1
|
Chudy P, Kochan J, Wawro M, Nguyen P, Gorczyca M, Varanko A, Retka A, Ghadei SS, Napieralska E, Grochot-Przęczek A, Szade K, Berendes LS, Park J, Sokołowski G, Yu Q, Józkowicz A, Nowak WN, Krzeptowski W. Heme oxygenase-1 protects cells from replication stress. Redox Biol 2024; 75:103247. [PMID: 39047636 PMCID: PMC11321372 DOI: 10.1016/j.redox.2024.103247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Heme oxygenase-1 (HO-1, HMOX1) degrades heme protecting cells from heme-induced oxidative damage. Beyond its well-established cellular functions, heme has emerged as a stabilizer of G-quadruplexes. These secondary DNA structures interfere with DNA replication. We recently revealed that nuclear HO-1 colocalizes with DNA G-quadruplexes and promotes their removal. Here, we investigate whether HO-1 safeguards cells against replication stress. Experiments were conducted in control and HMOX1-deficient HEK293T cell lines. Immunostaining unveiled that DNA G-quadruplexes accumulated in the absence of HO-1, the effect that was further enhanced in response to δ-aminolevulinic acid (ALA), a substrate in heme synthesis. This was associated with replication stress, as evidenced by an elevated proportion of stalled forks analyzed by fiber assay. We observed the same effects in hematopoietic stem cells isolated from Hmox1 knockout mice and in a lymphoblastoid cell line from an HMOX1-deficient patient. Interestingly, in the absence of HO-1, the speed of fork progression was higher, and the response to DNA conformational hindrance less stringent, indicating dysfunction of the PARP1-p53-p21 axis. PARP1 activity was not decreased in the absence of HO-1. Instead, we observed that HO-1 deficiency impairs the nuclear import and accumulation of p53, an effect dependent on the removal of excess heme. We also demonstrated that administering ALA is a more specific method for increasing intracellular free heme compared to treatment with hemin, which in turn induces strong lipid peroxidation. Our results indicate that protection against replication stress is a universal feature of HO-1, presumably contributing to its widely recognized cytoprotective activity.
Collapse
Affiliation(s)
- Patryk Chudy
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Jakub Kochan
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Mateusz Wawro
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Phu Nguyen
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Monika Gorczyca
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Aliaksandra Varanko
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Aleksandra Retka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Swati Sweta Ghadei
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Emilija Napieralska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Anna Grochot-Przęczek
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Krzysztof Szade
- Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Lea-Sophie Berendes
- Department of General Pediatrics, University Hospital Münster, Münster, Germany
| | - Julien Park
- Department of General Pediatrics, University Hospital Münster, Münster, Germany
| | - Grzegorz Sokołowski
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Qiuliyang Yu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
| | - Alicja Józkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Witold N Nowak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; August Chełkowski Institute of Physics, Faculty of Science and Technology, University of Silesia, Chorzów, Poland.
| | - Wojciech Krzeptowski
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
2
|
Ramezani M, Wagenknecht-Wiesner A, Wang T, Holowka DA, Eliezer D, Baird BA. Alpha synuclein modulates mitochondrial Ca 2+ uptake from ER during cell stimulation and under stress conditions. NPJ Parkinsons Dis 2023; 9:137. [PMID: 37741841 PMCID: PMC10518018 DOI: 10.1038/s41531-023-00578-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/08/2023] [Indexed: 09/25/2023] Open
Abstract
Alpha synuclein (a-syn) is an intrinsically disordered protein prevalent in neurons, and aggregated forms are associated with synucleinopathies including Parkinson's disease (PD). Despite the biomedical importance and extensive studies, the physiological role of a-syn and its participation in etiology of PD remain uncertain. We showed previously in model RBL cells that a-syn colocalizes with mitochondrial membranes, depending on formation of N-terminal helices and increasing with mitochondrial stress1. We have now characterized this colocalization and functional correlates in RBL, HEK293, and N2a cells. We find that expression of a-syn enhances stimulated mitochondrial uptake of Ca2+ from the ER, depending on formation of its N-terminal helices but not on its disordered C-terminal tail. Our results are consistent with a-syn acting as a tether between mitochondria and ER, and we show increased contacts between these two organelles using structured illumination microscopy. We tested mitochondrial stress caused by toxins related to PD, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP/MPP+) and carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and found that a-syn prevents recovery of stimulated mitochondrial Ca2+ uptake. The C-terminal tail, and not N-terminal helices, is involved in this inhibitory activity, which is abrogated when phosphorylation site serine-129 is mutated (S129A). Correspondingly, we find that MPTP/MPP+ and CCCP stress is accompanied by both phosphorylation (pS129) and aggregation of a-syn. Overall, our results indicate that a-syn can participate as a tethering protein to modulate Ca2+ flux between ER and mitochondria, with potential physiological significance. A-syn can also prevent cellular recovery from toxin-induced mitochondrial dysfunction, which may represent a pathological role of a-syn in the etiology of PD.
Collapse
Affiliation(s)
- Meraj Ramezani
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | | | - Tong Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - David A Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10065, USA.
| | - Barbara A Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
3
|
Tan S, Zhao J, Wang P. DYRK1A-mediated PLK2 phosphorylation regulates the proliferation and invasion of glioblastoma cells. Int J Oncol 2023; 63:94. [PMID: 37387444 PMCID: PMC10552692 DOI: 10.3892/ijo.2023.5542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023] Open
Abstract
Polo-like kinases (PLKs) are a family of serine-threonine kinases that exert regulatory effects on diverse cellular processes. Dysregulation of PLKs has been implicated in multiple cancers, including glioblastoma (GBM). Notably, PLK2 expression in GBM tumor tissue is lower than that in normal brains. Notably, high PLK2 expression is significantly correlated with poor prognosis. Thus, it can be inferred that PLK2 expression alone may not be sufficient for accurate prognosis evaluation, and there are unknown mechanisms underlying PLK2 regulation. In the present study, it was demonstrated that dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) interacts with and phosphorylates PLK2 at Ser358. DYRK1A-mediated phosphorylation of PLK2 increases its protein stability. Moreover, PLK2 kinase activity was markedly induced by DYRK1A, which was exemplified by the upregulation of alpha-synuclein S129 phosphorylation. Furthermore, it was found that phosphorylation of PLK2 by DYRK1A contributes to the proliferation, migration and invasion of GBM cells. DYRK1A further enhances the inhibition of the malignancy of GBM cells already induced by PLK2. The findings of the present study indicate that PLK2 may play a crucial role in GBM pathogenesis partially in a DYRK1A-dependent manner, suggesting that PLK2 Ser358 may serve as a therapeutic target for GBM.
Collapse
Affiliation(s)
- Shichuan Tan
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission (NHC) Key Laboratory of Otorhinolaryngology, Shandong University
- Department of Emergency Neurosurgical Intensive Care Unit, Qilu Hospital of Shandong University
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Juan Zhao
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission (NHC) Key Laboratory of Otorhinolaryngology, Shandong University
| | - Pin Wang
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission (NHC) Key Laboratory of Otorhinolaryngology, Shandong University
| |
Collapse
|
4
|
Kim DE, Byeon HE, Kim DH, Kim SG, Yim H. Plk2-mediated phosphorylation and translocalization of Nrf2 activates anti-inflammation through p53/Plk2/p21 cip1 signaling in acute kidney injury. Cell Biol Toxicol 2023; 39:1509-1529. [PMID: 35842499 PMCID: PMC10425522 DOI: 10.1007/s10565-022-09741-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/29/2022] [Indexed: 11/30/2022]
Abstract
The Plk2 is a cellular stress-responsive factor that is induced in response to oxidative stress. However, the roles of Plk2 in acute kidney injury (AKI) have not been clarified. We previously found that Plk2 is an interacting factor of Nrf2 in response to cellular stress, since Plk2 is upregulated in the Nrf2-dependent network. Here, we show that the levels of p53, Plk2, p21cip1, and chromatin-bound Nrf2 were all upregulated in kidney tissues of mice or NRK52E cells treated with either cisplatin or methotrexate. Upregulation of Plk2 by p53 led to an increase of Nrf2 in both soluble and chromatin fractions in cisplatin-treated NRK52E cells. Consistently, depletion of Plk2 suppressed the levels of Nrf2. Of note, Plk2 directly phosphorylated Nrf2 at Ser40, which facilitated its interaction with p21cip1 and translocation into the nuclei for the activation of anti-oxidative and anti-inflammatory factors in response to AKI. Together, these findings suggest that Plk2 may serve as an anti-oxidative and anti-inflammatory regulator through the phosphorylation and activation of Nrf2 to protect kidney cells from kidney toxicants and that Plk2 and Nrf2 therefore work cooperatively for the protection and survival of kidney cells from harmful stresses.
Collapse
Affiliation(s)
- Da-Eun Kim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, Gyeonggi-do, Korea
| | - Hye Eun Byeon
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, Gyeonggi-do, Korea
| | - Dae-Hoon Kim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, Gyeonggi-do, Korea
| | - Sang Geon Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, 10326, Gyeonggi-Do, Korea.
- College of Pharmacy, Seoul National University, Gwanakro 599, Seoul, 08826, Korea.
| | - Hyungshin Yim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, Gyeonggi-do, Korea.
| |
Collapse
|
5
|
Qin S, Kitty I, Hao Y, Zhao F, Kim W. Maintaining Genome Integrity: Protein Kinases and Phosphatases Orchestrate the Balancing Act of DNA Double-Strand Breaks Repair in Cancer. Int J Mol Sci 2023; 24:10212. [PMID: 37373360 DOI: 10.3390/ijms241210212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
DNA double-strand breaks (DSBs) are the most lethal DNA damages which lead to severe genome instability. Phosphorylation is one of the most important protein post-translation modifications involved in DSBs repair regulation. Kinases and phosphatases play coordinating roles in DSB repair by phosphorylating and dephosphorylating various proteins. Recent research has shed light on the importance of maintaining a balance between kinase and phosphatase activities in DSB repair. The interplay between kinases and phosphatases plays an important role in regulating DNA-repair processes, and alterations in their activity can lead to genomic instability and disease. Therefore, study on the function of kinases and phosphatases in DSBs repair is essential for understanding their roles in cancer development and therapeutics. In this review, we summarize the current knowledge of kinases and phosphatases in DSBs repair regulation and highlight the advancements in the development of cancer therapies targeting kinases or phosphatases in DSBs repair pathways. In conclusion, understanding the balance of kinase and phosphatase activities in DSBs repair provides opportunities for the development of novel cancer therapeutics.
Collapse
Affiliation(s)
- Sisi Qin
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Ichiwa Kitty
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| | - Yalan Hao
- Analytical Instrumentation Center, Hunan University, Changsha 410082, China
| | - Fei Zhao
- College of Biology, Hunan University, Changsha 410082, China
| | - Wootae Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
6
|
Ramezani M, Wagenknecht-Wiesner A, Wang T, Holowka DA, Eliezer D, Baird BA. Alpha Synuclein Modulates Mitochondrial Ca 2+ Uptake from ER During Cell Stimulation and Under Stress Conditions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.23.537965. [PMID: 37163091 PMCID: PMC10168219 DOI: 10.1101/2023.04.23.537965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Alpha synuclein (a-syn) is an intrinsically disordered protein prevalent in neurons, and aggregated forms are associated with synucleinopathies including Parkinson' disease (PD). Despite the biomedical importance and extensive studies, the physiological role of a-syn and its participation in etiology of PD remain uncertain. We showed previously in model RBL cells that a-syn colocalizes with mitochondrial membranes, depending on formation of N-terminal helices and increasing with mitochondrial stress. 1 We have now characterized this colocalization and functional correlates in RBL, HEK293, and N2a cells. We find that expression of a-syn enhances stimulated mitochondrial uptake of Ca 2+ from the ER, depending on formation of its N-terminal helices but not on its disordered C-terminal tail. Our results are consistent with a-syn acting as a tether between mitochondria and ER, and we show increased contacts between these two organelles using structured illumination microscopy. We tested mitochondrial stress caused by toxins related to PD, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP/MPP+) and carbonyl cyanide m-chlorophenyl hydrazone (CCCP), and found that a-syn prevents recovery of stimulated mitochondrial Ca 2+ uptake. The C-terminal tail, and not N-terminal helices, is involved in this inhibitory activity, which is abrogated when phosphorylation site serine-129 is mutated (S129A). Correspondingly, we find that MPTP/MPP+ and CCCP stress is accompanied by both phosphorylation (pS129) and aggregation of a-syn. Overall, our results indicate that a-syn can participate as a tethering protein to modulate Ca 2+ flux between ER and mitochondria, with potential physiological significance. A-syn can also prevent cellular recovery from toxin-induced mitochondrial dysfunction, which may represent a pathological role of a-syn in the etiology of PD.
