1
|
Jiang R, Meng M. Integration and suppression interact in binocular vision. J Vis 2023; 23:17. [PMID: 37750747 PMCID: PMC10541237 DOI: 10.1167/jov.23.10.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 08/25/2023] [Indexed: 09/27/2023] Open
Abstract
Contingent on stereo compatibility, two images presented dichoptically can lead to either binocular integration, thus generating stable stereopsis, or interocular suppression that induces binocular rivalry with bistable perception that alternates between the two images. The relationship between binocular integration and interocular suppression concerns how our brain processes binocular inputs to form unified visual awareness but remains unclear. Here, a series of psychophysical experiments were conducted to address this question, revealing that these collaborative and competitive binocular interactions are interconnected and would mediate one another according to their strength. Specifically, Experiments 1a and 1b showed that the presence of binocular rivalry inhibited peripheral stereopsis, significantly elevating the stereo threshold, with higher elevation resulting from increasing rivalry contrast. Experiments 2a and 2b showed that existing stereopsis with increasing binocular disparity balanced the dynamics of peripheral binocular rivalry, rendering more equivalent eye dominance. Based on these interactions, we suggest that binocular integration and interocular suppression may mediate one another through an overlapping mechanism for regulating eye dominance, with strong stereo percepts tending to reduce eye dominance and strong rivalry tending to increase eye dominance.
Collapse
Affiliation(s)
- Rong Jiang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China
| | - Ming Meng
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China
- School of Psychology, South China Normal University, Guangzhou, China
| |
Collapse
|
2
|
Han C, Huang W, Su YR, He ZJ, Ooi TL. Evidence in Support of the Border-Ownership Neurons for Representing Textured Figures. iScience 2020; 23:101394. [PMID: 32755803 PMCID: PMC7399255 DOI: 10.1016/j.isci.2020.101394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/24/2020] [Accepted: 07/17/2020] [Indexed: 12/04/2022] Open
Abstract
We presented one eye with a monocular-boundary-contour (MBC) square, created by phase-shifting a central region of grating relative to a larger uniform grating surround, and the fellow eye with the larger uniform grating. In addition, the grating within the MBC region was rendered with lower contrast relative to the remaining stimulus. Despite this, we found the lower contrast MBC region dominated the perceived cyclopean contrast, with the corresponding region in the fellow eye being suppressed. Secondly, we found for dichoptic stimuli with half-images having square grating regions of different BC strengths, the interocular BC strength ratio determined the perceived contrast of the cyclopean square. Thirdly, we found perceived spatial phase of the cyclopean square was dominated by the spatial phase of the MBC half-image. Altogether, these psychophysical findings provided evidence for a border-to-interior representation strategy, that constructing surface begins at the boundary contour (BC), in binocular contrast and phase integration.
Collapse
Affiliation(s)
- Chao Han
- College of Optometry, The Ohio State University, Columbus, OH 43210, USA
| | - Wanyi Huang
- College of Optometry, The Ohio State University, Columbus, OH 43210, USA
| | - Yong R Su
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY 40292, USA
| | - Zijiang J He
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY 40292, USA.
| | - Teng Leng Ooi
- College of Optometry, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
3
|
Ooi TL, He ZJ. Sensory Eye Dominance: Relationship Between Eye and Brain. Eye Brain 2020; 12:25-31. [PMID: 32021530 PMCID: PMC6980844 DOI: 10.2147/eb.s176931] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 12/28/2019] [Indexed: 11/23/2022] Open
Abstract
Eye dominance refers to the preference to use one eye more than the fellow eye to accomplish a task. However, the dominant eye revealed can be task dependent especially when the tasks are as diverse as instructing the observer to sight a target through a ring, or to report which half-image is perceived more of during binocular rivalry stimulation. Conventionally, the former task is said to reveal motor eye dominance while the latter task reveals sensory eye dominance. While the consensus is that the motor and sensory-dominant eye could be different in some observers, the reason for it is still unclear and has not been much researched. This review mainly focuses on advances made in recent studies of sensory eye dominance. It reviews studies conducted to quantify and relate sensory eye dominance to other visual functions, in particular to stereopsis, as well as studies conducted to explore its plasticity. It is recognized that sensory eye dominance in observers with clinically normal vision shares some similarity with amblyopia at least at the behavioral level, in that both exhibit an imbalance of interocular inhibition. Furthermore, sensory eye dominance is probably manifested at multiple sites along the visual pathway, perhaps including the level of ocular dominance columns. But future studies with high-resolution brain imaging approaches are required to confirm this speculation in the human visual system.
