1
|
Chen L, Roake CM, Maccallini P, Bavasso F, Dehghannasiri R, Santonicola P, Mendoza-Ferreira N, Scatolini L, Rizzuti L, Esposito A, Gallotta I, Francia S, Cacchione S, Galati A, Palumbo V, Kobin MA, Tartaglia G, Colantoni A, Proietti G, Wu Y, Hammerschmidt M, De Pittà C, Sales G, Salzman J, Pellizzoni L, Wirth B, Di Schiavi E, Gatti M, Artandi S, Raffa GD. TGS1 impacts snRNA 3'-end processing, ameliorates survival motor neuron-dependent neurological phenotypes in vivo and prevents neurodegeneration. Nucleic Acids Res 2022; 50:12400-12424. [PMID: 35947650 PMCID: PMC9757054 DOI: 10.1093/nar/gkac659] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/21/2022] [Indexed: 12/24/2022] Open
Abstract
Trimethylguanosine synthase 1 (TGS1) is a highly conserved enzyme that converts the 5'-monomethylguanosine cap of small nuclear RNAs (snRNAs) to a trimethylguanosine cap. Here, we show that loss of TGS1 in Caenorhabditis elegans, Drosophila melanogaster and Danio rerio results in neurological phenotypes similar to those caused by survival motor neuron (SMN) deficiency. Importantly, expression of human TGS1 ameliorates the SMN-dependent neurological phenotypes in both flies and worms, revealing that TGS1 can partly counteract the effects of SMN deficiency. TGS1 loss in HeLa cells leads to the accumulation of immature U2 and U4atac snRNAs with long 3' tails that are often uridylated. snRNAs with defective 3' terminations also accumulate in Drosophila Tgs1 mutants. Consistent with defective snRNA maturation, TGS1 and SMN mutant cells also exhibit partially overlapping transcriptome alterations that include aberrantly spliced and readthrough transcripts. Together, these results identify a neuroprotective function for TGS1 and reinforce the view that defective snRNA maturation affects neuronal viability and function.
Collapse
Affiliation(s)
- Lu Chen
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Cancer Signaling and Epigenetics Program and Cancer Epigenetics Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Caitlin M Roake
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Paolo Maccallini
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
| | - Francesca Bavasso
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
| | - Roozbeh Dehghannasiri
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | | | - Natalia Mendoza-Ferreira
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, 50931 Cologne, Germany
| | - Livia Scatolini
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
| | - Ludovico Rizzuti
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
| | | | - Ivan Gallotta
- Institute of Genetics and Biophysics, IGB-ABT, CNR, Naples, Italy
| | - Sofia Francia
- IFOM-The FIRC Institute of Molecular Oncology, Milan, Italy
- Istituto di Genetica Molecolare, CNR-Consiglio Nazionale delle Ricerche, Pavia, Italy
| | - Stefano Cacchione
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
| | - Alessandra Galati
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
| | - Valeria Palumbo
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
| | - Marie A Kobin
- Cancer Signaling and Epigenetics Program and Cancer Epigenetics Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Gian Gaetano Tartaglia
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome 00161, Italy
- Center for Human Technology, Fondazione Istituto Italiano di Tecnologia (IIT), Genoa 16152, Italy
| | - Alessio Colantoni
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome 00161, Italy
- Center for Human Technology, Fondazione Istituto Italiano di Tecnologia (IIT), Genoa 16152, Italy
| | - Gabriele Proietti
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome 00161, Italy
- Center for Human Technology, Fondazione Istituto Italiano di Tecnologia (IIT), Genoa 16152, Italy
| | - Yunming Wu
- Cancer Signaling and Epigenetics Program and Cancer Epigenetics Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Matthias Hammerschmidt
- Institute for Zoology, Developmental Biology, University of Cologne, 50674 Cologne, Germany
| | | | - Gabriele Sales
- Department of Biology, University of Padova, Padua, Italy
| | - Julia Salzman
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Livio Pellizzoni
- Center for Motor Neuron Biology and Disease, Columbia University, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University, NY 10032, USA
- Department of Neurology, Columbia University, NY 10032, USA
| | - Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, 50931 Cologne, Germany
- Center for Rare Diseases, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Elia Di Schiavi
- Institute of Biosciences and BioResources, IBBR, CNR, Naples, Italy
- Institute of Genetics and Biophysics, IGB-ABT, CNR, Naples, Italy
| | - Maurizio Gatti
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
- Istituto di Biologia e Patologia Molecolari (IBPM) del CNR, Rome, Italy
| | - Steven E Artandi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Grazia D Raffa
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
2
|
Takeuchi C, Yokoshi M, Kondo S, Shibuya A, Saito K, Fukaya T, Siomi H, Iwasaki Y. Mod(mdg4) variants repress telomeric retrotransposon HeT-A by blocking subtelomeric enhancers. Nucleic Acids Res 2022; 50:11580-11599. [PMID: 36373634 PMCID: PMC9723646 DOI: 10.1093/nar/gkac1034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/17/2022] [Accepted: 10/22/2022] [Indexed: 11/16/2022] Open
Abstract
Telomeres in Drosophila are composed of sequential non-LTR retrotransposons HeT-A, TART and TAHRE. Although they are repressed by the PIWI-piRNA pathway or heterochromatin in the germline, the regulation of these retrotransposons in somatic cells is poorly understood. In this study, we demonstrated that specific splice variants of Mod(mdg4) repress HeT-A by blocking subtelomeric enhancers in ovarian somatic cells. Among the variants, we found that the Mod(mdg4)-N variant represses HeT-A expression the most efficiently. Subtelomeric sequences bound by Mod(mdg4)-N block enhancer activity within subtelomeric TAS-R repeats. This enhancer-blocking activity is increased by the tandem association of Mod(mdg4)-N to repetitive subtelomeric sequences. In addition, the association of Mod(mdg4)-N couples with the recruitment of RNA polymerase II to the subtelomeres, which reinforces its enhancer-blocking function. Our findings provide novel insights into how telomeric retrotransposons are regulated by the specific variants of insulator proteins associated with subtelomeric sequences.
Collapse
Affiliation(s)
- Chikara Takeuchi
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Moe Yokoshi
- Laboratory of Transcription Dynamics, Research Center for Biological Visualization, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Shu Kondo
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka 411-8540, Japan
| | - Aoi Shibuya
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kuniaki Saito
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka 411-8540, Japan
| | - Takashi Fukaya
- Laboratory of Transcription Dynamics, Research Center for Biological Visualization, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 113-0032, Japan
| | | | - Yuka W Iwasaki
- To whom correspondence should be addressed. Tel: +81 3 5363 3529; Fax: +81 3 5363 3266;
| |
Collapse
|
3
|
Porrazzo A, Cipressa F, De Gregorio A, De Pittà C, Sales G, Ciapponi L, Morciano P, Esposito G, Tabocchini MA, Cenci G. Low dose rate γ-irradiation protects fruit fly chromosomes from double strand breaks and telomere fusions by reducing the esi-RNA biogenesis factor Loquacious. Commun Biol 2022; 5:905. [PMID: 36057690 PMCID: PMC9440893 DOI: 10.1038/s42003-022-03885-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/23/2022] [Indexed: 12/03/2022] Open
Abstract
It is still continuously debated whether the low-dose/dose-rate (LDR) of ionizing radiation represents a hazard for humans. Model organisms, such as fruit flies, are considered valuable systems to reveal insights into this issue. We found that, in wild-type Drosophila melanogaster larval neuroblasts, the frequency of Chromosome Breaks (CBs), induced by acute γ-irradiation, is considerably reduced when flies are previously exposed to a protracted dose of 0.4 Gy delivered at a dose rate of 2.5 mGy/h. This indicates that this exposure, which is associated with an increased expression of DNA damage response proteins, induces a radioadaptive response (RAR) that protects Drosophila from extensive DNA damage. Interestingly, the same exposure reduces the frequency of telomere fusions (TFs) from Drosophila telomere capping mutants suggesting that the LDR can generally promote a protective response on chromatin sites that are recognized as DNA breaks. Deep RNA sequencing revealed that RAR is associated with a reduced expression of Loquacious D (Loqs-RD) gene that encodes a well-conserved dsRNA binding protein required for esiRNAs biogenesis. Remarkably, loss of Loqs mimics the LDR-mediated chromosome protection as it decreases the IR-induced CBs and TFs frequency. Thus, our molecular characterization of RAR identifies Loqs as a key factor in the cellular response to LDR and in the epigenetic routes involved in radioresistance. Chronic low y-radiation exposure to Drosophila cells decreases chromosome breaks induced by high-dose irradiation and telomere dysfunction by reducing the esiRNA biogenesis factor Loquacious D.
Collapse
Affiliation(s)
- A Porrazzo
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Rome, Italy.,Fondazione Cenci Bolognetti/ Istituto Pasteur Italia, Rome, Italy
| | - F Cipressa
- Fondazione Cenci Bolognetti/ Istituto Pasteur Italia, Rome, Italy.,Centro Studi e Ricerche "Enrico Fermi", Rome, Italy
| | - A De Gregorio
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Rome, Italy
| | - C De Pittà
- Dipartimento di Biologia, Università di Padova, Padua, Italy
| | - G Sales
- Dipartimento di Biologia, Università di Padova, Padua, Italy
| | - L Ciapponi
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Rome, Italy
| | - P Morciano
- INFN-Laboratori Nazionali del Gran Sasso, 67100, Assergi, Italy
| | - G Esposito
- Istituto Superiore di Sanita' ISS, Rome, Italy.,INFN-Roma 1, Rome, Italy
| | | | - G Cenci
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Rome, Italy. .,Fondazione Cenci Bolognetti/ Istituto Pasteur Italia, Rome, Italy.
| |
Collapse
|
4
|
Porrazzo A, Esposito G, Grifoni D, Cenci G, Morciano P, Tabocchini MA. Reduced Environmental Dose Rates Are Responsible for the Increased Susceptibility to Radiation-Induced DNA Damage in Larval Neuroblasts of Drosophila Grown inside the LNGS Underground Laboratory. Int J Mol Sci 2022; 23:ijms23105472. [PMID: 35628279 PMCID: PMC9143493 DOI: 10.3390/ijms23105472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023] Open
Abstract
A large amount of evidence from radiobiology studies carried out in Deep Underground Laboratories support the view that environmental radiation may trigger biological mechanisms that enable both simple and complex organisms to cope with genotoxic stress. In line with this, here we show that the reduced radiation background of the LNGS underground laboratory renders Drosophila neuroblasts more sensitive to ionizing radiation-induced (but not to spontaneous) DNA breaks compared to fruit flies kept at the external reference laboratory. Interestingly, we demonstrate that the ionizing radiation sensitivity of flies kept at the LNGS underground laboratory is rescued by increasing the underground gamma dose rate to levels comparable to the low-LET reference one. This finding provides the first direct evidence that the modulation of the DNA damage response in a complex multicellular organism is indeed dependent on the environmental dose rate.
Collapse
Affiliation(s)
- Antonella Porrazzo
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, 00185 Rome, Italy; (A.P.); (G.C.)
| | - Giuseppe Esposito
- Centro Nazionale per le Tecnologie Innovative in Sanità Pubblica (TISP), Istituto Superiore di Sanità (ISS), 00161 Rome, Italy;
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione Roma 1, 00185 Rome, Italy
- Correspondence: (G.E.); (P.M.)
| | - Daniela Grifoni
- Dipartimento di Medicina Clinica, Sanità Pubblica, Scienze Della Vita e Dell’ambiente, Università Dell’aquila, 67100 L’Aquila, Italy;
| | - Giovanni Cenci
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, 00185 Rome, Italy; (A.P.); (G.C.)