Collapse
Affiliation(s)
- Meraj Ramezani
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | | | - Tong Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - David A. Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065
| | - Barbara A. Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
7
|
Mori MP, Penjweini R, Ma J, Alspaugh G, Andreoni A, Kim YC, Wang PY, Knutson JR, Hwang PM. Mitochondrial respiration reduces exposure of the nucleus to oxygen. J Biol Chem 2023; 299:103018. [PMID: 36796514 PMCID: PMC10011062 DOI: 10.1016/j.jbc.2023.103018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/16/2023] Open
Abstract
The endosymbiotic theory posits that ancient eukaryotic cells engulfed O2-consuming prokaryotes, which protected them against O2 toxicity. Previous studies have shown that cells lacking cytochrome c oxidase (COX), required for respiration, have increased DNA damage and reduced proliferation, which could be improved by reducing O2 exposure. With recently developed fluorescence lifetime microscopy (FLIM)-based probes demonstrating that the mitochondrial compartment has lower [O2] than the cytosol, we hypothesized that the perinuclear distribution of mitochondria in cells may create a barrier for O2 to access the nuclear core, potentially affecting cellular physiology and maintaining genomic integrity. To test this hypothesis, we utilized myoglobin (MB)-mCherry FLIM O2 sensors without subcellular targeting ("cytosol") or with targeting to the mitochondrion or nucleus for measuring their localized O2 homeostasis. Our results showed that, similar to the mitochondria, the nuclear [O2] was reduced by ∼20-40% compared to the cytosol under imposed O2 levels of ∼0.5-18.6%. Pharmacologic inhibition of respiration increased nuclear O2 levels, and reconstituting O2 consumption by COX reversed this increase. Similarly, genetic disruption of respiration by deleting SCO2, a gene essential for COX assembly, or restoring COX activity in SCO2-/- cells by transducing with SCO2 cDNA also replicated these changes in nuclear O2 levels. The results were further supported by the expression of genes known to be affected by cellular O2 availability. Our study reveals the potential for dynamic regulation of nuclear O2 levels by mitochondrial respiratory activity, which in turn could affect oxidative stress and cellular processes such as neurodegeneration and aging.
Collapse
Affiliation(s)
- Mateus Prates Mori
- Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Rozhin Penjweini
- Laboratory of Advanced Microscopy and Biophotonics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jin Ma
- Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Greg Alspaugh
- Laboratory of Advanced Microscopy and Biophotonics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Alessio Andreoni
- Laboratory of Advanced Microscopy and Biophotonics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA; Department of Biochemistry and Molecular Medicine, University of California, Davis, California, USA
| | - Young-Chae Kim
- Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ping-Yuan Wang
- Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jay R Knutson
- Laboratory of Advanced Microscopy and Biophotonics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Paul M Hwang
- Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
8
|
Zanetti C, Gaspar RDL, Zhdanov AV, Maguire NM, Joyce SA, Collins SG, Maguire AR, Papkovsky DB. Heterosubstituted Derivatives of PtPFPP for O 2 Sensing and Cell Analysis: Structure–Activity Relationships. Bioconjug Chem 2022; 33:2161-2169. [DOI: 10.1021/acs.bioconjchem.2c00400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chiara Zanetti
- School of Biochemistry and Cell Biology, University College Cork, Cork T12 XF62, Ireland
| | | | - Alexander V. Zhdanov
- School of Biochemistry and Cell Biology, University College Cork, Cork T12 XF62, Ireland
| | - Nuala M. Maguire
- School of Chemistry, University College Cork, Cork T12 YN60, Ireland
| | - Susan A. Joyce
- School of Biochemistry and Cell Biology, University College Cork, Cork T12 XF62, Ireland
| | - Stuart G. Collins
- School of Chemistry, University College Cork, Cork T12 YN60, Ireland
| | - Anita R. Maguire
- School of Chemistry and School of Pharmacy, University College Cork, Cork T12 YN60, Ireland
| | - Dmitri B. Papkovsky
- School of Biochemistry and Cell Biology, University College Cork, Cork T12 XF62, Ireland
| |
Collapse
|
9
|
Zhang C, Ni C, Lu H. Polo-Like Kinase 2: From Principle to Practice. Front Oncol 2022; 12:956225. [PMID: 35898867 PMCID: PMC9309260 DOI: 10.3389/fonc.2022.956225] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/14/2022] [Indexed: 11/21/2022] Open
Abstract
Polo-like kinase (PLK) 2 is an evolutionarily conserved serine/threonine kinase that shares the n-terminal kinase catalytic domain and the C-terminal Polo Box Domain (PBD) with other members of the PLKs family. In the last two decades, mounting studies have focused on this and tried to clarify its role in many aspects. PLK2 is essential for mitotic centriole replication and meiotic chromatin pairing, synapsis, and crossing-over in the cell cycle; Loss of PLK2 function results in cell cycle disorders and developmental retardation. PLK2 is also involved in regulating cell differentiation and maintaining neural homeostasis. In the process of various stimuli-induced stress, including oxidative and endoplasmic reticulum, PLK2 may promote survival or apoptosis depending on the intensity of stimulation and the degree of cell damage. However, the role of PLK2 in immunity to viral infection has been studied far less than that of other family members. Because PLK2 is extensively and deeply involved in normal physiological functions and pathophysiological mechanisms of cells, its role in diseases is increasingly being paid attention to. The effect of PLK2 in inhibiting hematological tumors and fibrotic diseases, as well as participating in neurodegenerative diseases, has been gradually recognized. However, the research results in solid organ tumors show contradictory results. In addition, preliminary studies using PLK2 as a disease predictor and therapeutic target have yielded some exciting and promising results. More research will help people better understand PLK2 from principle to practice.
Collapse
Affiliation(s)
- Chuanyong Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Chuangye Ni
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Hao Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
- *Correspondence: Hao Lu,
| |
Collapse
|
10
|
Fernández-Sainz J, Pacheco-Liñán PJ, Granadino-Roldán JM, Bravo I, Rubio-Martínez J, Albaladejo J, Garzón-Ruiz A. Shedding light on the binding mechanism of kinase inhibitors BI-2536, Volasetib and Ro-3280 with their pharmacological target PLK1. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 232:112477. [PMID: 35644070 DOI: 10.1016/j.jphotobiol.2022.112477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 03/01/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
In the present work, the interactions of the novel kinase inhibitors BI-2536, Volasetib (BI-6727) and Ro-3280 with the pharmacological target PLK1 have been studied by fluorescence spectroscopy and molecular dynamics calculations. High Stern-Volmer constants were found in fluorescence experiments suggesting the formation of stable protein-ligand complexes. In addition, it was observed that the binding constant between BI-2536 and PLK1 increases about 100-fold in presence of the phosphopeptide Cdc25C-p that docks to the polo box domain of the protein and releases the kinase domain. All the determined binding constants are higher for the kinase inhibitors than for their competitor for the active center (ATP) being BI-2536 and Volasertib the inhibitors that showed more affinity for PLK1. Calculated binding free energies confirmed the higher affinity of PLK1 for BI-2536 and Volasertib than for ATP. The higher affinity of the inhibitors to PLK1 compared to ATP was mainly attributed to stronger van der Waals interactions. Results may help with the challenge of designing and developing new kinase inhibitors more effective in clinical cancer therapy.
Collapse
Affiliation(s)
- Jesús Fernández-Sainz
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Cronista Ballesteros Gómez, 1, 02071 Albacete, Spain
| | - Pedro J Pacheco-Liñán
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Cronista Ballesteros Gómez, 1, 02071 Albacete, Spain
| | - José M Granadino-Roldán
- Departamento de Química Física y Analítica, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus "Las Lagunillas" s/n, 23071 Jaén, Spain
| | - Iván Bravo
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Cronista Ballesteros Gómez, 1, 02071 Albacete, Spain
| | - Jaime Rubio-Martínez
- Departament de Ciència dels Materials i Química Física, Universitat de Barcelona (UB), Institut de Recerca en Quimica Teorica i Computacional (IQTCUB), Martí i Franqués 1, 08028 Barcelona, Spain
| | - José Albaladejo
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad de Castilla-La Mancha, Avenida Camilo José Cela, 10, 13071 Ciudad Real, Spain
| | - Andrés Garzón-Ruiz
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Cronista Ballesteros Gómez, 1, 02071 Albacete, Spain.
| |
Collapse
|
11
|
Uchenunu O, Zhdanov AV, Hutton P, Jovanovic P, Wang Y, Andreev DE, Hulea L, Papadopoli DJ, Avizonis D, Baranov PV, Pollak MN, Papkovsky DB, Topisirovic I. Mitochondrial complex IV defects induce metabolic and signaling perturbations that expose potential vulnerabilities in HCT116 cells. FEBS Open Bio 2022; 12:959-982. [PMID: 35302710 PMCID: PMC9063438 DOI: 10.1002/2211-5463.13398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/28/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022] Open
Abstract
Mutations in genes encoding cytochrome c oxidase (mitochondrial complex IV) subunits and assembly factors [e.g., synthesis of cytochrome c oxidase 2 (SCO2)] are linked to severe metabolic syndromes. Notwithstanding that SCO2 is under transcriptional control of tumor suppressor p53, the role of mitochondrial complex IV dysfunction in cancer metabolism remains obscure. Herein, we demonstrate that the loss of SCO2 in HCT116 colorectal cancer cells leads to significant metabolic and signaling perturbations. Specifically, abrogation of SCO2 increased NAD+ regenerating reactions and decreased glucose oxidation through citric acid cycle while enhancing pyruvate carboxylation. This was accompanied by a reduction in amino acid levels and the accumulation of lipid droplets. In addition, SCO2 loss resulted in hyperactivation of the insulin-like growth factor 1 receptor (IGF1R)/AKT axis with paradoxical downregulation of mTOR signaling, which was accompanied by increased AMP-activated kinase activity. Accordingly, abrogation of SCO2 expression appears to increase the sensitivity of cells to IGF1R and AKT, but not mTOR inhibitors. Finally, the loss of SCO2 was associated with reduced proliferation and enhanced migration of HCT116 cells. Collectively, herein we describe potential adaptive signaling and metabolic perturbations triggered by mitochondrial complex IV dysfunction.
Collapse
Affiliation(s)
- Oro Uchenunu
- Lady Davis Institute for Medical ResearchJewish General HospitalMontréalCanada
- Department of Experimental MedicineMcGill UniversityMontrealCanada
| | | | - Phillipe Hutton
- Lady Davis Institute for Medical ResearchJewish General HospitalMontréalCanada
| | - Predrag Jovanovic
- Lady Davis Institute for Medical ResearchJewish General HospitalMontréalCanada
- Department of Experimental MedicineMcGill UniversityMontrealCanada
| | - Ye Wang
- Lady Davis Institute for Medical ResearchJewish General HospitalMontréalCanada
| | - Dmitry E. Andreev
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryMoscowRussia
- Belozersky Institute of Physico‐Chemical BiologyLomonosov Moscow State UniversityRussia
| | - Laura Hulea
- Département de MédecineDépartement de Biochimie et Médecine MoléculaireUniversité de MontréalMaisonneuve‐Rosemont Hospital Research CentreCanada
| | - David J. Papadopoli
- Lady Davis Institute for Medical ResearchJewish General HospitalMontréalCanada
- Gerald Bronfman Department of OncologyMcGill UniversityMontrealCanada
| | - Daina Avizonis
- Goodman Cancer Research CentreMcGill UniversityMontrealCanada
| | - Pavel V. Baranov
- School of Biochemistry and Cell BiologyUniversity College CorkIreland
| | - Michael N. Pollak
- Lady Davis Institute for Medical ResearchJewish General HospitalMontréalCanada
- Department of Experimental MedicineMcGill UniversityMontrealCanada
- Gerald Bronfman Department of OncologyMcGill UniversityMontrealCanada
| | | | - Ivan Topisirovic
- Lady Davis Institute for Medical ResearchJewish General HospitalMontréalCanada
- Department of Experimental MedicineMcGill UniversityMontrealCanada
- Gerald Bronfman Department of OncologyMcGill UniversityMontrealCanada
- Department of BiochemistryMcGill UniversityMontrealCanada
| |
Collapse
|
12
|
Srinivas US, Tay NSC, Jaynes P, Anbuselvan A, Ramachandran GK, Wardyn JD, Hoppe MM, Hoang PM, Peng Y, Lim S, Lee MY, Peethala PC, An O, Shendre A, Tan BWQ, Jemimah S, Lakshmanan M, Hu L, Jakhar R, Sachaphibulkij K, Lim LHK, Pervaiz S, Crasta K, Yang H, Tan P, Liang C, Ho L, Khanchandani V, Kappei D, Yong WP, Tan DSP, Bordi M, Campello S, Tam WL, Frezza C, Jeyasekharan AD. PLK1 inhibition selectively induces apoptosis in ARID1A deficient cells through uncoupling of oxygen consumption from ATP production. Oncogene 2022; 41:1986-2002. [PMID: 35236967 DOI: 10.1038/s41388-022-02219-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 01/12/2022] [Accepted: 01/27/2022] [Indexed: 12/26/2022]
Abstract
Inhibitors of the mitotic kinase PLK1 yield objective responses in a subset of refractory cancers. However, PLK1 overexpression in cancer does not correlate with drug sensitivity, and the clinical development of PLK1 inhibitors has been hampered by the lack of patient selection marker. Using a high-throughput chemical screen, we discovered that cells deficient for the tumor suppressor ARID1A are highly sensitive to PLK1 inhibition. Interestingly this sensitivity was unrelated to canonical functions of PLK1 in mediating G2/M cell cycle transition. Instead, a whole-genome CRISPR screen revealed PLK1 inhibitor sensitivity in ARID1A deficient cells to be dependent on the mitochondrial translation machinery. We find that ARID1A knock-out (KO) cells have an unusual mitochondrial phenotype with aberrant biogenesis, increased oxygen consumption/expression of oxidative phosphorylation genes, but without increased ATP production. Using expansion microscopy and biochemical fractionation, we see that a subset of PLK1 localizes to the mitochondria in interphase cells. Inhibition of PLK1 in ARID1A KO cells further uncouples oxygen consumption from ATP production, with subsequent membrane depolarization and apoptosis. Knockdown of specific subunits of the mitochondrial ribosome reverses PLK1-inhibitor induced apoptosis in ARID1A deficient cells, confirming specificity of the phenotype. Together, these findings highlight a novel interphase role for PLK1 in maintaining mitochondrial fitness under metabolic stress, and a strategy for therapeutic use of PLK1 inhibitors. To translate these findings, we describe a quantitative microscopy assay for assessment of ARID1A protein loss, which could offer a novel patient selection strategy for the clinical development of PLK1 inhibitors in cancer.
