience and Department of Bionanoscience, Delft University of Technology, Delft, The Netherlands.,Oxford NanoImaging, Oxford, UK
| | - John van der Oost
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, The Netherlands
| | - Martin Depken
- Kavli Institute of Nanoscience and Department of Bionanoscience, Delft University of Technology, Delft, The Netherlands.
| | - Chirlmin Joo
- Kavli Institute of Nanoscience and Department of Bionanoscience, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
22
|
Castro-Villarreal P, Ramírez JE. Stochastic curvature of enclosed semiflexible polymers. Phys Rev E 2019; 100:012503. [PMID: 31499867 DOI: 10.1103/physreve.100.012503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Indexed: 11/07/2022]
Abstract
The conformational states of a semiflexible polymer enclosed in a compact domain of typical size a are studied as stochastic realizations of paths defined by the Frenet equations under the assumption that stochastic "curvature" satisfies a white noise fluctuation theorem. This approach allows us to derive the Hermans-Ullman equation, where we exploit a multipolar decomposition that allows us to show that the positional probability density function is well described by a telegrapher's equation whenever 2a/ℓ_{p}>1, where ℓ_{p} is the persistence length. We also develop a Monte Carlo algorithm for use in computer simulations in order to study the conformational states in a compact domain. In addition, the case of a semiflexible polymer enclosed in a square domain of side a is presented as an explicit example of the formulated theory and algorithm. In this case, we show the existence of a polymer shape transition similar to the one found by Spakowitz and Wang [Phys. Rev. Lett. 91, 166102 (2003)PRLTAO0031-900710.1103/PhysRevLett.91.166102] where in this case the critical persistence length is ℓ_{p}^{*}≃a/8 such that the mean-square end-to-end distance exhibits an oscillating behavior for values ℓ_{p}>ℓ_{p}^{*}, whereas for ℓ_{p}<ℓ_{p}^{*} it behaves monotonically increasing.
Collapse
Affiliation(s)
- Pavel Castro-Villarreal
- Facultad de Ciencias en Física y Matemáticas, Universidad Autónoma de Chiapas, Carretera Emiliano Zapata, Km. 8, Rancho San Francisco, 29050 Tuxtla Gutiérrez, Chiapas, Mexico
| | - J E Ramírez
- Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apartado Postal 165, 72000 Puebla, Puebla, Mexico.,Departamento de Física de Partículas, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| |
Collapse
|
23
|
Cui TJ, Joo C. Facilitated diffusion of Argonaute-mediated target search. RNA Biol 2019; 16:1093-1107. [PMID: 31068066 PMCID: PMC6693542 DOI: 10.1080/15476286.2019.1616353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 10/26/2022] Open
Abstract
Argonaute (Ago) proteins are of key importance in many cellular processes. In eukaryotes, Ago can induce translational repression followed by deadenylation and degradation of mRNA molecules through base pairing of microRNAs (miRNAs) with a complementary target on a mRNA sequence. In bacteria, Ago eliminates foreign DNA through base pairing of siDNA (small interfering DNA) with a target on a DNA sequence. Effective targeting activities of Ago require fast recognition of the cognate target sequence among numerous off-target sites. Other target search proteins such as transcription factors (TFs) are known to rely on facilitated diffusion for this goal, but it is undetermined to what extent these small nucleic acid-guided proteins utilize this mechanism. Here, we review recent single-molecule studies on Ago target search. We discuss the consequences of the recent findings on the search mechanism. Furthermore, we discuss the open standing research questions that need to be addressed for a complete picture of facilitated target search by small nucleic acids.
Collapse
Affiliation(s)
- Tao Ju Cui
- Kavli Institute of Nanoscience and Department of Bionanoscience, Delft University of Technology, Delft, The Netherlands
| | - Chirlmin Joo
- Kavli Institute of Nanoscience and Department of Bionanoscience, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
24
|
Rudnizky S, Khamis H, Malik O, Squires AH, Meller A, Melamed P, Kaplan A. Single-molecule DNA unzipping reveals asymmetric modulation of a transcription factor by its binding site sequence and context. Nucleic Acids Res 2019; 46:1513-1524. [PMID: 29253225 PMCID: PMC5815098 DOI: 10.1093/nar/gkx1252] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/11/2017] [Indexed: 12/31/2022] Open
Abstract
Most functional transcription factor (TF) binding sites deviate from their ‘consensus’ recognition motif, although their sites and flanking sequences are often conserved across species. Here, we used single-molecule DNA unzipping with optical tweezers to study how Egr-1, a TF harboring three zinc fingers (ZF1, ZF2 and ZF3), is modulated by the sequence and context of its functional sites in the Lhb gene promoter. We find that both the core 9 bp bound to Egr-1 in each of the sites, and the base pairs flanking them, modulate the affinity and structure of the protein–DNA complex. The effect of the flanking sequences is asymmetric, with a stronger effect for the sequence flanking ZF3. Characterization of the dissociation time of Egr-1 revealed that a local, mechanical perturbation of the interactions of ZF3 destabilizes the complex more effectively than a perturbation of the ZF1 interactions. Our results reveal a novel role for ZF3 in the interaction of Egr-1 with other proteins and the DNA, providing insight on the regulation of Lhb and other genes by Egr-1. Moreover, our findings reveal the potential of small changes in DNA sequence to alter transcriptional regulation, and may shed light on the organization of regulatory elements at promoters.