- Fondazione Cenci Bolognetti, Istituto Pasteur, 00185 Rome, Italy
| | - Patrizia Morciano
- Laboratori Nazionali del Gran Sasso (LNGS), INFN, Assergi, 67100 L’Aquila, Italy
- Correspondence: (G.E.); (P.M.)
| | - Maria Antonella Tabocchini
- Centro Nazionale per le Tecnologie Innovative in Sanità Pubblica (TISP), Istituto Superiore di Sanità (ISS), 00161 Rome, Italy;
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione Roma 1, 00185 Rome, Italy
| |
Collapse
|
5
|
Cui M, Bai Y, Li K, Rong YS. Taming active transposons at Drosophila telomeres: The interconnection between HipHop's roles in capping and transcriptional silencing. PLoS Genet 2021; 17:e1009925. [PMID: 34813587 PMCID: PMC8651111 DOI: 10.1371/journal.pgen.1009925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/07/2021] [Accepted: 11/03/2021] [Indexed: 11/19/2022] Open
Abstract
Drosophila chromosomes are elongated by retrotransposon attachment, a process poorly understood. Here we characterized a mutation affecting the HipHop telomere-capping protein. In mutant ovaries and the embryos that they produce, telomere retrotransposons are activated and transposon RNP accumulates. Genetic results are consistent with that this hiphop mutation weakens the efficacy of HP1-mediated silencing while leaving piRNA-based mechanisms largely intact. Remarkably, mutant females display normal fecundity suggesting that telomere de-silencing is compatible with germline development. Moreover, unlike prior mutants with overactive telomeres, the hiphop stock does not over-accumulate transposons for hundreds of generations. This is likely due to the loss of HipHop’s abilities both to silence transcription and to recruit transposons to telomeres in the mutant. Furthermore, embryos produced by mutant mothers experience a checkpoint activation, and a further loss of maternal HipHop leads to end-to-end fusion and embryonic arrest. Telomeric retroelements fulfill an essential function yet maintain a potentially conflicting relationship with their Drosophila host. Our study thus showcases a possible intermediate in this arm race in which the host is adapting to over-activated transposons while maintaining genome stability. Our results suggest that the collapse of such a relationship might only occur when the selfish element acquires the ability to target non-telomeric regions of the genome. HipHop is likely part of this machinery restricting the elements to the gene-poor region of telomeres. Lastly, our hiphop mutation behaves as a recessive suppressor of PEV that is mediated by centric heterochromatin, suggesting its broader effect on chromatin not limited to telomeres. Transposons are selfish elements that multiply by inserting extra copies of themselves into the host genome. Active transposons thus threaten the stability of the host genome, while the host responses by transcriptionally silencing the selfish elements or targeting their insertions towards gene-poor regions of the genome. Chromosome ends (telomeres) in the fruit fly Drosophila are elongated by active transposition of retrotransposons. Although much is known about how these elements are silenced, little is known about the remarkable accuracy by which they are targeted to telomeres. Prime candidates through which the host mounts such defenses are members of the protein complexes that protect telomeres. Here we characterized a hypomorphic mutation of the HipHop protein, and showed that active telomeric transcription in the mutant germline persists for generations without leading to runaway telomere elongation, that embryos laid by the mutant female suffer rampant end-to-end fusions, and that telomeric targeting of the transposon machinery is defective in the mutant soma. Collectively our data suggest that HipHop is essential for preventing telomere fusions, silencing telomeric transposons, and recruiting transposon machinery to telomeres. Our study thus identifies a factor essential for the host control over active transposons and a paradigm for studying such control mechanisms.
Collapse
Affiliation(s)
- Min Cui
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Hengyang College of Medicine, University of South China, Hengyang, China
| | - Yaofu Bai
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Hengyang College of Medicine, University of South China, Hengyang, China
| | - Kaili Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Hengyang College of Medicine, University of South China, Hengyang, China
| | - Yikang S. Rong
- Hengyang College of Medicine, University of South China, Hengyang, China
- * E-mail:
| |
Collapse
|
6
|
Vedelek B, Kovács Á, Boros IM. Evolutionary mode for the functional preservation of fast-evolving Drosophila telomere capping proteins. Open Biol 2021; 11:210261. [PMID: 34784790 PMCID: PMC8596017 DOI: 10.1098/rsob.210261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
DNA end protection is fundamental for the long-term preservation of the genome. In vertebrates the Shelterin protein complex protects telomeric DNA ends, thereby contributing to the maintenance of genome integrity. In the Drosophila genus, this function is thought to be performed by the Terminin complex, an assembly of fast-evolving subunits. Considering that DNA end protection is fundamental for successful genome replication, the accelerated evolution of Terminin subunits is counterintuitive, as conservation is supposed to maintain the assembly and concerted function of the interacting partners. This problem extends over Drosophila telomere biology and provides insight into the evolution of protein assemblies. In order to learn more about the mechanistic details of this phenomenon we have investigated the intra- and interspecies assemblies of Verrocchio and Modigliani, two Terminin subunits using in vitro assays. Based on our results and on homology-based three-dimensional models for Ver and Moi, we conclude that both proteins contain Ob-fold and contribute to the ssDNA binding of the Terminin complex. We propose that the preservation of Ver function is achieved by conservation of specific amino acids responsible for folding or localized in interacting surfaces. We also provide here the first evidence on Moi DNA binding.
Collapse
Affiliation(s)
- Balázs Vedelek
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary,Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Ákos Kovács
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - Imre M. Boros
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary,Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| |
Collapse
|
7
|
Thakur J, Packiaraj J, Henikoff S. Sequence, Chromatin and Evolution of Satellite DNA. Int J Mol Sci 2021; 22:ijms22094309. [PMID: 33919233 PMCID: PMC8122249 DOI: 10.3390/ijms22094309] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/15/2022] Open
Abstract
Satellite DNA consists of abundant tandem repeats that play important roles in cellular processes, including chromosome segregation, genome organization and chromosome end protection. Most satellite DNA repeat units are either of nucleosomal length or 5–10 bp long and occupy centromeric, pericentromeric or telomeric regions. Due to high repetitiveness, satellite DNA sequences have largely been absent from genome assemblies. Although few conserved satellite-specific sequence motifs have been identified, DNA curvature, dyad symmetries and inverted repeats are features of various satellite DNAs in several organisms. Satellite DNA sequences are either embedded in highly compact gene-poor heterochromatin or specialized chromatin that is distinct from euchromatin. Nevertheless, some satellite DNAs are transcribed into non-coding RNAs that may play important roles in satellite DNA function. Intriguingly, satellite DNAs are among the most rapidly evolving genomic elements, such that a large fraction is species-specific in most organisms. Here we describe the different classes of satellite DNA sequences, their satellite-specific chromatin features, and how these features may contribute to satellite DNA biology and evolution. We also discuss how the evolution of functional satellite DNA classes may contribute to speciation in plants and animals.
Collapse
Affiliation(s)
- Jitendra Thakur
- Department of Biology, Emory University, Atlanta, GA 30322, USA;
- Correspondence:
| | - Jenika Packiaraj
- Department of Biology, Emory University, Atlanta, GA 30322, USA;
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
- Fred Hutchinson Cancer Research Center, Howard Hughes Medical Institute, Seattle, WA 98109, USA
| |
Collapse
|
8
|
On K, Crevel G, Cotterill S, Itoh M, Kato Y. Drosophila telomere capping protein HOAP interacts with DSB sensor proteins Mre11 and Nbs. Genes Cells 2021; 26:219-229. [PMID: 33556205 DOI: 10.1111/gtc.12836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/15/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022]
Abstract
In eukaryotes, specific DNA-protein structures called telomeres exist at linear chromosome ends. Telomere stability is maintained by a specific capping protein complex. This capping complex is essential for the inhibition of the DNA damage response (DDR) at telomeres and contributes to genome integrity. In Drosophila, the central factors of telomere capping complex are HOAP and HipHop. Furthermore, a DDR protein complex Mre11-Rad50-Nbs (MRN) is known to be important for the telomere association of HOAP and HipHop. However, whether MRN interacts with HOAP and HipHop, and the telomere recognition mechanisms of HOAP and HipHop are poorly understood. Here, we show that Nbs interacts with Mre11 and transports the Mre11-Rad50 complex from the cytoplasm to the nucleus. In addition, we report that HOAP interacts with both Mre11 and Nbs. The N-terminal region of HOAP is essential for its co-localization with HipHop. Finally, we reveal that Nbs interacts with the N-terminal region of HOAP.
Collapse
Affiliation(s)
- Kinyo On
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan
| | - Gilles Crevel
- Department of Basic Medical Sciences, St Georges, University of London, London, UK
| | - Sue Cotterill
- Department of Basic Medical Sciences, St Georges, University of London, London, UK
| | - Masanobu Itoh
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan.,Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Kyoto, Japan
| | - Yasuko Kato
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan.,Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Kyoto, Japan
| |
Collapse
|
9
|
Cicconi A, Micheli E, Raffa GD, Cacchione S. Atomic Force Microscopy Reveals that the Drosophila Telomere-Capping Protein Verrocchio Is a Single-Stranded DNA-Binding Protein. Methods Mol Biol 2021; 2281:241-263. [PMID: 33847963 DOI: 10.1007/978-1-0716-1290-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Atomic force microscopy (AFM) is a scanning probe technique that allows visualization of biological samples with a nanometric resolution. Determination of the physical properties of biological molecules at a single-molecule level is achieved through topographic analysis of the sample adsorbed on a flat and smooth surface. AFM has been widely used for the structural analysis of nucleic acid-protein interactions, providing insights on binding specificity and stoichiometry of proteins forming complexes with DNA substrates. Analysis of single-stranded DNA-binding proteins by AFM requires specific single-stranded/double-stranded hybrid DNA molecules as substrates for protein binding. In this chapter we describe the protocol for AFM characterization of binding properties of Drosophila telomeric protein Ver using DNA constructs that mimic the structure of chromosome ends. We provide details on the methodology used, including the procedures for the generation of DNA substrates, the preparation of samples for AFM visualization, and the data analysis of AFM images. The presented procedure can be adapted for the structural studies of any single-stranded DNA-binding protein.
Collapse
Affiliation(s)
- Alessandro Cicconi
- Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza, Università di Roma, Rome, Italy.
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA.
| | - Emanuela Micheli
- Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza, Università di Roma, Rome, Italy
| | - Grazia Daniela Raffa
- Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza, Università di Roma, Rome, Italy
| | - Stefano Cacchione
- Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza, Università di Roma, Rome, Italy.
| |
Collapse
|
10
|
Cheng L, Zhang Y, Zhang Y, Chen T, Xu YZ, Rong YS. Loss of the RNA trimethylguanosine cap is compatible with nuclear accumulation of spliceosomal snRNAs but not pre-mRNA splicing or snRNA processing during animal development. PLoS Genet 2020; 16:e1009098. [PMID: 33085660 PMCID: PMC7605716 DOI: 10.1371/journal.pgen.1009098] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 11/02/2020] [Accepted: 09/07/2020] [Indexed: 12/31/2022] Open
Abstract
The 2,2,7-trimethylguanosine (TMG) cap is one of the first identified modifications on eukaryotic RNAs. TMG, synthesized by the conserved Tgs1 enzyme, is abundantly present on snRNAs essential for pre-mRNA splicing. Results from ex vivo experiments in vertebrate cells suggested that TMG ensures nuclear localization of snRNAs. Functional studies of TMG using tgs1 mutations in unicellular organisms yield results inconsistent with TMG being indispensable for either nuclear import or splicing. Utilizing a hypomorphic tgs1 mutation in Drosophila, we show that TMG reduction impairs germline development by disrupting the processing, particularly of introns with smaller sizes and weaker splice sites. Unexpectedly, loss of TMG does not disrupt snRNAs localization to the nucleus, disputing an essential role of TMG in snRNA transport. Tgs1 loss also leads to defective 3' processing of snRNAs. Remarkably, stronger tgs1 mutations cause lethality without severely disrupting splicing, likely due to the preponderance of TMG-capped snRNPs. Tgs1, a predominantly nucleolar protein in Drosophila, likely carries out splicing-independent functions indispensable for animal development. Taken together, our results suggest that nuclear import is not a conserved function of TMG. As a distinctive structure on RNA, particularly non-coding RNA, we suggest that TMG prevents spurious interactions detrimental to the function of RNAs that it modifies.