Collapse
Affiliation(s)
- Teng Leng Ooi
- College of Optometry, The Ohio State University, Columbus, OH, USA
| | - Zijiang J He
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY, USA
| |
Collapse
|
4
|
Han C, He ZJ, Ooi TL. Effect of Interocular Contrast Difference on Stereopsis in Observers With Sensory Eye Dominance. Invest Ophthalmol Vis Sci 2019; 60:3178-3186. [PMID: 31335943 PMCID: PMC6656411 DOI: 10.1167/iovs.18-26112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 06/19/2019] [Indexed: 11/24/2022] Open
Abstract
Purpose We investigated how sensory eye dominance (SED) affects stereopsis when the half-images of random-dot-stereo stimuli had different interocular contrast. Methods We measured crossed and uncrossed stereo disparity thresholds and reaction time to seeing random-dot-stereograms with variable interocular contrast differences (ICD), where ICD = (log10 [CLE] - log10 [CRE]) = -0.4, -0.2, 0, 0.2, or 0.4 log unit. The mean contrast of the stimuli, (log10 [CLE] + log10 [CRE])/2, remained constant at 1.2 log unit to ensure that the measured effect was solely due to ICD. We also measured SED using, respectively, dichoptic horizontal sine wave gratings with different phases (revealing SEDcombo) and dichoptic vertical and horizontal gratings (revealing SEDinhibition). Results Both measures of SEDinhibition and SEDcombo revealed the observers had the same eye as dominant although the magnitudes differed. The observers had lower stereo thresholds and shorter stereo reaction time on stimuli with unequal interocular contrast when the non-sensory-dominant eye viewed the higher contrast half-image, suggesting a stimulus-compensating effect. We then estimated the ICD of random-dot-stereo half-images (compensating stimuli) that would lead to minimum stereo threshold (SEDstereo-threshold) and reaction time (SEDstereo-RT) based on the stereo performance and ICD relationship, and found that they were significantly smaller than SEDinhibition and SEDcombo. Conclusions By linking SEDinhibition and SEDcombo with the effect of ICD on stereopsis, we provided further support for the notion that the stimulus-compensating effect is mediated by the interocular inhibitory and interocular gain control mechanisms. Furthermore, the interocular contrast for SEDstereo-threshold and SEDstereo-RT can be potentially applied for improving stereopsis in individuals with SED.
Collapse
Affiliation(s)
- Chao Han
- College of Optometry, The Ohio State University, Columbus, Ohio, United States
| | - Zijiang J. He
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, Kentucky, United States
| | - Teng Leng Ooi
- College of Optometry, The Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
5
|
Shuai L, Leilei Z, Wen W, Shu W, Gangsheng L, Yinglong L, Guoke Y, Xinrong C, Hong L, Rongfeng L. Binocular treatment in adult amblyopia is based on parvocellular or magnocellular pathway. Eur J Ophthalmol 2019; 30:658-667. [PMID: 31014078 DOI: 10.1177/1120672119841216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Amblyopia is speculated to be an untreatable disease in the patient, who is beyond the critical period of vision; however, currently, it is treatable in adults. PURPOSE This study aimed to elucidate whether the treatment is useful in both anisometropic amblyopia and strabismic amblyopia. In addition, the differences were detected between anisometropic amblyopia and strabismic amblyopia after the same perceptual treatment and whether the suppression in anisometropic amblyopia or strabismic amblyopia could be decreased before and after the treatment. METHODS A binocular perceptual learning was applied for the treatment, the suppression was measured, and the patients were followed up for 2 months after training. Anisometropic amblyopia and strabismic amblyopia groups were subjected to the assessment of stereo, visual acuity, contrast sensitivity, and suppression before and after the training. RESULTS After 6 weeks of "Diploma Gabor Orientation Coherence" training, in the anisometropic amblyopia group, the outcomes of visual acuity (t = 3.114, p = 0.026) and contrast sensitivity (t = 7.786, p = 0.001) were increased significantly. While in the strabismic amblyopia group, the outcomes of stereo (t = 2.987, p = 0.040) and contrast sensitivity (t = 3.638, p = 0.022) were increased significantly. CONCLUSION After Diploma Gabor Orientation Coherence training in the same frequency and in the same duration, the anisometropic amblyopia group got an improvement in visual acuity, but the strabismic amblyopia group got an improvement in stereo. As there are evidences to show that anisometropic amblyopia and strabismic amblyopia were injured in different pathways, we think the diverse results might come from the different pathway injury in anisometropic amblyopia and strabismic amblyopia.