Collapse
Affiliation(s)
- Sergei Rudnizky
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Hadeel Khamis
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel.,Faculty of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Omri Malik
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel.,Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Allison H Squires
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Amit Meller
- Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 32000, Israel.,Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.,Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Philippa Melamed
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel.,Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Ariel Kaplan
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel.,Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
25
|
Munshi S, Gopi S, Asampille G, Subramanian S, Campos LA, Atreya HS, Naganathan AN. Tunable order-disorder continuum in protein-DNA interactions. Nucleic Acids Res 2019; 46:8700-8709. [PMID: 30107436 PMCID: PMC6158747 DOI: 10.1093/nar/gky732] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 07/31/2018] [Indexed: 11/23/2022] Open
Abstract
DNA-binding protein domains (DBDs) sample diverse conformations in equilibrium facilitating the search and recognition of specific sites on DNA over millions of energetically degenerate competing sites. We hypothesize that DBDs have co-evolved to sense and exploit the strong electric potential from the array of negatively charged phosphate groups on DNA. We test our hypothesis by employing the intrinsically disordered DBD of cytidine repressor (CytR) as a model system. CytR displays a graded increase in structure, stability and folding rate on increasing the osmolarity of the solution that mimics the non-specific screening by DNA phosphates. Electrostatic calculations and an Ising-like statistical mechanical model predict that CytR exhibits features of an electric potential sensor modulating its dimensions and landscape in a unique distance-dependent manner, while DNA plays the role of a non-specific macromolecular chaperone. Accordingly, CytR binds its natural half-site faster than the diffusion-controlled limit and even random DNA conforming to an electrostatic-steering binding mechanism. Our work unravels for the first time the synergistic features of a natural electrostatic potential sensor, a novel binding mechanism driven by electrostatic frustration and disorder, and the role of DNA in promoting distance-dependent protein structural transitions critical for switching between specific and non-specific DNA-binding modes.
Collapse
Affiliation(s)
- Sneha Munshi
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Soundhararajan Gopi
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | | | - Sandhyaa Subramanian
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Luis A Campos
- National Biotechnology Center, Consejo Superior de Investigaciones Científicas, Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Hanudatta S Atreya
- NMR Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
26
|
Bian Y, Yan R, Li P, Zhao N. Unusual crowding-induced chain looping kinetics in hard-sphere fluids: a contrastive study with polymer solutions. SOFT MATTER 2019; 15:4976-4988. [PMID: 31173026 DOI: 10.1039/c9sm00400a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A theoretical framework is developed to investigate the looping kinetics of a chain in hard-sphere (HS) fluids, based on a generalized Smoluchowski diffusion-reaction equation. A contrastive study with polymer solutions is performed. The crowding-associated effective viscosity and collapse effects are properly taken into account, which obey different scaling relations in HS and polymer fluids. We examine the dependence of the looping time on both concentration and size of crowders, demonstrating unusual and distinct discrepancies in the two crowded media. Firstly, in the solution of large polymers, the looping rate grows monotonically with polymer concentration. On the other hand, in the solution of large HSs, a caging regime can be observed, where the looping time tends to the value in the absence of crowders. Secondly, polymers in moderate size generally impede chain looping due to the enhanced viscosity. However, in HS fluids, the looping time exhibits a rather complicated variation with increasing HS size. We show a possible mechanism where in the case of small crowders with a relatively strong compaction in the probed chain, the looping kinetics can be facilitated. As the crowder size increases, the collapse effect is reduced and looping is dominated by viscosity-induced inhibition. Simultaneously, our theory rationalizes another possibility of the mechanism observed by recent simulation work. We conclude that the looping kinetics in specific systems actually should be governed by the critical competition between the two crowding factors. By giving reasonable measurements of effective viscosity and collapse, our theoretical framework can provide a unified strategy to analyze crowding effects on the looping rate in a systematic manner.
Collapse
Affiliation(s)
- Yukun Bian
- College of Physical Science and Technology, Sichuan University, Chengdu 610064, China
| | | | | | | |
Collapse
|
27
|
Piatt SC, Loparo JJ, Price AC. The Role of Noncognate Sites in the 1D Search Mechanism of EcoRI. Biophys J 2019; 116:2367-2377. [PMID: 31113551 PMCID: PMC6588823 DOI: 10.1016/j.bpj.2019.04.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/18/2019] [Accepted: 04/29/2019] [Indexed: 02/02/2023] Open
Abstract
A one-dimensional (1D) search is an essential step in DNA target recognition. Theoretical studies have suggested that the sequence dependence of 1D diffusion can help resolve the competing demands of a fast search and high target affinity, a conflict known as the speed-selectivity paradox. The resolution requires that the diffusion energy landscape is correlated with the underlying specific binding energies. In this work, we report observations of a 1D search by quantum dot-labeled EcoRI. Our data supports the view that proteins search DNA via rotation-coupled sliding over a corrugated energy landscape. We observed that whereas EcoRI primarily slides along DNA at low salt concentrations, at higher concentrations, its diffusion is a combination of sliding and hopping. We also observed long-lived pauses at genomic star sites, which differ by a single nucleotide from the target sequence. To reconcile these observations with prior biochemical and structural data, we propose a model of search in which the protein slides over a sequence-independent energy landscape during fast search but rapidly interconverts with a "hemispecific" binding mode in which a half site is probed. This half site interaction stabilizes the transition to a fully specific mode of binding, which can then lead to target recognition.
