1
|
Fide E, Yerlikaya D, Güntekin B, Babiloni C, Yener GG. Coherence in event-related EEG oscillations in patients with Alzheimer's disease dementia and amnestic mild cognitive impairment. Cogn Neurodyn 2023; 17:1621-1635. [PMID: 37974589 PMCID: PMC10640558 DOI: 10.1007/s11571-022-09920-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 11/02/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Objectives Working memory performances are based on brain functional connectivity, so that connectivity may be deranged in individuals with mild cognitive impairment (MCI) and patients with dementia due to Alzheimer's disease (ADD). Here we tested the hypothesis of abnormal functional connectivity as revealed by the imaginary part of coherency (ICoh) at electrode pairs from event-related electroencephalographic oscillations in ADD and MCI patients. Methods The study included 43 individuals with MCI, 43 with ADD, and 68 demographically matched healthy controls (HC). Delta, theta, alpha, beta, and gamma bands event-related ICoh was measured during an oddball paradigm. Inter-hemispheric, midline, and intra-hemispheric ICoh values were compared in ADD, MCI, and HC groups. Results The main results of the present study can be summarized as follows: (1) A significant increase of midline frontal and temporal theta coherence in the MCI group as compared to the HC group; (2) A significant decrease of theta, delta, and alpha intra-hemispheric coherence in the ADD group as compared to the HC and MCI groups; (3) A significant decrease of theta midline coherence in the ADD group as compared to the HC and MCI groups; (4) Normal inter-hemispheric coherence in the ADD and MCI groups. Conclusions Compared with the MCI and HC, the ADD group showed disrupted event-related intra-hemispheric and midline low-frequency band coherence as an estimate of brain functional dysconnectivity underlying disabilities in daily living. Brain functional connectivity during attention and short memory demands is relatively resilient in elderly subjects even with MCI (with preserved abilities in daily activities), and it shows reduced efficiency at multiple operating oscillatory frequencies only at an early stage of ADD. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-022-09920-0.
Collapse
Affiliation(s)
- Ezgi Fide
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Deniz Yerlikaya
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Bahar Güntekin
- Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
- REMER Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab, Istanbul Medipol University, Istanbul, Turkey
| | - Claudio Babiloni
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy
- Hospital San Raffaele of Cassino, Cassino, Italy
| | - Görsev G. Yener
- Faculty of Medicine, Izmir University of Economics, 35330 Izmir, Turkey
- Brain Dynamics Multidisciplinary Research Center, Dokuz Eylul University, Izmir, Turkey
- Izmir Biomedicine and Genome Center, Izmir, Turkey
| |
Collapse
|
2
|
Torbaghan ME, Moghimi A, Kobravi HR, Fereidoni M, Bigdeli I. Effect of stress on spatial working memory and EEG signal dynamics in the follicular and luteal phases of the menstrual cycle in young single girls. Brain Behav 2023; 13:e3166. [PMID: 37488720 PMCID: PMC10498068 DOI: 10.1002/brb3.3166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 07/26/2023] Open
Abstract
AIM Women undergo behavioral changes during the menstrual cycle. This study aimed to investigate the effect of estradiol (Es) on stress and effect of stress on spatial working memory (WM) and also to investigate electroencephalogram (EEG) signal's dynamics in the early and late follicular (EF and LF) and luteal (LU) phases of unmarried girls' menstrual cycle. METHODS Stress was induced by presentation of a short (3 min) movie clip. Simultaneous with a memory test and stress induction, EEG, serum Es levels, and galvanic skin response (GSR) were assessed. RESULTS Serum Es concentrations were decreased in LF, LU, and EF phases. The mean GSR score decreased after stress induction in all three phases, but it increased in the LF and LU phases versus the EF phase. Spatial WM diminished after stress induction in all three phases, but it increased in the LF phase versus the two phases before and after stress induction. Average power spectrum density in all frequency bands increased after stress induction in the frontal and prefrontal channels in the spatial WM test. CONCLUSION The results showed that stress led to spatial WM dysfunction; however, Es improved spatial WM performance in the LF phase versus the other two phases.