Collapse
Affiliation(s)
- Liu Shuai
- Anhui Medical University, Hefei, China.,Department of Ophthalmology, The First Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Zou Leilei
- Fudan University, Shanghai, China.,Department of Ophthalmology, EENT Hospital Affiliate to Fudan University, Shanghai, China
| | - Wen Wen
- Fudan University, Shanghai, China.,Department of Ophthalmology, EENT Hospital Affiliate to Fudan University, Shanghai, China
| | - Wang Shu
- Fudan University, Shanghai, China.,Department of Ophthalmology, EENT Hospital Affiliate to Fudan University, Shanghai, China
| | - Liu Gangsheng
- Anhui Medical University, Hefei, China.,Department of Ophthalmology, Hefei First People's Hospital, Anhui, China
| | - Li Yinglong
- Anhui Medical University, Hefei, China.,Department of Ophthalmology, Hefei First People's Hospital, Anhui, China
| | - Yang Guoke
- Anhui Medical University, Hefei, China.,Department of Ophthalmology, Hefei First People's Hospital, Anhui, China
| | - Chang Xinrong
- Anhui Medical University, Hefei, China.,Department of Ophthalmology, Hefei First People's Hospital, Anhui, China
| | - Liu Hong
- Fudan University, Shanghai, China.,Department of Ophthalmology, EENT Hospital Affiliate to Fudan University, Shanghai, China
| | - Liao Rongfeng
- Anhui Medical University, Hefei, China.,Department of Ophthalmology, The First Affiliated Hospital of Anhui Medical University, Anhui, China
| |
Collapse
|
6
|
Han C, He ZJ, Ooi TL. On Sensory Eye Dominance Revealed by Binocular Integrative and Binocular Competitive Stimuli. Invest Ophthalmol Vis Sci 2018; 59:5140-5148. [PMID: 30372739 PMCID: PMC6201702 DOI: 10.1167/iovs.18-24342] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 09/11/2018] [Indexed: 11/24/2022] Open
Abstract
Purpose Two core processes underlie 3-D binocular vision. The first, a binocular combination/summation process, integrates similar feature signals from the two eye channels to form a binocular representation. The second, a binocular inhibitory process, suppresses interocular conflicting signals or falsely matched binocular representations to establish single vision. Having an intrinsic interocular imbalance within one or both processes can cause sensory eye dominance (SED), related to imbalances of combination (SEDcombo) and/or inhibition (SEDinhibition). While much has recently been revealed about SEDcombo and SEDinhibition, the relationship between them is still unknown. Methods We measured observers' foveal SEDcombo and SEDinhibition, respectively, with a pair of dichoptic horizontal sine wave gratings with different phases and binocular rivalry stimulus with vertical and horizontal gratings. We then measured horizontal and vertical monocular contrast thresholds using sinusoidal grating stimuli, and stereo thresholds using random-dot stereograms. Results There exists a strong correlation between SEDcombo and SEDinhibition. An observer's interocular difference in contrast threshold was not always consistent with his/her SEDcombo and SEDinhihition, suggesting a partial binocular origin for the underlying imbalances. We also found stereo thresholds significantly increased with the magnitudes of SEDcombo, as well as with the magnitude of SEDinhibition. Conclusions Our findings suggest a common origin for interocular imbalance in the two different binocular processes and that both types of sensory eye dominance are significant factors in impeding stereopsis.
