1
|
Stanton SE, Castle PE, Finn OJ, Sei S, Emens LA. Advances and challenges in cancer immunoprevention and immune interception. J Immunother Cancer 2024; 12:e007815. [PMID: 38519057 PMCID: PMC10961508 DOI: 10.1136/jitc-2023-007815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 03/24/2024] Open
Abstract
Invasive cancers typically evade immune surveillance through profound local and systemic immunosuppression, preventing their elimination or control. Targeting immune interventions to prevent or intercept premalignant lesions, before significant immune dysregulation has occurred, may be a more successful strategy. The field of cancer immune interception and prevention is nascent, and the scientific community has been slow to embrace this potentially most rational approach to reducing the global burden of cancer. This may change due to recent promising advances in cancer immunoprevention including the use of vaccines for the prevention of viral cancers, the use of cancer-associated antigen vaccines in the setting of precancers, and the development of cancer-preventative vaccines for high-risk individuals who are healthy but carry cancer-associated heritable genetic mutations. Furthermore, there is increasing recognition of the importance of cancer prevention and interception by national cancer organizations. The National Cancer Institute (NCI) recently released the National Cancer Plan, which includes cancer prevention among the top priorities of the institute. The NCI's Division of Cancer Prevention has been introducing new funding opportunities for scientists with an interest in the field of cancer prevention: The Cancer Prevention-Interception Targeted Agent Discovery Program and The Cancer Immunoprevention Network. Moreover, the Human Tumor Atlas Network is spearheading the development of a precancer atlas to better understand the biology of pre-invasive changes, including the tissue microenvironment and the underlying genetics that drive carcinogenesis. These data will inform the development of novel immunoprevention/immuno-interception strategies. International cancer foundations have also started recognizing immunoprevention and immune interception with the American Association for Cancer Research, Cancer Research UK and the Society for Immunotherapy of Cancer each implementing programming focused on this area. This review will present recent advances, opportunities, and challenges in the emerging field of cancer immune prevention and immune interception.
Collapse
Affiliation(s)
- Sasha E Stanton
- Cancer Immunoprevention Laboratory, Earle A Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | - Philip E Castle
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Olivera J Finn
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Shizuko Sei
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | | |
Collapse
|
2
|
Xiao B, Xiang Q, Deng Z, Chen D, Wu S, Zhang Y, Liang Y, Wei S, Luo G, Li L. KCNN1 promotes proliferation and metastasis of breast cancer via ERLIN2-mediated stabilization and K63-dependent ubiquitination of Cyclin B1. Carcinogenesis 2023; 44:809-823. [PMID: 37831636 PMCID: PMC10818095 DOI: 10.1093/carcin/bgad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 09/18/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Potassium Calcium-Activated Channel Subfamily N1 (KCNN1), an integral membrane protein, is thought to regulate neuronal excitability by contributing to the slow component of synaptic after hyperpolarization. However, the role of KCNN1 in tumorigenesis has been rarely reported, and the underlying molecular mechanism remains unclear. Here, we report that KCNN1 functions as an oncogene in promoting breast cancer cell proliferation and metastasis. KCNN1 was overexpressed in breast cancer tissues and cells. The pro-proliferative and pro-metastatic effects of KCNN1 were demonstrated by CCK8, clone formation, Edu assay, wound healing assay and transwell experiments. Transcriptomic analysis using KCNN1 overexpressing cells revealed that KCNN1 could regulate key signaling pathways affecting the survival of breast cancer cells. KCNN1 interacts with ERLIN2 and enhances the effect of ERLIN2 on Cyclin B1 stability. Overexpression of KCNN1 promoted the protein expression of Cyclin B1, enhanced its stability and promoted its K63 dependent ubiquitination, while knockdown of KCNN1 had the opposite effects on Cyclin B1. Knockdown (or overexpression) ERLNI2 partially restored Cyclin B1 stability and K63 dependent ubiquitination induced by overexpression (or knockdown) of KCNN1. Knockdown (or overexpression) ERLIN2 also partially neutralizes the effects of overexpression (or knockdown) KCNN1-induced breast cancer cell proliferation, migration and invasion. In paired breast cancer clinical samples, we found a positive expression correlations between KCNN1 and ERLIN2, KCNN1 and Cyclin B1, as well as ERLIN2 and Cyclin B1. In conclusion, this study reveals, for the first time, the role of KCNN1 in tumorigenesis and emphasizes the importance of KCNN1/ERLIN2/Cyclin B1 axis in the development and metastasis of breast cancer.
Collapse
Affiliation(s)
- Bin Xiao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guangdong 511518, China
| | - Qin Xiang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guangdong 511518, China
| | - Zihua Deng
- Department of General Surgery Section 5, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan 511518, China
| | - Daxiang Chen
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guangdong 511518, China
| | - Shunhong Wu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guangdong 511518, China
| | - Yanxia Zhang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guangdong 511518, China
| | - Yaru Liang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guangdong 511518, China
| | - Shi Wei
- Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Guoqing Luo
- Department of General Surgery Section 5, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan 511518, China
| | - Linhai Li
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guangdong 511518, China
| |
Collapse
|
3
|
Xiang B, Chen ML, Gao ZQ, Mi T, Shi QL, Dong JJ, Tian XM, Liu F, Wei GH. CCNB1 is a novel prognostic biomarker and promotes proliferation, migration and invasion in Wilms tumor. BMC Med Genomics 2023; 16:189. [PMID: 37592341 PMCID: PMC10433552 DOI: 10.1186/s12920-023-01627-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/05/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Wilms tumour (WT) is a mixed type of embryonal tumour that usually occurs in early childhood. However, our knowledge of the pathogenesis or progression mechanism of WT is inadequate, and there is a scarcity of beneficial therapeutic strategies. METHODS High-throughput RNA sequencing was employed in this study to identify differentially expressed genes (DEGs) in clinical tumor samples and matching normal tissues. The STRING database was utilized to build a protein-protein interaction (PPI) network, and the Cytohubba method was used to identify the top 10 highly related HUB genes. Then, the key genes were further screened by univariate COX survival analysis. Subsequently, the XCELL algorithm was used to evaluate the tumour immune infiltration. RT-PCR, WB, and IF were used to verify the expression level of key genes in clinical tissues and tumour cell lines. Finally, the function of the key gene was further verified by loss-of-function experiments. RESULTS We initially screened 1612 DEGs, of which 1030 were up-regulated and 582 were down-regulated. The GO and KEGG enrichment analysis suggested these genes were associated with 'cell cycle', 'DNA replication'. Subsequently, we identified 10 key HUB genes, among them CCNB1 was strongly related to WT patients' overall survival. Multiple survival analyses showed that CCNB1 was an independent indicator of WT prognosis. Thus, we constructed a nomogram of CCNB1 combined with other clinical indicators. Single gene GSEA and immune infiltration analysis revealed that CCNB1 was associated with the degree of infiltration or activation status of multiple immune cells. TIDE analysis indicated that this gene was correlated with multiple key immune checkpoint molecules and TIDE scores. Finally, we validated the differential expression level of CCNB1 in an external gene set, the pan-cancer, clinical samples, and cell lines. CCNB1 silencing significantly inhibited the proliferation, migration, and invasive capabilities of WIT-49 cells, also, promoted apoptosis, and in turn induced G2 phase cell cycle arrest in loss-of-function assays. CONCLUSION Our study suggests that CCNB1 is closely related to WT progression and prognosis, and serves as a potential target.
Collapse
Affiliation(s)
- Bin Xiang
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
- Department of Urology, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Mei-Lin Chen
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
- Department of Urology, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Zhi-Qiang Gao
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
- Department of Urology, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Tao Mi
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
- Department of Urology, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Qin-Lin Shi
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
- Department of Urology, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Jun-Jun Dong
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
- Department of Urology, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Xiao-Mao Tian
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China.
- Department of Urology, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China.
| | - Feng Liu
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China.
- Department of Urology, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China.
| | - Guang-Hui Wei
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
- Department of Urology, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
4
|
Jacqueline C, Dracz M, Xue J, Binder RJ, Minden J, Finn O. LCVM infection generates tumor antigen-specific immunity and inhibits growth of nonviral tumors. Oncoimmunology 2022; 11:2029083. [PMID: 35083098 PMCID: PMC8786340 DOI: 10.1080/2162402x.2022.2029083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 12/28/2022] Open
Abstract
Antibodies and T cells specific for tumor-associated antigens (TAA) are found in individuals without cancer but with a history of infections and are associated with lowered cancer risk. We hypothesized that those immune responses were generated to transiently abnormally expressed self-antigens on infected cells (disease-associated antigens, DAA) and later on tumor cells as TAA. We tested this hypothesis in mice with a history of infection with lymphocytic choriomeningitis virus (LCMV) Armstrong strain (Arm) that causes acute infection when injected intraperitoneally or CL-13 strain that establishes chronic infection when injected intravenously. Both elicited antibodies and T cells that recognized DAA/TAA on infected cells and on mouse tumors. When challenged with those tumors, Arm-experienced mice controlled tumors better than CL-13-experienced mice or infection-naïve mice. We characterized 7 DAA/TAA that were targets of LCMV-elicited antitumor immunity. We then vaccinated mice with tumor-derived gp96, a heat shock protein that binds a variety of TAA peptides, including those expressed on virus-infected cells as DAA. Tumor-gp96 vaccine induced DAA/TAA-specific immunity. When challenged with Cl-13, the mice showed lower viral copy numbers both early (day 7) and late (day 70) in infection. DAA/TAA may be immunogenic and safe candidates to develop vaccines to control both infections and cancer.