Collapse
Affiliation(s)
- Lin Cheng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Hengyang College of Medicine, University of South China, Hengyang, China
| | - Yu Zhang
- Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Yi Zhang
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, United States of America
| | - Tao Chen
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Hengyang College of Medicine, University of South China, Hengyang, China
| | - Yong-Zhen Xu
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Yikang S. Rong
- Hengyang College of Medicine, University of South China, Hengyang, China
- * E-mail:
| |
Collapse
|
11
|
Meyer-Nava S, Nieto-Caballero VE, Zurita M, Valadez-Graham V. Insights into HP1a-Chromatin Interactions. Cells 2020; 9:E1866. [PMID: 32784937 PMCID: PMC7465937 DOI: 10.3390/cells9081866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 12/17/2022] Open
Abstract
Understanding the packaging of DNA into chromatin has become a crucial aspect in the study of gene regulatory mechanisms. Heterochromatin establishment and maintenance dynamics have emerged as some of the main features involved in genome stability, cellular development, and diseases. The most extensively studied heterochromatin protein is HP1a. This protein has two main domains, namely the chromoshadow and the chromodomain, separated by a hinge region. Over the years, several works have taken on the task of identifying HP1a partners using different strategies. In this review, we focus on describing these interactions and the possible complexes and subcomplexes associated with this critical protein. Characterization of these complexes will help us to clearly understand the implications of the interactions of HP1a in heterochromatin maintenance, heterochromatin dynamics, and heterochromatin's direct relationship to gene regulation and chromatin organization.
Collapse
Affiliation(s)
| | | | | | - Viviana Valadez-Graham
- Instituto de Biotecnología, Departamento de Genética del Desarrollo y Fisiología Molecular, Universidad Nacional Autónoma de México, Cuernavaca Morelos 62210, Mexico; (S.M.-N.); (V.E.N.-C.); (M.Z.)
| |
Collapse
|
12
|
Cacchione S, Cenci G, Raffa GD. Silence at the End: How Drosophila Regulates Expression and Transposition of Telomeric Retroelements. J Mol Biol 2020; 432:4305-4321. [PMID: 32512004 DOI: 10.1016/j.jmb.2020.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 01/26/2023]
Abstract
The maintenance of chromosome ends in Drosophila is an exceptional phenomenon because it relies on the transposition of specialized retrotransposons rather than on the activity of the enzyme telomerase that maintains telomeres in almost every other eukaryotic species. Sequential transpositions of Het-A, TART, and TAHRE (HTT) onto chromosome ends produce long head-to-tail arrays that are reminiscent to the long arrays of short repeats produced by telomerase in other organisms. Coordinating the activation and silencing of the HTT array with the recruitment of telomere capping proteins favors proper telomere function. However, how this coordination is achieved is not well understood. Like other Drosophila retrotransposons, telomeric elements are regulated by the piRNA pathway. Remarkably, HTT arrays are both source of piRNA and targets of gene silencing thus making the regulation of Drosophila telomeric transposons a unique event among eukaryotes. Herein we will review the genetic and molecular mechanisms underlying the regulation of HTT transcription and transposition and will discuss the possibility of a crosstalk between piRNA-mediated regulation, telomeric chromatin establishment, and telomere protection.
Collapse
Affiliation(s)
- Stefano Cacchione
- Department of Biology and Biotechnology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Roma, Italy.
| | - Giovanni Cenci
- Department of Biology and Biotechnology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Roma, Italy; Fondazione Cenci Bolognetti, Istituto Pasteur, Rome, Italy.
| | - Grazia Daniela Raffa
- Department of Biology and Biotechnology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Roma, Italy.
| |
Collapse
|
13
|
Maccallini P, Bavasso F, Scatolini L, Bucciarelli E, Noviello G, Lisi V, Palumbo V, D'Angeli S, Cacchione S, Cenci G, Ciapponi L, Wakefield JG, Gatti M, Raffa GD. Intimate functional interactions between TGS1 and the Smn complex revealed by an analysis of the Drosophila eye development. PLoS Genet 2020; 16:e1008815. [PMID: 32453722 PMCID: PMC7289441 DOI: 10.1371/journal.pgen.1008815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/11/2020] [Accepted: 04/30/2020] [Indexed: 11/27/2022] Open
Abstract
Trimethylguanosine synthase 1 (TGS1) is a conserved enzyme that mediates formation of the trimethylguanosine cap on several RNAs, including snRNAs and telomerase RNA. Previous studies have shown that TGS1 binds the Survival Motor Neuron (SMN) protein, whose deficiency causes spinal muscular atrophy (SMA). Here, we analyzed the roles of the Drosophila orthologs of the human TGS1 and SMN genes. We show that the Drosophila TGS1 protein (dTgs1) physically interacts with all subunits of the Drosophila Smn complex (Smn, Gem2, Gem3, Gem4 and Gem5), and that a human TGS1 transgene rescues the mutant phenotype caused by dTgs1 loss. We demonstrate that both dTgs1 and Smn are required for viability of retinal progenitor cells and that downregulation of these genes leads to a reduced eye size. Importantly, overexpression of dTgs1 partially rescues the eye defects caused by Smn depletion, and vice versa. These results suggest that the Drosophila eye model can be exploited for screens aimed at the identification of genes and drugs that modify the phenotypes elicited by Tgs1 and Smn deficiency. These modifiers could help to understand the molecular mechanisms underlying SMA pathogenesis and devise new therapies for this genetic disease. We explored the functional relationships between TGS1 and SMN using Drosophila as model organism. TGS1 is an enzyme that modifies the structure of the 5’-end of several RNAs, including telomerase RNA and the small nuclear RNAs (snRNAs) that are required for messenger RNA maturation. The SMN protein regulates snRNAs biogenesis and mutations in human SMN cause Spinal Muscular Atrophy (SMA), a devastating disorder characterized by neurodegeneration, progressive paralysis and death. We show that mutations in the Drosophila TGS1 (dTgs1) gene cause lethality, which is rescued by a human TGS1 transgene. We also show that the dTgs1 protein physically interacts with all subunits of the Smn complex, and that downregulation of either dTgs1 or Smn leads to a reduced Drosophila eye size. Notably, overexpression of dTgs1 partially rescues the eye defects caused by Smn knockdown, and vice versa, indicating that these genes cooperate in eye development. These results suggest that the eye model can be exploited for screens aimed at detection of chemical and genetic modifiers of the eye mutant phenotype elicited by dTgs1 and Smn deficiency, providing new clues about SMA pathogenesis and potential therapies.
Collapse
Affiliation(s)
- Paolo Maccallini
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
| | - Francesca Bavasso
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
| | - Livia Scatolini
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
| | | | - Gemma Noviello
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
| | - Veronica Lisi
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
| | - Valeria Palumbo
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
| | - Simone D'Angeli
- Dipartimento di Biologia Ambientale, Sapienza University of Rome, Rome, Italy
| | - Stefano Cacchione
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
| | - Giovanni Cenci
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
- Fondazione Cenci Bolognetti, Istituto Pasteur, Rome, Italy
| | - Laura Ciapponi
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
| | - James G. Wakefield
- Biosciences/Living Systems Institute, College of Life and Environmental Sciences, University of Exeter, United Kingdom
| | - Maurizio Gatti
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
- Istituto di Biologia e Patologia Molecolari (IBPM) del CNR, Rome, Italy
- * E-mail: (MG); (GDR)
| | - Grazia Daniela Raffa
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
- * E-mail: (MG); (GDR)
| |
Collapse
|
14
|
Cheng L, Cui M, Rong YS. MTV sings jubilation for telomere biology in Drosophila. Fly (Austin) 2018; 12:41-45. [PMID: 28471262 PMCID: PMC5927694 DOI: 10.1080/19336934.2017.1325979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 04/28/2017] [Indexed: 02/08/2023] Open
Abstract
Telomere protects the ends of linear chromosomes. Telomere dysfunction fuels genome instability that can lead to diseases such as cancer. For over 30 years, Drosophila has fascinated the field as the only major model organism that does not rely on the conserved telomerase enzyme for end protection. Instead of short DNA repeats at chromosome ends, Drosophila has domesticated retrotransposons. In addition, telomere protection can be entirely sequence-independent under normal laboratory conditions, again dissimilar to what has been established for telomerase-maintained systems. Despite these major differences, recent studies from us and others have revealed remarkable similarities between the 2 systems. In particular, with the identification of the MTV complex as an ssDNA binding complex essential for telomere integrity in Drosophila (Zhang et al. 2016 Plos Genetics), we have now established several universal principles that are intrinsic to chromosome extremities but independent of the underlying DNA sequences or the telomerase enzyme. Telomere studies in Drosophila will continue to yield fundamental insights that are instrumental to the understanding of the evolution of telomere and telomeric functions.
Collapse
Affiliation(s)
- Lin Cheng
- School of life Sciences, State Key Laboratory of Bio-control, Sun Yat-sen University, Guangzhou, China
| | - Ming Cui
- School of life Sciences, State Key Laboratory of Bio-control, Sun Yat-sen University, Guangzhou, China
| | - Yikang S. Rong
- School of life Sciences, State Key Laboratory of Bio-control, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
15
|
The Hybrid Incompatibility Genes Lhr and Hmr Are Required for Sister Chromatid Detachment During Anaphase but Not for Centromere Function. Genetics 2017; 207:1457-1472. [PMID: 29046402 DOI: 10.1534/genetics.117.300390] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/13/2017] [Indexed: 11/18/2022] Open
Abstract
Crosses between Drosophila melanogaster females and Drosophila simulans males produce hybrid sons that die at the larval stage. This hybrid lethality is suppressed by loss-of-function mutations in the D. melanogaster Hybrid male rescue (Hmr) or in the D. simulans Lethal hybrid rescue (Lhr) genes. Previous studies have shown that Hmr and Lhr interact with heterochromatin proteins and suppress expression of transposable elements within D. melanogaster It also has been proposed that Hmr and Lhr function at the centromere. We examined mitotic divisions in larval brains from Hmr and Lhr single mutants and Hmr; Lhr double mutants in D. melanogaster In none of the mutants did we observe defects in metaphase chromosome alignment or hyperploid cells, which are hallmarks of centromere or kinetochore dysfunction. In addition, we found that Hmr-HA and Lhr-HA do not colocalize with centromeres either during interphase or mitotic division. However, all mutants displayed anaphase bridges and chromosome aberrations resulting from the breakage of these bridges, predominantly at the euchromatin-heterochromatin junction. The few dividing cells present in hybrid males showed fuzzy and irregularly condensed chromosomes with unresolved sister chromatids. Despite this defect in condensation, chromosomes in hybrids managed to align on the metaphase plate and undergo anaphase. We conclude that there is no evidence for a centromeric function of Hmr and Lhr within D. melanogaster nor for a centromere defect causing hybrid lethality. Instead, we find that Hmr and Lhr are required in D. melanogaster for detachment of sister chromatids during anaphase.
Collapse
|
16
|
Chromosome Healing Is Promoted by the Telomere Cap Component Hiphop in Drosophila. Genetics 2017; 207:949-959. [PMID: 28942425 DOI: 10.1534/genetics.117.300317] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/21/2017] [Indexed: 11/18/2022] Open
Abstract
The addition of a new telomere onto a chromosome break, a process termed healing, has been studied extensively in organisms that utilize telomerase to maintain their telomeres. In comparison, relatively little is known about how new telomeres are constructed on broken chromosomes in organisms that do not use telomerase. Chromosome healing was studied in somatic and germline cells of Drosophila melanogaster, a nontelomerase species. We observed, for the first time, that broken chromosomes can be healed in somatic cells. In addition, overexpression of the telomere cap component Hiphop increased the survival of somatic cells with broken chromosomes, while the cap component HP1 did not, and overexpression of the cap protein HOAP decreased their survival. In the male germline, Hiphop overexpression greatly increased the transmission of healed chromosomes. These results indicate that Hiphop can stimulate healing of a chromosome break. We suggest that this reflects a unique function of Hiphop: it is capable of seeding formation of a new telomeric cap on a chromosome end that lacks a telomere.