Collapse
Affiliation(s)
- Chao Han
- College of Optometry, The Ohio State University, Columbus, Ohio, United States
| | - Zijiang J. He
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, Kentucky, United States
| | - Teng Leng Ooi
- College of Optometry, The Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
7
|
Platonov A, Goossens J. Eye dominance alternations in binocular rivalry do not require visual awareness. J Vis 2014; 14:14.11.2. [DOI: 10.1167/14.11.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Artem Platonov
- Radboud University Medical Centre Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Dept. of Cognitive Neuroscience, section Biophysics, Nijmegen, The Netherlands
| | - Jeroen Goossens
- Radboud University Medical Centre Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Dept. of Cognitive Neuroscience, section Biophysics, Nijmegen, The Netherlands
| |
Collapse
|
8
|
Dichoptic Viewing Methods for Binocular Rivalry Research: Prospects for Large-Scale Clinical and Genetic Studies. Twin Res Hum Genet 2013; 16:1033-78. [DOI: 10.1017/thg.2013.76] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Binocular rivalry (BR) is an intriguing phenomenon that occurs when two different images are presented, one to each eye, resulting in alternation orrivalrybetween the percepts. The phenomenon has been studied for nearly 200 years, with renewed and intensive investigation over recent decades. Therateof perceptual switching has long been known to vary widely between individuals but to be relatively stable within individuals. A recent twin study demonstrated that individual variation in BR rate is under substantial genetic control, a finding that also represented the first report, using a large study, of genetic contribution for any post-retinal visual processing phenomenon. The twin study had been prompted by earlier work showing BR rate was slow in the heritable psychiatric condition, bipolar disorder (BD). Together, these studies suggested that slow BR may represent an endophenotype for BD, and heralded the advent of modern clinical and genetic studies of rivalry. This new focus has coincided with rapid advances in 3D display technology, but despite such progress, specific development of technology for rivalry research has been lacking. This review therefore compares different display methods for BR research across several factors, including viewing parameters, image quality, equipment cost, compatibility with other investigative methods, subject group, and sample size, with a focus on requirements specific to large-scale clinical and genetic studies. It is intended to be a resource for investigators new to BR research, such as clinicians and geneticists, and to stimulate the development of 3D display technology for advancing interdisciplinary studies of rivalry.
Collapse
|
9
|
Abstract
Almost all individuals exhibit sensory eye dominance, one neural basis of which is unequal interocular inhibition. Sensory eye dominance can impair binocular functions that depend on both excitatory and inhibitory mechanisms. We developed a 'push-pull' perceptual learning protocol that simultaneously affects the excitatory and inhibitory networks to reduce sensory eye dominance and improve stereopsis in adults with otherwise normal vision. The push-pull protocol provides a promising clinical paradigm for treating the extreme sensory eye dominance in amblyopia ('lazy eye'). The prevailing standard of care does not directly treat sensory eye dominance; instead, selected excitatory functions in the amblyopic eye are stimulated while the strong eye is patched, on the assumption that recovery of the weak eye's excitatory functions rebalances the eyes. Patching the strong eye does not directly address interocular inhibition; in contrast, the push-pull protocol by design excites the weak eye, while completely inhibiting the strong eye's perception to recalibrate the interocular balance of excitatory and inhibitory interactions. Here, we show that three adult amblyopes who trained on the push-pull protocol gained longstanding improvements in interocular balance and stereopsis. Our findings provide a proof-of-concept and evidence that push-pull learning leads to long-term plasticity.