Collapse
Affiliation(s)
- Sadie C Piatt
- Department of Chemistry and Physics, Emmanuel College, Boston, Massachusetts
| | - Joseph J Loparo
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts.
| | - Allen C Price
- Department of Chemistry and Physics, Emmanuel College, Boston, Massachusetts.
| |
Collapse
|
28
|
Brouns T, De Keersmaecker H, Konrad SF, Kodera N, Ando T, Lipfert J, De Feyter S, Vanderlinden W. Free Energy Landscape and Dynamics of Supercoiled DNA by High-Speed Atomic Force Microscopy. ACS NANO 2018; 12:11907-11916. [PMID: 30346700 DOI: 10.1021/acsnano.8b06994] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
DNA supercoiling fundamentally constrains and regulates the storage and use of genetic information. While the equilibrium properties of supercoiled DNA are relatively well understood, the dynamics of supercoils are much harder to probe. Here we use atomic force microscopy (AFM) imaging to demonstrate that positively supercoiled DNA plasmids, in contrast to their negatively supercoiled counterparts, preserve their plectonemic geometry upon adsorption under conditions that allow for dynamics and equilibration on the surface. Our results are in quantitative agreement with a physical polymer model for supercoiled plasmids that takes into account the known mechanical properties and torque-induced melting of DNA. We directly probe supercoil dynamics using high-speed AFM imaging with subsecond time and ∼nanometer spatial resolution. From our recordings we quantify self-diffusion, branch point flexibility, and slithering dynamics and demonstrate that reconfiguration of molecular extensions is predominantly governed by the bending flexibility of plectoneme arms. We expect that our methodology can be an asset to probe protein-DNA interactions and topochemical reactions on physiological relevant DNA length and supercoiling scales by high-resolution AFM imaging.
Collapse
Affiliation(s)
- Tine Brouns
- KU Leuven, Division of Molecular Imaging and Photonics , Celestijnenlaan 200F , 3001 Leuven , Belgium
| | - Herlinde De Keersmaecker
- KU Leuven, Division of Molecular Imaging and Photonics , Celestijnenlaan 200F , 3001 Leuven , Belgium
| | - Sebastian F Konrad
- Department of Physics , Nanosystems Initiative Munich, and Center for NanoScience , LMU Munich, Amalienstrasse 54 , 80799 Munich , Germany
| | - Noriyuki Kodera
- Nano-Life Science Institute (WPI-NanoLSI) , Kanazawa University , Kakuma-machi , Kanazawa , 920-1192 , Japan
| | - Toshio Ando
- Nano-Life Science Institute (WPI-NanoLSI) , Kanazawa University , Kakuma-machi , Kanazawa , 920-1192 , Japan
| | - Jan Lipfert
- Department of Physics , Nanosystems Initiative Munich, and Center for NanoScience , LMU Munich, Amalienstrasse 54 , 80799 Munich , Germany
| | - Steven De Feyter
- KU Leuven, Division of Molecular Imaging and Photonics , Celestijnenlaan 200F , 3001 Leuven , Belgium
| | - Willem Vanderlinden
- KU Leuven, Division of Molecular Imaging and Photonics , Celestijnenlaan 200F , 3001 Leuven , Belgium
- Department of Physics , Nanosystems Initiative Munich, and Center for NanoScience , LMU Munich, Amalienstrasse 54 , 80799 Munich , Germany
| |
Collapse
|
29
|
Bian Y, Cao X, Li P, Zhao N. Understanding chain looping kinetics in polymer solutions: crowding effects of microviscosity and collapse. SOFT MATTER 2018; 14:8060-8072. [PMID: 30255917 DOI: 10.1039/c8sm01499j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A theoretical framework based on a generalized Langevin equation with fractional Gaussian noise is presented to describe the looping kinetics of chains in polymer solutions. Particular attention is paid to quantitatively revealing crowding effects on the loop formation rate in terms of microviscosity and collapse. By the aid of empirical relations for these two crowding associated physical quantities, we explicitly investigate the relationship between the looping rate and polymer concentration, the degree of polymerization, and system parameters. According to our analysis, the dependence of the looping rate on the crowder volume fraction exhibits three typical regimes: monotonic decreasing, a non-monotonic trend and monotonic increasing. We reveal that these non-trivial behaviors can be attributed to the competition between the two opposing factors of viscosity-associated inhibition and collapse-induced facilitation of loop formation. We apply our theory to analyze the kinetics of single-stranded DNA hairpin base pairing in polyethylene glycol solutions. The theoretical results can reproduce the experimental data on the closing rate of hairpins quantitatively to a certain degree with reasonable fitting parameters. The unexpected increase of the closing rate upon the addition of increasing amounts of polymer is well rationalised. Such good agreements clearly demonstrate the validity of our theory, appropriately addressing the very role of crowding effects in the relevant kinetics.