Collapse
|
17
|
Cicconi A, Micheli E, Vernì F, Jackson A, Gradilla AC, Cipressa F, Raimondo D, Bosso G, Wakefield JG, Ciapponi L, Cenci G, Gatti M, Cacchione S, Raffa GD. The Drosophila telomere-capping protein Verrocchio binds single-stranded DNA and protects telomeres from DNA damage response. Nucleic Acids Res 2017; 45:3068-3085. [PMID: 27940556 PMCID: PMC5389638 DOI: 10.1093/nar/gkw1244] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 11/28/2016] [Indexed: 12/17/2022] Open
Abstract
Drosophila telomeres are sequence-independent structures maintained by transposition to chromosome ends of three specialized retroelements rather than by telomerase activity. Fly telomeres are protected by the terminin complex that includes the HOAP, HipHop, Moi and Ver proteins. These are fast evolving, non-conserved proteins that localize and function exclusively at telomeres, protecting them from fusion events. We have previously suggested that terminin is the functional analogue of shelterin, the multi-protein complex that protects human telomeres. Here, we use electrophoretic mobility shift assay (EMSA) and atomic force microscopy (AFM) to show that Ver preferentially binds single-stranded DNA (ssDNA) with no sequence specificity. We also show that Moi and Ver form a complex in vivo. Although these two proteins are mutually dependent for their localization at telomeres, Moi neither binds ssDNA nor facilitates Ver binding to ssDNA. Consistent with these results, we found that Ver-depleted telomeres form RPA and γH2AX foci, like the human telomeres lacking the ssDNA-binding POT1 protein. Collectively, our findings suggest that Drosophila telomeres possess a ssDNA overhang like the other eukaryotes, and that the terminin complex is architecturally and functionally similar to shelterin.
Collapse
Affiliation(s)
- Alessandro Cicconi
- Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza, Università di Roma, 00185 Roma, Italy.,Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185 Roma, Italy
| | - Emanuela Micheli
- Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza, Università di Roma, 00185 Roma, Italy.,Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185 Roma, Italy
| | - Fiammetta Vernì
- Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza, Università di Roma, 00185 Roma, Italy
| | - Alison Jackson
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Ana Citlali Gradilla
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Francesca Cipressa
- Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza, Università di Roma, 00185 Roma, Italy.,Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185 Roma, Italy.,Centro Fermi, Piazza del Viminale 1, 00184 Roma, Italy
| | - Domenico Raimondo
- Dipartimento di Medicina Molecolare, Sapienza, Università di Roma, 00185 Roma, Italy
| | - Giuseppe Bosso
- Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza, Università di Roma, 00185 Roma, Italy.,Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185 Roma, Italy
| | - James G Wakefield
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Laura Ciapponi
- Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza, Università di Roma, 00185 Roma, Italy
| | - Giovanni Cenci
- Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza, Università di Roma, 00185 Roma, Italy.,Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185 Roma, Italy
| | - Maurizio Gatti
- Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza, Università di Roma, 00185 Roma, Italy.,Istituto di Biologia e Patologia Molecolari (IBPM) del CNR, 00185 Roma, Italy
| | - Stefano Cacchione
- Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza, Università di Roma, 00185 Roma, Italy.,Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185 Roma, Italy
| | - Grazia Daniela Raffa
- Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza, Università di Roma, 00185 Roma, Italy.,Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185 Roma, Italy
| |
Collapse
|
18
|
Drosophila: Retrotransposons Making up Telomeres. Viruses 2017; 9:v9070192. [PMID: 28753967 PMCID: PMC5537684 DOI: 10.3390/v9070192] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 12/27/2022] Open
Abstract
Drosophila and extant species are the best-studied telomerase exception. In this organism, telomere elongation is coupled with targeted retrotransposition of Healing Transposon (HeT-A) and Telomere Associated Retrotransposon (TART) with sporadic additions of Telomere Associated and HeT-A Related (TAHRE), all three specialized non-Long Terminal Repeat (non-LTR) retrotransposons. These three very special retroelements transpose in head to tail arrays, always in the same orientation at the end of the chromosomes but never in interior locations. Apparently, retrotransposon and telomerase telomeres might seem very different, but a detailed view of their mechanisms reveals similarities explaining how the loss of telomerase in a Drosophila ancestor could successfully have been replaced by the telomere retrotransposons. In this review, we will discover that although HeT-A, TART, and TAHRE are still the only examples to date where their targeted transposition is perfectly tamed into the telomere biology of Drosophila, there are other examples of retrotransposons that manage to successfully integrate inside and at the end of telomeres. Because the aim of this special issue is viral integration at telomeres, understanding the base of the telomerase exceptions will help to obtain clues on similar strategies that mobile elements and viruses could have acquired in order to ensure their survival in the host genome.
Collapse
|
19
|
Di Giorgio ML, Esposito A, Maccallini P, Micheli E, Bavasso F, Gallotta I, Vernì F, Feiguin F, Cacchione S, McCabe BD, Di Schiavi E, Raffa GD. WDR79/TCAB1 plays a conserved role in the control of locomotion and ameliorates phenotypic defects in SMA models. Neurobiol Dis 2017; 105:42-50. [PMID: 28502804 DOI: 10.1016/j.nbd.2017.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/19/2017] [Accepted: 05/10/2017] [Indexed: 12/22/2022] Open
Abstract
SMN (Survival Motor Neuron) deficiency is the predominant cause of spinal muscular atrophy (SMA), a severe neurodegenerative disorder that can lead to progressive paralysis and death. Although SMN is required in every cell for proper RNA metabolism, the reason why its loss is especially critical in the motor system is still unclear. SMA genetic models have been employed to identify several modifiers that can ameliorate the deficits induced by SMN depletion. Here we focus on WDR79/TCAB1, a protein important for the biogenesis of several RNA species that has been shown to physically interact with SMN in human cells. We show that WDR79 depletion results in locomotion defects in both Drosophila and Caenorhabditis elegans similar to those elicited by SMN depletion. Consistent with this observation, we find that SMN overexpression rescues the WDR79 loss-of-function phenotype in flies. Most importantly, we also found that WDR79 overexpression ameliorates the locomotion defects induced by SMN depletion in both flies and worms. Our results collectively suggest that WDR79 and SMN play evolutionarily conserved cooperative functions in the nervous system and suggest that WDR79/TCAB1 may have the potential to modify SMA pathogenesis.
Collapse
Affiliation(s)
- Maria Laura Di Giorgio
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Rome, Italy
| | | | - Paolo Maccallini
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Rome, Italy
| | - Emanuela Micheli
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Rome, Italy
| | - Francesca Bavasso
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Rome, Italy
| | - Ivan Gallotta
- Institute of Genetics and Biophysics - ABT, CNR, Naples, Italy
| | - Fiammetta Vernì
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Rome, Italy
| | - Fabian Feiguin
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Stefano Cacchione
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Rome, Italy
| | | | - Elia Di Schiavi
- Institute of Genetics and Biophysics - ABT, CNR, Naples, Italy; Institute of Bioscience and Bioresources, CNR, Naples, Italy
| | - Grazia Daniela Raffa
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Rome, Italy.
| |
Collapse
|
20
|
Lee YCG, Leek C, Levine MT. Recurrent Innovation at Genes Required for Telomere Integrity in Drosophila. Mol Biol Evol 2017; 34:467-482. [PMID: 27836984 PMCID: PMC6307840 DOI: 10.1093/molbev/msw248] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Telomeres are nucleoprotein complexes at the ends of linear chromosomes. These specialized structures ensure genome integrity and faithful chromosome inheritance. Recurrent addition of repetitive, telomere-specific DNA elements to chromosome ends combats end-attrition, while specialized telomere-associated proteins protect naked, double-stranded chromosome ends from promiscuous repair into end-to-end fusions. Although telomere length homeostasis and end-protection are ubiquitous across eukaryotes, there is sporadic but building evidence that the molecular machinery supporting these essential processes evolves rapidly. Nevertheless, no global analysis of the evolutionary forces that shape these fast-evolving proteins has been performed on any eukaryote. The abundant population and comparative genomic resources of Drosophila melanogaster and its close relatives offer us a unique opportunity to fill this gap. Here we leverage population genetics, molecular evolution, and phylogenomics to define the scope and evolutionary mechanisms driving fast evolution of genes required for telomere integrity. We uncover evidence of pervasive positive selection across multiple evolutionary timescales. We also document prolific expansion, turnover, and expression evolution in gene families founded by telomeric proteins. Motivated by the mutant phenotypes and molecular roles of these fast-evolving genes, we put forward four alternative, but not mutually exclusive, models of intra-genomic conflict that may play out at very termini of eukaryotic chromosomes. Our findings set the stage for investigating both the genetic causes and functional consequences of telomere protein evolution in Drosophila and beyond.
Collapse
Affiliation(s)
- Yuh Chwen G Lee
- Department of Ecology and Evolution, University of Chicago, Chicago, IL
| | - Courtney Leek
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA
| | - Mia T Levine
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA
- Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
21
|
Apte MS, Cooper JP. Life and cancer without telomerase: ALT and other strategies for making sure ends (don't) meet. Crit Rev Biochem Mol Biol 2016; 52:57-73. [PMID: 27892716 DOI: 10.1080/10409238.2016.1260090] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
While most cancer cells rely on telomerase expression/re-activation for linear chromosome maintenance and sustained proliferation, a significant population of cancers (10-15%) employs telomerase-independent strategies, collectively dubbed Alternative Lengthening of Telomeres (ALT). Most ALT cells relax the usual role of telomeres as inhibitors of local homologous recombination while maintaining the ability of telomeres to prohibit local non-homologous end joining reactions. Here we review current concepts surrounding how ALT telomeres achieve this new balance via alterations in chromatin landscape, DNA damage repair processes and handling of telomeric transcription. We also discuss telomerase independent end maintenance strategies utilized by other organisms, including fruitflies and yeasts, to draw parallels and contrasts and highlight additional modes, beyond ALT, that may be available to telomerase-minus cancers. We conclude by commenting on promises and challenges in the development of effective anti-ALT cancer therapies.
Collapse
Affiliation(s)
- Manasi S Apte
- a Laboratory of Biochemistry and Molecular Biology , Center for Cancer Research, National Cancer Institute, NIH , Bethesda , MD , USA
| | - Julia Promisel Cooper
- a Laboratory of Biochemistry and Molecular Biology , Center for Cancer Research, National Cancer Institute, NIH , Bethesda , MD , USA
| |
Collapse
|
22
|
MTV, an ssDNA Protecting Complex Essential for Transposon-Based Telomere Maintenance in Drosophila. PLoS Genet 2016; 12:e1006435. [PMID: 27835648 PMCID: PMC5105952 DOI: 10.1371/journal.pgen.1006435] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/20/2016] [Indexed: 12/25/2022] Open
Abstract
Multiple complexes protect telomeres. In telomerase-maintained organisms, Shelterin related complexes occupy the duplex region while the CST and Tpp1-Pot1 complexes bind the single stranded overhang of telomeres. Drosophila uses a transposon-based mechanism for end protection. We showed that the HOAP-HipHop complex occupies the duplex region. Whether an ssDNA-binding complex exists is not known. Here we discover a novel protein, Tea, that is specifically enriched at telomeres to prevent telomere fusion. We also identify a complex consisting of Tea and two known capping proteins, Ver and Moi. The Moi-Tea-Ver (MTV) complex purified in vitro binds and protects ssDNA in a sequence-independent manner. Tea recruits Ver and Moi to telomeres, and point mutations disrupting MTV interaction in vitro result in telomere uncapping, consistent with these proteins functioning as a complex in vivo. MTV thus shares functional similarities with CST or TPP1-POT1 in protecting ssDNA, highlighting a conserved feature in end protecting mechanisms. Chromosome ends are protected by the telomere structure maintained by the telomerase enzyme in most organisms. The fruit fly Drosophila has fascinated the field as the only major model organism that relies solely on a telomerase-independent mechanism for end protection. The fly model is arguably the best system to reveal the most basic features of the telomere. Here we characterize the MTV complex in flies and suggest that MTV fulfills similar function as the ssDNA-binding complexes in other organisms. This is striking considering that MTV subunits display highly accelerated rates of protein evolution. Our findings will be of interest to scientists interested in the molecular mechanisms of telomere protection and evolution biologists interested in how telomere and telomeric functions evolve.