Collapse
|
10
|
A S, Z S, KH N. Coronary computed tomography angiography with prospective electrocardiography triggering: a systematic review of image quality and radiation dose. Singapore Med J 2013; 54:15-23. [DOI: 10.11622/smedj.2013005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
TAM WAJAMES, SPERANZA FILIPPO, VÁZQUEZ CARLOS. Problem-driven three-dimensional television research involving human visual perception studies. JAPANESE PSYCHOLOGICAL RESEARCH 2012. [DOI: 10.1111/j.1468-5884.2011.00507.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Xu JP, He ZJ, Ooi TL. Further support for the importance of the suppressive signal (pull) during the push-pull perceptual training. Vision Res 2012; 61:60-9. [PMID: 22273998 DOI: 10.1016/j.visres.2012.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 12/12/2011] [Accepted: 01/04/2012] [Indexed: 11/17/2022]
Abstract
We previously designed a push-pull perceptual training protocol that effectively reduces sensory eye dominance (SED) and enhances binocular depth detection in human adults (Xu, He, & Ooi, 2010a). During the training, an attention cue precedes a pair of binocular competitive stimulus to induce dominance of the weak eye and suppression of the strong eye. To verify that the success of the protocol is due to the suppression of the signals evoked by the stimulus in the strong eye, rather than to the attention cueing per se, we employed two new push-pull training protocols that did not involve attention cueing. Instead, we used the specific configurations of the boundary contours of the binocular competitive stimulus to render the strong eye suppressed. The first, MBC push-pull protocol has a half-image with grating feature but no boundary contour in the strong eye. The second, BBC push-pull protocol has a half-image with both grating feature and boundary contour in the strong eye. For both protocols, the weak eye receives a half-image with strong grating feature and boundary contour. These boundary contour configurations ensure that the weak eye remains dominant while the strong eye is suppressed during training. Each observer was trained with both protocols at two parafoveal (2°) retinal locations. We found that both protocols significantly reduce SED and binocular depth threshold. This confirms the basis of the push-pull protocol is the suppression of the strong eye, rather than the attention cueing per se. We further found that the learning effect (SED reduction) is more effective in the BBC push-pull protocol where the suppressed half-image in the strong eye carries both grating feature and boundary contour information, than in the MBC push-pull protocol where the boundary contour information is absent from the strong eye's half-image. This suggests that the learning effect depends in part on the availability of the image attributes for processing (suppression) during the push-pull perceptual training.
Collapse
Affiliation(s)
- Jingping P Xu
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY 40292, USA
| | | | | |
Collapse
|
13
|
Xu JP, He ZJ, Ooi TL. A binocular perimetry study of the causes and implications of sensory eye dominance. Vision Res 2011; 51:2386-97. [PMID: 21989227 DOI: 10.1016/j.visres.2011.09.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 09/22/2011] [Accepted: 09/23/2011] [Indexed: 12/24/2022]
Abstract
Sensory eye dominance (SED) reflects an imbalance of interocular inhibition in the binocular network. Extending an earlier work (Ooi & He, 2001) that measured global SED within the central 6°, the current study measured SED locally at 17 locations within the central 8° of the binocular visual field. The eccentricities (radius) chosen for this, "binocular perimetry", study were 0° (fovea), 2° and 4°. At each eccentricity, eight concentric locations (polar angle: 0°, 45°, 90°, 135°, 180°, 225°, 270°, and 315°) were tested. The outcome, an SED map, sets up comparison between local SED and other visual functions [monocular contrast threshold, binocular disparity threshold, reaction time to detect depth, the dynamics of binocular rivalry and motor eye dominance]. Our analysis shows that an observer's SED varies gradually across the binocular visual field both in its sign and magnitude. The strong eye channel revealed in the SED measurement does not always have a lower monocular contrast threshold, and does not need to be the motor dominant eye. There exists significant correlation between SED and binocular disparity threshold, and between SED and the response time to detect depth of a random-dot stereogram. A significant correlation is also found between SED and the eye that predominates when viewing an extended duration binocular rivalry stimulus. While it is difficult to attribute casual factors based on correlation analyses, these observations agree with the notion that an imbalance of interocular inhibition, which is largely revealed as SED, is a significant factor impeding binocular visual perception.