Collapse
Affiliation(s)
- Yukun Bian
- College of Physical Science and Technology, Sichuan University, Chengdu 610064, China
| | | | | | | |
Collapse
|
30
|
Cortini R, Filion GJ. Theoretical principles of transcription factor traffic on folded chromatin. Nat Commun 2018; 9:1740. [PMID: 29712907 PMCID: PMC5928121 DOI: 10.1038/s41467-018-04130-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 04/05/2018] [Indexed: 01/02/2023] Open
Abstract
All organisms regulate transcription of their genes. To understand this process, a complete understanding of how transcription factors find their targets in cellular nuclei is essential. The DNA sequence and other variables are known to influence this binding, but the distribution of transcription factor binding patterns remains mostly unexplained in metazoan genomes. Here, we investigate the role of chromosome conformation in the trajectories of transcription factors. Using molecular dynamics simulations, we uncover the principles of their diffusion on chromatin. Chromosome contacts play a conflicting role: at low density they enhance transcription factor traffic, but at high density they lower it by volume exclusion. Consistently, we observe that in human cells, highly occupied targets, where protein binding is promiscuous, are found at sites engaged in chromosome loops within uncompacted chromatin. In summary, we provide a framework for understanding the search trajectories of transcription factors, highlighting the key contribution of genome conformation. How transcription factors find their targets in vivo is still poorly understood. Here the authors use molecular dynamics simulations to investigate how transcription factors diffuse on chromatin, providing a theoretical framework for understanding the key role of genome conformation in this process.
Collapse
Affiliation(s)
- Ruggero Cortini
- Genome Architecture, Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain. .,Universidad Pompeu Fabra (UPF), 08003, Barcelona, Spain.
| | - Guillaume J Filion
- Genome Architecture, Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain. .,Universidad Pompeu Fabra (UPF), 08003, Barcelona, Spain.
| |
Collapse
|
31
|
Mizumoto N, Abe MS, Dobata S. Optimizing mating encounters by sexually dimorphic movements. J R Soc Interface 2018; 14:rsif.2017.0086. [PMID: 28490601 DOI: 10.1098/rsif.2017.0086] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 04/19/2017] [Indexed: 11/12/2022] Open
Abstract
All organisms with sexual reproduction undergo a process of mating, which essentially involves the encounter of two individuals belonging to different sexes. During mate search, both sexes should mutually optimize their encounters, thus raising a question of how they achieve this. Here, we show that a population with sexually dimorphic movement patterns achieves the highest individual mating success under a limited lifespan. Extensive simulations found and analytical approximations corroborated the existence of conditions under which sexual dimorphism in the movement patterns (i.e. how diffusively they move) is advantageous over sexual monomorphism. Mutual searchers with limited lifespans need to balance the speed and accuracy of finding their mates, and dimorphic movements can solve this trade-off. We further demonstrate that the sexual dimorphism can evolve from an initial sexually monomorphic population. Our results emphasize the importance of considering mutual optimization in problems of random search.
Collapse
Affiliation(s)
- Nobuaki Mizumoto
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masato S Abe
- National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan .,ERATO Kawarabayashi Large Graph Project, Japan Science and Technology Agency, Hitotsubashi 2-1-2, Chiyoda-ku, Tokyo 101-8403, Japan
| | - Shigeto Dobata
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
32
|
Affiliation(s)
- Jaeoh Shin
- Department
of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Anatoly B. Kolomeisky
- Department
of Chemistry, Rice University, Houston, Texas 77005, United States
- Center
for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
33
|
Frederickx W, Rocha S, Fujita Y, Kennes K, De Keersmaecker H, De Feyter S, Uji-I H, Vanderlinden W. Orthogonal Probing of Single-Molecule Heterogeneity by Correlative Fluorescence and Force Microscopy. ACS NANO 2018; 12:168-177. [PMID: 29257876 DOI: 10.1021/acsnano.7b05405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Correlative imaging by fluorescence and force microscopy is an emerging technology to acquire orthogonal information at the nanoscale. Whereas atomic force microscopy excels at resolving the envelope structure of nanoscale specimens, fluorescence microscopy can detect specific molecular labels, which enables the unambiguous recognition of molecules in a complex assembly. Whereas correlative imaging at the micrometer scale has been established, it remains challenging to push the technology to the single-molecule level. Here, we used an integrated setup to systematically evaluate the factors that influence the quality of correlative fluorescence and force microscopy. Optimized data processing to ensure accurate drift correction and high localization precision results in image registration accuracies of ∼25 nm on organic fluorophores, which represents a 2-fold improvement over the state of the art in correlative fluorescence and force microscopy. Furthermore, we could extend the Atto532 fluorophore bleaching time ∼2-fold, by chemical modification of the supporting mica surface. In turn, this enables probing the composition of macromolecular complexes by stepwise photobleaching with high confidence. We demonstrate the performance of our method by resolving the stoichiometry of molecular subpopulations in a heterogeneous EcoRV-DNA nucleoprotein ensemble.