Collapse
Affiliation(s)
- Camille Jacqueline
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Matthew Dracz
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jia Xue
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Robert J. Binder
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jonathan Minden
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Olivera Finn
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Cao S, Liu H, Fan J, Yang K, Yang B, Wang J, Li J, Meng L, Li H. An Oxidative Stress-Related Gene Pair ( CCNB1/ PKD1), Competitive Endogenous RNAs, and Immune-Infiltration Patterns Potentially Regulate Intervertebral Disc Degeneration Development. Front Immunol 2021; 12:765382. [PMID: 34858418 PMCID: PMC8630707 DOI: 10.3389/fimmu.2021.765382] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/25/2021] [Indexed: 12/25/2022] Open
Abstract
Oxidative stress (OS) irreversibly affects the pathogenesis of intervertebral disc degeneration (IDD). Certain non-coding RNAs act as competitive endogenous RNAs (ceRNAs) that regulate IDD progression. Analyzing the signatures of oxidative stress-related gene (OSRG) pairs and regulatory ceRNA mechanisms and immune-infiltration patterns associated with IDD may enable researchers to distinguish IDD and reveal the underlying mechanisms. In this study, OSRGs were downloaded and identified using the Gene Expression Omnibus database. Functional-enrichment analysis revealed the involvement of oxidative stress-related pathways and processes, and a ceRNA network was generated. Differentially expressed oxidative stress-related genes (De-OSRGs) were used to construct De-OSRG pairs, which were screened, and candidate De-OSRG pairs were identified. Immune cell-related gene pairs were selected via immune-infiltration analysis. A potential long non-coding RNA-microRNA-mRNA axis was determined, and clinical values were assessed. Eighteen De-OSRGs were identified that were primarily related to intricate signal-transduction pathways, apoptosis-related biological processes, and multiple kinase-related molecular functions. A ceRNA network consisting of 653 long non-coding RNA-microRNA links and 42 mRNA-miRNA links was constructed. Three candidate De-OSRG pairs were screened out from 13 De-OSRG pairs. The abundances of resting memory CD4+ T cells, resting dendritic cells, and CD8+ T cells differed between the control and IDD groups. CD8+ T cell infiltration correlated negatively with cyclin B1 (CCNB1) expression and positively with protein kinase D1 (PKD1) expression. CCNB1-PKD1 was the only pair that was differentially expressed in IDD, was correlated with CD8+ T cells, and displayed better predictive accuracy compared to individual genes. The PKD1-miR-20b-5p-AP000797 and CCNB1-miR-212-3p-AC079834 axes may regulate IDD. Our findings indicate that the OSRG pair CCNB1-PKD1, which regulates oxidative stress during IDD development, is a robust signature for identifying IDD. This OSRG pair and increased infiltration of CD8+ T cells, which play important roles in IDD, were functionally associated. Thus, the OSRG pair CCNB1-PKD1 is promising target for treating IDD.
Collapse
Affiliation(s)
- Shuai Cao
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Hao Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jiaxin Fan
- Department of Neurology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Kai Yang
- Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Baohui Yang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jie Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jie Li
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Liesu Meng
- National & Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi’an, China
| | - Haopeng Li
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
6
|
Lulu AM, Cummings KL, Jeffery ED, Myers PT, Underwood D, Lacy RM, Chianese-Bullock KA, Slingluff CL, Modesitt SC, Engelhard VH. Characteristics of Immune Memory and Effector Activity to Cancer-Expressed MHC Class I Phosphopeptides Differ in Healthy Donors and Ovarian Cancer Patients. Cancer Immunol Res 2021; 9:1327-1341. [PMID: 34413086 PMCID: PMC8568670 DOI: 10.1158/2326-6066.cir-21-0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/22/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022]
Abstract
Elevated immunity to cancer-expressed antigens can be detected in people with no history of cancer and may contribute to cancer prevention. We have previously reported that MHC-restricted phosphopeptides are cancer-expressed antigens and targets of immune recognition. However, the extent to which this immunity reflects prior or ongoing phosphopeptide exposures was not investigated. In this study, we found that preexisting immune memory to cancer-expressed phosphopeptides was evident in most healthy donors, but the breadth among donors was highly variable. Although three phosphopeptides were recognized by most donors, suggesting exposures to common microbial/infectious agents, most of the 205 tested phosphopeptides were not recognized by peripheral blood mononuclear cells (PBMC) from any donor and the remainder were recognized by only 1 to 3 donors. In longitudinal analyses of 2 donors, effector immune response profiles suggested active reexposures to a subset of phosphopeptides. These findings suggest that the immunogens generating most phosphopeptide-specific immune memory are rare infectious agents or incipient cancer cells with distinct phosphoproteome dysregulations, and that repetitive immunogenic exposures occur in individual donors. Phosphopeptide-specific immunity in PBMCs and tumor-infiltrating lymphocytes from ovarian cancer patients was limited, regardless of whether the phosphopeptide was expressed on the tumor. However, 4 of 10 patients responded to 1 to 2 immunodominant phosphopeptides, and 1 showed an elevated effector response to a tumor-expressed phosphopeptide. As the tumors from these patients displayed many phosphopeptides, these data are consistent with lack of prior exposure or impaired ability to respond to some phosphopeptides and suggest that enhancing phosphopeptide-specific T-cell responses could be a useful approach to improve tumor immunotherapy.
Collapse
Affiliation(s)
- Amanda M Lulu
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, Virginia
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Kara L Cummings
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, Virginia
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia
| | | | | | | | - Rachel M Lacy
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Kimberly A Chianese-Bullock
- Division of Surgical Oncology, Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Craig L Slingluff
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, Virginia
- Division of Surgical Oncology, Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Susan C Modesitt
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Victor H Engelhard
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, Virginia.
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
7
|
Rabab'h O, Al-Ramadan A, Shah J, Lopez-Negrete H, Gharaibeh A. Twenty Years After Glioblastoma Multiforme Diagnosis: A Case of Long-Term Survival. Cureus 2021; 13:e16061. [PMID: 34345547 PMCID: PMC8323618 DOI: 10.7759/cureus.16061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2021] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive tumor that has a poor prognosis with a median survival of 15 months with treatment and 3-4 months without treatment. Subsets of patients are found to survive longer than two years, some survivors lived more than 10 years, and rare cases survived 20 years or more with treatment. Better prognosis has been found to be associated with many factors. Some of these factors are related to patients' characteristics, biological factors that impact tumor aggressiveness, and/or factors associated with treatment. However, the exact contribution for extended survival is still not known. Finding the factors that have a strong impact on the long survival is of high importance and can help give hope to better treat glioblastoma cases. In this report, we present a case of a glioblastoma patient who was diagnosed at the age of 47 years with more than 20-year survival. We further discuss the suggested factors that may have contributed to a better prognosis with a focus on the possible role of varicella-zoster infection in mediating long-term survival.
Collapse
Affiliation(s)
- Omar Rabab'h
- Research, Insight Research Institute, Flint, USA.,Research, University of Michigan-Flint, Center for Cognition and Neuroethics, Flint, USA
| | - Ali Al-Ramadan
- Neurology, Insight Research Institute, Flint, USA.,Neurology, University of Michigan-Flint, Center for Cognition and Neuroethics, Flint, USA
| | - Jawad Shah
- Neurosurgery, Insight Research Institute, Insight Institute of Neurosurgery & Neuroscience, Flint, USA.,Neurosurgery, University of Michigan-Flint, Center for Cognition and Neuroethics, Flint, USA.,Neurosurgery, Michigan State University, East Lansing, USA
| | | | - Abeer Gharaibeh
- Neurosurgery, Insight Research Institute, Insight Institute of Neurosurgery & Neuroscience, Flint, USA.,Neurosurgery, University of Michigan-Flint, Center for Cognition and Neuroethics, Flint, USA
| |
Collapse
|
8
|
Suski JM, Braun M, Strmiska V, Sicinski P. Targeting cell-cycle machinery in cancer. Cancer Cell 2021; 39:759-778. [PMID: 33891890 PMCID: PMC8206013 DOI: 10.1016/j.ccell.2021.03.010] [Citation(s) in RCA: 251] [Impact Index Per Article: 83.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/09/2021] [Accepted: 03/26/2021] [Indexed: 12/19/2022]
Abstract
Abnormal activity of the core cell-cycle machinery is seen in essentially all tumor types and represents a driving force of tumorigenesis. Recent studies revealed that cell-cycle proteins regulate a wide range of cellular functions, in addition to promoting cell division. With the clinical success of CDK4/6 inhibitors, it is becoming increasingly clear that targeting individual cell-cycle components may represent an effective anti-cancer strategy. Here, we discuss the potential of inhibiting different cell-cycle proteins for cancer therapy.