Collapse
Affiliation(s)
- Jingping P Xu
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY 40292, USA
| | | | | |
Collapse
|
14
|
Andrews TJ, Holmes D. Stereoscopic Depth Perception during Binocular Rivalry. Front Hum Neurosci 2011; 5:99. [PMID: 21960966 PMCID: PMC3177177 DOI: 10.3389/fnhum.2011.00099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 08/23/2011] [Indexed: 11/30/2022] Open
Abstract
When we view nearby objects, we generate appreciably different retinal images in each eye. Despite this, the visual system can combine these different images to generate a unified view that is distinct from the perception generated from either eye alone (stereopsis). However, there are occasions when the images in the two eyes are too disparate to fuse. Instead, they alternate in perceptual dominance, with the image from one eye being completely excluded from awareness (binocular rivalry). It has been thought that binocular rivalry is the default outcome when binocular fusion is not possible. However, other studies have reported that stereopsis and binocular rivalry can coexist. The aim of this study was to address whether a monocular stimulus that is reported to be suppressed from awareness can continue to contribute to the perception of stereoscopic depth. Our results showed that stereoscopic depth perception was still evident when incompatible monocular images differing in spatial frequency, orientation, spatial phase, or direction of motion engage in binocular rivalry. These results demonstrate a range of conditions in which binocular rivalry and stereopsis can coexist.
Collapse
Affiliation(s)
- Timothy J. Andrews
- Department of Psychology and York Neuroimaging Centre, University of YorkYork, UK
| | - David Holmes
- Department of Psychology and York Neuroimaging Centre, University of YorkYork, UK
| |
Collapse
|
15
|
Xu JP, He ZJ, Ooi TL. Perceptual learning to reduce sensory eye dominance beyond the focus of top-down visual attention. Vision Res 2011; 61:39-47. [PMID: 21658403 DOI: 10.1016/j.visres.2011.05.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 05/20/2011] [Accepted: 05/21/2011] [Indexed: 11/24/2022]
Abstract
Perceptual learning is an important means for the brain to maintain its agility in a dynamic environment. Top-down focal attention, which selects task-relevant stimuli against competing ones in the background, is known to control and select what is learned in adults. Still unknown, is whether the adult brain is able to learn highly visible information beyond the focus of top-down attention. If it is, we should be able to reveal a purely stimulus-driven perceptual learning occurring in functions that are largely determined by the early cortical level, where top-down attention modulation is weak. Such an automatic, stimulus-driven learning mechanism is commonly assumed to operate only in the juvenile brain. We performed perceptual training to reduce sensory eye dominance (SED), a function that taps on the eye-of-origin information represented in the early visual cortex. Two retinal locations were simultaneously stimulated with suprathreshold, dichoptic orthogonal gratings. At each location, monocular cueing triggered perception of the grating images of the weak eye and suppression of the strong eye. Observers attended only to one location and performed orientation discrimination of the gratings seen by the weak eye, while ignoring the highly visible gratings at the second, unattended, location. We found SED was not only reduced at the attended location, but also at the unattended location. Furthermore, other untrained visual functions mediated by higher cortical levels improved. An automatic, stimulus-driven learning mechanism causes synaptic alterations in the early cortical level, with a far-reaching impact on the later cortical levels.
Collapse
Affiliation(s)
- Jingping P Xu
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY 40292, USA
| | | | | |
Collapse
|
16
|
Su YR, He ZJ, Ooi TL. Revealing boundary-contour based surface representation through the time course of binocular rivalry. Vision Res 2011; 51:1288-96. [PMID: 21496462 DOI: 10.1016/j.visres.2011.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Revised: 03/21/2011] [Accepted: 04/04/2011] [Indexed: 11/20/2022]
Abstract
We varied the surface boundary-contour properties of binocular rivalry (BR) stimuli to measure the rivalry percept as a function of stimulus duration. Experiment 1 compared perception from BR stimuli with monocular boundary contour (MBC) and binocular boundary contour (BBC). We found global dominance is achieved with stimulus duration as short as 30ms for the MBC rivalry stimuli, whereas it takes more than 150 ms for the BBC rivalry stimuli. This shows that global dominance can occur rapidly in the absence of a corresponding boundary contour in one half-image. Experiment 2 measured the detection of a monocular Gabor probe located centrally on a 1.5° versus 3.0° MBC rivalry stimulus. We found reliable binocular suppression is observed earlier with the 1.5° MBC stimulus, presumably because of the probe being spatially located nearer to the boundary contour. These findings, in conjunction with those in Su et al. (2011), support the notion that the representation of the dominant surface begins at the MBC and spreads toward the center of the image.
