Critical role of c-jun N-terminal protein kinase in promoting mitochondrial dysfunction and acute liver injury.
Redox Biol 2015;
6:552-564. [PMID:
26491845 PMCID:
PMC4625008 DOI:
10.1016/j.redox.2015.09.040]
[Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 09/29/2015] [Indexed: 12/11/2022] Open
Abstract
The mechanism by which c-Jun N-terminal protein kinase (JNK) promotes tissue injury is poorly understood. Thus we aimed at studying the roles of JNK and its phospho-target proteins in mouse models of acute liver injury. Young male mice were exposed to a single dose of CCl4 (50 mg/kg, IP) and euthanized at different time points. Liver histology, blood alanine aminotransferase, and other enzyme activities were measured in CCl4-exposed mice without or with the highly-specific JNK inhibitors. Phosphoproteins were purified from control or CCl4-exposed mice and analyzed by differential mass-spectrometry followed by further characterizations of immunoprecipitation and activity measurements. JNK was activated within 1 h while liver damage was maximal at 24 h post-CCl4 injection. Markedly increased phosphorylation of many mitochondrial proteins was observed between 1 and 8 h following CCl4 exposure. Pretreatment with the selective JNK inhibitor SU3327 or the mitochondria-targeted antioxidant mito-TEMPO markedly reduced the levels of p-JNK, mitochondrial phosphoproteins and liver damage in CCl4-exposed mice. Differential proteomic analysis identified many phosphorylated mitochondrial proteins involved in anti-oxidant defense, electron transfer, energy supply, fatty acid oxidation, etc. Aldehyde dehydrogenase, NADH-ubiquinone oxidoreductase, and α-ketoglutarate dehydrogenase were phosphorylated in CCl4-exposed mice but dephosphorylated after SU3327 pretreatment. Consistently, the suppressed activities of these enzymes were restored by SU3327 pretreatment in CCl4-exposed mice. These data provide a novel mechanism by which JNK, rapidly activated by CCl4, promotes mitochondrial dysfunction and acute hepatotoxicity through robust phosphorylation of numerous mitochondrial proteins.
JNK was rapidly activated after carbon tetrachloride (CCl4) exposure.
Activated JNK was translocated to mitochondria and phosphorylated many proteins.
Many mitochondrial phosphoproteins were identified by mass-spec analysis.
Mitochondrial ALDH2, α-KGDH, and complex I were inactivated by phosphorylation.
JNK inhibition reduced phosphorylation of mitochondrial proteins and hepatotoxicity.
Collapse