Collapse
Affiliation(s)
- Wout Frederickx
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven-University of Leuven , Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Susana Rocha
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven-University of Leuven , Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Yasuhiko Fujita
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven-University of Leuven , Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Koen Kennes
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven-University of Leuven , Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Herlinde De Keersmaecker
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven-University of Leuven , Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Steven De Feyter
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven-University of Leuven , Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Hiroshi Uji-I
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven-University of Leuven , Celestijnenlaan 200F, B-3001, Leuven, Belgium
- Research Institute for Electronic Science, Nanomaterials and Nanoscopy, Hokkaido University , Kita 10 Nishi 20, North Ward, Sapporo 001-0020, Japan
| | - Willem Vanderlinden
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven-University of Leuven , Celestijnenlaan 200F, B-3001, Leuven, Belgium
- Department of Physics, Nanosystems Initiative Munich, and Center for NanoScience, LMU Munich , Amalienstrasse 54, 80799 Munich, Germany
| |
Collapse
|
34
|
Barel I, Naughton B, Reich NO, Brown FLH. Specificity versus Processivity in the Sequential Modification of DNA: A Study of DNA Adenine Methyltransferase. J Phys Chem B 2018; 122:1112-1120. [DOI: 10.1021/acs.jpcb.7b10349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Itay Barel
- Department
of Chemistry and Biochemistry, University of California, Santa
Barbara, California 93106, United States
- Department
of Physics, University of California, Santa Barbara, California 93106, United States
| | - Brigitte Naughton
- Department
of Chemistry and Biochemistry, University of California, Santa
Barbara, California 93106, United States
| | - Norbert O. Reich
- Department
of Chemistry and Biochemistry, University of California, Santa
Barbara, California 93106, United States
| | - Frank L. H. Brown
- Department
of Chemistry and Biochemistry, University of California, Santa
Barbara, California 93106, United States
- Department
of Physics, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
35
|
Kar P, Cherstvy AG, Metzler R. Acceleration of bursty multiprotein target search kinetics on DNA by colocalisation. Phys Chem Chem Phys 2018; 20:7931-7946. [DOI: 10.1039/c7cp06922g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Proteins are capable of locating specific targets on DNA by employing a facilitated diffusion process with intermittent 1D and 3D search steps. We here uncover the implications of colocalisation of protein production and DNA binding sites via computer simulations.
Collapse
Affiliation(s)
- Prathitha Kar
- Dept of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bengaluru
- India
- Institute for Physics & Astronomy
| | - Andrey G. Cherstvy
- Institute for Physics & Astronomy
- University of Potsdam
- 14476 Potsdam-Golm
- Germany
| | - Ralf Metzler
- Institute for Physics & Astronomy
- University of Potsdam
- 14476 Potsdam-Golm
- Germany
| |
Collapse
|
36
|
Mondal A, Bhattacherjee A. Understanding the Role of DNA Topology in Target Search Dynamics of Proteins. J Phys Chem B 2017; 121:9372-9381. [DOI: 10.1021/acs.jpcb.7b08199] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anupam Mondal
- School of Computational and
Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Arnab Bhattacherjee
- School of Computational and
Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
37
|
Wollman AJ, Shashkova S, Hedlund EG, Friemann R, Hohmann S, Leake MC. Transcription factor clusters regulate genes in eukaryotic cells. eLife 2017; 6:27451. [PMID: 28841133 PMCID: PMC5602325 DOI: 10.7554/elife.27451] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/24/2017] [Indexed: 01/07/2023] Open
Abstract
Transcription is regulated through binding factors to gene promoters to activate or repress expression, however, the mechanisms by which factors find targets remain unclear. Using single-molecule fluorescence microscopy, we determined in vivo stoichiometry and spatiotemporal dynamics of a GFP tagged repressor, Mig1, from a paradigm signaling pathway of Saccharomyces cerevisiae. We find the repressor operates in clusters, which upon extracellular signal detection, translocate from the cytoplasm, bind to nuclear targets and turnover. Simulations of Mig1 configuration within a 3D yeast genome model combined with a promoter-specific, fluorescent translation reporter confirmed clusters are the functional unit of gene regulation. In vitro and structural analysis on reconstituted Mig1 suggests that clusters are stabilized by depletion forces between intrinsically disordered sequences. We observed similar clusters of a co-regulatory activator from a different pathway, supporting a generalized cluster model for transcription factors that reduces promoter search times through intersegment transfer while stabilizing gene expression.
Collapse
Affiliation(s)
- Adam Jm Wollman
- Biological Physical Sciences Institute, University of York, York, United Kingdom
| | - Sviatlana Shashkova
- Biological Physical Sciences Institute, University of York, York, United Kingdom.,Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Erik G Hedlund
- Biological Physical Sciences Institute, University of York, York, United Kingdom
| | - Rosmarie Friemann
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Stefan Hohmann
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.,Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Mark C Leake
- Biological Physical Sciences Institute, University of York, York, United Kingdom
| |
Collapse
|
38
|
Murata A, Itoh Y, Mano E, Kanbayashi S, Igarashi C, Takahashi H, Takahashi S, Kamagata K. One-Dimensional Search Dynamics of Tumor Suppressor p53 Regulated by a Disordered C-Terminal Domain. Biophys J 2017; 112:2301-2314. [PMID: 28591603 DOI: 10.1016/j.bpj.2017.04.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 04/06/2017] [Accepted: 04/25/2017] [Indexed: 11/15/2022] Open
Abstract
Tumor suppressor p53 slides along DNA and finds its target sequence in drastically different and changing cellular conditions. To elucidate how p53 maintains efficient target search at different concentrations of divalent cations such as Ca2+ and Mg2+, we prepared two mutants of p53, each possessing one of its two DNA-binding domains, the CoreTet mutant having the structured core domain plus the tetramerization (Tet) domain, and the TetCT mutant having Tet plus the disordered C-terminal domain. We investigated their equilibrium and kinetic dissociation from DNA and search dynamics along DNA at various [Mg2+]. Although binding of CoreTet to DNA becomes markedly weaker at higher [Mg2+], binding of TetCT depends slightly on [Mg2+]. Single-molecule fluorescence measurements revealed that the one-dimensional diffusion of CoreTet along DNA consists of fast and slow search modes, the ratio of which depends strongly on [Mg2+]. In contrast, diffusion of TetCT consisted of only the fast mode. The disordered C-terminal domain can associate with DNA irrespective of [Mg2+], and can maintain an equilibrium balance of the two search modes and the p53 search distance. These results suggest that p53 modulates the quaternary structure of the complex between p53 and DNA under different [Mg2+] and that it maintains the target search along DNA.