Collapse
Affiliation(s)
- Upadhyayula S Srinivas
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Norbert S C Tay
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Patrick Jaynes
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Akshaya Anbuselvan
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Gokula K Ramachandran
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Joanna D Wardyn
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Michal M Hoppe
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Phuong Mai Hoang
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Yanfen Peng
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Sherlly Lim
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - May Yin Lee
- Genome Institute of Singapore (GIS), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Praveen C Peethala
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Omer An
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Akshay Shendre
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Bryce W Q Tan
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Sherlyn Jemimah
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Manikandan Lakshmanan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Longyu Hu
- Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Rekha Jakhar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
- Centre for Healthy Longevity, National University Health System (NUHS), Singapore, Singapore
| | - Karishma Sachaphibulkij
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Lina H K Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Karen Crasta
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
- Centre for Healthy Longevity, National University Health System (NUHS), Singapore, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Patrick Tan
- Genome Institute of Singapore (GIS), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
- Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Chao Liang
- Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Lena Ho
- Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Vartika Khanchandani
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Wei Peng Yong
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
- National University Cancer Institute, Singapore (NCIS), National University Hospital (NUH), Singapore, Singapore
| | - David S P Tan
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
- National University Cancer Institute, Singapore (NCIS), National University Hospital (NUH), Singapore, Singapore
| | - Matteo Bordi
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | - Silvia Campello
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | - Wai Leong Tam
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
- Genome Institute of Singapore (GIS), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | | | - Anand D Jeyasekharan
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore.
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore.
- National University Cancer Institute, Singapore (NCIS), National University Hospital (NUH), Singapore, Singapore.
| |
Collapse
|
13
|
Gao Y, Kabotyanski EB, Shepherd JH, Villegas E, Acosta D, Hamor C, Sun T, Montmeyor-Garcia C, He X, Dobrolecki LE, Westbrook TF, Lewis MT, Hilsenbeck SG, Zhang XHF, Perou CM, Rosen JM. Tumor suppressor PLK2 may serve as a biomarker in triple-negative breast cancer for improved response to PLK1 therapeutics. CANCER RESEARCH COMMUNICATIONS 2021; 1:178-193. [PMID: 35156101 PMCID: PMC8827906 DOI: 10.1158/2767-9764.crc-21-0106] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Polo-like kinase (PLK) family members play important roles in cell cycle regulation. The founding member PLK1 is oncogenic and preclinically validated as a cancer therapeutic target. Paradoxically, frequent loss of chromosome 5q11-35 which includes PLK2 is observed in basal-like breast cancer. In this study, we found that PLK2 was tumor suppressive in breast cancer, preferentially in basal-like and triple-negative breast cancer (TNBC) subtypes. Knockdown of PLK1 rescued phenotypes induced by PLK2-loss both in vitro and in vivo. We also demonstrated that PLK2 directly interacted with PLK1 at prometaphase through the kinase but not the polo-box domains of PLK2, suggesting PLK2 functioned at least partially through the interaction with PLK1. Furthermore, an improved treatment response was seen in both Plk2-deleted/low mouse preclinical and PDX TNBC models using the PLK1 inhibitor volasertib alone or in combination with carboplatin. Re-expression of PLK2 in an inducible PLK2-null mouse model reduced the therapeutic efficacy of volasertib. In summary, this study delineates the effects of chromosome 5q loss in TNBC that includes PLK2, the relationship between PLK2 and PLK1, and how this may render PLK2-deleted/low tumors more sensitive to PLK1 inhibition in combination with chemotherapy.
Collapse
Affiliation(s)
- Yang Gao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Elena B. Kabotyanski
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | | | | | - Deanna Acosta
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Clark Hamor
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Tingting Sun
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Verna & Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
| | | | - Xiaping He
- The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Lacey E. Dobrolecki
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Thomas F. Westbrook
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Verna & Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
| | - Michael T. Lewis
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Susan G. Hilsenbeck
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Xiang H.-F. Zhang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- McNair Medical Institute, Baylor College of Medicine, Houston, Texas
| | - Charles M. Perou
- The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jeffrey M. Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Corresponding Author: Jeffrey M. Rosen, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030. Phone: 832-215-9503; E-mail:
| |
Collapse
|
14
|
Newe M, Kant TA, Hoffmann M, Rausch JSE, Winter L, Künzel K, Klapproth E, Günther C, Künzel SR. Systemic mesalazine treatment prevents spontaneous skin fibrosis in PLK2-deficient mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:2233-2244. [PMID: 34410453 PMCID: PMC8514377 DOI: 10.1007/s00210-021-02135-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/30/2021] [Indexed: 11/27/2022]
Abstract
Skin fibrosis is a complex biological remodeling process occurring in disease like systemic sclerosis, morphea, or eosinophilic fasciitis. Since the knowledge about the underlying pathomechanisms is still incomplete, there is currently no therapy, which prevents or reverses skin fibrosis sufficiently. The present study investigates the role of polo-like kinase 2 (PLK2) and the pro-fibrotic cytokine osteopontin (OPN) in the pathogenesis of cutaneous fibrosis and demonstrates the antifibrotic effects of systemic mesalazine treatment in vivo. Isolated primary dermal fibroblasts of PLK2 wild-type (WT) and knockout (KO) mice were characterized in vitro. Skin thickness and histoarchitecture were studied in paraffin-embedded skin sections. The effects of mesalazine treatment were examined in isolated fibroblasts and PLK2 KO mice, which were fed 100 µg/g mesalazine for 6 months via the drinking water. Compared to WT, PLK2 KO fibroblasts displayed higher spontaneous myofibroblast differentiation, reduced proliferation rates, and overexpression of the fibrotic cytokine OPN. In vitro, 72 h of treatment with 10 mmol/L mesalazine induced phenotype conversion in PLK2 KO fibroblasts and attenuated OPN expression by inhibiting ERK1/2. In vivo, dermal myofibroblast differentiation, collagen accumulation, and skin thickening were prevented by mesalazine in PLK2 KO. Plasma creatinine levels indicated good tolerability of systemic long-term mesalazine treatment. The current study reveals a spontaneous fibrotic skin phenotype and ERK1/2-dependent OPN overexpression in PLK2 KO mice. We provide experimental evidence for the antifibrotic effectiveness of systemic mesalazine treatment to prevent fibrosis of the skin, suggesting further investigation in experimental and clinical settings.
Collapse
Affiliation(s)
- Manja Newe
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fiedlerstraße 42, 01309, Dresden, Germany
| | - Theresa A Kant
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fiedlerstraße 42, 01309, Dresden, Germany
| | - Maximilian Hoffmann
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fiedlerstraße 42, 01309, Dresden, Germany
| | - Johanna S E Rausch
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fiedlerstraße 42, 01309, Dresden, Germany
| | - Luise Winter
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fiedlerstraße 42, 01309, Dresden, Germany
| | - Karolina Künzel
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fiedlerstraße 42, 01309, Dresden, Germany
| | - Erik Klapproth
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fiedlerstraße 42, 01309, Dresden, Germany
| | - Claudia Günther
- Department of Dermatology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Stephan R Künzel
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fiedlerstraße 42, 01309, Dresden, Germany.
- Department of Dermatology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
15
|
Kant TA, Newe M, Winter L, Hoffmann M, Kämmerer S, Klapproth E, Künzel K, Kühnel MP, Neubert L, El-Armouche A, Künzel SR. Genetic Deletion of Polo-Like Kinase 2 Induces a Pro-Fibrotic Pulmonary Phenotype. Cells 2021; 10:617. [PMID: 33799608 PMCID: PMC8001503 DOI: 10.3390/cells10030617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Pulmonary fibrosis is the chronic-progressive replacement of healthy lung tissue by extracellular matrix, leading to the destruction of the alveolar architecture and ultimately death. Due to limited pathophysiological knowledge, causal therapies are still missing and consequently the prognosis is poor. Thus, there is an urgent clinical need for models to derive effective therapies. Polo-like kinase 2 (PLK2) is an emerging regulator of fibroblast function and fibrosis. We found a significant downregulation of PLK2 in four different entities of human pulmonary fibrosis. Therefore, we characterized the pulmonary phenotype of PLK2 knockout (KO) mice. Isolated pulmonary PLK2 KO fibroblasts displayed a pronounced myofibroblast phenotype reflected by increased expression of αSMA, reduced proliferation rates and enhanced ERK1/2 and SMAD2/3 phosphorylation. In PLK2 KO, the expression of the fibrotic cytokines osteopontin and IL18 was elevated compared to controls. Histological analysis of PLK2 KO lungs revealed early stage remodeling in terms of alveolar wall thickening, increased alveolar collagen deposition and myofibroblast foci. Our results prompt further investigation of PLK2 function in pulmonary fibrosis and suggest that the PLK2 KO model displays a genetic predisposition towards pulmonary fibrosis, which could be leveraged in future research on this topic.
Collapse
Affiliation(s)
- Theresa A. Kant
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (T.A.K.); (M.N.); (L.W.); (M.H.); (S.K.); (E.K.); (K.K.)
| | - Manja Newe
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (T.A.K.); (M.N.); (L.W.); (M.H.); (S.K.); (E.K.); (K.K.)
| | - Luise Winter
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (T.A.K.); (M.N.); (L.W.); (M.H.); (S.K.); (E.K.); (K.K.)
| | - Maximilian Hoffmann
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (T.A.K.); (M.N.); (L.W.); (M.H.); (S.K.); (E.K.); (K.K.)
| | - Susanne Kämmerer
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (T.A.K.); (M.N.); (L.W.); (M.H.); (S.K.); (E.K.); (K.K.)
| | - Erik Klapproth
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (T.A.K.); (M.N.); (L.W.); (M.H.); (S.K.); (E.K.); (K.K.)
| | - Karolina Künzel
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (T.A.K.); (M.N.); (L.W.); (M.H.); (S.K.); (E.K.); (K.K.)
| | - Mark P. Kühnel
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany; (M.P.K.); (L.N.)
| | - Lavinia Neubert
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany; (M.P.K.); (L.N.)
| | - Ali El-Armouche
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (T.A.K.); (M.N.); (L.W.); (M.H.); (S.K.); (E.K.); (K.K.)
| | - Stephan R. Künzel
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (T.A.K.); (M.N.); (L.W.); (M.H.); (S.K.); (E.K.); (K.K.)
| |
Collapse
|
16
|
Zhou D, Hayashi T, Jean M, Kong W, Fiches G, Biswas A, Liu S, Yosief HO, Zhang X, Bradner J, Qi J, Zhang W, Santoso N, Zhu J. Inhibition of Polo-like kinase 1 (PLK1) facilitates the elimination of HIV-1 viral reservoirs in CD4 + T cells ex vivo. SCIENCE ADVANCES 2020; 6:eaba1941. [PMID: 32832623 PMCID: PMC7439358 DOI: 10.1126/sciadv.aba1941] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 05/14/2020] [Indexed: 05/12/2023]
Abstract
Although combination antiretroviral therapy is effective in controlling HIV-1 infection, latent HIV-1 proviruses cannot be eliminated. HIV-1 reactivation induced by the mere use of latency-reversing agents is insufficient to render death of reservoir cells, indicating that certain intrinsic survival mechanisms exist. We report that Polo-like kinase 1 (PLK1) plays a critical role in survival of CD4+ T cells that undergo HIV-1 reactivation from latency or de novo infection. PLK1 is elevated in both scenarios, which requires HIV-1 Nef. HIV-1 enhances PLK1 SUMOylation, causing its nuclear translocation and protein stabilization. Inhibition or knockdown of PLK1 markedly facilitates death of HIV-1-infected CD4+ T cells. Furthermore, PLK1 inhibitors strikingly reduce the size of HIV-1 latent reservoirs in primary CD4+ T cells. Our findings demonstrate that HIV-1 infection hijacks PLK1 to prevent cell death induced by viral cytopathic effects, and that PLK1 is a promising target for chemical "killing" of HIV-1 reservoir cells.