Collapse
|
23
|
Swenson JM, Colmenares SU, Strom AR, Costes SV, Karpen GH. The composition and organization of Drosophila heterochromatin are heterogeneous and dynamic. eLife 2016; 5:e16096. [PMID: 27514026 PMCID: PMC4981497 DOI: 10.7554/elife.16096] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/06/2016] [Indexed: 12/13/2022] Open
Abstract
Heterochromatin is enriched for specific epigenetic factors including Heterochromatin Protein 1a (HP1a), and is essential for many organismal functions. To elucidate heterochromatin organization and regulation, we purified Drosophila melanogaster HP1a interactors, and performed a genome-wide RNAi screen to identify genes that impact HP1a levels or localization. The majority of the over four hundred putative HP1a interactors and regulators identified were previously unknown. We found that 13 of 16 tested candidates (83%) are required for gene silencing, providing a substantial increase in the number of identified components that impact heterochromatin properties. Surprisingly, image analysis revealed that although some HP1a interactors and regulators are broadly distributed within the heterochromatin domain, most localize to discrete subdomains that display dynamic localization patterns during the cell cycle. We conclude that heterochromatin composition and architecture is more spatially complex and dynamic than previously suggested, and propose that a network of subdomains regulates diverse heterochromatin functions.
Collapse
Affiliation(s)
- Joel M Swenson
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Serafin U Colmenares
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Amy R Strom
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Sylvain V Costes
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Gary H Karpen
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
24
|
Abstract
Drosophila telomeres are maintained by transposition to chromosome ends of the HeT-A, TART and TAHRE retrotransposons, collectively designated as HTT. Although all Drosophila telomeres terminate with HTT arrays and are capped by the terminin complex, they differ in the type of subtelomeric chromatin. The HTT sequences of YS, YL, XR, and 4L are juxtaposed to constitutive heterochromatin, while the HTTs of the other telomeres are linked to either the TAS repeat-associated chromatin (XL, 2L, 2R, 3L, 3R) or to the specialized 4R chromatin. We found that mutations in pendolino (peo) cause (telomeric fusions) that preferentially involve the heterochromatin-associated telomeres (Ha-telomeres), a telomeric fusion pattern never observed in the other 10 telomere-capping mutants characterized so far. Peo, is homologous to the E2 variant ubiquitin-conjugating enzymes and is required for DNA replication. Our analyses lead us to hypothesize that DNA replication in Peo-depleted cells results in specific fusigenic lesions concentrated in Ha-telomeres. These data provide the first demonstration that subtelomeres can affect telomere fusion.
Collapse
Affiliation(s)
- Marta Marzullo
- a Department of Biology and Biotechnology ; University of Rome ; Sapienza , Italy
| | - Maurizio Gatti
- a Department of Biology and Biotechnology ; University of Rome ; Sapienza , Italy.,b IBPM CNR, University of Rome ; Rome , Italy
| |
Collapse
|
25
|
Cipressa F, Morciano P, Bosso G, Mannini L, Galati A, Raffa GD, Cacchione S, Musio A, Cenci G. A role for Separase in telomere protection. Nat Commun 2016; 7:10405. [PMID: 26778495 PMCID: PMC4735636 DOI: 10.1038/ncomms10405] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 12/08/2015] [Indexed: 12/04/2022] Open
Abstract
Drosophila telomeres are elongated by transposition of specialized retroelements rather than telomerase activity and are assembled independently of the sequence. Fly telomeres are protected by the terminin complex that localizes and functions exclusively at telomeres and by non-terminin proteins that do not serve telomere-specific functions. We show that mutations in the Drosophila Separase encoding gene Sse lead not only to endoreduplication but also telomeric fusions (TFs), suggesting a role for Sse in telomere capping. We demonstrate that Separase binds terminin proteins and HP1, and that it is enriched at telomeres. Furthermore, we show that loss of Sse strongly reduces HP1 levels, and that HP1 overexpression in Sse mutants suppresses TFs, suggesting that TFs are caused by a HP1 diminution. Finally, we find that siRNA-induced depletion of ESPL1, the Sse human orthologue, causes telomere dysfunction and HP1 level reduction in primary fibroblasts, highlighting a conserved role of Separase in telomere protection. Drosophila telomeres are elongated by transposition of specialized retroelements rather than telomerase activity. Here, the authors show that Separase is enriched at Drosophila telomeres and loss of Sse, the gene encoding Separase, leads to telomere defects, suggesting a role for Separase in telomere protection.
Collapse
Affiliation(s)
- Francesca Cipressa
- Department of Biology and Biotechnology "Charles Darwin" Section of Genetics, SAPIENZA University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.,Istituto Pasteur, Fondazione Cenci-Bolognetti, Viale Regina Elena 291, 00185 Rome, Italy
| | - Patrizia Morciano
- Department of Biology and Biotechnology "Charles Darwin" Section of Genetics, SAPIENZA University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.,Istituto Pasteur, Fondazione Cenci-Bolognetti, Viale Regina Elena 291, 00185 Rome, Italy
| | - Giuseppe Bosso
- Department of Biology and Biotechnology "Charles Darwin" Section of Genetics, SAPIENZA University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.,Istituto Pasteur, Fondazione Cenci-Bolognetti, Viale Regina Elena 291, 00185 Rome, Italy
| | - Linda Mannini
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, c/o Area di Ricerca di S. Cataldo Via G. Moruzzi 1, 56124 Pisa, Italy
| | - Alessandra Galati
- Department of Biology and Biotechnology "Charles Darwin" Section of Genetics, SAPIENZA University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.,Istituto Pasteur, Fondazione Cenci-Bolognetti, Viale Regina Elena 291, 00185 Rome, Italy
| | - Grazia Daniela Raffa
- Department of Biology and Biotechnology "Charles Darwin" Section of Genetics, SAPIENZA University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.,Istituto Pasteur, Fondazione Cenci-Bolognetti, Viale Regina Elena 291, 00185 Rome, Italy
| | - Stefano Cacchione
- Department of Biology and Biotechnology "Charles Darwin" Section of Genetics, SAPIENZA University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.,Istituto Pasteur, Fondazione Cenci-Bolognetti, Viale Regina Elena 291, 00185 Rome, Italy
| | - Antonio Musio
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, c/o Area di Ricerca di S. Cataldo Via G. Moruzzi 1, 56124 Pisa, Italy.,Istituto Toscano Tumori, Via T. Alderotti 26N, 50139 Firenze, Italy
| | - Giovanni Cenci
- Department of Biology and Biotechnology "Charles Darwin" Section of Genetics, SAPIENZA University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.,Istituto Pasteur, Fondazione Cenci-Bolognetti, Viale Regina Elena 291, 00185 Rome, Italy
| |
Collapse
|
26
|
Vernì F, Cenci G. The Drosophila histone variant H2A.V works in concert with HP1 to promote kinetochore-driven microtubule formation. Cell Cycle 2015; 14:577-88. [PMID: 25591068 DOI: 10.4161/15384101.2014.991176] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Unlike other organisms that have evolved distinct H2A variants for different functions, Drosophila melanogaster has just one variant which is capable of filling many roles. This protein, H2A.V, combines the features of the conserved variants H2A.Z and H2A.X in transcriptional control/heterochromatin assembly and DNA damage response, respectively. Here we show that mutations in the gene encoding H2A.V affect chromatin compaction and perturb chromosome segregation in Drosophila mitotic cells. A microtubule (MT) regrowth assay after cold exposure revealed that loss of H2A.V impairs the formation of kinetochore-driven (k) fibers, which can account for defects in chromosome segregation. All defects are rescued by a transgene encoding H2A.V that lacks the H2A.X function in the DNA damage response, suggesting that the H2A.Z (but not H2A.X) functionality of H2A.V is required for chromosome segregation. We also found that loss of H2A.V weakens HP1 localization, specifically at the pericentric heterochromatin of metaphase chromosomes. Interestingly, loss of HP1 yielded not only telomeric fusions but also mitotic defects similar to those seen in H2A.V null mutants, suggesting a role for HP1 in chromosome segregation. We also show that H2A.V precipitates HP1 from larval brain extracts indicating that both proteins are part of the same complex. Moreover, we found that the overexpression of HP1 rescues chromosome missegregation and defects in the kinetochore-driven k-fiber regrowth of H2A.V mutants indicating that both phenotypes are influenced by unbalanced levels of HP1. Collectively, our results suggest that H2A.V and HP1 work in concert to ensure kinetochore-driven MT growth.
Collapse
Affiliation(s)
- Fiammetta Vernì
- a Dipartimento di Biologia e Biotecnologie "C. Darwin" ; Sapienza Università di Roma ; Roma , Italy
| | | |
Collapse
|
27
|
Vedelek B, Blastyák A, Boros IM. Cross-Species Interaction between Rapidly Evolving Telomere-Specific Drosophila Proteins. PLoS One 2015; 10:e0142771. [PMID: 26566042 PMCID: PMC4643883 DOI: 10.1371/journal.pone.0142771] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/27/2015] [Indexed: 11/25/2022] Open
Abstract
Telomere integrity in Drosophila melanogaster is maintained by a putative multisubunit complex called terminin that is believed to act in analogy to the mammalian shelterin complex in protecting chromosome ends from being recognized as sites of DNA damage. The five proteins supposed to form the terminin complex are HP1-ORC associated protein, HP1-HOAP interacting protein, Verrocchio, Drosophila Telomere Loss/Modigliani and Heterochromatic Protein 1. Four of these proteins evolve rapidly within the Drosophila genus. The accelerated evolution of terminin components may indicate the involvement of these proteins in the process by which new species arise, as the resulting divergence of terminin proteins might prevent hybrid formation, thus driving speciation. However, terminin is not an experimentally proven entity, and no biochemical studies have been performed to investigate its assembly and action in detail. Motivated by these facts in order to initiate biochemical studies on terminin function, we attempted to reconstitute terminin by co-expressing its subunits in bacteria and investigated the possible role of the fast-evolving parts of terminin components in complex assembly. Our results suggest formation of stable subcomplexes of terminin, but not of the whole complex in vitro. We found that the accelerated evolution is restricted to definable regions of terminin components, and that the divergence of D. melanogaster Drosophila Telomere Loss and D. yakuba Verrocchio proteins does not preclude their stable interaction.