Collapse
Affiliation(s)
- Agato Murata
- Institute of Multidisciplinary Research for Advanced Materials, Graduate School of Science, Tohoku University, Sendai, Miyagi, Japan; Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Miyagi, Japan
| | - Yuji Itoh
- Institute of Multidisciplinary Research for Advanced Materials, Graduate School of Science, Tohoku University, Sendai, Miyagi, Japan; Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Miyagi, Japan
| | - Eriko Mano
- Institute of Multidisciplinary Research for Advanced Materials, Graduate School of Science, Tohoku University, Sendai, Miyagi, Japan
| | - Saori Kanbayashi
- Institute of Multidisciplinary Research for Advanced Materials, Graduate School of Science, Tohoku University, Sendai, Miyagi, Japan
| | - Chihiro Igarashi
- Institute of Multidisciplinary Research for Advanced Materials, Graduate School of Science, Tohoku University, Sendai, Miyagi, Japan; Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Miyagi, Japan
| | - Hiroto Takahashi
- Institute of Multidisciplinary Research for Advanced Materials, Graduate School of Science, Tohoku University, Sendai, Miyagi, Japan
| | - Satoshi Takahashi
- Institute of Multidisciplinary Research for Advanced Materials, Graduate School of Science, Tohoku University, Sendai, Miyagi, Japan.
| | - Kiyoto Kamagata
- Institute of Multidisciplinary Research for Advanced Materials, Graduate School of Science, Tohoku University, Sendai, Miyagi, Japan.
| |
Collapse
|
39
|
Yesudhas D, Batool M, Anwar MA, Panneerselvam S, Choi S. Proteins Recognizing DNA: Structural Uniqueness and Versatility of DNA-Binding Domains in Stem Cell Transcription Factors. Genes (Basel) 2017; 8:genes8080192. [PMID: 28763006 PMCID: PMC5575656 DOI: 10.3390/genes8080192] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/22/2017] [Accepted: 07/25/2017] [Indexed: 12/17/2022] Open
Abstract
Proteins in the form of transcription factors (TFs) bind to specific DNA sites that regulate cell growth, differentiation, and cell development. The interactions between proteins and DNA are important toward maintaining and expressing genetic information. Without knowing TFs structures and DNA-binding properties, it is difficult to completely understand the mechanisms by which genetic information is transferred between DNA and proteins. The increasing availability of structural data on protein-DNA complexes and recognition mechanisms provides deeper insights into the nature of protein-DNA interactions and therefore, allows their manipulation. TFs utilize different mechanisms to recognize their cognate DNA (direct and indirect readouts). In this review, we focus on these recognition mechanisms as well as on the analysis of the DNA-binding domains of stem cell TFs, discussing the relative role of various amino acids toward facilitating such interactions. Unveiling such mechanisms will improve our understanding of the molecular pathways through which TFs are involved in repressing and activating gene expression.
Collapse
Affiliation(s)
- Dhanusha Yesudhas
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea.
| | - Maria Batool
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea.
| | - Muhammad Ayaz Anwar
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea.
| | - Suresh Panneerselvam
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea.
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea.
| |
Collapse
|
40
|
Kochugaeva MP, Shvets AA, Kolomeisky AB. On the Mechanism of Homology Search by RecA Protein Filaments. Biophys J 2017; 112:859-867. [PMID: 28297645 DOI: 10.1016/j.bpj.2017.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/20/2017] [Accepted: 01/24/2017] [Indexed: 10/20/2022] Open
Abstract
Genetic stability is a key factor in maintaining, survival, and reproduction of biological cells. It relies on many processes, but one of the most important is a homologous recombination, in which the repair of breaks in double-stranded DNA molecules is taking place with a help of several specific proteins. In bacteria, this task is accomplished by RecA proteins that are active as nucleoprotein filaments formed on single-stranded segments of DNA. A critical step in the homologous recombination is a search for a corresponding homologous region on DNA, which is called a homology search. Recent single-molecule experiments clarified some aspects of this process, but its molecular mechanisms remain not well understood. We developed a quantitative theoretical approach to analyze the homology search. It is based on a discrete-state stochastic model that takes into account the most relevant physical-chemical processes in the system. Using a method of first-passage processes, a full dynamic description of the homology search is presented. It is found that the search dynamics depends on the degree of extension of DNA molecules and on the size of RecA nucleoprotein filaments, in agreement with experimental single-molecule measurements of DNA pairing by RecA proteins. Our theoretical calculations, supported by extensive Monte Carlo computer simulations, provide a molecular description of the mechanisms of the homology search.