Collapse
Affiliation(s)
- Dawei Zhou
- Department of Pathology, Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Tsuyoshi Hayashi
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester NY 14642, USA
| | - Maxime Jean
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester NY 14642, USA
| | - Weili Kong
- Department of Pathology, Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Guillaume Fiches
- Department of Pathology, Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Ayan Biswas
- Department of Pathology, Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Shuai Liu
- Chemistry Department, College of Science and Mathematics, University of Massachusetts at Boston, Boston, MA 02125, USA
| | - Hailemichael O. Yosief
- Chemistry Department, College of Science and Mathematics, University of Massachusetts at Boston, Boston, MA 02125, USA
| | - Xiaofeng Zhang
- Chemistry Department, College of Science and Mathematics, University of Massachusetts at Boston, Boston, MA 02125, USA
| | - Jay Bradner
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Jun Qi
- Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Wei Zhang
- Chemistry Department, College of Science and Mathematics, University of Massachusetts at Boston, Boston, MA 02125, USA
| | - Netty Santoso
- Department of Pathology, Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Jian Zhu
- Department of Pathology, Ohio State University College of Medicine, Columbus, OH 43210, USA
| |
Collapse
|
17
|
Quan R, Wei L, Hou L, Wang J, Zhu S, Li Z, Lv M, Liu J. Proteome Analysis in a Mammalian Cell line Reveals that PLK2 is Involved in Avian Metapneumovirus Type C (aMPV/C)-Induced Apoptosis. Viruses 2020; 12:v12040375. [PMID: 32231136 PMCID: PMC7232392 DOI: 10.3390/v12040375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 01/09/2023] Open
Abstract
Avian metapneumovirus subtype C (aMPV/C) causes an acute respiratory disease that has caused serious economic losses in the Chinese poultry industry. In the present study, we first explored the protein profile in aMPV/C-infected Vero cells using iTRAQ quantitative proteomics. A total of 921 of 7034 proteins were identified as significantly altered by aMPV/C infection. Three selected proteins were confirmed by Western blot analysis. Bioinformatics GO analysis revealed multiple signaling pathways involving cell cycle, endocytosis, and PI3K-Akt, mTOR, MAPK and p53 signaling pathways, which might participate in viral infection. In this analysis, we found that PLK2 expression was upregulated by aMPV/C infection and investigated whether it contributed to aMPV/C-mediated cellular dysfunction. Suppressing PLK2 attenuated aMPV/C-induced reactive oxygen species (ROS) production and p53-dependent apoptosis and reduced virus release. These results in a mammalian cell line suggest that high PLK2 expression correlates with aMPV/C-induced apoptosis and viral replication, providing new insight into the potential avian host cellular response to aMPV/C infection and antiviral targets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jue Liu
- Correspondence: ; Tel.: 86-10-51503671; Fax: 86-10-51503498
| |
Collapse
|
18
|
Insulin Resistance Promotes Parkinson's Disease through Aberrant Expression of α-Synuclein, Mitochondrial Dysfunction, and Deregulation of the Polo-Like Kinase 2 Signaling. Cells 2020; 9:cells9030740. [PMID: 32192190 PMCID: PMC7140619 DOI: 10.3390/cells9030740] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Insulin resistance (IR), considered a hallmark of diabetes at the cellular level, is implicated in pre-diabetes, results in type 2 diabetes, and negatively affects mitochondrial function. Diabetes is increasingly associated with enhanced risk of developing Parkinson's disease (PD); however, the underlying mechanism remains unclear. This study investigated the probable culpability of IR in the pathogenesis of PD. Methods: Using MitoPark mice in vivo models, diabetes was induced by a high-fat diet in the in vivo models, and IR was induced by protracted pulse-stimulation with 100 nM insulin treatment of neuronal cells, in vitro to determine the molecular mechanism(s) underlying altered cellular functions in PD, including mitochondrial dysfunction and α-synuclein (SNCA) aberrant expression. Findings: We observed increased SNCA expression in the dopaminergic (DA) neurons of both the wild-type and diabetic MitoPark mice, coupled with enhanced degeneration of DA neurons in the diabetic MitoPark mice. Ex vivo, in differentiated human DA neurons, IR was associated with increased SNCA and reactive oxygen species (ROS) levels, as well as mitochondrial depolarization. Moreover, we demonstrated concomitant hyperactivation of polo-like kinase-2 (PLK2), and upregulated p-SNCA (Ser129) and proteinase K-resistant SNCA proteins level in IR SH-SY5Y cells, however the inhibition of PLK2 reversed IR-related increases in phosphorylated and total SNCA. Similarly, the overexpression of peroxisome proliferator-activated receptor-γ coactivator 1-alpha (PGC)-1α suppressed ROS production, repressed PLK2 hyperactivity, and resulted in downregulation of total and Ser129-phosphorylated SNCA in the IR SH-SY5Y cells. Conclusions: These findings demonstrate that IR-associated diabetes promotes the development and progression of PD through PLK2-mediated mitochondrial dysfunction, upregulated ROS production, and enhanced SNCA signaling, suggesting the therapeutic targetability of PLK2 and/or SNCA as potential novel disease-modifying strategies in patients with PD.
Collapse
|
19
|
Li X, Yang W, Li X, Chen M, Liu C, Li J, Yu S. Alpha-synuclein oligomerization and dopaminergic degeneration occur synchronously in the brain and colon of MPTP-intoxicated parkinsonian monkeys. Neurosci Lett 2019; 716:134640. [PMID: 31759083 DOI: 10.1016/j.neulet.2019.134640] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/01/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023]
Abstract
Dopaminergic (DAergic) degeneration and abnormal α-synuclein (α-syn) expression, phosphorylation and aggregation are observed in both the nigrostriatal system (NSS) and enteric nervous system (ENS) of patients with Parkinson's disease (PD). Whether these alterations in α-syn and DAergic neurons occur synchronously in the two nervous systems or follow a process that spreads from the gut to the brain remains a subject of debate. Here, in MPTP-intoxicated cynomolgus monkeys, we showed a parallel DAergic degeneration in the colon as well as in the substantia nigra and striatum (SN/STR), as indicated by reduced expression of tyrosine hydroxylase (TH) and dopamine transporter (DAT). In addition, we observed a simultaneous increase in the concentrations of total, phosphorylated, and oligomeric α-syn in the colon and SN/STR. Moreover, we identified that the above changes in α-syn were associated with an increase in the expression of polo-like kinase 2 (PLK2), an enzyme that promotes α-syn phosphorylation, and a decrease in the activity of protein phosphatase 2A (PP2A), an enzyme that facilitates α-syn dephosphorylation. Because the colonic ENS can be readily analyzed using routine biopsies, the shared pathological features between the colonic ENS and the brain NSS found in this study provide useful information for assessing and understanding the neuropathology in PD patients using colonic biopsies.
Collapse
Affiliation(s)
- Xuran Li
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Weiwei Yang
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Xin Li
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Min Chen
- Laboratory of Neuroscience, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Chengwei Liu
- Laboratory of Neuroscience, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Jie Li
- Department of Neurology, Beijing Daxing District Hospital of Integrated Traditional Chinese and Western Medicine, Beijing, China
| | - Shun Yu
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Disorders, Beijing, China.
| |
Collapse
|
20
|
Neuroprotective effects of protocatechuic aldehyde through PLK2/p-GSK3β/Nrf2 signaling pathway in both in vivo and in vitro models of Parkinson's disease. Aging (Albany NY) 2019; 11:9424-9441. [PMID: 31697645 PMCID: PMC6874433 DOI: 10.18632/aging.102394] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022]
Abstract
Mitochondrial dysfunction and oxidative damage are closely related to the pathogenesis of Parkinson's disease (PD). The pharmacological mechanism of protocatechuic aldehyde (PCA) for PD treatment have retained unclear. The purposes of the present study were to clarify the neuroprotective effects of post-treatment of PCA for PD treatment by mitigating mitochondrial dysfunction and oxidative damage, and to further determine whether its effects were mediated by the polo-like kinase 2/phosphorylated glycogen synthase kinase 3 β/nuclear factor erythroid-2-related factor 2 (PLK2/p-GSK3β/Nrf2) pathways. We found that PCA improved 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced behavioral deficits and dopaminergic cell loss. Moreover, PCA increased the expressions of PLK2, p-GSK3β and Nrf2, following the decrease of α-synuclein (α-Syn) in MPTP-intoxicated mice. Cell viability was increased and the apoptosis rate was reduced by PCA in 1-methyl-4-phenylpyridinium iodide (MPP+)-incubated cells. Mitochondrial membrane potential (MMP), mitochondrial complex I activity and reactive oxygen species (ROS) levels in MPP+-incubated cells were also ameliorated by treatment with PCA. The neuroprotective effects of PCA were abolished by inhibition or knockdown of PLK2, whereas overexpression of PLK2 strengthened the protection of PCA. Furthermore, GSK3β and Nrf2 were involved in PCA-induced protection. These results indicated that PCA has therapeutic effects on PD by the PLK2/p-GSK3β/Nrf2 pathway.
Collapse
|
21
|
Joo MS, Shin SB, Kim EJ, Koo JH, Yim H, Kim SG. Nrf2-lncRNA controls cell fate by modulating p53-dependent Nrf2 activation as an miRNA sponge for Plk2 and p21 cip1. FASEB J 2019; 33:7953-7969. [PMID: 30897343 DOI: 10.1096/fj.201802744r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Long noncoding RNA (lncRNA) capable of controlling antioxidative capacity remains to be investigated. Nuclear factor erythroid-2-related factor 2 (Nrf2) is a central molecule for cellular defense that increases antioxidative capacity. We identified a novel lncRNA named Nrf2-activating lncRNA (Nrf2-lncRNA) transcribed from an upstream region of the microRNA 122 gene (MIR122). Nrf2-lncRNA existed in the cytoplasm, suggestive of its function as a competing endogenous RNA [ceRNA, microRNA (miRNA) sponge]. Nrf2-lncRNA served as a ceRNA for polo-like kinase (Plk) 2 and cyclin-dependent kinase inhibitor 1 (p21cip1) through binding of miRNA 128 and miRNA 224, inducing Plk2/Nrf2/p21cip1 complexation for Nrf2 activation in the cells under p53-activating conditions (i.e., DNA damage and serum deprivation). Nrf2-lncRNA expression was suppressed with the initiation of apoptosis, being a rheostat for cell fate determination. Nrf2-lncRNA levels correlated with the recurrence-free postsurgery survival rate of patients with hepatocellular carcinoma. Collectively, Nrf2-lncRNA promotes Plk2 and p21cip1 translation by competing for specific miRNAs and activating Nrf2 under surviving conditions from oxidative stress, implying that Nrf2-lncRNA serves as a fine-tuning rheostat for cell fate decision.-Joo, M. S., Shin, S.-B., Kim, E. J., Koo, J. H., Yim, H., Kim, S. G. Nrf2-lncRNA controls cell fate by modulating p53-dependent Nrf2 activation as an miRNA sponge for Plk2 and p21cip1.
Collapse
Affiliation(s)
- Min Sung Joo
- College of Pharmacy, Seoul National University, Seoul, South Korea.,Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Sol-Bi Shin
- College of Pharmacy, Hanyang University, Ansan, South Korea; and.,Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, South Korea
| | - Eun Jung Kim
- College of Pharmacy, Seoul National University, Seoul, South Korea.,Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Ja Hyun Koo
- College of Pharmacy, Seoul National University, Seoul, South Korea.,Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Hyungshin Yim
- College of Pharmacy, Hanyang University, Ansan, South Korea; and.,Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, South Korea
| | - Sang Geon Kim
- College of Pharmacy, Seoul National University, Seoul, South Korea.,Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
22
|
Guo N, Zhang N, Yan L, Lian Z, Wang J, Lv F, Wang Y, Cao X. Weighted gene co‑expression network analysis in identification of key genes and networks for ischemic‑reperfusion remodeling myocardium. Mol Med Rep 2018; 18:1955-1962. [PMID: 29901145 PMCID: PMC6072198 DOI: 10.3892/mmr.2018.9161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 03/07/2018] [Indexed: 11/14/2022] Open
Abstract
Acute myocardial infarction induces ventricular remodeling, which is implicated in dilated heart and heart failure. The pathogenical mechanism of myocardium remodeling remains to be elucidated. The aim of the present study was to identify key genes and networks for myocardium remodeling following ischemia-reperfusion (IR). First, the mRNA expression data from the National Center for Biotechnology Information database were downloaded to identify differences in mRNA expression of the IR heart at days 2 and 7. Then, weighted gene co-expression network analysis, hierarchical clustering, protein-protein interaction (PPI) network, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were used to identify key genes and networks for the heart remodeling process following IR. A total of 3,321 differentially expressed genes were identified during the heart remodeling process. A total of 6 modules were identified through gene co-expression network analysis. GO and KEGG analysis results suggested that each module represented a different biological function and was associated with different pathways. Finally, hub genes of each module were identified by PPI network construction. The present study revealed that heart remodeling following IR is a complicated process, involving extracellular matrix organization, neural development, apoptosis and energy metabolism. The dysregulated genes, including SRC proto-oncogene, non-receptor tyrosine kinase, discs large MAGUK scaffold protein 1, ATP citrate lyase, RAN, member RAS oncogene family, tumor protein p53, and polo like kinase 2, may be essential for heart remodeling following IR and may be used as potential targets for the inhibition of heart remodeling following acute myocardial infarction.
Collapse
Affiliation(s)
- Nan Guo
- Department of Cardiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| | - Nan Zhang
- Department of Cardiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| | - Liqiu Yan
- Department of Cardiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| | - Zheng Lian
- Department of Cardiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| | - Jiawang Wang
- Department of Cardiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| | - Fengfeng Lv
- Department of Cardiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| | - Yunfei Wang
- Department of Cardiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| | - Xufen Cao
- Department of Cardiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| |
Collapse
|
23
|
Ngan Tran K, Choi JI. Gene expression profiling of rat livers after continuous whole-body exposure to low-dose rate of gamma rays. Int J Radiat Biol 2018; 94:434-442. [PMID: 29557699 DOI: 10.1080/09553002.2018.1455009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE To study gene expression modulation in response to continuous whole-body exposure to low-dose-rate gamma radiation and improve our understanding of the mechanism of this impact at the molecular basis. MATERIALS AND METHODS cDNA microarray method with complete pooling of samples was used to study expression changes in the transcriptome profile of livers from rats treated with prolonged low-dose-rate ionizing radiation (IR) relative to that of sham-irradiated rats. RESULTS Of the 209 genes that were two-fold-up or down-regulated, 143 were known genes of which 27 were found in previous literatures to be modulated by IR. Remarkably, there were a significant number of differentially expressed genes involved in hepatic lipid metabolism. CONCLUSION This study showed changes in transcriptome profile of livers from low-dose irradiated rats when compared with that of sham-irradiated ones. This study will be useful for studying the metabolic changes of human exposed for long term to cosmic ray such as in space and in polar regions.