Collapse
Affiliation(s)
- Jan M Suski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Marcin Braun
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Chair of Oncology, Medical University of Lodz, 92-213 Lodz, Poland
| | - Vladislav Strmiska
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Jacqueline C, Lee A, Frey N, Minden JS, Finn OJ. Inflammation-Induced Abnormal Expression of Self-molecules on Epithelial Cells: Targets for Tumor Immunoprevention. Cancer Immunol Res 2020; 8:1027-1038. [PMID: 32467324 PMCID: PMC7415557 DOI: 10.1158/2326-6066.cir-19-0870] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/11/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023]
Abstract
Tumor-associated antigens (TAA) are self-molecules abnormally expressed on tumor cells, which elicit humoral and cellular immunity and are targets of immunosurveillance. Immunity to TAAs is found in some healthy individuals with no history of cancer and correlates positively with a history of acute inflammatory and infectious events and cancer risk reduction. This suggests a potential role in cancer immunosurveillance for the immune memory elicited against disease-associated antigens (DAA) expressed on infected and inflamed tissues that are later recognized on tumors as TAAs. To understand probable sources for DAA generation, we investigated in vitro the role of inflammation that accompanies both infection and carcinogenesis. After exposure of normal primary breast epithelial cells to proinflammatory cytokines IL1β, IL6, and TNFα, or macrophages producing these cytokines, we saw transient overexpression of well-known TAAs, carcinoembryonic antigen and Her-2/neu, and overexpression and hypoglycosylation of MUC1. We documented inflammation-induced changes in the global cellular proteome by 2D difference gel electrophoresis combined with mass spectrometry and identified seven new DAAs. Through gene profiling, we showed that the cytokine treatment activated NF-κB and transcription of the identified DAAs. We tested three in vitro-identified DAAs, Serpin B1, S100A9, and SOD2, and found them overexpressed in premalignant and malignant breast tissues as well as in inflammatory conditions of the colon, stomach, and liver. This new category of TAAs, which are also DAAs, represent a potentially large number of predictable, shared, immunogenic, and safe antigens to use in preventative cancer vaccines and as targets for cancer therapies.
Collapse
Affiliation(s)
- Camille Jacqueline
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Amanda Lee
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Nolan Frey
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Jonathan S Minden
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Olivera J Finn
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
10
|
Jacqueline C, Finn OJ. Antibodies specific for disease-associated antigens (DAA) expressed in non-malignant diseases reveal potential new tumor-associated antigens (TAA) for immunotherapy or immunoprevention. Semin Immunol 2020; 47:101394. [PMID: 32273212 DOI: 10.1016/j.smim.2020.101394] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Immune responses to a large number of mutated and non-mutated tumor antigens have been studied in an attempt to unravel the highly complex immune response to cancer. Better understanding of both the effectors and the targets of successful immunosurveillance can inform various immunotherapeutic approaches, which can strengthen or replace natural immunosurveillance that a tumor has managed to escape. In this review we highlight targets of antibodies generated in the context of diseases other than cancer, such as asthma, allergies, autoimmune disorders, inflammation and infections, where the antibody presence correlates either with an increased or a reduced lifetime risk of cancer. We focus on their target antigens, self-molecules abnormally expressed on diseased cells or cross-reactive with exogenous antigens and found on cancer cells as tumor associated antigens (TAA). We refer to them as disease-associated antigens (DAA). We review 4 distinct categories of antibodies according to their target DAA, their origin and their reported impact on cancer risk: natural antibodies, autoantibodies, long-term memory antibodies and allergy-associated antibodies. Increased understanding and focus on their specific targets could enable a more rational choice of antigens for both therapeutic and preventative cancer vaccines and other more effective and less toxic cancer immunotherapies.
Collapse
Affiliation(s)
- Camille Jacqueline
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Olivera J Finn
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
11
|
Shen L, Zhang J, Lee H, Batista MT, Johnston SA. RNA Transcription and Splicing Errors as a Source of Cancer Frameshift Neoantigens for Vaccines. Sci Rep 2019; 9:14184. [PMID: 31578439 PMCID: PMC6775166 DOI: 10.1038/s41598-019-50738-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/13/2019] [Indexed: 12/30/2022] Open
Abstract
The success of checkpoint inhibitors in cancer therapy is largely attributed to activating the patient's immune response to their tumor's neoantigens arising from DNA mutations. This realization has motivated the interest in personal cancer vaccines based on sequencing the patient's tumor DNA to discover neoantigens. Here we propose an additional, unrecognized source of tumor neoantigens. We show that errors in transcription of microsatellites (MS) and mis-splicing of exons create highly immunogenic frameshift (FS) neoantigens in tumors. The sequence of these FS neoantigens are predictable, allowing creation of a peptide array representing all possible neoantigen FS peptides. This array can be used to detect the antibody response in a patient to the FS peptides. A survey of 5 types of cancers reveals peptides that are personally reactive for each patient. This source of neoantigens and the method to discover them may be useful in developing cancer vaccines.
Collapse
Affiliation(s)
- Luhui Shen
- The Biodesign Institute Center for Innovations in Medicine, Arizona State University, Tempe, AZ, USA
| | - Jian Zhang
- The Biodesign Institute Center for Innovations in Medicine, Arizona State University, Tempe, AZ, USA
| | - HoJoon Lee
- The Biodesign Institute Center for Innovations in Medicine, Arizona State University, Tempe, AZ, USA.,Stanford University, Stanford, CA, USA
| | - Milene Tavares Batista
- The Biodesign Institute Center for Innovations in Medicine, Arizona State University, Tempe, AZ, USA
| | - Stephen Albert Johnston
- The Biodesign Institute Center for Innovations in Medicine, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
12
|
Abstract
The Tasmanian devil is the only mammalian species to harbour two independent lineages of contagious cancer. Devil facial tumour 1 (DFT1) emerged in the 1990s and has caused significant population declines. Devil facial tumour 2 (DFT2) was identified in 2014, and evidence indicates that this new tumour has emerged independently of DFT1. While DFT1 is widespread across Tasmania, DFT2 is currently found only on the Channel Peninsula in south east Tasmania. Allograft transmission of cancer cells should be prevented by major histocompatibility complex (MHC) molecules. DFT1 avoids immune detection by downregulating MHC class I expression, which can be reversed by treatment with interferon-gamma (IFNγ), while DFT2 currently circulates in hosts with a similar MHC class I genotype to the tumour. Wild Tasmanian devil numbers have not recovered from the emergence of DFT1, and it is feared that widespread transmission of DFT2 will be devastating to the remaining wild population. A preventative solution for the management of the disease is needed. Here, we review the current research on immune responses to devil facial tumours and vaccine strategies against DFT1 and outline our plans moving forward to develop a specific, effective vaccine to support the wild Tasmanian devil population against the threat of these two transmissible tumours.
Collapse
Affiliation(s)
- Rachel S Owen
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton , Southampton , UK
| | - Hannah V Siddle
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton , Southampton , UK.,Institute for Life Sciences, Faculty of Medicine, University of Southampton , Southampton , UK
| |
Collapse
|
13
|
Hutchison S, Pritchard AL. Identifying neoantigens for use in immunotherapy. Mamm Genome 2018; 29:714-730. [PMID: 30167844 PMCID: PMC6267674 DOI: 10.1007/s00335-018-9771-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/08/2018] [Indexed: 12/14/2022]
Abstract
This review focuses on the types of cancer antigens that can be recognised by the immune system and form due to alterations in the cancer genome, including cancer testis, overexpressed and neoantigens. Specifically, neoantigens can form when cancer cell-specific mutations occur that result in alterations of the protein from ‘self’. This type of antigen can result in an immune response sufficient to clear tumour cells when activated. Furthermore, studies have reported that the likelihood of successful immunotherapeutic targeting of cancer by many different methods was reliant on immune response to neoantigens. The recent resurgence of interest in the immune response to tumour cells, in conjunction with technological advances, has resulted in a large increase in the predicted, identified and functionally confirmed neoantigens. This growth in identified neoantigen sequences has increased the contents of training sets for algorithms, which in turn improves the prediction of which genetic mutations may form neoantigens. Additionally, algorithms predicting how proteins will be processed into peptide epitopes by the proteasome and which peptides bind to the transporter complex are also improving with this research. Now that large screens of all the tumour-specific protein altering mutations are possible, the emerging data from assessment of the immunogenicity of neoantigens suggest that only a minority of variants will form targetable epitopes. The potential for immunotherapeutic targeting of neoantigens will therefore be greater in cancers with a higher frequency of protein altering somatic variants. There is considerable potential in the use of neoantigens to treat patients, either alone or in combination with other immunotherapies and with continued advancements, these potentials will be realised.