Collapse
Affiliation(s)
- Maria P Kochugaeva
- Department of Chemistry, Rice University, Houston, Texas; Center for Theoretical Biological Physics, Rice University, Houston, Texas
| | - Alexey A Shvets
- Department of Chemistry, Rice University, Houston, Texas; Center for Theoretical Biological Physics, Rice University, Houston, Texas
| | - Anatoly B Kolomeisky
- Department of Chemistry, Rice University, Houston, Texas; Center for Theoretical Biological Physics, Rice University, Houston, Texas.
| |
Collapse
|
41
|
Berezhkovskii AM, Dagdug L, Bezrukov SM. Bulk-mediated surface transport in the presence of bias. J Chem Phys 2017; 147:014103. [PMID: 28688439 PMCID: PMC5500123 DOI: 10.1063/1.4991730] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/21/2017] [Indexed: 12/22/2022] Open
Abstract
Surface transport, when the particle is allowed to leave the surface, travel in the bulk for some time, and then return to the surface, is referred to as bulk-mediated surface transport. Recently, we proposed a formalism that significantly simplifies analysis of bulk-mediated surface diffusion [A. M. Berezhkovskii, L. Dagdug, and S. M. Bezrukov, J. Chem. Phys. 143, 084103 (2015)]. Here this formalism is extended to bulk-mediated surface transport in the presence of bias, i.e., when the particle has arbitrary drift velocities on the surface and in the bulk. A key advantage of our approach is that the transport problem reduces to that of a two-state problem of the particle transitions between the surface and the bulk. The latter can be solved with relative ease. The formalism is used to find the Laplace transforms of the first two moments of the particle displacement over the surface in time t at arbitrary values of the particle drift velocities and diffusivities on the surface and in the bulk. This allows us to analyze in detail the time dependence of the effective drift velocity of the particle on the surface, which can be highly nontrivial.
Collapse
Affiliation(s)
- Alexander M Berezhkovskii
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Leonardo Dagdug
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sergey M Bezrukov
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
42
|
Gomez D, Klumpp S. Facilitated diffusion in the presence of obstacles on the DNA. Phys Chem Chem Phys 2017; 18:11184-92. [PMID: 27048915 DOI: 10.1039/c6cp00307a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Biological functions of DNA depend on the sequence-specific binding of DNA-binding proteins to their corresponding binding sites. Binding of these proteins to their binding sites occurs through a facilitated diffusion process that combines three-dimensional diffusion in the cytoplasm with one-dimensional diffusion (sliding) along the DNA. In this work, we use a lattice model of facilitated diffusion to study how the dynamics of binding of a protein to a specific site (e.g., binding of an RNA polymerase to a promoter or of a transcription factor to its operator site) is affected by the presence of other proteins bound to the DNA, which act as 'obstacles' in the sliding process. Different types of these obstacles with different dynamics are implemented. While all types impair facilitated diffusion, the extent of the hindrance depends on the type of obstacle. As a consequence of hindrance by obstacles, more excursions into the cytoplasm are required for optimal target binding compared to the case without obstacles.
Collapse
Affiliation(s)
- David Gomez
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany.
| | - Stefan Klumpp
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany. and Institute for Nonlinear Dynamics, Georg-August University Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
43
|
Liu L, Cherstvy AG, Metzler R. Facilitated Diffusion of Transcription Factor Proteins with Anomalous Bulk Diffusion. J Phys Chem B 2017; 121:1284-1289. [DOI: 10.1021/acs.jpcb.6b12413] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Lin Liu
- CAS
Key Laboratory of Soft Matter Chemistry, Dept. of Polymer Science
and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, China
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Andrey G. Cherstvy
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Ralf Metzler
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| |
Collapse
|
44
|
Ma Y, Chen Y, Yu W, Luo K. How nonspecifically DNA-binding proteins search for the target in crowded environments. J Chem Phys 2016; 144:125102. [PMID: 27036479 DOI: 10.1063/1.4944905] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We investigate how a tracer particle searches a target located in DNA modeled by a stiff chain in crowded environments using theoretical analysis and Langevin dynamics simulations. First, we show that the three-dimensional (3D) diffusion coefficient of the tracer only depends on the density of crowders ϕ, while its one-dimensional (1D) diffusion coefficient is affected by not only ϕ but also the nonspecific binding energy ε. With increasing ϕ and ε, no obvious change in the average 3D diffusion time is observed, while the average 1D sliding time apparently increases. We propose theoretically that the 1D sliding of the tracer along the chain could be well captured by the Kramers' law of escaping rather than the Arrhenius law, which is verified directly by the simulations. Finally, the average search time increases monotonously with an increase in ϕ while it has a minimum as a function of ε, which could be understood from the different behaviors of the average number of search rounds with the increasing ϕ or ε. These results provide a deeper understanding of the role of facilitated diffusion in target search of proteins on DNA in vivo.
Collapse
Affiliation(s)
- Yiding Ma
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yuhao Chen
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Wancheng Yu
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Kaifu Luo
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
45
|
Shvets AA, Kolomeisky AB. Sequence heterogeneity accelerates protein search for targets on DNA. J Chem Phys 2016; 143:245101. [PMID: 26723711 DOI: 10.1063/1.4937938] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The process of protein search for specific binding sites on DNA is fundamentally important since it marks the beginning of all major biological processes. We present a theoretical investigation that probes the role of DNA sequence symmetry, heterogeneity, and chemical composition in the protein search dynamics. Using a discrete-state stochastic approach with a first-passage events analysis, which takes into account the most relevant physical-chemical processes, a full analytical description of the search dynamics is obtained. It is found that, contrary to existing views, the protein search is generally faster on DNA with more heterogeneous sequences. In addition, the search dynamics might be affected by the chemical composition near the target site. The physical origins of these phenomena are discussed. Our results suggest that biological processes might be effectively regulated by modifying chemical composition, symmetry, and heterogeneity of a genome.