Collapse
Affiliation(s)
- Balázs Vedelek
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - András Blastyák
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Imre M. Boros
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
- * E-mail:
| |
Collapse
|
28
|
Cenci G, Ciapponi L, Marzullo M, Raffa GD, Morciano P, Raimondo D, Burla R, Saggio I, Gatti M. The Analysis of Pendolino (peo) Mutants Reveals Differences in the Fusigenic Potential among Drosophila Telomeres. PLoS Genet 2015; 11:e1005260. [PMID: 26110638 PMCID: PMC4481407 DOI: 10.1371/journal.pgen.1005260] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 05/04/2015] [Indexed: 01/08/2023] Open
Abstract
Drosophila telomeres are sequence-independent structures that are maintained by transposition to chromosome ends of three specialized retroelements (HeT-A, TART and TAHRE; collectively designated as HTT) rather than telomerase activity. Fly telomeres are protected by the terminin complex (HOAP-HipHop-Moi-Ver) that localizes and functions exclusively at telomeres and by non-terminin proteins that do not serve telomere-specific functions. Although all Drosophila telomeres terminate with HTT arrays and are capped by terminin, they differ in the type of subtelomeric chromatin; the Y, XR, and 4L HTT are juxtaposed to constitutive heterochromatin, while the XL, 2L, 2R, 3L and 3R HTT are linked to the TAS repetitive sequences; the 4R HTT is associated with a chromatin that has features common to both euchromatin and heterochromatin. Here we show that mutations in pendolino (peo) cause telomeric fusions (TFs). The analysis of several peo mutant combinations showed that these TFs preferentially involve the Y, XR and 4th chromosome telomeres, a TF pattern never observed in the other 10 telomere-capping mutants so far characterized. peo encodes a non-terminin protein homologous to the E2 variant ubiquitin-conjugating enzymes. The Peo protein directly interacts with the terminin components, but peo mutations do not affect telomeric localization of HOAP, Moi, Ver and HP1a, suggesting that the peo-dependent telomere fusion phenotype is not due to loss of terminin from chromosome ends. peo mutants are also defective in DNA replication and PCNA recruitment. However, our results suggest that general defects in DNA replication are unable to induce TFs in Drosophila cells. We thus hypothesize that DNA replication in Peo-depleted cells results in specific fusigenic lesions concentrated in heterochromatin-associated telomeres. Alternatively, it is possible that Peo plays a dual function being independently required for DNA replication and telomere capping. Telomeres are specialized structures that protect chromosome ends from incomplete replication, degradation and end-to-end fusion. Abnormalities in telomere structure or maintenance can promote a variety of human diseases including premature aging and cancer. Although all human telomeres contain the same DNA sequences, they differ from each other in the subtelomeric regions or subtelomeres. Recent work has shown that human subtelomeres control telomere replication and that abnormalities in these structures can lead to localized chromosome instability and disease. However, the relationships between subtelomeres and telomeres are currently poorly understood. Here, we have addressed this problem using the fruit fly Drosophila melanogaster as model system. Drosophila subtelomers are very different from each other as they contain different types of chromatin. We have found that mutations in a gene we called pendolino (peo) cause telomeric fusions (TFs) and that these fusions preferentially involve the telomeres associated with a tightly packed form of chromatin called heterochromatin. Interestingly, none of the 10 mutants with TFs so far described in Drosophila shows the pattern of TFs observed in peo mutants. Thus, our data provide the first demonstration that subtelomeres can affect telomere fusion. We believe that these results will stimulate further studies on the role of subtelomeres in the maintenance of genome stability.
Collapse
Affiliation(s)
- Giovanni Cenci
- Dipartimento di Biologia e Biotecnologie, Sapienza—Università di Roma, Roma, Italy
- Istituto Pasteur Fondazione Cenci Bolognetti, Sapienza—Università di Roma, Roma, Italy
| | - Laura Ciapponi
- Dipartimento di Biologia e Biotecnologie, Sapienza—Università di Roma, Roma, Italy
- Istituto Pasteur Fondazione Cenci Bolognetti, Sapienza—Università di Roma, Roma, Italy
| | - Marta Marzullo
- Dipartimento di Biologia e Biotecnologie, Sapienza—Università di Roma, Roma, Italy
- Istituto Pasteur Fondazione Cenci Bolognetti, Sapienza—Università di Roma, Roma, Italy
| | - Grazia D. Raffa
- Dipartimento di Biologia e Biotecnologie, Sapienza—Università di Roma, Roma, Italy
- Istituto Pasteur Fondazione Cenci Bolognetti, Sapienza—Università di Roma, Roma, Italy
| | - Patrizia Morciano
- Dipartimento di Biologia e Biotecnologie, Sapienza—Università di Roma, Roma, Italy
- Istituto Pasteur Fondazione Cenci Bolognetti, Sapienza—Università di Roma, Roma, Italy
| | | | - Romina Burla
- Dipartimento di Biologia e Biotecnologie, Sapienza—Università di Roma, Roma, Italy
- Istituto Pasteur Fondazione Cenci Bolognetti, Sapienza—Università di Roma, Roma, Italy
| | - Isabella Saggio
- Dipartimento di Biologia e Biotecnologie, Sapienza—Università di Roma, Roma, Italy
- Istituto Pasteur Fondazione Cenci Bolognetti, Sapienza—Università di Roma, Roma, Italy
- IBPM CNR, Sapienza—Università di Roma, Roma, Italy
| | - Maurizio Gatti
- Dipartimento di Biologia e Biotecnologie, Sapienza—Università di Roma, Roma, Italy
- Istituto Pasteur Fondazione Cenci Bolognetti, Sapienza—Università di Roma, Roma, Italy
- IBPM CNR, Sapienza—Università di Roma, Roma, Italy
- * E-mail:
| |
Collapse
|
29
|
Burla R, Carcuro M, Raffa GD, Galati A, Raimondo D, Rizzo A, La Torre M, Micheli E, Ciapponi L, Cenci G, Cundari E, Musio A, Biroccio A, Cacchione S, Gatti M, Saggio I. AKTIP/Ft1, a New Shelterin-Interacting Factor Required for Telomere Maintenance. PLoS Genet 2015; 11:e1005167. [PMID: 26110528 PMCID: PMC4481533 DOI: 10.1371/journal.pgen.1005167] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/23/2015] [Indexed: 12/18/2022] Open
Abstract
Telomeres are nucleoprotein complexes that protect the ends of linear chromosomes from incomplete replication, degradation and detection as DNA breaks. Mammalian telomeres are protected by shelterin, a multiprotein complex that binds the TTAGGG telomeric repeats and recruits a series of additional factors that are essential for telomere function. Although many shelterin-associated proteins have been so far identified, the inventory of shelterin-interacting factors required for telomere maintenance is still largely incomplete. Here, we characterize AKTIP/Ft1 (human AKTIP and mouse Ft1 are orthologous), a novel mammalian shelterin-bound factor identified on the basis of its homology with the Drosophila telomere protein Pendolino. AKTIP/Ft1 shares homology with the E2 variant ubiquitin-conjugating (UEV) enzymes and has been previously implicated in the control of apoptosis and in vesicle trafficking. RNAi-mediated depletion of AKTIP results in formation of telomere dysfunction foci (TIFs). Consistent with these results, AKTIP interacts with telomeric DNA and binds the shelterin components TRF1 and TRF2 both in vivo and in vitro. Analysis of AKTIP- depleted human primary fibroblasts showed that they are defective in PCNA recruiting and arrest in the S phase due to the activation of the intra S checkpoint. Accordingly, AKTIP physically interacts with PCNA and the RPA70 DNA replication factor. Ft1-depleted p53-/- MEFs did not arrest in the S phase but displayed significant increases in multiple telomeric signals (MTS) and sister telomere associations (STAs), two hallmarks of defective telomere replication. In addition, we found an epistatic relation for MST formation between Ft1 and TRF1, which has been previously shown to be required for replication fork progression through telomeric DNA. Ch-IP experiments further suggested that in AKTIP-depleted cells undergoing the S phase, TRF1 is less tightly bound to telomeric DNA than in controls. Thus, our results collectively suggest that AKTIP/Ft1 works in concert with TRF1 to facilitate telomeric DNA replication.
Collapse
Affiliation(s)
- Romina Burla
- Dipartimento di Biologia e Biotecnologie, Sapienza—Università di Roma, Roma, Italy
- Istituto Pasteur Fondazione Cenci Bolognetti, Sapienza—Università di Roma, Roma, Italy
| | - Mariateresa Carcuro
- Dipartimento di Biologia e Biotecnologie, Sapienza—Università di Roma, Roma, Italy
- Istituto Pasteur Fondazione Cenci Bolognetti, Sapienza—Università di Roma, Roma, Italy
| | - Grazia D. Raffa
- Dipartimento di Biologia e Biotecnologie, Sapienza—Università di Roma, Roma, Italy
- Istituto Pasteur Fondazione Cenci Bolognetti, Sapienza—Università di Roma, Roma, Italy
| | - Alessandra Galati
- Dipartimento di Biologia e Biotecnologie, Sapienza—Università di Roma, Roma, Italy
- Istituto Pasteur Fondazione Cenci Bolognetti, Sapienza—Università di Roma, Roma, Italy
| | | | - Angela Rizzo
- Istituto Nazionale Tumori Regina Elena, Rome, Italy
| | - Mattia La Torre
- Dipartimento di Biologia e Biotecnologie, Sapienza—Università di Roma, Roma, Italy
- Istituto Pasteur Fondazione Cenci Bolognetti, Sapienza—Università di Roma, Roma, Italy
| | - Emanuela Micheli
- Dipartimento di Biologia e Biotecnologie, Sapienza—Università di Roma, Roma, Italy
- Istituto Pasteur Fondazione Cenci Bolognetti, Sapienza—Università di Roma, Roma, Italy
| | - Laura Ciapponi
- Dipartimento di Biologia e Biotecnologie, Sapienza—Università di Roma, Roma, Italy
- Istituto Pasteur Fondazione Cenci Bolognetti, Sapienza—Università di Roma, Roma, Italy
| | - Giovanni Cenci
- Dipartimento di Biologia e Biotecnologie, Sapienza—Università di Roma, Roma, Italy
- Istituto Pasteur Fondazione Cenci Bolognetti, Sapienza—Università di Roma, Roma, Italy
| | - Enrico Cundari
- Istituto di Biologia e Patologia Molecolari del CNR, Sapienza—Università di Roma, Roma, Italy
| | - Antonio Musio
- Istituto di Ricerca Genetica e Biomedica del CNR, Pisa, and Istituto Toscano Tumori, Firenze, Italy
| | | | - Stefano Cacchione
- Dipartimento di Biologia e Biotecnologie, Sapienza—Università di Roma, Roma, Italy
- Istituto Pasteur Fondazione Cenci Bolognetti, Sapienza—Università di Roma, Roma, Italy
| | - Maurizio Gatti
- Dipartimento di Biologia e Biotecnologie, Sapienza—Università di Roma, Roma, Italy
- Istituto Pasteur Fondazione Cenci Bolognetti, Sapienza—Università di Roma, Roma, Italy
- Istituto di Biologia e Patologia Molecolari del CNR, Sapienza—Università di Roma, Roma, Italy
- * E-mail: (MG); (IS)
| | - Isabella Saggio
- Dipartimento di Biologia e Biotecnologie, Sapienza—Università di Roma, Roma, Italy
- Istituto Pasteur Fondazione Cenci Bolognetti, Sapienza—Università di Roma, Roma, Italy
- Istituto di Biologia e Patologia Molecolari del CNR, Sapienza—Università di Roma, Roma, Italy
- * E-mail: (MG); (IS)
| |
Collapse
|
30
|
Dubruille R, Loppin B. Protection of Drosophila chromosome ends through minimal telomere capping. J Cell Sci 2015; 128:1969-81. [PMID: 25908850 DOI: 10.1242/jcs.167825] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/18/2015] [Indexed: 01/05/2023] Open
Abstract
In Drosophila, telomere-capping proteins have the remarkable capacity to recognize chromosome ends in a sequence-independent manner. This epigenetic protection is essential to prevent catastrophic ligations of chromosome extremities. Interestingly, capping proteins occupy a large telomere chromatin domain of several kilobases; however, the functional relevance of this to end protection is unknown. Here, we investigate the role of the large capping domain by manipulating HOAP (encoded by caravaggio) capping-protein expression in the male germ cells, where telomere protection can be challenged without compromising viability. We show that the exhaustion of HOAP results in a dramatic reduction of other capping proteins at telomeres, including K81 [encoded by ms(3)K81], which is essential for male fertility. Strikingly however, we demonstrate that, although capping complexes are barely detected in HOAP-depleted male germ cells, telomere protection and male fertility are not dramatically affected. Our study thus demonstrates that efficient protection of Drosophila telomeres can be achieved with surprisingly low amounts of capping complexes. We propose that these complexes prevent fusions by acting at the very extremity of chromosomes, reminiscent of the protection conferred by extremely short telomeric arrays in yeast or mammalian systems.