Collapse
Affiliation(s)
- Yong R Su
- Department of Basic Sciences, Pennsylvania College of Optometry at Salus University, Elkins Park, PA 19027, USA
| | | | | |
Collapse
|
17
|
Abstract
Two experiments were conducted to reveal that the human visual system represents grating texture surface using a border-to-interior strategy. This strategy dictates that the visual system first registers the surface boundary contour and then sequentially spreads texture from the border to the interior of the image. Our experiments measured the perceived grating texture surface at various stimulus durations after the onset of a grating texture image. We found that the grating texture is initially seen near the boundary contours, with eventual spreading inward to the center of the image. To quantify the observation, the extent of the texture spreading from the boundary contour is measured as a function of the stimulus duration (30-500 ms). This allows us to analyze the texture spreading in retinal and cortical distances, based on human fMRI studies of the cortical magnification factor in cortical areas V1-V4, and to derive the spreading speed. We found that the spreading speed is constant when scaled according to the cortical distance. Similar findings are obtained no matter whether the grating texture image is presented monocularly or dichoptically, suggesting the generality of the border-to-interior strategy for representing surfaces.
Collapse
Affiliation(s)
- Yong R Su
- Department of Basic Sciences, Pennsylvania College of Optometry at Salus University, Elkins Park, PA 19027, USA
| | | | | |
Collapse
|
18
|
Ling S, Hubert-Wallander B, Blake R. Detecting contrast changes in invisible patterns during binocular rivalry. Vision Res 2010; 50:2421-9. [PMID: 20858513 PMCID: PMC4556093 DOI: 10.1016/j.visres.2010.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 09/03/2010] [Accepted: 09/10/2010] [Indexed: 10/19/2022]
Abstract
When dissimilar images are presented to the two eyes, the human visual system lapses into binocular rivalry, a unique perceptual state characterized by stochastic alternations in dominance of one of the two source images over the other. Probe targets delivered to an eye during suppression phases are more difficult to detect than probes delivered during dominance phases. Nearly all probe studies have involved presenting new stimulation (e.g., a spot of light) either superimposed on or replacing the suppressed stimulus. Here, we ask whether observers can detect a reduction in the contrast of the suppressed stimulus itself. In other words, can observers detect a probe that should make an already invisible stimulus even weaker? Specifically, we compared observers' ability to detect contrast increments and contrast decrements introduced within a rival pattern during dominance and suppression. Contrast increment thresholds were elevated across all pedestal contrasts when the increment was introduced during suppression compared to during dominance, replicating previous results. Contrast decrement thresholds measured during suppression were elevated to an even greater extent, but the fact that they were obtained at all establishes that observers were able to detect probes that should make an already invisible target even more difficult to perceive. In a second experiment, we found a similar pattern of results for contrast change detection in complex images of faces as well. Based on the resulting threshold-vs.-contrast functions, we suggest that, regardless of the complexity of the image, rivalry suppression modulates the neural contrast response function through a mixture of reduced overall response gain and a shift in the contrast gain.
Collapse
Affiliation(s)
- Sam Ling
- Department of Psychology/Vanderbilt Vision Research Center, Vanderbilt University, Nashville, TN, USA.
| | | | | |
Collapse
|
19
|
Blake R, Wilson H. Binocular vision. Vision Res 2010; 51:754-70. [PMID: 20951722 DOI: 10.1016/j.visres.2010.10.009] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 10/05/2010] [Accepted: 10/06/2010] [Indexed: 10/18/2022]
Abstract
This essay reviews major developments - empirical and theoretical - in the field of binocular vision during the last 25years. We limit our survey primarily to work on human stereopsis, binocular rivalry and binocular contrast summation, with discussion where relevant of single-unit neurophysiology and human brain imaging. We identify several key controversies that have stimulated important work on these problems. In the case of stereopsis those controversies include position vs. phase encoding of disparity, dependence of disparity limits on spatial scale, role of occlusion in binocular depth and surface perception, and motion in 3D. In the case of binocular rivalry, controversies include eye vs. stimulus rivalry, role of "top-down" influences on rivalry dynamics, and the interaction of binocular rivalry and stereopsis. Concerning binocular contrast summation, the essay focuses on two representative models that highlight the evolving complexity in this field of study.