Collapse
Affiliation(s)
- Alexey A Shvets
- Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| | - Anatoly B Kolomeisky
- Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
46
|
Niranjani G, Murugan R. Theory on the mechanism of site-specific DNA-protein interactions in the presence of traps. Phys Biol 2016; 13:046003. [PMID: 27434174 DOI: 10.1088/1478-3975/13/4/046003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The speed of site-specific binding of transcription factor (TFs) proteins with genomic DNA seems to be strongly retarded by the randomly occurring sequence traps. Traps are those DNA sequences sharing significant similarity with the original specific binding sites (SBSs). It is an intriguing question how the naturally occurring TFs and their SBSs are designed to manage the retarding effects of such randomly occurring traps. We develop a simple random walk model on the site-specific binding of TFs with genomic DNA in the presence of sequence traps. Our dynamical model predicts that (a) the retarding effects of traps will be minimum when the traps are arranged around the SBS such that there is a negative correlation between the binding strength of TFs with traps and the distance of traps from the SBS and (b) the retarding effects of sequence traps can be appeased by the condensed conformational state of DNA. Our computational analysis results on the distribution of sequence traps around the putative binding sites of various TFs in mouse and human genome clearly agree well the theoretical predictions. We propose that the distribution of traps can be used as an additional metric to efficiently identify the SBSs of TFs on genomic DNA.
Collapse
Affiliation(s)
- G Niranjani
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | | |
Collapse
|
47
|
Itoh Y, Murata A, Sakamoto S, Nanatani K, Wada T, Takahashi S, Kamagata K. Activation of p53 Facilitates the Target Search in DNA by Enhancing the Target Recognition Probability. J Mol Biol 2016; 428:2916-30. [DOI: 10.1016/j.jmb.2016.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/23/2016] [Accepted: 06/02/2016] [Indexed: 12/11/2022]
|
48
|
Lange M, Kochugaeva M, Kolomeisky AB. Protein search for multiple targets on DNA. J Chem Phys 2016; 143:105102. [PMID: 26374061 DOI: 10.1063/1.4930113] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Protein-DNA interactions are crucial for all biological processes. One of the most important fundamental aspects of these interactions is the process of protein searching and recognizing specific binding sites on DNA. A large number of experimental and theoretical investigations have been devoted to uncovering the molecular description of these phenomena, but many aspects of the mechanisms of protein search for the targets on DNA remain not well understood. One of the most intriguing problems is the role of multiple targets in protein search dynamics. Using a recently developed theoretical framework we analyze this question in detail. Our method is based on a discrete-state stochastic approach that takes into account most relevant physical-chemical processes and leads to fully analytical description of all dynamic properties. Specifically, systems with two and three targets have been explicitly investigated. It is found that multiple targets in most cases accelerate the search in comparison with a single target situation. However, the acceleration is not always proportional to the number of targets. Surprisingly, there are even situations when it takes longer to find one of the multiple targets in comparison with the single target. It depends on the spatial position of the targets, distances between them, average scanning lengths of protein molecules on DNA, and the total DNA lengths. Physical-chemical explanations of observed results are presented. Our predictions are compared with experimental observations as well as with results from a continuum theory for the protein search. Extensive Monte Carlo computer simulations fully support our theoretical calculations.
Collapse
Affiliation(s)
- Martin Lange
- Johannes Gutenberg University, Mainz 55122, Germany
| | - Maria Kochugaeva
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
| | | |
Collapse
|
49
|
Dror I, Rohs R, Mandel-Gutfreund Y. How motif environment influences transcription factor search dynamics: Finding a needle in a haystack. Bioessays 2016; 38:605-12. [PMID: 27192961 PMCID: PMC5023137 DOI: 10.1002/bies.201600005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transcription factors (TFs) have to find their binding sites, which are distributed throughout the genome. Facilitated diffusion is currently the most widely accepted model for this search process. Based on this model the TF alternates between one-dimensional sliding along the DNA, and three-dimensional bulk diffusion. In this view, the non-specific associations between the proteins and the DNA play a major role in the search dynamics. However, little is known about how the DNA properties around the motif contribute to the search. Accumulating evidence showing that TF binding sites are embedded within a unique environment, specific to each TF, leads to the hypothesis that the search process is facilitated by favorable DNA features that help to improve the search efficiency. Here, we review the field and present the hypothesis that TF-DNA recognition is dictated not only by the motif, but is also influenced by the environment in which the motif resides.
Collapse
Affiliation(s)
- Iris Dror
- Department of Biology, Technion - Israel Institute of Technology, Technion City, Haifa, Israel.,Departments of Biological Sciences, Chemistry, Physics, and Computer Science, Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA, USA
| | - Remo Rohs
- Departments of Biological Sciences, Chemistry, Physics, and Computer Science, Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA, USA
| | - Yael Mandel-Gutfreund
- Department of Biology, Technion - Israel Institute of Technology, Technion City, Haifa, Israel
| |
Collapse
|
50
|
Coarse-grained models for studying protein diffusion along DNA. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2016. [DOI: 10.1002/wcms.1262] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|