Collapse
Affiliation(s)
- Sharon Hutchison
- Genetics and Immunology Research Group, University of the Highlands and Islands, An Lòchran, 10 Inverness Campus, Inverness, IV2 5NA, Scotland, UK
| | - Antonia L Pritchard
- Genetics and Immunology Research Group, University of the Highlands and Islands, An Lòchran, 10 Inverness Campus, Inverness, IV2 5NA, Scotland, UK.
| |
Collapse
|
14
|
Jacqueline C, Bonnefoy N, Charrière GM, Thomas F, Roche B. Personal history of infections and immunotherapy: Unexpected links and possible therapeutic opportunities. Oncoimmunology 2018; 7:e1466019. [PMID: 30221066 PMCID: PMC6136881 DOI: 10.1080/2162402x.2018.1466019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 01/17/2023] Open
Abstract
The recent breakthroughs in the understanding of tumor immune biology have given rise to a new generation of immunotherapies, harnessing the immune system to eliminate tumors. As the typology and frequency of encountered infections are susceptible to shape the immune system, it could also impact the efficiency of immunotherapy. In this review, we report evidences for an indirect link between personal history of infection and different strategies of immunotherapy. In the current context of interest rise for personalized medicine, we discuss the potential medical applications of considering personal history of infection to design immunotherapeutic strategies.
Collapse
Affiliation(s)
- Camille Jacqueline
- Centre for Ecological and Evolutionary Research on Cancer (CREEC), Montpellier, France
- MIVEGEC, IRD, CNRS, Université Montpellier, Montpellier, France
| | - Nathalie Bonnefoy
- IRCM, INSERM, Université de Montpellier, ICM, F-34298, Montpellier, France
| | - Guillaume M. Charrière
- IHPE, UMR 5244, CNRS, Ifremer, Université de Perpignan Via Domitia, Université de Montpellier, Montpellier, 34095, France
| | - Frédéric Thomas
- Centre for Ecological and Evolutionary Research on Cancer (CREEC), Montpellier, France
- MIVEGEC, IRD, CNRS, Université Montpellier, Montpellier, France
| | - Benjamin Roche
- Centre for Ecological and Evolutionary Research on Cancer (CREEC), Montpellier, France
- UMMISCO, IRD/ Sorbonne Université, Bondy, France
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| |
Collapse
|
15
|
Rahimi Jamnani F. The state of the art in the development of a panel of biomarkers for the early detection of lung cancer. J Thorac Dis 2018; 10:625-627. [PMID: 29608181 DOI: 10.21037/jtd.2018.01.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Fatemeh Rahimi Jamnani
- Human Antibody Lab, Innovation Center, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran.,Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
16
|
Arneth BM. Activation of CD4 and CD8 T cell receptors and regulatory T cells in response to human proteins. PeerJ 2018; 6:e4462. [PMID: 29568705 PMCID: PMC5846456 DOI: 10.7717/peerj.4462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/15/2018] [Indexed: 11/20/2022] Open
Abstract
This study assessed in detail the influence of four different human proteins on the activation of CD4+ and CD8+ T lymphocytes and on the formation of regulatory T cells. Human whole-blood samples were incubated with four different human proteins. The effects of these proteins on the downstream immune-system response, on the expression of extracellular activation markers on and intracellular cytokines in T lymphocytes, and on the number of regulatory T cells (T-reg cells) were investigated via flow cytometry. Incubation with β-actin or glyceraldehyde 3-phosphate dehydrogenase (GAPDH), which are cytoplasmic proteins, increased the expression of both extracellular activation markers (CD69 and HLA-DR) and intracellular cytokines but did not significantly affect the number of T-reg cells. In contrast, incubation with human albumin or insulin, which are serum proteins, reduced both extracellular activation markers and intracellular cytokine expression and subsequently increased the number of T-reg cells. These findings may help to explain the etiological basis of autoimmune diseases.
Collapse
Affiliation(s)
- Borros M Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, University Hospital of the Universities of Giessen and Marburg UKGM, Justus Liebig University Giessen, Giessen, Hessen, Germany
| |
Collapse
|
17
|
Maeng H, Terabe M, Berzofsky JA. Cancer vaccines: translation from mice to human clinical trials. Curr Opin Immunol 2018; 51:111-122. [PMID: 29554495 DOI: 10.1016/j.coi.2018.03.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/13/2018] [Accepted: 03/01/2018] [Indexed: 01/22/2023]
Abstract
Therapeutic cancer vaccines have been a long-sought approach to harness the exquisite specificity of the immune system to treat cancer, but until recently have not had much success as single agents in clinical trials. However, new understanding of the immunoregulatory mechanisms exploited by cancers has allowed the development of approaches to potentiate the effect of vaccines by removing the brakes while the vaccines step on the accelerator. Thus, vaccines that had induced a strong T cell response but no clinical therapeutic effect may now reach their full potential. Here, we review a number of promising approaches to cancer vaccines developed initially in mouse models and their translation into clinical trials, along with combinations of vaccines with other therapies that might allow cancer vaccines to finally achieve clinical efficacy against many types of cancer.
Collapse
Affiliation(s)
- Hoyoung Maeng
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, United States
| | - Masaki Terabe
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, United States
| | - Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, United States.
| |
Collapse
|
18
|
Abstract
The question of whether human tumors express antigens that can be recognized by the immune system has been answered with a resounding YES. Most were identified through spontaneous antitumor humoral and cellular immune responses found in cancer patients and include peptides, glycopeptides, phosphopeptides, viral peptides, and peptides resulting from common mutations in oncogenes and tumor-suppressor genes, or common gene fusion events. Many have been extensively tested as candidates for anticancer vaccines. More recently, attention has been focused on the potentially large number of unique tumor antigens, mutated neoantigens, that are the predicted products of the numerous mutations revealed by exome sequencing of primary tumors. Only a few have been confirmed as targets of spontaneous immunity and immunosurveillance, and even fewer have been tested in preclinical and clinical settings. The field has been divided for a long time on the relative importance of shared versus mutated antigens in tumor surveillance and as candidates for vaccines. This question will eventually need to be answered in a head to head comparison in well-designed clinical trials. One advantage that shared antigens have over mutated antigens is their potential to be used in vaccines for primary cancer prevention. Cancer Immunol Res; 5(5); 347-54. ©2017 AACR.
Collapse
Affiliation(s)
- Olivera J Finn
- Department of Immunology, University of Pittsburgh School of Medicine and the University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania.
| |
Collapse
|
19
|
Abstract
An important role of the immune system is in the surveillance for abnormal or transformed cells, which is known as cancer immunosurveillance. Through this process, the first changes to normal tissue homeostasis caused by infectious or other inflammatory insults can be detected by the immune system through the recognition of antigenic molecules (including tumour antigens) expressed by abnormal cells. However, as they develop, tumour cells can acquire antigenic and other changes that allow them to escape elimination by the immune system. To bias this process towards elimination, immunosurveillance can be improved by the administration of vaccines based on tumour antigens. Therapeutic cancer vaccines have been extensively tested in patients with advanced cancer but have had little clinical success, which has been attributed to the immunosuppressive tumour microenvironment. Thus, the administration of preventive vaccines at pre-malignant stages of the disease holds promise, as they function before tumour-associated immune suppression is established. Accordingly, immunological and clinical studies are yielding impressive results.