Collapse
Affiliation(s)
- Kim Ngan Tran
- a Department of Biotechnology and Bioengineering, Interdisciplinary Program for Bioenergy & Biomaterials , Chonnam National University , Gwangju , South Korea
| | - Jong-Il Choi
- a Department of Biotechnology and Bioengineering, Interdisciplinary Program for Bioenergy & Biomaterials , Chonnam National University , Gwangju , South Korea
| |
Collapse
|
24
|
E46K α-synuclein pathological mutation causes cell-autonomous toxicity without altering protein turnover or aggregation. Proc Natl Acad Sci U S A 2017; 114:E8274-E8283. [PMID: 28900007 DOI: 10.1073/pnas.1703420114] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
α-Synuclein (aSyn) is the main driver of neurodegenerative diseases known as "synucleinopathies," but the mechanisms underlying this toxicity remain poorly understood. To investigate aSyn toxic mechanisms, we have developed a primary neuronal model in which a longitudinal survival analysis can be performed by following the overexpression of fluorescently tagged WT or pathologically mutant aSyn constructs. Most aSyn mutations linked to neurodegenerative disease hindered neuronal survival in this model; of these mutations, the E46K mutation proved to be the most toxic. While E46K induced robust PLK2-dependent aSyn phosphorylation at serine 129, inhibiting this phosphorylation did not alleviate aSyn toxicity, strongly suggesting that this pathological hallmark of synucleinopathies is an epiphenomenon. Optical pulse-chase experiments with Dendra2-tagged aSyn versions indicated that the E46K mutation does not alter aSyn protein turnover. Moreover, since the mutation did not promote overt aSyn aggregation, we conclude that E46K toxicity was driven by soluble species. Finally, we developed an assay to assess whether neurons expressing E46K aSyn affect the survival of neighboring control neurons. Although we identified a minor non-cell-autonomous component spatially restricted to proximal neurons, most E46K aSyn toxicity was cell autonomous. Thus, we have been able to recapitulate the toxicity of soluble aSyn species at a stage preceding aggregation, detecting non-cell-autonomous toxicity and evaluating how some of the main aSyn hallmarks are related to neuronal survival.
Collapse
|
25
|
Zou HH, Yang PP, Huang TL, Zheng XX, Xu GS. PLK2 Plays an Essential Role in High D-Glucose-Induced Apoptosis, ROS Generation and Inflammation in Podocytes. Sci Rep 2017; 7:4261. [PMID: 28655909 PMCID: PMC5487358 DOI: 10.1038/s41598-017-00686-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/08/2017] [Indexed: 01/15/2023] Open
Abstract
Diabetic kidney disease (DKD) is a serious complication of hyperglycemia. Currently, there is no effective therapeutic intervention for DKD. In this study, we sought to provide a set of gene profile in diabetic kidneys. We identified 338 genes altered in diabetes-induced DKD glomeruli, and PLK2 exhibited the most dramatic change. Gene set enrichment analysis (GSEA) indicated multiple signaling pathways are involved DKD pathogenesis. Here, we investigated whether PLK2 contributes to podocyte dysfunction, a characteristic change in the development of DKD. High D-glucose (HDG) significantly increased PLK2 expression in mouse podocytes. Suppressing PLK2 attenuated HDG-induced apoptosis and inflammatory responses both in vitro and in vivo. NAC, an antioxidant reagent, rescued HDG and PLK2 overexpression-induced kidney injuries. In summary, we demonstrated that silencing PLK2 attenuates HDG-induced podocyte apoptosis and inflammation, which may serve as a future therapeutic target in DKD.
Collapse
Affiliation(s)
- Hong-Hong Zou
- Department of Nephrology, the Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, P.R. China
| | - Ping-Ping Yang
- Department of Nephrology, the Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, P.R. China
| | - Tian-Lun Huang
- Department of Nephrology, the Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, P.R. China
| | - Xiao-Xu Zheng
- Department of Medicine, the George Washington University, Washington, DC20052, USA
| | - Gao-Si Xu
- Department of Nephrology, the Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, P.R. China.
| |
Collapse
|
26
|
Zhdanov AV, Andreev DE, Baranov PV, Papkovsky DB. Low energy costs of F1Fo ATP synthase reversal in colon carcinoma cells deficient in mitochondrial complex IV. Free Radic Biol Med 2017; 106:184-195. [PMID: 28189850 DOI: 10.1016/j.freeradbiomed.2017.02.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 10/20/2022]
Abstract
Mitochondrial polarisation is paramount for a variety of cellular functions. Under ischemia, mitochondrial membrane potential (ΔΨm) and proton gradient (ΔpH) are maintained via a reversal of mitochondrial F1Fo ATP synthase (mATPase), which can rapidly deplete ATP and drive cells into energy crisis. We found that under normal conditions in cells with disassembled cytochrome c oxidase complex (COX-deficient HCT116), mATPase maintains ΔΨm at levels only 15-20% lower than in WT cells, and for this utilises relatively little ATP. For a small energy expenditure, mATPase enables mitochondrial ΔpH, protein import, Ca2+ turnover, and supports free radical detoxication machinery enlarged to protect the cells from oxidative damage. Whereas in COX-deficient cells the main source of ATP is glycolysis, the ΔΨm is still maintained upon inhibition of the adenine nucleotide translocators with bongkrekic acid and carboxyatractyloside, indicating that the role of ANTs is redundant, and matrix substrate level phosphorylation alone or in cooperation with ATP-Mg/Pi carriers can continuously support the mATPase activity. Intriguingly, we found that mitochondrial complex III is active, and it contributes not only to free radical production, but also to ΔΨm maintenance and energy budget of COX-deficient cells. Overall, this study demonstrates that F1Fo ATP synthase can support general mitochondrial and cellular functions, working in extremely efficient 'energy saving' reverse mode and flexibly recruiting free radical detoxication and ATP producing / transporting pathways.
Collapse
Affiliation(s)
- Alexander V Zhdanov
- School of Biochemistry & Cell Biology, University College Cork, Cork, Ireland.
| | - Dmitry E Andreev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Pavel V Baranov
- School of Biochemistry & Cell Biology, University College Cork, Cork, Ireland
| | - Dmitri B Papkovsky
- School of Biochemistry & Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
27
|
Xu L, Zhu Y, Shao J, Chen M, Yan H, Li G, Zhu Y, Xu Z, Yang B, Luo P, He Q. Dasatinib synergises with irinotecan to suppress hepatocellular carcinoma via inhibiting the protein synthesis of PLK1. Br J Cancer 2017; 116:1027-1036. [PMID: 28267710 PMCID: PMC5396112 DOI: 10.1038/bjc.2017.55] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/09/2017] [Accepted: 02/09/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common types of malignant tumour and has poor prognosis. Currently, systematic chemotherapy is the only approach to prolong survival. Thus the development of new treatment regimens is urgently needed to improve the therapeutic efficacy. Our study intended to assess the combination of dasatinib and irinotecan against HCC and made an effort to develop a potential medical choice for advanced HCC patients. METHODS We used SRB colorimetric assay and clonogenic assay to assess antitumour effect in vitro and HCC xenograft model to assess antitumour effect in vivo. We applied flow cytometry and western blotting to explore the mechanism of the combined therapy. Knockdown and overexpression of PLK1 are also applied for validation. RESULTS We confirmed that dasatinib has synergistic effect with irinotecan (or SN38) on HCC both in vitro and in vivo. The effect is due to arisen apoptosis rate of HCC cells that is accompanied by mitochondria dysfunction. The enhanced antitumour efficacy of SN38 could be explained by additional inhibition of PLK1, which is triggered by dasatinib. Unlike existed PLK1 inhibitors, dasatinib does not inhibit PLK1 activity in a direct way. Instead, we found that dasatinib reduces PLK1 level by interfering with its protein synthesis progress. We validated that this kind of downregulation of PLK1 level has a key role in the synergistic effect of the two agents. CONCLUSIONS Dasatinib is able to reinforce the anti-HCC efficacy of irinotecan/SN38 by downregulation of PLK1 synthesis. The combination of the two agents might be a potential medical choice for HCC therapy.
Collapse
Affiliation(s)
- Li Xu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuanrun Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jinjin Shao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Min Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hao Yan
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Guanqun Li
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yi Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhifei Xu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peihua Luo
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
28
|
Yamanishi E, Hasegawa K, Fujita K, Ichinose S, Yagishita S, Murata M, Tagawa K, Akashi T, Eishi Y, Okazawa H. A novel form of necrosis, TRIAD, occurs in human Huntington's disease. Acta Neuropathol Commun 2017; 5:19. [PMID: 28274274 PMCID: PMC5341362 DOI: 10.1186/s40478-017-0420-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/22/2017] [Indexed: 12/13/2022] Open
Abstract
We previously reported transcriptional repression-induced atypical cell death of neuron (TRIAD), a new type of necrosis that is mainly regulated by Hippo pathway signaling and distinct from necroptosis regulated by RIP1/3 pathway. Here, we examined the ultrastructural and biochemical features of neuronal cell death in the brains of human HD patients in parallel with the similar analyses using mutant Htt-knock-in (Htt-KI) mice. LATS1 kinase, the critical regulator and marker of TRIAD, is actually activated in cortical neurons of postmortem human HD and of Htt-KI mouse brains, while apoptosis promoter kinase Plk1 was inactivated in human HD brains. Expression levels of YAP/YAPdeltaC were decreased in cortical neurons of human HD brains. Ultra-structural analyses revealed extreme enlargement of endoplasmic reticulum (ER), which characterizes TRIAD, in cortical neurons of human HD and those of Htt-KI mice. These biochemical and morphological results support that TRIAD occurs in human and mouse neurons under the HD pathology.
Collapse
Affiliation(s)
- Emiko Yamanishi
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kazuko Hasegawa
- Department of Neurology, National Hospital Organization, Sagamihara National Hospital, 18-1, Sakura-dai, Minami-ku, Yokosuka, 252-0392, Japan
| | - Kyota Fujita
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Shizuko Ichinose
- Research Center for Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Saburo Yagishita
- Department of Neurology, National Hospital Organization, Sagamihara National Hospital, 18-1, Sakura-dai, Minami-ku, Yokosuka, 252-0392, Japan
| | - Miho Murata
- Department of Neurology, National Center of Neurology and Psychiatry, 4-1-1, Ogawahigashimachi, Kodaira, Tokyo, 187-8551, Japan
| | - Kazuhiko Tagawa
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Takumi Akashi
- Department of Human Pathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Yoshinobu Eishi
- Department of Human Pathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hitoshi Okazawa
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
- Department of Neuropathology, Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
29
|
Oueslati A. Implication of Alpha-Synuclein Phosphorylation at S129 in Synucleinopathies: What Have We Learned in the Last Decade? JOURNAL OF PARKINSONS DISEASE 2017; 6:39-51. [PMID: 27003784 PMCID: PMC4927808 DOI: 10.3233/jpd-160779] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abnormal accumulation of proteinaceous intraneuronal inclusions called Lewy bodies (LBs) is the neurpathological hallmark of Parkinson’s disease (PD) and related synucleinopathies. These inclusions are mainly constituted of a presynaptic protein, α-synuclein (α-syn). Over the past decade, growing amounts of studies reported an aberrant accumulation of phosphorylated α-syn at the residue S129 (pS129) in the brain of patients suffering from PD, as well as in transgenic animal models of synucleinopathies. Whereas only a small fraction of α-syn (<4%) is phosphorylated in healthy brains, a dramatic accumulation of pS129 (>90%) has been observed within LBs, suggesting that this post-translational modification may play an important role in the regulation of α-syn aggregation, LBs formation and neuronal degeneration. However, whether phosphorylation at S129 suppresses or enhances α-syn aggregation and toxicity in vivo remains a subject of active debate. The answer to this question has important implications for understanding the role of phosphorylation in the pathogenesis of synucleinopathies and determining if targeting kinases or phosphatases could be a viable therapeutic strategy for the treatment of these devastating neurological disorders. In the present review, we explore recent findings from in vitro, cell-based assays and in vivo studies describing the potential implications of pS129 in the regulation of α-syn physiological functions, as well as its implication in synucleinopathies pathogenesis and diagnosis.
Collapse
Affiliation(s)
- Abid Oueslati
- Correspondence to: Abid Oueslati, Centre de Recherche du CHU de Québec-Université Laval, Axe Neuroscience et Départe-ment de Médecine Moléculaire de l’Université Laval, Québec G1V4G2, Canada. Tel.: +1 4185254444/Ext 49119; Fax: +1 4186542125; E-mail:
| |
Collapse
|
30
|
Wang PY, Li J, Walcott FL, Kang JG, Starost MF, Talagala SL, Zhuang J, Park JH, Huffstutler RD, Bryla CM, Mai PL, Pollak M, Annunziata CM, Savage SA, Fojo AT, Hwang PM. Inhibiting mitochondrial respiration prevents cancer in a mouse model of Li-Fraumeni syndrome. J Clin Invest 2016; 127:132-136. [PMID: 27869650 DOI: 10.1172/jci88668] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/06/2016] [Indexed: 12/14/2022] Open
Abstract
Li-Fraumeni syndrome (LFS) is a cancer predisposition disorder caused by germline mutations in TP53 that can lead to increased mitochondrial metabolism in patients. However, the implications of altered mitochondrial function for tumorigenesis in LFS are unclear. Here, we have reported that genetic or pharmacologic disruption of mitochondrial respiration improves cancer-free survival in a mouse model of LFS that expresses mutant p53. Mechanistically, inhibition of mitochondrial function increased autophagy and decreased the aberrant proliferation signaling caused by mutant p53. In a pilot study, LFS patients treated with metformin exhibited decreases in mitochondrial activity concomitant with activation of antiproliferation signaling, thus reproducing the effects of disrupting mitochondrial function observed in LFS mice. These observations indicate that a commonly prescribed diabetic medicine can restrain mitochondrial metabolism and tumorigenesis in an LFS model, supporting its further consideration for cancer prevention in LFS patients.