Collapse
Affiliation(s)
- Randolph Blake
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea.
| | | |
Collapse
|
20
|
Rosenthal CR, Kennard C, Soto D. Visuospatial sequence learning without seeing. PLoS One 2010; 5:e11906. [PMID: 20689577 PMCID: PMC2912760 DOI: 10.1371/journal.pone.0011906] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 07/06/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The ability to detect and integrate associations between unrelated items that are close in space and time is a key feature of human learning and memory. Learning sequential associations between non-adjacent visual stimuli (higher-order visuospatial dependencies) can occur either with or without awareness (explicit vs. implicit learning) of the products of learning. Existing behavioural and neurocognitive studies of explicit and implicit sequence learning, however, are based on conscious access to the sequence of target locations and, typically, on conditions where the locations for orienting, or motor, responses coincide with the locations of the target sequence. METHODOLOGY/PRINCIPAL FINDINGS Dichoptic stimuli were presented on a novel sequence learning task using a mirror stereoscope to mask the eye-of-origin of visual input from conscious awareness. We demonstrate that conscious access to the sequence of target locations and responses that coincide with structure of the target sequence are dispensable features when learning higher-order visuospatial associations. Sequence knowledge was expressed in the ability of participants to identify the trained higher-order visuospatial sequence on a recognition test, even though the trained and untrained recognition sequences were identical when viewed at a conscious binocular level, and differed only at the level of the masked sequential associations. CONCLUSIONS/SIGNIFICANCE These results demonstrate that unconscious processing can support perceptual learning of higher-order sequential associations through interocular integration of retinotopic-based codes stemming from monocular eye-of-origin information. Furthermore, unlike other forms of perceptual associative learning, visuospatial attention did not need to be directed to the locations of the target sequence. More generally, the results pose a challenge to neural models of learning to account for a previously unknown capacity of the human visual system to support the detection, learning and recognition of higher-order sequential associations under conditions where observers are unable to see the target sequence or perform responses that coincide with structure of the target sequence.
Collapse
Affiliation(s)
- Clive R Rosenthal
- Department of Clinical Neurology, University of Oxford, Oxford, England, United Kingdom.
| | | | | |
Collapse
|
21
|
Su YR, He ZJ, Ooi TL. The magnitude and dynamics of interocular suppression affected by monocular boundary contour and conflicting local features. Vision Res 2010; 50:2037-47. [PMID: 20624411 DOI: 10.1016/j.visres.2010.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 07/05/2010] [Accepted: 07/06/2010] [Indexed: 11/19/2022]
Abstract
A monocular boundary contour (MBC) rivalry stimulus has two half-images, a homogeneous grating and the same homogeneous grating with an additional disc region. The outline/frame of the MBC disc is created by relative phase-shift, or orientation-difference. We found the increment contrast threshold and reaction time to detect a monocular Gabor probe elevated on the homogeneous half-image pedestal. The interocular suppression begins as early as 80ms upon stimulus onset. Moreover, the suppression magnitude is larger when the MBC disc is defined by orientation-difference rather than phase-shift, revealing the suppression caused by competing local features in addition to MBC.
Collapse
Affiliation(s)
- Yong R Su
- Department of Basic Sciences, Pennsylvania College of Optometry at Salus University, Elkins Park, PA 19027, USA
| | | | | |
Collapse
|
22
|
Xu JP, He ZJ, Ooi TL. Surface boundary contour strengthens image dominance in binocular competition. Vision Res 2009; 50:155-70. [PMID: 19913047 DOI: 10.1016/j.visres.2009.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 11/02/2009] [Accepted: 11/09/2009] [Indexed: 11/28/2022]
Abstract
We used a binocular rivalry stimulus with one half-image having a vertical grating disk surrounded by horizontal grating, and the other half-image having a horizontal grating disk with a variable spatial phase relative to the surrounding horizontal grating. We found that increasing the phase-shift of the horizontal grating disk, which strengthens the boundary contour, progressively increases its predominance. But the predominance is little affected when a constant gray ring (boundary contour) is added onto the rim of the incrementally phase-shifted horizontal grating. This suggests the influence of boundary contour supersede that of the center-surround-interaction caused by the phase-shift.
Collapse
Affiliation(s)
- Jingping P Xu
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY 40292, USA
| | | | | |
Collapse
|