Collapse
|
20
|
Liu D, Xu W, Ding X, Yang Y, Su B, Fei K. Polymorphisms of CCNB1 Associated With the Clinical Outcomes of Platinum-Based Chemotherapy in Chinese NSCLC Patients. J Cancer 2017; 8:3785-3794. [PMID: 29151966 PMCID: PMC5688932 DOI: 10.7150/jca.21151] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/15/2017] [Indexed: 12/18/2022] Open
Abstract
As a crucial cell cycle regulator and G2/M phase promotor, CCNB1 played an essential role in progression of chemotherapy related cell death. Platinum-based chemotherapy is still the first-line chemotherapy regimen for most advanced NSCLC patients. We aim to investigate the correlation of CCNB1 polymorphisms to the efficiency of platinum-based chemotherapy in Chinese advanced NSCLC patients. We enrolled 972 patients with advanced NSCLC, and extracted DNA from their peripheral blood for genotyping CCNB1 four tagSNPs which selected from the Hapmap database. We analyzed the association of CCNB1 four tagSNPs with efficiency of platinum-based chemotherapy. We found that rs2069429 and rs2069433 of CCNB1 were associated with the OS of advanced NSCLC patients. Patients with GG genotype of rs2069429 had longer OS than non-GG patients (HR=0.81, 95%CI=0.68-0.95, p=0.009); and patients with AA genotype of rs2069433 had longer OS than non-AA patients (HR=0.78, 95%CI=0.61-0.98, p=0.036). And the haplotype GAAA of CCNB1 was a putative factor in subgroup patients with clinical stage IV. The association of CCNB1 polymorphisms and toxicities after platinum-based chemotherapy was assessed. Rs2069433 and rs350104 were related with gastrointestinal toxicity of platinum-based chemotherapy. The patients with GG genotype of rs2069433 (p=0.013) and/or non-GG genotype of rs350104 (p=0.042) may have a severe gastrointestinal toxicity after chemotherapy, and then clinician may can reduce the dosage of chemotherapy agents to avoid sever toxicities in these patients. In summary, CCNB1 polymorphisms may contribute to the clinical efficiency of platinum-based chemotherapy in advanced NSCLC patients, and it is helpful for the personalized treatment.
Collapse
Affiliation(s)
- Di Liu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Wen Xu
- Department of Respirology and Critical Care Medicines, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Xi Ding
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiaotong Universtiy, Shanghai, P.R. China
| | - Bo Su
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Ke Fei
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
21
|
Ishigaki H, Maeda T, Inoue H, Akagi T, Sasamura T, Ishida H, Inubushi T, Okahara J, Shiina T, Nakayama M, Itoh Y, Ogasawara K. Transplantation of iPS-Derived Tumor Cells with a Homozygous MHC Haplotype Induces GRP94 Antibody Production in MHC-Matched Macaques. Cancer Res 2017; 77:6001-6010. [PMID: 28882998 DOI: 10.1158/0008-5472.can-17-0775] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/24/2017] [Accepted: 08/31/2017] [Indexed: 11/16/2022]
Abstract
Immune surveillance is a critical component of the antitumor response in vivo, yet the specific components of the immune system involved in this regulatory response remain unclear. In this study, we demonstrate that autoantibodies can mitigate tumor growth in vitro and in vivo We generated two cancer cell lines, embryonal carcinoma and glioblastoma cell lines, from monkey-induced pluripotent stem cells (iPSC) carrying a homozygous haplotype of major histocompatibility complex (MHC, Mafa in Macaca fascicularis). To establish a monkey cancer model, we transplanted these cells into monkeys carrying the matched Mafa haplotype in one of the chromosomes. Neither Mafa-homozygous cancer cell line grew in monkeys carrying the matched Mafa haplotype heterozygously. We detected in the plasma of these monkeys an IgG autoantibody against GRP94, a heat shock protein. Injection of the plasma prevented growth of the tumor cells in immunodeficient mice, whereas plasma IgG depleted of GRP94 IgG exhibited reduced killing activity against cancer cells in vitro These results indicate that humoral immunity, including autoantibodies against GRP94, plays a role in cancer immune surveillance. Cancer Res; 77(21); 6001-10. ©2017 AACR.
Collapse
Affiliation(s)
- Hirohito Ishigaki
- Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, Japan.
| | - Toshinaga Maeda
- Central Research Laboratory, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Hirokazu Inoue
- Division of Microbiology and Infectious Diseases, Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | | | - Takako Sasamura
- Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Hideaki Ishida
- Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Toshiro Inubushi
- Biomedical MR Science Center, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Junko Okahara
- Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Misako Nakayama
- Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Yasushi Itoh
- Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Kazumasa Ogasawara
- Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, Japan
| |
Collapse
|
22
|
Jacqueline C, Tasiemski A, Sorci G, Ujvari B, Maachi F, Missé D, Renaud F, Ewald P, Thomas F, Roche B. Infections and cancer: the "fifty shades of immunity" hypothesis. BMC Cancer 2017; 17:257. [PMID: 28403812 PMCID: PMC5389015 DOI: 10.1186/s12885-017-3234-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/24/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Since the beginning of the twentieth century, infection has emerged as a fundamental aspect of cancer causation with a growing number of pathogens recognized as oncogenic. Meanwhile, oncolytic viruses have also attracted considerable interest as possible agents of tumor destruction. DISCUSSION Lost in the dichotomy between oncogenic and oncolytic agents, the indirect influence of infectious organisms on carcinogenesis has been largely unexplored. We describe the various ways - from functional aspects to evolutionary considerations such as modernity mismatches - by which infectious organisms could interfere with oncogenic processes through immunity. Finally, we discuss how acknowledging these interactions might impact public health approaches and suggest new guidelines for therapeutic and preventive strategies both at individual and population levels. Infectious organisms, that are not oncogenic neither oncolytic, may play a significant role in carcinogenesis, suggesting the need to increase our knowledge about immune interactions between infections and cancer.
Collapse
Affiliation(s)
- Camille Jacqueline
- CREEC, 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
- MIVEGEC, UMR IRD/CNRS/UM 5290, 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
| | - Aurélie Tasiemski
- Unité d’Evolution, Ecologie et Paléontologie (EEP) Université de Lille 1 CNRS UMR 8198, groupe d’Ecoimmunologie des Annélides, 59655 Villeneuve-d’Ascqd’Ascq, France
| | - Gabriele Sorci
- BiogéoSciences, CNRS UMR 6282, Université de Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Vic Australia
| | - Fatima Maachi
- Laboratoire de Pathologie Oncologie Digestive, Institut Pasteur 1, Place Abou Kacem Ez-Zahraoui- B.P, 120, Casablanca, Morocco
| | - Dorothée Missé
- CREEC, 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
- MIVEGEC, UMR IRD/CNRS/UM 5290, 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
| | - François Renaud
- CREEC, 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
- MIVEGEC, UMR IRD/CNRS/UM 5290, 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
| | - Paul Ewald
- Department of Biology, University of Louisville, Louisville, KY 40292 USA
| | - Frédéric Thomas
- CREEC, 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
- MIVEGEC, UMR IRD/CNRS/UM 5290, 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
| | - Benjamin Roche
- CREEC, 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
- International Center for Mathematical and Computational Modeling of Complex Systems (UMI IRD/UPMC UMMISCO), 32 Avenue Henri Varagnat, 93143 Bondy Cedex, France
| |
Collapse
|
23
|
Germ cell tumors overexpress the candidate therapeutic target cyclin B1 independently of p53 function. Int J Biol Markers 2015; 30:e275-81. [PMID: 25982682 DOI: 10.5301/jbm.5000149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2015] [Indexed: 01/01/2023]
Abstract
Germ cell tumors (GCTs) generally express wild-type p53 protein. Rare p53 mutations may be associated with cisplatin resistance. There is growing interest in the role of cyclins as targets for GCTs. Cyclin B1 is involved in G2/M transition and its overexpression has been reported in tumors carrying nonfunctional p53. Conversely, cyclin B1-specific small interfering RNAs have been shown to dramatically reduce tumor proliferation. We investigated whether a subset of chemotherapy-resistant GCTs overexpressed cyclin B1 as a result of nonfunctional p53, as this would make cyclin B1 a potential therapeutic target. Our data showed that GCTs consistently overexpressed cyclin B1 independently of their responsiveness to chemotherapy or the presence of p53 mutations. Cyclin B1 was overexpressed by GCT cell lines carrying functional p53. Cyclin B1-specific small interfering RNAs only slightly reduced the proliferation of JAR and JEG-3 placental choriocarcinoma cells. Further research into targeting cyclin B1 could provide a novel intervention for GCTs.
