1
|
Aguado ME, Izquierdo M, González-Matos M, Varela AC, Méndez Y, Del Rivero MA, Rivera DG, González-Bacerio J. Parasite Metalo-aminopeptidases as Targets in Human Infectious Diseases. Curr Drug Targets 2023; 24:416-461. [PMID: 36825701 DOI: 10.2174/1389450124666230224140724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/25/2022] [Accepted: 01/02/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND Parasitic human infectious diseases are a worldwide health problem due to the increased resistance to conventional drugs. For this reason, the identification of novel molecular targets and the discovery of new chemotherapeutic agents are urgently required. Metalo- aminopeptidases are promising targets in parasitic infections. They participate in crucial processes for parasite growth and pathogenesis. OBJECTIVE In this review, we describe the structural, functional and kinetic properties, and inhibitors, of several parasite metalo-aminopeptidases, for their use as targets in parasitic diseases. CONCLUSION Plasmodium falciparum M1 and M17 aminopeptidases are essential enzymes for parasite development, and M18 aminopeptidase could be involved in hemoglobin digestion and erythrocyte invasion and egression. Trypanosoma cruzi, T. brucei and Leishmania major acidic M17 aminopeptidases can play a nutritional role. T. brucei basic M17 aminopeptidase down-regulation delays the cytokinesis. The inhibition of Leishmania basic M17 aminopeptidase could affect parasite viability. L. donovani methionyl aminopeptidase inhibition prevents apoptosis but not the parasite death. Decrease in Acanthamoeba castellanii M17 aminopeptidase activity produces cell wall structural modifications and encystation inhibition. Inhibition of Babesia bovis growth is probably related to the inhibition of the parasite M17 aminopeptidase, probably involved in host hemoglobin degradation. Schistosoma mansoni M17 aminopeptidases inhibition may affect parasite development, since they could participate in hemoglobin degradation, surface membrane remodeling and eggs hatching. Toxoplasma gondii M17 aminopeptidase inhibition could attenuate parasite virulence, since it is apparently involved in the hydrolysis of cathepsin Cs- or proteasome-produced dipeptides and/or cell attachment/invasion processes. These data are relevant to validate these enzymes as targets.
Collapse
Affiliation(s)
- Mirtha E Aguado
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Maikel Izquierdo
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Maikel González-Matos
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Ana C Varela
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Yanira Méndez
- Center for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba
| | - Maday A Del Rivero
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Daniel G Rivera
- Center for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba
| | - Jorge González-Bacerio
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
- Department of Biochemistry, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba
| |
Collapse
|
2
|
McGowan S. Working in concert: the metalloaminopeptidases from Plasmodium falciparum. Curr Opin Struct Biol 2013; 23:828-35. [PMID: 23948130 DOI: 10.1016/j.sbi.2013.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/24/2013] [Accepted: 07/24/2013] [Indexed: 01/05/2023]
Abstract
Malaria remains the world's most prevalent human parasitic disease. Because of the rapid spread of drug resistance in parasites, there is an urgent need to identify diverse new drug targets. One group of proteases that are emerging as targets for novel antimalarials are the metalloaminopeptidases. These enzymes catalyze the removal of the N-terminal amino acids from proteins and peptides. Given the restricted specificities of each of these enzymes for different N-terminal amino acids, it is thought that they act in concert to facilitate protein turnover. Here we review recent structure and functional data relating to the development of the Plasmodium falciparum metalloaminopeptidases as drug targets.
Collapse
Affiliation(s)
- Sheena McGowan
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria 3800, Australia.
| |
Collapse
|
3
|
Ragheb D, Dalal S, Bompiani KM, Ray WK, Klemba M. Distribution and biochemical properties of an M1-family aminopeptidase in Plasmodium falciparum indicate a role in vacuolar hemoglobin catabolism. J Biol Chem 2011; 286:27255-65. [PMID: 21659511 DOI: 10.1074/jbc.m111.225318] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Aminopeptidases catalyze N-terminal peptide bond hydrolysis and occupy many diverse roles across all domains of life. Here we present evidence that an M1-family aminopeptidase, PfA-M1, has been recruited to specialized roles in the human malaria parasite Plasmodium falciparum. PfA-M1 is abundant in two subcellular compartments in asexual intraerythrocytic parasites; that is, the food vacuole, where the catabolism of host hemoglobin takes place, and the nucleus. A unique N-terminal extension contributes to the observed dual targeting by providing a signal peptide and putative alternate translation initiation sites. PfA-M1 exists as two major isoforms, a nuclear 120-kDa species and a processed species consisting of a complex of 68- and 35-kDa fragments. PfA-M1 is both stable and active at the acidic pH of the food vacuole lumen. Determination of steady-state kinetic parameters for both aminoacyl-β-naphthylamide and unmodified dipeptide substrates over the pH range 5.0-8.5 reveals that k(cat) is relatively insensitive to pH, whereas K(m) increases at pH values below 6.5. At the pH of the food vacuole lumen (5.0-5.5), the catalytic efficiency of PfA-M1 remains high. Consistent with the kinetic data, the affinity of peptidic competitive inhibitors is diminished at acidic pH. Together, these results support a catalytic role for PfA-M1 in the food vacuole and indicate the importance of evaluating the potency of peptidic inhibitors at physiologically relevant pH values. They also suggest a second, distinct function for this enzyme in the parasite nucleus.
Collapse
Affiliation(s)
- Daniel Ragheb
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | | | | | |
Collapse
|
4
|
Structure of the Plasmodium falciparum M17 aminopeptidase and significance for the design of drugs targeting the neutral exopeptidases. Proc Natl Acad Sci U S A 2010; 107:2449-54. [PMID: 20133789 DOI: 10.1073/pnas.0911813107] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Current therapeutics and prophylactics for malaria are under severe challenge as a result of the rapid emergence of drug-resistant parasites. The human malaria parasite Plasmodium falciparum expresses two neutral aminopeptidases, PfA-M1 and PfA-M17, which function in regulating the intracellular pool of amino acids required for growth and development inside the red blood cell. These enzymes are essential for parasite viability and are validated therapeutic targets. We previously reported the X-ray crystal structure of the monomeric PfA-M1 and proposed a mechanism for substrate entry and free amino acid release from the active site. Here, we present the X-ray crystal structure of the hexameric leucine aminopeptidase, PfA-M17, alone and in complex with two inhibitors with antimalarial activity. The six active sites of the PfA-M17 hexamer are arranged in a disc-like fashion so that they are orientated inwards to form a central catalytic cavity; flexible loops that sit at each of the six entrances to the catalytic cavern function to regulate substrate access. In stark contrast to PfA-M1, PfA-M17 has a narrow and hydrophobic primary specificity pocket which accounts for its highly restricted substrate specificity. We also explicate the essential roles for the metal-binding centers in these enzymes (two in PfA-M17 and one in PfA-M1) in both substrate and drug binding. Our detailed understanding of the PfA-M1 and PfA-M17 active sites now permits a rational approach in the development of a unique class of two-target and/or combination antimalarial therapy.
Collapse
|