Collapse
|
31
|
Zhdanov AV, Aviello G, Knaus UG, Papkovsky DB. Cellular ROS imaging with hydro-Cy3 dye is strongly influenced by mitochondrial membrane potential. Biochim Biophys Acta Gen Subj 2016; 1861:198-204. [PMID: 27818165 DOI: 10.1016/j.bbagen.2016.10.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/14/2016] [Accepted: 10/27/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Hydrocyanines are widely used as fluorogenic probes to monitor reactive oxygen species (ROS) generation in cells. Their brightness, stability to autoxidation and photobleaching, large signal change upon oxidation, pH independence and red/near infrared emission are particularly attractive for imaging ROS in live tissue. METHODS Using confocal fluorescence microscopy we have examined an interference of mitochondrial membrane potential (ΔΨm) with fluorescence intensity and localisation of a commercial hydro-Cy3 probe in respiring and non-respiring colon carcinoma HCT116 cells. RESULTS We found that the oxidised (fluorescent) form of hydro-Cy3 is highly homologous to the common ΔΨm-sensitive probe JC-1, which accumulates and aggregates only in 'energised' negatively charged mitochondrial matrix. Therefore, hydro-Cy3 oxidised by hydroxyl and superoxide radicals tends to accumulate in mitochondrial matrix, but dissipates and loses brightness as soon as ΔΨm is compromised. Experiments with mitochondrial inhibitor oligomycin and uncoupler FCCP, as well as a common ROS producer paraquat demonstrated that signals of the oxidised hydro-Cy3 probe rapidly and strongly decrease upon mitochondrial depolarisation, regardless of the rate of cellular ROS production. CONCLUSIONS While analysing ROS-derived fluorescence of commercial hydrocyanine probes, an accurate control of ΔΨm is required. GENERAL SIGNIFICANCE If not accounted for, non-specific effect of mitochondrial polarisation state on the behaviour of oxidised hydrocyanines can cause artefacts and data misinterpretation in ROS studies.
Collapse
Affiliation(s)
- Alexander V Zhdanov
- School of Biochemistry & Cell Biology, University College Cork, Cork, Ireland.
| | - Gabriella Aviello
- School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland; University of Aberdeen, Aberdeen, UK
| | - Ulla G Knaus
- School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Dmitri B Papkovsky
- School of Biochemistry & Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
32
|
Plk2 promotes tumor growth and inhibits apoptosis by targeting Fbxw7/Cyclin E in colorectal cancer. Cancer Lett 2016; 380:457-466. [DOI: 10.1016/j.canlet.2016.07.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/20/2016] [Accepted: 07/10/2016] [Indexed: 12/21/2022]
|
33
|
Zhu K, Shan Z, Zhang L, Wen W. Phospho-Pon Binding-Mediated Fine-Tuning of Plk1 Activity. Structure 2016; 24:1110-9. [PMID: 27238966 DOI: 10.1016/j.str.2016.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 03/29/2016] [Accepted: 04/25/2016] [Indexed: 01/08/2023]
Abstract
In Drosophila neuroblasts (NBs), the asymmetrical localization and segregation of the cell-fate determinant Numb are regulated by its adaptor Partner of Numb (Pon) and the cell-cycle kinase Polo. Polo phosphorylates the Pon localization domain, thus leading to its basal distribution together with Numb, albeit through an unclear mechanism. Here, we find that Cdk1 phosphorylates Pon at Thr63, thus creating a docking site for the Polo-box domain (PBD) of Polo-like kinase 1 (Plk1). The crystal structure of the Plk1 PBD/phospho-Pon complex reveals that two phospho-Pon bound PBDs associate to form a dimer of dimers. We provide evidence that phospho-Pon binding-induced PBD dimerization relieves the autoinhibition of Plk1. Moreover, we demonstrate that the priming Cdk1 phosphorylation of Pon is important for sequential Plk1 phosphorylation. Our results not only provide structural insight into how phosphoprotein binding activates Plk1 but also suggest that binding to different phosphoproteins might mediate the fine-tuning of Plk1 activity.
Collapse
Affiliation(s)
- Kang Zhu
- Department of Neurosurgery, Huashan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai 200040, China
| | - Zelin Shan
- Department of Neurosurgery, Huashan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai 200040, China
| | - Lu Zhang
- Department of Neurosurgery, Huashan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai 200040, China
| | - Wenyu Wen
- Department of Neurosurgery, Huashan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai 200040, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China.
| |
Collapse
|
34
|
Lasek AL, McPherson BM, Trueman NG, Burkard ME. The Functional Significance of Posttranslational Modifications on Polo-Like Kinase 1 Revealed by Chemical Genetic Complementation. PLoS One 2016; 11:e0150225. [PMID: 26919439 PMCID: PMC4769148 DOI: 10.1371/journal.pone.0150225] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 02/10/2016] [Indexed: 01/19/2023] Open
Abstract
Mitosis is coordinated by carefully controlled phosphorylation and ubiquitin-mediated proteolysis. Polo-like kinase 1 (Plk1) plays a central role in regulating mitosis and cytokinesis by phosphorylating target proteins. Yet, Plk1 is itself a target for posttranslational modification by phosphorylation and ubiquitination. We developed a chemical-genetic complementation assay to evaluate the functional significance of 34 posttranslational modifications (PTMs) on human Plk1. To do this, we used human cells that solely express a modified analog-sensitive Plk1 (Plk1AS) and complemented with wildtype Plk1. The wildtype Plk1 provides cells with a functional Plk1 allele in the presence of 3-MB-PP1, a bulky ATP-analog inhibitor that specifically inhibits Plk1AS. Using this approach, we evaluated the ability of 34 singly non-modifiable Plk1 mutants to complement Plk1AS in the presence of 3-MB-PP1. Mutation of the T-loop activating residue T210 and adjacent T214 are lethal, but surprisingly individual mutation of the remaining 32 posttranslational modification sites did not disrupt the essential functions of Plk1. To evaluate redundancy, we simultaneously mutated all phosphorylation sites in the kinase domain except for T210 and T214 or all sites in the C-terminal polo-box domain (PBD). We discovered that redundant phosphorylation events within the kinase domain are required for accurate chromosome segregation in anaphase but those in the PBD are dispensable. We conclude that PTMs within the T-loop of Plk1 are essential and nonredundant, additional modifications in the kinase domain provide redundant control of Plk1 function, and those in the PBD are dispensable for essential mitotic functions of Plk1. This comprehensive evaluation of Plk1 modifications demonstrates that although phosphorylation and ubiquitination are important for mitotic progression, many individual PTMs detected in human tissue may have redundant, subtle, or dispensable roles in gene function.
Collapse
Affiliation(s)
- Amber L. Lasek
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States of America
- Department of Medicine, Hematology/Oncology Division, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States of America
| | - Brittany M. McPherson
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States of America
- Department of Medicine, Hematology/Oncology Division, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States of America
| | - Natalie G. Trueman
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States of America
- Department of Medicine, Hematology/Oncology Division, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States of America
| | - Mark E. Burkard
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States of America
- Department of Medicine, Hematology/Oncology Division, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States of America
| |
Collapse
|
35
|
Naylor RM, Jeganathan KB, Cao X, van Deursen JM. Nuclear pore protein NUP88 activates anaphase-promoting complex to promote aneuploidy. J Clin Invest 2016; 126:543-59. [PMID: 26731471 DOI: 10.1172/jci82277] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 11/13/2015] [Indexed: 02/06/2023] Open
Abstract
The nuclear pore complex protein NUP88 is frequently elevated in aggressive human cancers and correlates with reduced patient survival; however, it is unclear whether and how NUP88 overexpression drives tumorigenesis. Here, we show that mice overexpressing NUP88 are cancer prone and form intestinal tumors. To determine whether overexpression of NUP88 drives tumorigenesis, we engineered transgenic mice with doxycycline-inducible expression of Nup88. Surprisingly, NUP88 overexpression did not alter global nuclear transport, but was a potent inducer of aneuploidy and chromosomal instability. We determined that NUP88 and the nuclear transport factors NUP98 and RAE1 comprise a regulatory network that inhibits premitotic activity of the anaphase-promoting complex/cyclosome (APC/C). When overexpressed, NUP88 sequesters NUP98-RAE1 away from APC/CCDH1, triggering proteolysis of polo-like kinase 1 (PLK1), a tumor suppressor and multitasking mitotic kinase. Premitotic destruction of PLK1 disrupts centrosome separation, causing mitotic spindle asymmetry, merotelic microtubule-kinetochore attachments, lagging chromosomes, and aneuploidy. These effects were replicated by PLK1 insufficiency, indicating that PLK1 is responsible for the mitotic defects associated with NUP88 overexpression. These findings demonstrate that the NUP88-NUP98-RAE1-APC/CCDH1 axis contributes to aneuploidy and suggest that it may be deregulated in the initiating stages of a broad spectrum of human cancers.
Collapse
|
36
|
Hu ZB, Liao XH, Xu ZY, Yang X, Dong C, Jin AM, Lu H. PLK2 phosphorylates and inhibits enriched TAp73 in human osteosarcoma cells. Cancer Med 2015; 5:74-87. [PMID: 26625870 PMCID: PMC4708894 DOI: 10.1002/cam4.558] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/12/2015] [Accepted: 09/14/2015] [Indexed: 01/01/2023] Open
Abstract
TAp73, a member of the p53 tumor suppressor family, can substitute for p53 function, especially in p53‐null and p53‐mutant cells. However, TAp73 enrichment and phosphorylation change its transcriptional activity. Previously, we found that the antitumor function of TAp73 was reactivated by dephosphorylation. Polo‐like kinase 2 (PLK2) plays an important role in bone development. Using a biological information database and phosphorylation prediction software, we hypothesized that PLK2 phosphorylates TAp73 and inhibits TAp73 function in osteosarcomas. Actually,we determined that PLK2 physically binds to and phosphorylates TAp73 when TAp73 protein abundance is up‐regulated by cisplatin. PLK2‐phosphorylated TAp73 at residue Ser48 within the TA domain; phosphorylation of TAp73 was abolished by mutating this residue. Moreover, PLK2 inhibition combined with cisplatin treatment in osteosarcoma Saos2 cells up‐regulated p21 and puma mRNA expression to a greater extent than cisplatin treatment alone. Inhibiting PLK2 in TAp73‐enriched Saos2 cells resulted in inhibited cell proliferation, increased apoptosis, G1 phase arrest, and decreased cell invasion. However, these changes did not occur in TAp73 knockdown Saos2 cells. In conclusion, these findings reveal a novel PLK2 function in the phosphorylation of TAp73, which prevents TAp73 activity in osteosarcoma cells. Thereby, this research provides an insight into the clinical treatment of malignant tumors overexpressing TAp73.
Collapse
Affiliation(s)
- Zheng Bo Hu
- Department of Orthopedics, Zhu Jiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Xiao Hong Liao
- The State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510280, China
| | - Zun Ying Xu
- Department of Orthopedics, Zhu Jiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Xiao Yang
- Department of Orthopedics, Zhu Jiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Chao Dong
- Department of Orthopedics, Zhu Jiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - An Min Jin
- Department of Orthopedics, Zhu Jiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Hai Lu
- Department of Orthopaedics, The Third Affiliated Hospital of Southern Medical University, Academy of Orthopedics, Guangzhou, Guangdong, 510665, China
| |
Collapse
|
37
|
Hu Z, Xu Z, Liao X, Yang X, Dong C, Luk K, Jin A, Lu H. Polo-like kinase 2 acting as a promoter in human tumor cells with an abundance of TAp73. Onco Targets Ther 2015; 8:3475-88. [PMID: 26640387 PMCID: PMC4662374 DOI: 10.2147/ott.s90302] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background TAp73, a member of the p53 tumor suppressor family, is frequently overexpressed in malignant tumors in humans. TAp73 abundance and phosphorylation modification result in variations in transcriptional activity. In a previous study, we found that the antitumor function of TAp73 was reactivated by dephosphorylation in head and neck squamous cell carcinomas. Polo-like kinase 2 (PLK2) displayed a close relationship with the p53 family in affecting the fate of cells. Herein, we investigate the hypothesis that PLK2 phosphorylates TAp73 and inhibits TAp73 function. Materials and methods Head and neck squamous cell carcinoma cell lines and osteosarcoma cell lines were used as natural models of the different expression levels of TAp73. Phosphorylation predictor software Scansite 3.0 and the predictor GPS-polo 1.0 were used to analyze the phosphorylation sites. Coimmunoprecipitation, phosphor-tag Western blot, metabolic labeling, and indirect immunofluorescence assays were used to determine the interactions between PLK2 and TAp73. TAp73 activity was assessed by Western blot and reverse transcription polymerase chain reaction, which we used to detect P21 and PUMA, both downstream genes of TAp73. The physiological effects of PLK2 cross talk with TAp73 on cell cycle progress and apoptosis were observed by flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling assays. Results PLK2 binds to and phosphorylates TAp73. PLK2 phosphorylates TAp73 at residue Ser48 and prohibits TAp73 translocation to the nucleus. Additionally, PLK2 inhibition combined with a DNA-damaging drug upregulated p21 and PUMA mRNA expression to a greater extent than DNA-damaging drug treatment alone. Inhibiting PLK2 in TAp73-enriched cells strengthened the effects of the DNA-damaging drug on both G1 phase arrest and apoptosis. Pretreatment with TAp73-siRNA weakened these effects. Conclusion These findings reveal a novel PLK2 function (catalyzed phosphorylation of TAp73) which suppresses TAp73 functions. PLK2 promotes the survival of human tumor cells, a novel insight into the workings of malignant tumors characterized by TAp73 overexpression, and one that could speed the development of therapies.