Collapse
|
24
|
Chevaleyre C, Benhamouda N, Favry E, Fabre E, Mhoumadi A, Nozach H, Marcon E, Cosler G, Vinatier E, Oudard S, Hans S, Le Pimpec-Barthes F, Bats AS, Castelli FA, Tartour E, Maillère B. The Tumor Antigen Cyclin B1 Hosts Multiple CD4 T Cell Epitopes Differently Recognized by Pre-Existing Naive and Memory Cells in Both Healthy and Cancer Donors. THE JOURNAL OF IMMUNOLOGY 2015; 195:1891-901. [DOI: 10.4049/jimmunol.1402548] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 06/03/2015] [Indexed: 11/19/2022]
|
25
|
Andersen MH. Immune Regulation by Self-Recognition: Novel Possibilities for Anticancer Immunotherapy. J Natl Cancer Inst 2015; 107:djv154. [PMID: 26063792 DOI: 10.1093/jnci/djv154] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 05/11/2015] [Indexed: 02/06/2023] Open
Abstract
Circulating T cells that specifically target normal self-proteins expressed by regulatory immune cells were first described in patients with cancer, but can also be detected in healthy individuals. The adaptive immune system is distinguished for its ability to differentiate between self-antigens and foreign antigens. Thus, it was remarkable to discover T cells that apparently lacked tolerance to important self-proteins, eg, IDO, PD-L1, and FoxP3, expressed in regulatory immune cells. The ability of self-reactive T cells to react to and eliminate regulatory immune cells can influence general immune reactions. This suggests that they may be involved in immune homeostasis. It is here proposed that these T cells should be termed antiregulatory T cells (anti-Tregs). The role of anti-Tregs in immune-regulatory networks may be diverse. For example, pro-inflammatory self-reactive T cells that react to regulatory immune cells may enhance local inflammation and inhibit local immune suppression. Further exploration is warranted to investigate their potential role under different malignant conditions and the therapeutic possibilities they possess. Utilizing anti-Tregs for anticancer immunotherapy implies the direct targeting of cancer cells in addition to regulatory immune cells. Anti-Tregs provide the immune system with yet another level of immune regulation and contradict the notion that immune cells involved in the adjustment of immune responses only act as suppressor cells.
Collapse
Affiliation(s)
- Mads Hald Andersen
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark.
| |
Collapse
|
26
|
Abstract
Concerted efforts of tumor immunologists over more than two decades contributed numerous well-defined tumor antigens, many of which were promptly developed into cancer vaccines and tested in animal models and in clinical trials. Encouraging results from animal models were seldom recapitulated in clinical trials. The impediment to greater success of these vaccines has been their exclusive use for cancer therapy. What clinical trials primarily revealed were the numerous ways in which cancer and/or standard treatments for cancer could suppress the patient's immune system, making it very difficult to elicit effective immunity with therapeutic vaccines. In contrast, there is an extensive database of information from experiments in appropriate animal models showing that prophylactic vaccination is highly effective and safe. There are also studies that show that healthy people have immune responses against antigens expressed on tumors, some generated in response to viral infections and others in response to various nonmalignant acute inflammatory events. These immune responses do not appear to be dangerous and do not cause autoimmunity. Epidemiology studies have shown that these immune responses may reduce cancer risk significantly. Vaccines based on tumor antigens that are expressed differentially between tumors and normal cells and can stimulate immunity, and for which safety and efficacy have been proved in animal models and to the extent possible in therapeutic clinical trials, should be considered prime candidates for prophylactic cancer vaccines.
Collapse
Affiliation(s)
- Olivera J Finn
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
27
|
Pandey JP, Kistner-Griffin E, Namboodiri AM, Iwasaki M, Kasuga Y, Hamada GS, Tsugane S. Higher levels of antibodies to the tumour-associated antigen cyclin B1 in cancer-free individuals than in patients with breast cancer. Clin Exp Immunol 2014; 178:75-8. [PMID: 24852823 DOI: 10.1111/cei.12385] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2014] [Indexed: 12/21/2022] Open
Abstract
Cyclin B1 is a checkpoint protein that regulates cell division from G2 to the M phase. Studies in mice have shown that cyclin B1 vaccine-induced immunity significantly delayed or prevented the spontaneous cancer development later in life. We hypothesized that if these results showing a protective effect of anti-cyclin B1 antibodies could be extrapolated to the human condition, cancer-free individuals should have higher levels of endogenous antibodies than patients with cancers characterized by the over-expression of this tumour-associated antigen. To test this hypothesis, we characterized a large (1739 subjects) number of multi-ethnic patients with breast cancer (which over-expresses cyclin B1) and matched controls for anti-cyclin B1 immunoglobulin (Ig)G antibodies. Multivariate analyses, after adjusting for the covariates, showed that cancer-free individuals had significantly higher levels of naturally occurring IgG antibodies to cyclin B1 than patients with breast cancer (mean ± standard deviation: 148·0 ± 73·6 versus 126·1 ± 67·8 arbitrary units per ml; P < 0·0001). These findings may have important implications for cyclin B1-based immunotherapy against breast cancer and many other cyclin B1-over-expressing malignancies.
Collapse
Affiliation(s)
- J P Pandey
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Parks CG, Miller FW, Satoh M, Chan EKL, Andrushchenko Z, Birnbaum LS, Jusko TA, Kissling GE, Patel MD, Rose KM, Weinberg C, Zeldin DC, Sandler DP. Reproductive and hormonal risk factors for antinuclear antibodies (ANA) in a representative sample of U.S. women. Cancer Epidemiol Biomarkers Prev 2014; 23:2492-502. [PMID: 25086100 DOI: 10.1158/1055-9965.epi-14-0429] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Autoantibodies are of growing interest in cancer research as potential biomarkers; yet, the determinants of autoimmunity are not well understood. Antinuclear antibodies (ANA) are common in the general population and are more prevalent in women and older adults. Here, we examined the relationship of ANA with reproductive and hormonal factors in a representative sample of U.S. women. METHODS We analyzed data on reproductive history and exogenous hormone use in relation to serum ANA in 2,037 females ages 12 years and older from the National Health and Nutrition Examination Survey (NHANES; 1999-2004). Estimated ANA prevalences were adjusted for sampling weights. Prevalence ORs (POR) and 95% confidence intervals (CI) were adjusted for age, race, and poverty-income ratio, and models were stratified by menopause status. RESULTS In premenopausal women ages 20 years and older, ANA prevalence was associated with parity (P < 0.001; parous vs. nulliparous POR = 2.0; 95% CI, 1.2-3.4), but in parous women, ANA did not vary by number of births, age at first birth, years since last birth, or breastfeeding. In postmenopausal women, ANA prevalence was associated with an older age at menarche (P = 0.019; age 16-20 vs. 10-12 years POR = 3.0; 95% CI, 1.6-5.9), but not with parity. Oral contraceptives and estrogen therapy were not associated with a higher ANA prevalence. CONCLUSIONS Childbearing (having had one or more births) may explain age-associated elevations in ANA prevalence seen in premenopausal women. IMPACT These findings highlight the importance of considering reproductive history in studies of autoimmunity and cancer in women.
Collapse
Affiliation(s)
- Christine G Parks
- National Institute of Environmental Health Science, NIH, Research Triangle Park, North Carolina.
| | - Frederick W Miller
- National Institute of Environmental Health Science, NIH, Bethesda, Maryland
| | - Minoru Satoh
- University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | | | | | - Linda S Birnbaum
- National Institute of Environmental Health Science, NIH, Research Triangle Park, North Carolina
| | - Todd A Jusko
- University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Grace E Kissling
- National Institute of Environmental Health Science, NIH, Research Triangle Park, North Carolina
| | - Mehul D Patel
- University of North Carolina, Chapel Hill, North Carolina
| | - Kathryn M Rose
- Social and Scientific Systems, Research Triangle Park, North Carolina
| | - Clarice Weinberg
- National Institute of Environmental Health Science, NIH, Research Triangle Park, North Carolina
| | - Darryl C Zeldin
- National Institute of Environmental Health Science, NIH, Research Triangle Park, North Carolina
| | - Dale P Sandler
- National Institute of Environmental Health Science, NIH, Research Triangle Park, North Carolina
| |
Collapse
|
29
|
Iheagwara UK, Beatty PL, Van PT, Ross TM, Minden JS, Finn OJ. Influenza virus infection elicits protective antibodies and T cells specific for host cell antigens also expressed as tumor-associated antigens: a new view of cancer immunosurveillance. Cancer Immunol Res 2013; 2:263-73. [PMID: 24778322 DOI: 10.1158/2326-6066.cir-13-0125] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Most tumor-associated antigens (TAA) are self-molecules that are abnormally expressed in cancer cells and become targets of antitumor immune responses. Antibodies and T cells specific for some TAAs have been found in healthy individuals and are associated with lowered lifetime risk for developing cancer. Lower risk for cancer has also been associated with a history of febrile viral diseases. We hypothesized that virus infections could lead to transient expression of abnormal forms of self-molecules, some of which are TAAs; facilitated by the adjuvant effects of infection and inflammation, these molecules could elicit specific antibodies, T cells, and lasting immune memory simultaneously with immunity against viral antigens. Such infection-induced immune memory for TAA would be expected to provide life-long immune surveillance of cancer. Using influenza virus infection in mice as a model system, we tested this hypothesis and demonstrated that influenza-experienced mice control 3LL mouse lung tumor challenge better than infection-naive control mice. Using 2D-difference gel electrophoresis and mass spectrometry, we identified numerous molecules, some of which are known TAAs, on the 3LL tumor cells recognized by antibodies elicited by two successive influenza infections. We studied in detail immune responses against glyceraldehyde-3-phosphate dehydrogenase (GAPDH), histone H4, HSP90, malate dehydrogenase 2, and annexin A2, all of which were overexpressed in influenza-infected lungs and in tumor cells. Finally, we show that immune responses generated through vaccination against peptides derived from these antigens correlated with improved tumor control.