Collapse
Affiliation(s)
- Raphaëlle Dubruille
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, CNRS UMR 5534, Université Claude Bernard Lyon 1, Université de Lyon, 69100 Villeurbanne, France
| | - Benjamin Loppin
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, CNRS UMR 5534, Université Claude Bernard Lyon 1, Université de Lyon, 69100 Villeurbanne, France
| |
Collapse
|
31
|
Fulcher N, Derboven E, Valuchova S, Riha K. If the cap fits, wear it: an overview of telomeric structures over evolution. Cell Mol Life Sci 2014; 71:847-65. [PMID: 24042202 PMCID: PMC11113737 DOI: 10.1007/s00018-013-1469-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/16/2013] [Accepted: 08/30/2013] [Indexed: 10/26/2022]
Abstract
Genome organization into linear chromosomes likely represents an important evolutionary innovation that has permitted the development of the sexual life cycle; this process has consequently advanced nuclear expansion and increased complexity of eukaryotic genomes. Chromosome linearity, however, poses a major challenge to the internal cellular machinery. The need to efficiently recognize and repair DNA double-strand breaks that occur as a consequence of DNA damage presents a constant threat to native chromosome ends known as telomeres. In this review, we present a comparative survey of various solutions to the end protection problem, maintaining an emphasis on DNA structure. This begins with telomeric structures derived from a subset of prokaryotes, mitochondria, and viruses, and will progress into the typical telomere structure exhibited by higher organisms containing TTAGG-like tandem sequences. We next examine non-canonical telomeres from Drosophila melanogaster, which comprise arrays of retrotransposons. Finally, we discuss telomeric structures in evolution and possible switches between canonical and non-canonical solutions to chromosome end protection.
Collapse
Affiliation(s)
- Nick Fulcher
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
| | - Elisa Derboven
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
| | - Sona Valuchova
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
| | - Karel Riha
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
- Central European Institute of Technology, Kamenice 753/5, Brno, Czech Republic
| |
Collapse
|
32
|
Garavís M, González C, Villasante A. On the origin of the eukaryotic chromosome: the role of noncanonical DNA structures in telomere evolution. Genome Biol Evol 2013; 5:1142-50. [PMID: 23699225 PMCID: PMC3698924 DOI: 10.1093/gbe/evt079] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The transition of an ancestral circular genome to multiple linear chromosomes was crucial for eukaryogenesis because it allowed rapid adaptive evolution through aneuploidy. Here, we propose that the ends of nascent linear chromosomes should have had a dual function in chromosome end protection (capping) and chromosome segregation to give rise to the “proto-telomeres.” Later on, proper centromeres evolved at subtelomeric regions. We also propose that both noncanonical structures based on guanine–guanine interactions and the end-protection proteins recruited by the emergent telomeric heterochromatin have been required for telomere maintenance through evolution. We further suggest that the origin of Drosophila telomeres may be reminiscent of how the first telomeres arose.
Collapse
Affiliation(s)
- Miguel Garavís
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
| | | | | |
Collapse
|
33
|
Morrish TA, Bekbolysnov D, Velliquette D, Morgan M, Ross B, Wang Y, Chaney B, McQuigg J, Fager N, Maine IP. Multiple Mechanisms Contribute To Telomere Maintenance. JOURNAL OF CANCER BIOLOGY & RESEARCH 2013; 1:1012. [PMID: 25285314 PMCID: PMC4181876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The unlimited growth potential of tumors depends on telomere maintenance and typically depends on telomerase, an RNA-dependent DNA polymerase, which reverse transcribes the telomerase RNA template, synthesizing telomere repeats at the ends of chromosomes. Studies in various model organisms genetically deleted for telomerase indicate that several recombination-based mechanisms also contribute to telomere maintenance. Understanding the molecular basis of these mechanisms is critical since some human tumors form without telomerase, yet the sequence is maintained at the telomeres. Recombination-based mechanisms also likely contribute at some frequency to telomere maintenance in tumors expressing telomerase. Preventing telomere maintenance is predicted to impact tumor growth, yet inhibiting telomerase may select for the recombination-based mechanisms. Telomere recombination mechanisms likely involve altered or unregulated pathways of DNA repair. The use of some DNA damaging agents may encourage the use of these unregulated pathways of DNA repair to be utilized and may allow some tumors to generate resistance to these agents depending on which repair pathways are altered in the tumors. This review will discuss the various telomere recombination mechanisms and will provide rationale regarding the possibility that L1 retrotransposition may contribute to telomere maintenance in tumors lacking telomerase.
Collapse
Affiliation(s)
- Tammy A. Morrish
- Department of Biochemistry and Cancer Biology, University of Toledo, Toledo, OH 43614, USA
| | - Dulat Bekbolysnov
- Department of Biochemistry and Cancer Biology, University of Toledo, Toledo, OH 43614, USA
- Graduate Program in Microbiology and Immunology, University of Toledo, Toledo, OH 43614 USA
| | - David Velliquette
- Department of Biochemistry and Cancer Biology, University of Toledo, Toledo, OH 43614, USA
| | - Michelle Morgan
- Department of Biochemistry and Cancer Biology, University of Toledo, Toledo, OH 43614, USA
| | - Bryan Ross
- Department of Biochemistry and Cancer Biology, University of Toledo, Toledo, OH 43614, USA
| | - Yongheng Wang
- Department of Biological Sciences, University of Toledo, OH 43614, USA
| | - Benjamin Chaney
- Department of Biochemistry and Cancer Biology, University of Toledo, Toledo, OH 43614, USA
| | - Jessica McQuigg
- Department of Biochemistry and Cancer Biology, University of Toledo, Toledo, OH 43614, USA
| | - Nathan Fager
- Department of Biochemistry and Cancer Biology, University of Toledo, Toledo, OH 43614, USA
| | - Ira P. Maine
- Department of Biochemistry and Cancer Biology, University of Toledo, Toledo, OH 43614, USA
| |
Collapse
|
34
|
Cipressa F, Cenci G. Effete, an E2 ubiquitin-conjugating enzyme with multiple roles in Drosophila development and chromatin organization. Fly (Austin) 2013; 7:256-62. [PMID: 24088712 DOI: 10.4161/fly.26567] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Drosophila effete gene encodes an extremely conserved class I E2 ubiquitin-conjugating enzyme. Growing evidence indicates that Eff is involved in many cellular processes including eye development, maintenance of female germline stem cells, and regulation of apoptosis. Eff is also a major component of Drosophila chromatin and it is particularly enriched in chromatin with repressive properties. In addition, Eff is required for telomere protection and to prevent telomere fusion. Consistent with its multiple roles in chromatin maintenance, Eff is also one of the rare factors that modulate both telomere-induced and heterochromatin-induced position effect variegation.
Collapse
Affiliation(s)
- Francesca Cipressa
- Dipartimento di Biologia e Biotecnologie "C. Darwin"; SAPIENZA Università di Roma; Roma, Italy
| | - Giovanni Cenci
- Dipartimento di Biologia e Biotecnologie "C. Darwin"; SAPIENZA Università di Roma; Roma, Italy
| |
Collapse
|
35
|
Effete, a Drosophila chromatin-associated ubiquitin-conjugating enzyme that affects telomeric and heterochromatic position effect variegation. Genetics 2013; 195:147-58. [PMID: 23821599 DOI: 10.1534/genetics.113.153320] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Drosophila telomeres are elongated by the transposition of telomere-specific retrotransposons rather than telomerase activity. Proximal to the terminal transposon array, Drosophila chromosomes contain several kilobases of a complex satellite DNA termed telomere-associated sequences (TASs). Reporter genes inserted into or next to the TAS are silenced through a mechanism called telomere position effect (TPE). TPE is reminiscent of the position effect variegation (PEV) induced by Drosophila constitutive heterochromatin. However, most genes that modulate PEV have no effect on TPE, and systematic searches for TPE modifiers have so far identified only a few dominant suppressors. Surprisingly, only a few of the genes required to prevent telomere fusion have been tested for their effect on TPE. Here, we show that with the exception of the effete (eff; also called UbcD1) mutant alleles, none of the tested mutations at the other telomere fusion genes affects TPE. We also found that mutations in eff, which encodes a class I ubiquitin-conjugating enzyme, act as suppressors of PEV. Thus, eff is one of the rare genes that can modulate both TPE and PEV. Immunolocalization experiments showed that Eff is a major constituent of polytene chromosomes. Eff is enriched at several euchromatic bands and interbands, the TAS regions, and the chromocenter. Our results suggest that Eff associates with different types of chromatin affecting their abilities to regulate gene expression.
Collapse
|
36
|
Webb CJ, Wu Y, Zakian VA. DNA repair at telomeres: keeping the ends intact. Cold Spring Harb Perspect Biol 2013; 5:5/6/a012666. [PMID: 23732473 DOI: 10.1101/cshperspect.a012666] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The molecular era of telomere biology began with the discovery that telomeres usually consist of G-rich simple repeats and end with 3' single-stranded tails. Enormous progress has been made in identifying the mechanisms that maintain and replenish telomeric DNA and the proteins that protect them from degradation, fusions, and checkpoint activation. Although telomeres in different organisms (or even in the same organism under different conditions) are maintained by different mechanisms, the disparate processes have the common goals of repairing defects caused by semiconservative replication through G-rich DNA, countering the shortening caused by incomplete replication, and postreplication regeneration of G tails. In addition, standard DNA repair mechanisms must be suppressed or modified at telomeres to prevent their being recognized and processed as DNA double-strand breaks. Here, we discuss the players and processes that maintain and regenerate telomere structure.
Collapse
Affiliation(s)
- Christopher J Webb
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | |
Collapse
|
37
|
Raffa GD, Cenci G, Ciapponi L, Gatti M. Organization and Evolution of Drosophila Terminin: Similarities and Differences between Drosophila and Human Telomeres. Front Oncol 2013; 3:112. [PMID: 23675571 PMCID: PMC3650302 DOI: 10.3389/fonc.2013.00112] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 04/24/2013] [Indexed: 11/16/2022] Open
Abstract
Drosophila lacks telomerase and fly telomeres are elongated by occasional transposition of three specialized retroelements. Drosophila telomeres do not terminate with GC-rich repeats and are assembled independently of the sequence of chromosome ends. Recent work has shown that Drosophila telomeres are capped by the terminin complex, which includes the fast-evolving proteins HOAP, HipHop, Moi, and Ver. These proteins, which are not conserved outside Drosophilidae and closely related Diptera, localize and function exclusively at telomeres, protecting them from fusion events. Other proteins required to prevent end-to-end fusion in flies include HP1, Eff/UbcD1, ATM, the components of the Mre11-Rad50-Nbs (MRN) complex, and the Woc transcription factor. These proteins do not share the terminin properties; they are evolutionarily conserved non-fast-evolving proteins that do not accumulate only at telomeres and do not serve telomere-specific functions. We propose that following telomerase loss, Drosophila rapidly evolved terminin to bind chromosome ends in a sequence-independent manner. This hypothesis suggests that terminin is the functional analog of the shelterin complex that protects human telomeres. The non-terminin proteins are instead likely to correspond to ancestral telomere-associated proteins that did not evolve as rapidly as terminin because of the functional constraints imposed by their involvement in diverse cellular processes. Thus, it appears that the main difference between Drosophila and human telomeres is in the protective complexes that specifically associate with the DNA termini. We believe that Drosophila telomeres offer excellent opportunities for investigations on human telomere biology. The identification of additional Drosophila genes encoding non-terminin proteins involved in telomere protection might lead to the discovery of novel components of human telomeres.
Collapse
Affiliation(s)
- Grazia D Raffa
- Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma Roma, Italy ; Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza Università di Roma Roma, Italy
| | | | | | | |
Collapse
|
38
|
Dang-Nguyen TQ, Haraguchi S, Furusawa T, Somfai T, Kaneda M, Watanabe S, Akagi S, Kikuchi K, Tajima A, Nagai T. Downregulation of histone methyltransferase genes SUV39H1 and SUV39H2 increases telomere length in embryonic stem-like cells and embryonic fibroblasts in pigs. J Reprod Dev 2012; 59:27-32. [PMID: 23018532 PMCID: PMC3943233 DOI: 10.1262/jrd.2012-118] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Telomere is a nucleoprotein structure at the ends of chromosomes that helps to protect
the ends of chromosomes from being fused with other chromosomes. Knockout of histone
methyltransferases Suv39h1 and Suv39h2 increases the telomere length in murine cells,
whereas downregulation of SUV39H1 and SUV39H2 genes
decreases the telomere length in human cells, suggesting that telomere biology is
different among mammalian species. However, epigenetic regulation of the telomere has not
been studied in mammals other than the human and mouse. In the present study, the effect
of knockdown of SUV39H1 and SUV39H2 genes on telomere
length was examined in porcine embryonic stem-like cells (pESLCs) and porcine embryonic
fibroblasts (PEFs). The telomeres in SUV39H1 and SUV39H2
knockdown (SUV39KD) pESLCs (37.1 ± 0.9 kb) were longer (P<0.05) compared with those of
the control (33.0 ± 0.7 kb). Similarly, SUV39KD PEFs had longer telomeres (22.1 ± 0.4 kb;
P<0.05) compared with the control (17.8 ± 1.1 kb). Telomerase activities were not
different between SUV39KD pESLCs (10.4 ± 1.7) and the control (10.1 ± 1.7) or between
SUV39KD PEFs (1.0 ± 0.3) and the control (1.0 ± 0.4), suggesting that telomerase
activities did not contribute to the telomere elongation in SUV39KD pESLCs and SUV39KD
PEFs. Relative levels of trimethylation of histone H3 lysine 9 and expressions of
DNMT1, DNMT3A and DNMT3B were
decreased in SUV39KD cells, suggesting that telomere lengthening in SUV39KD pESLCs and
SUV39KD PEFs might be not only related to the loss of histone modification marks but also
linked to the decrease in DNA methyltransferase in pigs.