Collapse
Affiliation(s)
- ZhengBo Hu
- Department of Orthopedics, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - ZunYing Xu
- Department of Orthopedics, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - XiaoHong Liao
- The State Key Laboratory of Respiratory Diseases, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xiao Yang
- Department of Orthopedics, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Cao Dong
- Department of Orthopedics, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - KuaDi Luk
- Department of Orthopedics and Traumatology, The University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - AnMin Jin
- Department of Orthopedics, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Hai Lu
- Department of Orthopedics, the Third Affiliated Hospital of the Southern Medical University, Guangzhou, Guangdong, People's Republic of China ; Academy of Orthopedics, Guangdong Province, People's Republic of China
| |
Collapse
|
38
|
Abstract
Terrorism using radiological dirty bombs or improvised nuclear devices is recognized as a major threat to both public health and national security. In the event of a radiological or nuclear disaster, rapid and accurate biodosimetry of thousands of potentially affected individuals will be essential for effective medical management to occur. Currently, health care providers lack an accurate, high-throughput biodosimetric assay which is suitable for the triage of large numbers of radiation injury victims. Here, we describe the development of a biodosimetric assay based on the analysis of irradiated mice, ex vivo-irradiated human peripheral blood (PB) and humans treated with total body irradiation (TBI). Interestingly, a gene expression profile developed via analysis of murine PB radiation response alone was inaccurate in predicting human radiation injury. In contrast, generation of a gene expression profile which incorporated data from ex vivo irradiated human PB and human TBI patients yielded an 18-gene radiation classifier which was highly accurate at predicting human radiation status and discriminating medically relevant radiation dose levels in human samples. Although the patient population was relatively small, the accuracy of this classifier in discriminating radiation dose levels in human TBI patients was not substantially confounded by gender, diagnosis or prior exposure to chemotherapy. We have further incorporated genes from this human radiation signature into a rapid and high-throughput chemical ligation-dependent probe amplification assay (CLPA) which was able to discriminate radiation dose levels in a pilot study of ex vivo irradiated human blood and samples from human TBI patients. Our results illustrate the potential for translation of a human genetic signature for the diagnosis of human radiation exposure and suggest the basis for further testing of CLPA as a candidate biodosimetric assay.
Collapse
|
39
|
Li J, Ma W, Wang PY, Hurley PJ, Bunz F, Hwang PM. Polo-like kinase 2 activates an antioxidant pathway to promote the survival of cells with mitochondrial dysfunction. Free Radic Biol Med 2014; 73:270-7. [PMID: 24887096 PMCID: PMC4115326 DOI: 10.1016/j.freeradbiomed.2014.05.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/20/2014] [Accepted: 05/23/2014] [Indexed: 01/06/2023]
Abstract
We previously reported that Polo-like kinase 2 (PLK2) is highly expressed in cells with defective mitochondrial respiration and is essential for their survival. Although PLK2 has been widely studied as a cell cycle regulator, we have uncovered an antioxidant function for this kinase that activates the GSK3-NRF2 signaling pathway. Here, we report that the expression of PLK2 is responsive to oxidative stress and that PLK2 mediates antioxidant signaling by phosphorylating GSK3, thereby promoting the nuclear translocation of NRF2. We further show that the antioxidant activity of PLK2 is essential for preventing p53-dependent necrotic cell death. Thus, the regulation of redox homeostasis by PLK2 promotes the survival of cells with dysfunctional mitochondria, which may have therapeutic implications for cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jie Li
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wenzhe Ma
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; State Key Laboratory for Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Ping-yuan Wang
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paula J Hurley
- Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Fred Bunz
- Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Paul M Hwang
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
40
|
Girardini JE, Walerych D, Del Sal G. Cooperation of p53 mutations with other oncogenic alterations in cancer. Subcell Biochem 2014; 85:41-70. [PMID: 25201188 DOI: 10.1007/978-94-017-9211-0_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Following the initial findings suggesting a pro-oncogenic role for p53 point mutants, more than 30 years of research have unveiled the critical role exerted by these mutants in human cancer. A growing body of evidence, including mouse models and clinical data, has clearly demonstrated a connection between mutant p53 and the development of aggressive and metastatic tumors. Even if the molecular mechanisms underlying mutant p53 activities are still the object of intense scrutiny, it seems evident that full activation of its oncogenic role requires the functional interaction with other oncogenic alterations. p53 point mutants, with their pleiotropic effects, simultaneously activating several mechanisms of aggressiveness, are engaged in multiple cross-talk with a variety of other cancer-related processes, thus depicting a complex molecular landscape for the mutant p53 network. In this chapter revealing evidence illustrating different ways through which this cooperation may be achieved will be discussed. Considering the proposed role for mutant p53 as a driver of cancer aggressiveness, disarming mutant p53 function by uncoupling the cooperation with other oncogenic alterations, stands out as an exciting possibility for the development of novel anti-cancer therapies.
Collapse
Affiliation(s)
- Javier E Girardini
- Molecular Oncology Group, Institute of Molecular and Cell Biology of Rosario, IBR-CONICET, Rosario, Argentina
| | | | | |
Collapse
|
41
|
Mitochondrial disulfide relay mediates translocation of p53 and partitions its subcellular activity. Proc Natl Acad Sci U S A 2013; 110:17356-61. [PMID: 24101517 DOI: 10.1073/pnas.1310908110] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
p53, a critical tumor suppressor, regulates mitochondrial respiration, but how a nuclear protein can orchestrate the function of an organelle encoded by two separate genomes, both of which require p53 for their integrity, remains unclear. Here we report that the mammalian homolog of the yeast mitochondrial disulfide relay protein Mia40 (CHCHD4) is necessary for the respiratory-dependent translocation of p53 into the mitochondria. In the setting of oxidative stress, increased CHCHD4 expression partitions p53 into the mitochondria and protects its genomic integrity while decreasing p53 nuclear localization and transcriptional activity. Conversely, decreased CHCHD4 expression prevents the mitochondrial translocation of p53 while augmenting its nuclear localization and activity. Thus, the mitochondrial disulfide relay system allows p53 to regulate two spatially segregated genomes depending on oxidative metabolic activity.
Collapse
|
42
|
Xu J, Shen C, Wang T, Quan J. Structural basis for the inhibition of Polo-like kinase 1. Nat Struct Mol Biol 2013; 20:1047-53. [PMID: 23893132 DOI: 10.1038/nsmb.2623] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 05/30/2013] [Indexed: 01/29/2023]
Abstract
Polo-like kinase 1 (PLK1) is a master regulator of mitosis and is considered a potential drug target for cancer therapy. PLK1 is characterized by an N-terminal kinase domain (KD) and a C-terminal Polo-box domain (PBD). The KD and PBD are mutually inhibited, but the molecular mechanisms of the autoinhibition remain unclear. Here we report the 2.3-Å crystal structure of the complex of the Danio rerio KD and PBD together with a PBD-binding motif of Drosophila melanogaster microtubule-associated protein 205 (Map205(PBM)). The structure reveals that the PBD binds and rigidifies the hinge region of the KD in a distinct conformation from that of the phosphopeptide-bound PBD. This structure provides a framework for understanding the autoinhibitory mechanisms of PLK1 and also sheds light on the activation mechanisms of PLK1 by phosphorylation or phosphopeptide binding.
Collapse
Affiliation(s)
- Jun Xu
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | | | | | | |
Collapse
|
43
|
Aubele DL, Hom RK, Adler M, Galemmo RA, Bowers S, Truong AP, Pan H, Beroza P, Neitz RJ, Yao N, Lin M, Tonn G, Zhang H, Bova MP, Ren Z, Tam D, Ruslim L, Baker J, Diep L, Fitzgerald K, Hoffman J, Motter R, Fauss D, Tanaka P, Dappen M, Jagodzinski J, Chan W, Konradi AW, Latimer L, Zhu YL, Sham HL, Anderson JP, Bergeron M, Artis DR. Selective and brain-permeable polo-like kinase-2 (Plk-2) inhibitors that reduce α-synuclein phosphorylation in rat brain. ChemMedChem 2013; 8:1295-313. [PMID: 23794260 DOI: 10.1002/cmdc.201300166] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Indexed: 11/12/2022]
Abstract
Polo-like kinase-2 (Plk-2) has been implicated as the dominant kinase involved in the phosphorylation of α-synuclein in Lewy bodies, which are one of the hallmarks of Parkinson's disease neuropathology. Potent, selective, brain-penetrant inhibitors of Plk-2 were obtained from a structure-guided drug discovery approach driven by the first reported Plk-2-inhibitor complexes. The best of these compounds showed excellent isoform and kinome-wide selectivity, with physicochemical properties sufficient to interrogate the role of Plk-2 inhibition in vivo. One such compound significantly decreased phosphorylation of α-synuclein in rat brain upon oral administration and represents a useful probe for future studies of this therapeutic avenue toward the potential treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Danielle L Aubele
- Molecular Discovery, Elan Pharmaceuticals, 180 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bafilomycin A1 activates HIF-dependent signalling in human colon cancer cells via mitochondrial uncoupling. Biosci Rep 2013; 32:587-95. [PMID: 22943412 PMCID: PMC3497721 DOI: 10.1042/bsr20120085] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial uncoupling is implicated in many patho(physiological) states. Using confocal live cell imaging and an optical O2 sensing technique, we show that moderate uncoupling of the mitochondria with plecomacrolide Baf (bafilomycin A1) causes partial depolarization of the mitochondria and deep sustained deoxygenation of human colon cancer HCT116 cells subjected to 6% atmospheric O2. A decrease in iO2 (intracellular O2) to 0–10 μM, induced by Baf, is sufficient for stabilization of HIFs (hypoxia inducible factors) HIF-1α and HIF-2α, coupled with an increased expression of target genes including GLUT1 (glucose transporter 1), HIF PHD2 (prolyl hydroxylase domain 2) and CAIX (carbonic anhydrase IX). Under the same hypoxic conditions, treatment with Baf causes neither decrease in iO2 nor HIF-α stabilization in the low-respiring HCT116 cells deficient in COX (cytochrome c-oxidase). Both cell types display equal capacities for HIF-α stabilization by hypoxia mimetics DMOG (dimethyloxalylglycine) and CoCl2, thus suggesting that the effect of Baf under hypoxia is driven mainly by mitochondrial respiration. Altogether, by activating HIF signalling under moderate hypoxia, mitochondrial uncoupling can play an important regulatory role in colon cancer metabolism and modulate adaptation of cancer cells to natural hypoxic environments.
Collapse
|
45
|
Kondrashina AV, Papkovsky DB, Dmitriev RI. Measurement of cell respiration and oxygenation in standard multichannel biochips using phosphorescent O2-sensitive probes. Analyst 2013; 138:4915-21. [DOI: 10.1039/c3an00658a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
46
|
Readnower RD, Brainard RE, Hill BG, Jones SP. Standardized bioenergetic profiling of adult mouse cardiomyocytes. Physiol Genomics 2012; 44:1208-13. [PMID: 23092951 DOI: 10.1152/physiolgenomics.00129.2012] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mitochondria are at the crux of life and death and as such have become ideal targets of intervention in cardiovascular disease. Generally, current methods to measure mitochondrial dysfunction rely on working with the isolated organelle and fail to incorporate mitochondrial function in a cellular context. Extracellular flux methodology has been particularly advantageous in this respect; however, certain primary cell types, such as adult cardiac myocytes, have been difficult to standardize with this technology. Here, we describe methods for using extracellular flux (XF) analysis to measure mitochondrial bioenergetics in isolated, intact, adult mouse cardiomyocytes (ACMs). Following isolation, ACMs were seeded overnight onto laminin-coated (20 μg/ml) microplates, which resulted in high attachment efficiency. After establishing seeding density, we found that a commonly used assay medium (containing a supraphysiological concentration of pyruvate at 1 mmol/l) produced a maximal bioenergetic response. After performing a pyruvate dose-response, we determined that pyruvate titrated to 0.1 mmol/l was optimal for examining alternative substrate oxidation. Methods for measuring fatty acid oxidation were established. These methods lay the framework using XF analysis to profile metabolism of ACMs and will likely augment our ability to understand mitochondrial dysfunction in heart failure and acute myocardial ischemia. This platform could easily be extended to models of diabetes or other metabolic defects.