Collapse
Affiliation(s)
- Uzoma K Iheagwara
- Authors' Affiliations: Departments of Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | | | | | | | | | | |
Collapse
|
30
|
Rodriguez PC, Sanchez B. Challenges and opportunities for cancer vaccines in the current NSCLC clinical scenario. Curr Top Med Chem 2013; 13:2551-61. [PMID: 24066886 PMCID: PMC4104452 DOI: 10.2174/15680266113136660182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/25/2013] [Accepted: 08/02/2013] [Indexed: 12/20/2022]
Abstract
This review is aimed to focus on NSCLC as an emerging and promising model for active immunotherapy and the challenges for its inclusion in the current clinical scenario. Cancer vaccines for NSCLC have been focused as a therapeutic option based on the identification of a tumor hallmark and the active immunization with the related molecules that triggers cellular and/or humoral responses that consequently destroy or delay the rate of malignant progression. This therapeutic intervention in an established disease state has been aimed to impact into prolonging patient´s survival with ethically accepted quality of life. Understanding of relationship between structure and function in cancer vaccines is essential to interpret their opportunities to impact into prolonging survival and increasing quality of life in cancer patients. It is widely accepted that the failure of the cancer vaccines in the NSCLC scenario is related with its introduction in the advanced disease stages and poor performance status of the patients due to the combination of the tumor induced immunosuppression with the immune senescence. Despite first, second and emerging third line of onco-specific treatments the life expectancy for NSCLC patients diagnosed at advanced stages is surrounding the 12 months of median survival and in facts the today real circumstances are extremely demanding for the success inclusion of cancer vaccines as therapeutic choice in the clinical scenario. The kinetics of the active immunizations encompasses a sequential cascade of clinical endpoints: starting by the activation of the immune system, followed by the antitumor response and finalizing with the consequential impact on patients’ overall survival. Today this cascade of clinical endpoints is the backbone for active immunization assessment and moreover the concept of cancer vaccines, applied in the NSCLC setting, is just evolving as a complex therapeutic strategy, in which the opportunities for cancer vaccines start from the selection of the target cancer hallmark, followed by the vaccine formulation and its platforms for immune potentiating, also cover the successful insertion in the standard of care, the chronic administration beyond progression disease, the personalization based on predictors of response and the potential combination with other targeted therapies.
Collapse
Affiliation(s)
- Pedro C Rodriguez
- Center of Molecular Immunology, Clinical Research Direction, 216 and 15, Playa, P.O.Box: 16040, Havana 11600, Cuba.
| | | |
Collapse
|
31
|
Lymphocyte cytosolic protein 1 is a chronic lymphocytic leukemia membrane-associated antigen critical to niche homing. Blood 2013; 122:3308-16. [PMID: 24009233 DOI: 10.1182/blood-2013-05-504597] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Membrane antigens are critical to the pathogenesis of chronic lymphocytic leukemia (CLL) as they facilitate microenvironment homing, proliferation, and survival. Targeting the CLL membrane and associated signaling patterns is a current focus of therapeutic development. Many tumor membrane targets are simultaneously targeted by humoral immunity, thus forming recognizable immunoglobulin responses. We sought to use this immune response to identify novel membrane-associated targets for CLL. Using a novel strategy, we interrogated CLL membrane-specific autologous immunoglobulin G reactivity. Our analysis unveiled lymphocyte cytosolic protein 1 (LCP1), a lymphocyte-specific target that is highly expressed in CLL. LCP1 plays a critical role in B-cell biology by crosslinking F-actin filaments, thereby solidifying cytoskeletal structures and providing a scaffold for critical signaling pathways. Small interfering RNA knockdown of LCP1 blocked migration toward CXCL12 in transwell assays and to bone marrow in an in vivo xenotransplant model, confirming a role for LCP1 in leukemia migration. Furthermore, we demonstrate that the Bruton's tyrosine kinase inhibitor ibrutinib or the PI3K inhibitor idelalisib block B-cell receptor induced activation of LCP1. Our data demonstrate a novel strategy to identify cancer membrane target antigens using humoral anti-tumor immunity. In addition, we identify LCP1 as a membrane-associated target in CLL with confirmed pathogenic significance. This clinical trial was registered at clinicaltrials.gov; study ID number: OSU-0025 OSU-0156.
Collapse
|
32
|
Beatty PL, Finn OJ. Preventing cancer by targeting abnormally expressed self-antigens: MUC1 vaccines for prevention of epithelial adenocarcinomas. Ann N Y Acad Sci 2013; 1284:52-6. [PMID: 23651193 DOI: 10.1111/nyas.12108] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Prophylactic vaccines based on tumor-associated antigens (TAAs) have elicited concerns due to their potential toxicity. Because TAAs are considered self-antigens, the prediction is that such vaccines will induce autoimmunity. While this has been observed in melanoma, where an antitumor immune response leads to vitiligo, autoimmunity has almost never been seen following vaccination with numerous other TAAs. We hypothesized that antigen choice determines outcome and have been working to identify TAAs whose expression differs between normal and tumor tissue, and thus could elicit antitumor immunity without autoimmunity. Studies on the epithelial TAA MUC1 have revealed that, compared to MUC1 on normal cells, tumors, premalignant lesions, and noncancerous pathologies affecting epithelial cells express abnormal MUC1, which is not a self-antigen but rather an abnormal disease-associated antigen (DAA). This distinction, which can be made for many known TAAs, has broad implications for the design and acceptance of preventative cancer vaccines.
Collapse
Affiliation(s)
- Pamela L Beatty
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
33
|
Wennhold K, Theurich S, von Bergwelt-Baildon M. Cyclin A1, a promising tumor antigen: the devil is in the amino acids. Expert Rev Anticancer Ther 2013; 13:243-5. [PMID: 23477508 DOI: 10.1586/era.12.175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
34
|
Wang Q, Lu J, Zhang S, Wang S, Wang W, Wang B, Wang F, Chen Q, Duan E, Leitges M, Kispert A, Wang H. Wnt6 is essential for stromal cell proliferation during decidualization in mice. Biol Reprod 2013; 88:5. [PMID: 23175771 DOI: 10.1095/biolreprod.112.104687] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Postimplantation uterine development involves extensive stromal cell proliferation and decidual transformation with polyploidization, which is essential for normal pregnancy establishment. However, it remains largely unknown how stromal proliferation versus decidual polyploidization is differentially regulated during decidualization. Utilizing Wnt6-mutant mice, we show here that Wnt6 deficiency impairs stromal cell proliferation without much adverse effects on decidual polyploidization. Applying a primary stromal cell culture model, we further reveal that loss of Wnt6 prolongs the cell cycle length via downregulating cyclin B1 expression, thus attenuating stromal cell proliferation. Our study provides the first genetic evidence that Wnt6 is critical for normal stromal cell proliferation in mice, highlighting the concept that there are differential machineries governing the process of stromal cell proliferation versus decidual transformation during early pregnancy. This finding has high clinical relevance because Wnt signaling is known to be important for human implantation and endometrial function.
Collapse
Affiliation(s)
- Qiang Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
A genetic variant of FcγRIIIa is strongly associatedwith humoral immunity to cyclin B1 in African American patients with prostate cancer. Immunogenetics 2012; 65:91-6. [PMID: 23114687 DOI: 10.1007/s00251-012-0660-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 10/22/2012] [Indexed: 01/07/2023]
Abstract
There are significant inter-individual differences in naturally occurring antibody responses to the tumor-associated antigen cyclin B1 in healthy subjects with no history of cancer as well as in patients with multiple types of cancer, but the host genetic factors that might contribute to these differences have not been identified. The aim of the present investigation was to determine whether the variation in endogenous antibody levels to cyclin B1 in patients with prostate cancer was associated with immunoglobulin GM and KM alleles, expressed on the constant regions of γ and κ chains, respectively. We also aimed to determine whether particular Fcgamma receptor (FcγR) genotypes, which have been implicated in the immunobiology of several cancers, contribute to the magnitude of humoral immunity to cyclin B1. DNA samples from 129 Caucasian American (CA) and 76 African American (AA) patients with prostate cancer were genotyped for several GM, KM, and FcγR alleles. Plasma samples from these subjects were also characterized for IgG antibodies to cyclin B1. No significant associations were found between any genetic markers and the level of anticyclin B1 antibodies in CA patients. In AA patients, however, homozygosity for the valine allele at the FcγRIIIa locus was strongly associated with low antibody responsiveness to cyclin B1 (p = 0.0007). Since immunity to cyclin B1 has been shown to play a protective role, these results may, at least in part, explain the disproportionately higher rate of mortality in AA patients with prostate cancer.