Collapse
Affiliation(s)
- Thanh Quang Dang-Nguyen
- Department of Animal Breeding and Reproduction, NARO Institute of Livestock and Grassland Science, Ibaraki 305-0901, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Repeated evolution of testis-specific new genes: the case of telomere-capping genes in Drosophila. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2012; 2012:708980. [PMID: 22844639 PMCID: PMC3401529 DOI: 10.1155/2012/708980] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 05/09/2012] [Indexed: 01/12/2023]
Abstract
Comparative genome analysis has allowed the identification of various mechanisms involved in gene birth. However, understanding the evolutionary forces driving new gene origination still represents a major challenge. In particular, an intriguing and not yet fully understood trend has emerged from the study of new genes: many of them show a testis-specific expression pattern, which has remained poorly understood. Here we review the case of such a new gene, which involves a telomere-capping gene family in Drosophila. hiphop and its testis-specific paralog K81 are critical for the protection of chromosome ends in somatic cells and male gametes, respectively. Two independent functional studies recently proposed that these genes evolved under a reproductive-subfunctionalization regime. The 2011 release of new Drosophila genome sequences from the melanogaster group of species allowed us to deepen our phylogenetic analysis of the hiphop/K81 family. This work reveals an unsuspected dynamic of gene birth and death within the group, with recurrent duplication events through retroposition mechanisms. Finally, we discuss the plausibility of different evolutionary scenarios that could explain the diversification of this gene family.
Collapse
|
40
|
Khurana JS, Xu J, Weng Z, Theurkauf WE. Distinct functions for the Drosophila piRNA pathway in genome maintenance and telomere protection. PLoS Genet 2010; 6:e1001246. [PMID: 21179579 PMCID: PMC3003142 DOI: 10.1371/journal.pgen.1001246] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 11/11/2010] [Indexed: 12/30/2022] Open
Abstract
Transposons and other selfish DNA elements can be found in all phyla, and mobilization of these elements can compromise genome integrity. The piRNA (PIWI-interacting RNA) pathway silences transposons in the germline, but it is unclear if this pathway has additional functions during development. Here we show that mutations in the Drosophila piRNA pathway genes, armi, aub, ago3, and rhi, lead to extensive fragmentation of the zygotic genome during the cleavage stage of embryonic divisions. Additionally, aub and armi show defects in telomere resolution during meiosis and the cleavage divisions; and mutations in lig-IV, which disrupt non-homologous end joining, suppress these fusions. By contrast, lig-IV mutations enhance chromosome fragmentation. Chromatin immunoprecipitation studies show that aub and armi mutations disrupt telomere binding of HOAP, which is a component of the telomere protection complex, and reduce expression of a subpopulation of 19- to 22-nt telomere-specific piRNAs. Mutations in rhi and ago3, by contrast, do not block HOAP binding or production of these piRNAs. These findings uncover genetically separable functions for the Drosophila piRNA pathway. The aub, armi, rhi, and ago3 genes silence transposons and maintain chromosome integrity during cleavage-stage embryonic divisions. However, the aub and armi genes have an additional function in assembly of the telomere protection complex.
Collapse
Affiliation(s)
- Jaspreet S. Khurana
- Program in Cell and Developmental Dynamics and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jia Xu
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology and Department in Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - William E. Theurkauf
- Program in Cell and Developmental Dynamics and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
41
|
Dubruille R, Orsi GA, Delabaere L, Cortier E, Couble P, Marais GAB, Loppin B. Specialization of a Drosophila capping protein essential for the protection of sperm telomeres. Curr Biol 2010; 20:2090-9. [PMID: 21093267 DOI: 10.1016/j.cub.2010.11.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 10/28/2010] [Accepted: 11/02/2010] [Indexed: 11/26/2022]
Abstract
BACKGROUND A critical function of telomeres is to prevent fusion of chromosome ends by the DNA repair machinery. In Drosophila somatic cells, assembly of the protecting capping complex at telomeres notably involves the recruitment of HOAP, HP1, and their recently identified partner, HipHop. We previously showed that the hiphop gene was duplicated before the radiation of the melanogaster subgroup of species, giving birth to K81, a unique paternal effect gene specifically expressed in the male germline. RESULTS Here we show that K81 specifically associates with telomeres during spermiogenesis, along with HOAP and HP1, and is retained on paternal chromosomes until zygote formation. In K81 mutant testes, capping proteins are not maintained at telomeres in differentiating spermatids, resulting in the transmission of uncapped paternal chromosomes that fail to properly divide during the first zygotic mitosis. Despite the apparent similar capping roles of K81 and HipHop in their respective domain of expression, we demonstrate by in vivo reciprocal complementation analyses that they are not interchangeable. Strikingly, HipHop appeared to be unable to maintain capping proteins at telomeres during the global chromatin remodeling of spermatid nuclei. CONCLUSIONS Our data demonstrate that K81 is essential for the maintenance of capping proteins at telomeres in postmeiotic male germ cells. In species of the melanogaster subgroup, HipHop and K81 have not only acquired complementary expression domains, they have also functionally diverged following the gene duplication event. We propose that K81 specialized in the maintenance of telomere protection in the highly peculiar chromatin environment of differentiating male gametes.
Collapse
|
42
|
Raffa GD, Raimondo D, Sorino C, Cugusi S, Cenci G, Cacchione S, Gatti M, Ciapponi L. Verrocchio, a Drosophila OB fold-containing protein, is a component of the terminin telomere-capping complex. Genes Dev 2010; 24:1596-601. [PMID: 20679394 DOI: 10.1101/gad.574810] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Drosophila telomeres are elongated by transposition of specialized retroelements rather than telomerase activity, and are assembled independently of the terminal DNA sequence. Drosophila telomeres are protected by terminin, a complex that includes the HOAP (Heterochromatin Protein 1/origin recognition complex-associated protein) and Moi (Modigliani) proteins and shares the properties of human shelterin. Here we show that Verrocchio (Ver), an oligonucleotide/oligosaccharide-binding (OB) fold-containing protein related to Rpa2/Stn1, interacts physically with HOAP and Moi, is enriched only at telomeres, and prevents telomere fusion. These results indicate that Ver is a new terminin component; we speculate that, concomitant with telomerase loss, Drosophila evolved terminin to bind chromosome ends independently of the DNA sequence.
Collapse
Affiliation(s)
- Grazia D Raffa
- Dipartimento di Genetica e Biologia Molecolare Charles Darwin Sapienza, Università di Roma, Roma 00185, Italy
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Traverse KL, George JA, DeBaryshe PG, Pardue ML. Evolution of species-specific promoter-associated mechanisms for protecting chromosome ends by Drosophila Het-A telomeric transposons. Proc Natl Acad Sci U S A 2010; 107:5064-9. [PMID: 20194755 PMCID: PMC2841908 DOI: 10.1073/pnas.1000612107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The non-LTR retrotransposons forming Drosophila telomeres constitute a robust mechanism for telomere maintenance, one which has persisted since before separation of the extant Drosophila species. These elements in D. melanogaster differ from nontelomeric retrotransposons in ways that give insight into general telomere biology. Here, we analyze telomere-specific retrotransposons from D. virilis, separated from D. melanogaster by 40 to 60 million years, to evaluate the evolutionary divergence of their telomeric traits. The telomeric retrotransposon HeT-A from D. melanogaster has an unusual promoter near its 3' terminus that drives not the element in which it resides, but the adjacent downstream element in a head-to-tail array. An obvious benefit of this promoter is that it adds nonessential sequence to the 5' end of each transcript, which is reverse transcribed and added to the chromosome. Because the 5' end of each newly transposed element forms the end of the chromosome until another element transposes onto it, this nonessential sequence can buffer erosion of sequence essential for HeT-A. Surprisingly, we have now found that HeT-A in D. virilis has a promoter typical of non-LTR retrotransposons. This promoter adds no buffering sequence; nevertheless, the complete 5' end of the element persists in telomere arrays, necessitating a more precise processing of the extreme end of the telomere in D. virilis.
Collapse
Affiliation(s)
| | | | - P. G. DeBaryshe
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Mary-Lou Pardue
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
44
|
HipHop interacts with HOAP and HP1 to protect Drosophila telomeres in a sequence-independent manner. EMBO J 2010; 29:819-29. [PMID: 20057353 DOI: 10.1038/emboj.2009.394] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 12/08/2009] [Indexed: 12/30/2022] Open
Abstract
Telomeres prevent chromosome ends from being repaired as double-strand breaks (DSBs). Telomere identity in Drosophila is determined epigenetically with no sequence either necessary or sufficient. To better understand this sequence-independent capping mechanism, we isolated proteins that interact with the HP1/ORC-associated protein (HOAP) capping protein, and identified HipHop as a subunit of the complex. Loss of one protein destabilizes the other and renders telomeres susceptible to fusion. Both HipHop and HOAP are enriched at telomeres, where they also interact with the conserved HP1 protein. We developed a model telomere lacking repetitive sequences to study the distribution of HipHop, HOAP and HP1 using chromatin immunoprecipitation (ChIP). We discovered that they occupy a broad region >10 kb from the chromosome end and their binding is independent of the underlying DNA sequence. HipHop and HOAP are both rapidly evolving proteins yet their telomeric deposition is under the control of the conserved ATM and Mre11-Rad50-Nbs (MRN) proteins that modulate DNA structures at telomeres and at DSBs. Our characterization of HipHop and HOAP reveals functional analogies between the Drosophila proteins and subunits of the yeast and mammalian capping complexes, implicating conservation in epigenetic capping mechanisms.
Collapse
|
45
|
A 'higher order' of telomere regulation: telomere heterochromatin and telomeric RNAs. EMBO J 2009; 28:2323-36. [PMID: 19629032 PMCID: PMC2722253 DOI: 10.1038/emboj.2009.197] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 06/24/2009] [Indexed: 01/20/2023] Open
Abstract
Protection of chromosome ends from DNA repair and degradation activities is mediated by specialized protein complexes bound to telomere repeats. Recently, it has become apparent that epigenetic regulation of the telomric chromatin template critically impacts on telomere function and telomere-length homeostasis from yeast to man. Across all species, telomeric repeats as well as the adjacent subtelomeric regions carry features of repressive chromatin. Disruption of this silent chromatin environment results in loss of telomere-length control and increased telomere recombination. In turn, progressive telomere loss reduces chromatin compaction at telomeric and subtelomeric domains. The recent discoveries of telomere chromatin regulation during early mammalian development, as well as during nuclear reprogramming, further highlights a central role of telomere chromatin changes in ontogenesis. In addition, telomeres were recently shown to generate long, non-coding RNAs that remain associated to telomeric chromatin and will provide new insights into the regulation of telomere length and telomere chromatin. In this review, we will discuss the epigenetic regulation of telomeres across species, with special emphasis on mammalian telomeres. We will also discuss the links between epigenetic alterations at mammalian telomeres and telomere-associated diseases.
Collapse
|