Collapse
Affiliation(s)
- Ryan D Readnower
- Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40202, USA
| | | | | | | |
Collapse
|
47
|
Pandiri AR, Sills RC, Ziglioli V, Ton TVT, Hong HHL, Lahousse SA, Gerrish KE, Auerbach SS, Shockley KR, Bushel PR, Peddada SD, Hoenerhoff MJ. Differential transcriptomic analysis of spontaneous lung tumors in B6C3F1 mice: comparison to human non-small cell lung cancer. Toxicol Pathol 2012; 40:1141-59. [PMID: 22688403 DOI: 10.1177/0192623312447543] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lung cancer is the leading cause of cancer-related death in people and is mainly due to environmental factors such as smoking and radon. The National Toxicology Program (NTP) tests various chemicals and mixtures for their carcinogenic hazard potential. In the NTP chronic bioassay using B6C3F1 mice, the incidence of lung tumors in treated and control animals is second only to the liver tumors. In order to study the molecular mechanisms of chemically induced lung tumors, an understanding of the genetic changes that occur in spontaneous lung (SL) tumors from untreated control animals is needed. The authors have evaluated the differential transcriptomic changes within SL tumors compared to normal lungs from untreated age-matched animals. Within SL tumors, several canonical pathways associated with cancer (eukaryotic initiation factor 2 signaling, RhoA signaling, PTEN signaling, and mammalian target of rapamycin signaling), metabolism (Inositol phosphate metabolism, mitochondrial dysfunction, and purine and pyramidine metabolism), and immune responses (FcγR-mediated phagocytosis, clathrin-mediated endocytosis, interleukin 8 signaling, and CXCR4 signaling) were altered. Meta-analysis of murine SL tumors and human non-small cell lung cancer transcriptomic data sets revealed a high concordance. These data provide important information on the differential transcriptomic changes in murine SL tumors that will be critical to our understanding of chemically induced lung tumors and will aid in hazard analysis in the NTP 2-year carcinogenicity bioassays.
Collapse
Affiliation(s)
- Arun R Pandiri
- Cellular and Molecular Pathology Branch, National Toxicology Program-NTP, National Institute of Environmental Health Sciences-NIEHS, Research Triangle Park, North Carolina, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Shen T, Li Y, Yang L, Xu X, Liang F, Liang S, Ba G, Xue F, Fu Q. Upregulation of Polo-like kinase 2 gene expression by GATA-1 acetylation in human osteosarcoma MG-63 cells. Int J Biochem Cell Biol 2012; 44:423-9. [DOI: 10.1016/j.biocel.2011.11.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 11/14/2011] [Accepted: 11/21/2011] [Indexed: 01/15/2023]
|
49
|
Nakamura H, Matoba S, Iwai-Kanai E, Kimata M, Hoshino A, Nakaoka M, Katamura M, Okawa Y, Ariyoshi M, Mita Y, Ikeda K, Okigaki M, Adachi S, Tanaka H, Takamatsu T, Matsubara H. p53 Promotes Cardiac Dysfunction in Diabetic Mellitus Caused by Excessive Mitochondrial Respiration-Mediated Reactive Oxygen Species Generation and Lipid Accumulation. Circ Heart Fail 2012; 5:106-15. [DOI: 10.1161/circheartfailure.111.961565] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background—
Diabetic cardiomyopathy is characterized by energetic dysregulation caused by glucotoxicity, lipotoxicity, and mitochondrial alterations. p53 and its downstream mitochondrial assembly protein, synthesis of cytochrome c oxidase 2 (SCO2), are important regulators of mitochondrial respiration, whereas the involvement in diabetic cardiomyopathy remains to be determined.
Methods and Results—
The role of p53 and SCO2 in energy metabolism was examined in both type I (streptozotocin [STZ] administration) and type II diabetic (
db/db
) mice. Cardiac expressions of p53 and SCO2 in 4-week STZ diabetic mice were upregulated (185% and 152% versus controls, respectively,
P
<0.01), with a marked decrease in cardiac performance. Mitochondrial oxygen consumption was increased (136% versus control,
P
<0.01) in parallel with augmentation of mitochondrial cytochrome c oxidase (complex IV) activity. Reactive oxygen species (ROS)-damaged myocytes and lipid accumulation were increased in association with membrane-localization of fatty acid translocase protein FAT/CD36. Antioxidant tempol reduced the increased expressions of p53 and SCO2 in STZ-diabetic hearts and normalized alterations in mitochondrial oxygen consumption, lipid accumulation, and cardiac dysfunction. Similar results were observed in
db/db
mice, whereas in p53-deficient or SCO2-deficient diabetic mice, the cardiac and metabolic abnormalities were prevented. Overexpression of SCO2 in cardiac myocytes increased mitochondrial ROS and fatty acid accumulation, whereas knockdown of SCO2 ameliorated them.
Conclusions—
Myocardial p53/SCO2 signal is activated by diabetes-mediated ROS generation to increase mitochondrial oxygen consumption, resulting in excessive generation of mitochondria-derived ROS and lipid accumulation in association with cardiac dysfunction.
Collapse
Affiliation(s)
- Hideo Nakamura
- From the Department of Cardiovascular Medicine, Kyoto Prefectural University School of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan (H.N., S.M., E.I.-K., M. Kimata, A.H., M. Katamura, Y.O., M.A., Y.M., K.I., M.O., H.M.); the Department of Cardiovascular Medicine, Meiji University of Integrative Medicine, Hiyoshi-cho, Nantan-shi, Kyoto, Japan (E.I.-K.); the Department of Pediatrics, Graduate School of Medicine, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan (S.S.); and the
| | - Satoaki Matoba
- From the Department of Cardiovascular Medicine, Kyoto Prefectural University School of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan (H.N., S.M., E.I.-K., M. Kimata, A.H., M. Katamura, Y.O., M.A., Y.M., K.I., M.O., H.M.); the Department of Cardiovascular Medicine, Meiji University of Integrative Medicine, Hiyoshi-cho, Nantan-shi, Kyoto, Japan (E.I.-K.); the Department of Pediatrics, Graduate School of Medicine, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan (S.S.); and the
| | - Eri Iwai-Kanai
- From the Department of Cardiovascular Medicine, Kyoto Prefectural University School of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan (H.N., S.M., E.I.-K., M. Kimata, A.H., M. Katamura, Y.O., M.A., Y.M., K.I., M.O., H.M.); the Department of Cardiovascular Medicine, Meiji University of Integrative Medicine, Hiyoshi-cho, Nantan-shi, Kyoto, Japan (E.I.-K.); the Department of Pediatrics, Graduate School of Medicine, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan (S.S.); and the
| | - Masaki Kimata
- From the Department of Cardiovascular Medicine, Kyoto Prefectural University School of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan (H.N., S.M., E.I.-K., M. Kimata, A.H., M. Katamura, Y.O., M.A., Y.M., K.I., M.O., H.M.); the Department of Cardiovascular Medicine, Meiji University of Integrative Medicine, Hiyoshi-cho, Nantan-shi, Kyoto, Japan (E.I.-K.); the Department of Pediatrics, Graduate School of Medicine, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan (S.S.); and the
| | - Atsushi Hoshino
- From the Department of Cardiovascular Medicine, Kyoto Prefectural University School of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan (H.N., S.M., E.I.-K., M. Kimata, A.H., M. Katamura, Y.O., M.A., Y.M., K.I., M.O., H.M.); the Department of Cardiovascular Medicine, Meiji University of Integrative Medicine, Hiyoshi-cho, Nantan-shi, Kyoto, Japan (E.I.-K.); the Department of Pediatrics, Graduate School of Medicine, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan (S.S.); and the
| | - Mikihiko Nakaoka
- From the Department of Cardiovascular Medicine, Kyoto Prefectural University School of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan (H.N., S.M., E.I.-K., M. Kimata, A.H., M. Katamura, Y.O., M.A., Y.M., K.I., M.O., H.M.); the Department of Cardiovascular Medicine, Meiji University of Integrative Medicine, Hiyoshi-cho, Nantan-shi, Kyoto, Japan (E.I.-K.); the Department of Pediatrics, Graduate School of Medicine, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan (S.S.); and the
| | - Maki Katamura
- From the Department of Cardiovascular Medicine, Kyoto Prefectural University School of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan (H.N., S.M., E.I.-K., M. Kimata, A.H., M. Katamura, Y.O., M.A., Y.M., K.I., M.O., H.M.); the Department of Cardiovascular Medicine, Meiji University of Integrative Medicine, Hiyoshi-cho, Nantan-shi, Kyoto, Japan (E.I.-K.); the Department of Pediatrics, Graduate School of Medicine, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan (S.S.); and the
| | - Yoshifumi Okawa
- From the Department of Cardiovascular Medicine, Kyoto Prefectural University School of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan (H.N., S.M., E.I.-K., M. Kimata, A.H., M. Katamura, Y.O., M.A., Y.M., K.I., M.O., H.M.); the Department of Cardiovascular Medicine, Meiji University of Integrative Medicine, Hiyoshi-cho, Nantan-shi, Kyoto, Japan (E.I.-K.); the Department of Pediatrics, Graduate School of Medicine, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan (S.S.); and the
| | - Makoto Ariyoshi
- From the Department of Cardiovascular Medicine, Kyoto Prefectural University School of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan (H.N., S.M., E.I.-K., M. Kimata, A.H., M. Katamura, Y.O., M.A., Y.M., K.I., M.O., H.M.); the Department of Cardiovascular Medicine, Meiji University of Integrative Medicine, Hiyoshi-cho, Nantan-shi, Kyoto, Japan (E.I.-K.); the Department of Pediatrics, Graduate School of Medicine, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan (S.S.); and the
| | - Yuichiro Mita
- From the Department of Cardiovascular Medicine, Kyoto Prefectural University School of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan (H.N., S.M., E.I.-K., M. Kimata, A.H., M. Katamura, Y.O., M.A., Y.M., K.I., M.O., H.M.); the Department of Cardiovascular Medicine, Meiji University of Integrative Medicine, Hiyoshi-cho, Nantan-shi, Kyoto, Japan (E.I.-K.); the Department of Pediatrics, Graduate School of Medicine, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan (S.S.); and the
| | - Koji Ikeda
- From the Department of Cardiovascular Medicine, Kyoto Prefectural University School of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan (H.N., S.M., E.I.-K., M. Kimata, A.H., M. Katamura, Y.O., M.A., Y.M., K.I., M.O., H.M.); the Department of Cardiovascular Medicine, Meiji University of Integrative Medicine, Hiyoshi-cho, Nantan-shi, Kyoto, Japan (E.I.-K.); the Department of Pediatrics, Graduate School of Medicine, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan (S.S.); and the
| | - Mitsuhiko Okigaki
- From the Department of Cardiovascular Medicine, Kyoto Prefectural University School of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan (H.N., S.M., E.I.-K., M. Kimata, A.H., M. Katamura, Y.O., M.A., Y.M., K.I., M.O., H.M.); the Department of Cardiovascular Medicine, Meiji University of Integrative Medicine, Hiyoshi-cho, Nantan-shi, Kyoto, Japan (E.I.-K.); the Department of Pediatrics, Graduate School of Medicine, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan (S.S.); and the
| | - Souichi Adachi
- From the Department of Cardiovascular Medicine, Kyoto Prefectural University School of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan (H.N., S.M., E.I.-K., M. Kimata, A.H., M. Katamura, Y.O., M.A., Y.M., K.I., M.O., H.M.); the Department of Cardiovascular Medicine, Meiji University of Integrative Medicine, Hiyoshi-cho, Nantan-shi, Kyoto, Japan (E.I.-K.); the Department of Pediatrics, Graduate School of Medicine, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan (S.S.); and the
| | - Hideo Tanaka
- From the Department of Cardiovascular Medicine, Kyoto Prefectural University School of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan (H.N., S.M., E.I.-K., M. Kimata, A.H., M. Katamura, Y.O., M.A., Y.M., K.I., M.O., H.M.); the Department of Cardiovascular Medicine, Meiji University of Integrative Medicine, Hiyoshi-cho, Nantan-shi, Kyoto, Japan (E.I.-K.); the Department of Pediatrics, Graduate School of Medicine, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan (S.S.); and the
| | - Tetsuro Takamatsu
- From the Department of Cardiovascular Medicine, Kyoto Prefectural University School of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan (H.N., S.M., E.I.-K., M. Kimata, A.H., M. Katamura, Y.O., M.A., Y.M., K.I., M.O., H.M.); the Department of Cardiovascular Medicine, Meiji University of Integrative Medicine, Hiyoshi-cho, Nantan-shi, Kyoto, Japan (E.I.-K.); the Department of Pediatrics, Graduate School of Medicine, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan (S.S.); and the
| | - Hiroaki Matsubara
- From the Department of Cardiovascular Medicine, Kyoto Prefectural University School of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan (H.N., S.M., E.I.-K., M. Kimata, A.H., M. Katamura, Y.O., M.A., Y.M., K.I., M.O., H.M.); the Department of Cardiovascular Medicine, Meiji University of Integrative Medicine, Hiyoshi-cho, Nantan-shi, Kyoto, Japan (E.I.-K.); the Department of Pediatrics, Graduate School of Medicine, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan (S.S.); and the
| |
Collapse
|
50
|
Abstract
p53 regulates the cell cycle and deoxyribonucleic acid (DNA) repair pathways as part of its unequivocally important function to maintain genomic stability. Intriguingly, recent studies show that p53 can also transactivate genes involved in coordinating the two major pathways of energy generation to promote aerobic metabolism, but how this serves to maintain genomic stability is less clear. In an attempt to understand the biology, this review presents human epidemiologic data on the inverse relationship between aerobic capacity and cancer incidence that appears to be mirrored by the impact of p53 on aerobic capacity in mouse models. The review summarizes mechanisms by which p53 regulates mitochondrial respiration and proposes how this might contribute to maintaining genomic stability. Although disparate in nature, the data taken together suggest that the promotion of aerobic metabolism by p53 serves as an important tumor suppressor activity and may provide insights for cancer prevention strategies in the future.
Collapse
Affiliation(s)
- Cory U. Lago
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Ho Joong Sung
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
- Department of Biomedical Laboratory Science, College of Health Science, Eulji University, GyeongGi-Do, Korea
| | - Wenzhe Ma
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Ping-yuan Wang
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Paul M. Hwang
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|