Collapse
|
36
|
Foster AD, Sivarapatna A, Gress RE. The aging immune system and its relationship with cancer. ACTA ACUST UNITED AC 2011; 7:707-718. [PMID: 22121388 DOI: 10.2217/ahe.11.56] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The incidence of most common cancers increases with age. This occurs in association with, and is possibly caused by a decline in immune function, termed immune senescence. Although the size of the T-cell compartment is quantitatively maintained into older age, several deleterious changes (including significant changes to T-cell subsets) occur over time that significantly impair immunity. This article highlights some of the recent findings regarding the aging immune system, with an emphasis on the T-cell compartment and its role in cancer.
Collapse
Affiliation(s)
- Anthony D Foster
- National Cancer Institute (NCI), Experimental Transplantation & Immunology Branch (ETIB), 10 Center Dr. 10 CRC, 3-3330 Bethesda, MD 20814, USA
| | | | | |
Collapse
|
37
|
von Bergwelt-Baildon MS, Kondo E, Klein-González N, Wendtner CM. The cyclins: a family of widely expressed tumor antigens? Expert Rev Vaccines 2011; 10:389-95. [PMID: 21434806 DOI: 10.1586/erv.10.170] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Continuous cell division is a hallmark of cancer and cell-cycle regulators therefore represent relevant target molecules for tumor therapy. Among these targets the cyclins are of particular interest as they are overexpressed in various tumor entities with little expression in normal tissue. Here we review evidence that these molecules are recognized by the immune system, summarize why cyclins A, B and D in particular appear to be interesting targets for active and passive immunotherapy, and discuss whether the entire family could be an interesting novel class of tumor antigens for cancer treatment and prevention.
Collapse
Affiliation(s)
- Michael S von Bergwelt-Baildon
- Laboratory for Tumor and Transplantation Immunology, Department I of Internal Medicine, University Hospital of Cologne, Kerpener Strasse 62, 50924 Cologne, Germany
| | | | | | | |
Collapse
|
38
|
Cramer DW, Finn OJ. Epidemiologic perspective on immune-surveillance in cancer. Curr Opin Immunol 2011; 23:265-71. [PMID: 21277761 DOI: 10.1016/j.coi.2011.01.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 01/06/2011] [Indexed: 10/18/2022]
Abstract
Common 'themes' in epidemiology related to cancer risk beg a comprehensive mechanistic explanation. As people age, risk for cancer increases. Obesity and smoking increase the risk for many types of cancer. History of febrile childhood diseases lowers the risk for melanomas, leukemias, non-Hodgkin's lymphoma (NHL), and ovarian cancer. Increasing number of ovulatory cycles uninterrupted by pregnancies correlate positively with breast, endometrial, and ovarian cancer risk while pregnancies and breastfeeding lower the risk for these cancers as well as cancers of the colon, lung, pancreas, and NHL. Chronic inflammatory events such as endometriosis or mucosal exposure to talc increase the risk for several types of cancer. Mechanisms so far considered are site specific and do not explain multiple associations. We propose that most of these events affect cancer immunosurveillance by changing the balance between an effective immune response and immune tolerance of an emerging cancer. We review recently published data that suggest that immune mechanisms underlie most of these observed epidemiologic associations with cancer risk.
Collapse
Affiliation(s)
- Daniel W Cramer
- Obsterics-Gynecology Epidemiology Center, Department of Obsterics and Gynecology, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | |
Collapse
|
39
|
Identification of a cyclin B1-derived CTL epitope eliciting spontaneous responses in both cancer patients and healthy donors. Cancer Immunol Immunother 2010; 60:227-34. [PMID: 20981424 PMCID: PMC3024510 DOI: 10.1007/s00262-010-0933-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 09/18/2010] [Indexed: 11/03/2022]
Abstract
With the aim to identify cyclin B1-derived peptides with high affinity for HLA-A2, we used three in silico prediction algorithms to screen the protein sequence for possible HLA-A2 binders. One peptide scored highest in all three algorithms, and the high HLA-A2-binding affinity of this peptide was verified in an HLA stabilization assay. By stimulation with peptide-loaded dendritic cells a CTL clone was established, which was able to kill two breast cancer cell lines in an HLA-A2-dependent and peptide-specific manner, demonstrating presentation of the peptide on the surface of cancer cells. Furthermore, blood from cancer patients and healthy donors was screened for spontaneous T-cell reactivity against the peptide in IFN-γ ELISPOT assays. Patients with breast cancer, malignant melanoma, or renal cell carcinoma hosted powerful and high-frequency T-cell responses against the peptide. In addition, when blood from healthy donors was tested, similar responses were observed. Ultimately, serum from cancer patients and healthy donors was analyzed for anti-cyclin B1 antibodies. Humoral responses against cyclin B1 were frequently detected in both cancer patients and healthy donors. In conclusion, a high-affinity cyclin B1-derived HLA-A2-restricted CTL epitope was identified, which was presented on the cell surface of cancer cells, and elicited spontaneous T-cell responses in cancer patients and healthy donors.
Collapse
|
40
|
Klein-González N, Kondo E, von Bergwelt-Baildon MS. Cyclins against cancer: a novel family of tumor antigens? Immunotherapy 2010; 2:595-7. [DOI: 10.2217/imt.10.48] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Nela Klein-González
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Eisei Kondo
- Department of Hematology & Oncology, Okayama University Hospital, Okayama, Japan
| | - Michael S von Bergwelt-Baildon
- Laboratory for Tumor & Transplantation Immunology & Stem Cell Transplantation Program, Department I of Internal Medicine, University Hospital Cologne, Kerpener Str. 62, 50924 Cologne, Germany
| |
Collapse
|
41
|
Abstract
OCT4 is a transcription factor critical for the pluripotency of human embryonal stem (ES) and induced pluipotency stem (IPS) cells. OCT4 is commonly expressed in germ-cell tumors as well as putative cancer stem cells in several tumors, and is a key determinant of oncogenic fate in germ-cell tumors. The capacity of the human immune system to recognize this critical stem-cell gene is not known, but has implications for preventing tumors with ES/IPS-based therapies and targeting stem-cell pathways in cancer. Here we show that OCT4-specific T cells can be readily detected in freshly isolated T cells from most (>80%) healthy donors. The reactivity to OCT4-derived peptides resides primarily in the CD45RO(+) memory T-cell compartment and consists predominantly of CD4(+) T cells. T cells reactive against OCT4-derived peptides can be readily expanded in culture using peptide-loaded dendritic cells. In contrast to healthy donors, immunity to OCT4 was detected in only 35% of patients with newly diagnosed germ-cell tumors. However, chemotherapy of germ-cell tumors led to the induction of anti-OCT4 immunity in vivo in patients lacking such responses at baseline. These data demonstrate the surprising lack of immune tolerance to this critical pluripotency antigen in humans. Harnessing natural immunity to this antigen may allow immune-based targeting of pluripotency-related pathways for prevention of cancers, including those in the setting of ES/IPS-based therapies.
Collapse
|
42
|
Steeves MA, Dorsey FC, Cleveland JL. Targeting the autophagy pathway for cancer chemoprevention. Curr Opin Cell Biol 2010; 22:218-25. [PMID: 20096553 PMCID: PMC2854265 DOI: 10.1016/j.ceb.2009.12.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 12/21/2009] [Indexed: 12/19/2022]
Abstract
Autophagy is crucial for maintaining cellular homeostasis, coping with metabolic stress, and limiting oxidative damage. Several autophagy-deficient or knockout models show increased tumor incidence, implicating autophagy as a tumor suppressor. Autophagy is involved in multiple processes that may curb transformation, including the control of oncogene-induced senescence (OIS), which can limit progression to full malignancy, and efficient antigen presentation, which is crucial for immune cell recognition and elimination of nascent cancer cells. Activation of the autophagy pathway may therefore hold promise as a chemoprevention strategy. Caloric restriction, bioactive dietary compounds, or specific pharmacological activators of the autophagy pathway are all possible avenues to explore in harnessing the autophagy pathway in cancer prevention.
Collapse
Affiliation(s)
- Meredith A Steeves
- Department of Cancer Biology, The Scripps Research Institute-Florida, 130 Scripps Way, Jupiter, FL 33458, United States
| | | | | |
Collapse
|
43
|
Perreault C. The Origin and Role of MHC Class I-Associated Self-Peptides. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 92:41-60. [DOI: 10.1016/s1877-1173(10)92003-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|