Collapse
Affiliation(s)
| | - Ali Moghimi
- Rayan Research Center for Neuroscience & Behavior, Department of Biology, Faculty of ScienceFerdowsi University of MashhadMashhadIran
| | - Hamid Reza Kobravi
- Research Center of Biomedical Engineering, Mashhad BranchIslamic Azad UniversityMashhadIran
| | - Masoud Fereidoni
- Rayan Research Center for Neuroscience & Behavior, Department of Biology, Faculty of ScienceFerdowsi University of MashhadMashhadIran
| | - Imanollah Bigdeli
- Department of Psychology, Faculty of Educational Sciences and PsychologyFerdowsi University of MashhadMashhadIran
| |
Collapse
|
3
|
Xu X, Feng Y, Wang J, Salvi R, Yin X, Gao J, Chen Y. Auditory-limbic-cerebellum interactions and cognitive impairments in noise-induced hearing loss. CNS Neurosci Ther 2022; 29:932-940. [PMID: 36377461 PMCID: PMC9928548 DOI: 10.1111/cns.14028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
AIMS This study aimed to explore the neural substrate of hearing loss-related central nervous system in rats and its correlation with cognition. METHODS We identified the neural mechanism for these debilitating abnormalities by inducing a bilateral hearing loss animal model using intense broadband noise (122 dB of broadband noise for 2 h) and used the Morris water maze test to characterize the behavioral changes at 6 months post-noise exposure. Functional magnetic resonance imaging (fMRI) was conducted to clarify disrupted functional network using bilateral auditory cortex (ACx) as a seed. Structural diffusion tensor imaging (DTI) was applied to illustrate characteristics of fibers in ACx and hippocampus. Pearson correlation was computed behavioral tests and other features. RESULTS A deficit in spatial learning/memory, body weight, and negative correlation between them was observed. Functional connectivity revealed weakened coupling within the ACx and inferior colliculus, lateral lemniscus, the primary motor cortex, the olfactory tubercle, hippocampus, and the paraflocculus lobe of the cerebellum. The fiber number and mean length of ACx and different hippocampal subregions were also damaged in hearing loss rats. CONCLUSION A new model of auditory-limbic-cerebellum interactions accounting for noise-induced hearing loss and cognitive impairments is proposed.
Collapse
Affiliation(s)
- Xiao‐Min Xu
- Department of Radiology, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Yuan Feng
- Department of Radiology, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Jian Wang
- School of Human Communication DisordersDalhousie UniversityHalifaxNova ScotiaCanada
| | - Richard Salvi
- Center for Hearing and DeafnessUniversity at BuffaloBuffaloNew YorkUSA
| | - Xindao Yin
- Department of Radiology, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Jun Gao
- The Department of Neurobiology, Key Laboratory of Human Functional Genomics of JiangsuNanjing Medical UniversityNanjingChina
| | - Yu‐Chen Chen
- Department of Radiology, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| |
Collapse
|
4
|
Arski ON, Wong SM, Warsi NM, Pang E, Kerr E, Smith ML, Taylor MJ, Dunkley BT, Ochi A, Otsubo H, Sharma R, Yau I, Jain P, Donner EJ, Snead OC, Ibrahim GM. Epilepsy disrupts hippocampal phase precision and impairs working memory. Epilepsia 2022; 63:2583-2596. [PMID: 35778973 DOI: 10.1111/epi.17357] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Working memory deficits are prevalent in childhood epilepsy. Working memory processing is thought to be supported by the phase of hippocampal neural oscillations. Disruptions in working memory have previously been linked to the occurrence of transient epileptic activity. This study aimed to resolve the associations between oscillatory neural activity, transient epileptiform events, and working memory in children with epilepsy. METHODS Intracranial recordings were acquired from stereotactically-implanted electrodes in the hippocampi, epileptogenic zones, and working memory-related networks of children with drug-resistant epilepsy during a 1-back working memory task. Interictal epileptic activity was captured using automated detectors. Hippocampal phase and interregional connectivity within working memory networks were indexed by Rayleigh Z and the phase difference derivative respectively. Trials with and without transient epileptiform events were compared. RESULTS Twelve children (mean age of 14.3 ± 2.8 years) with drug-resistant epilepsy were included in the study. In the absence of transient epileptic activity, significant delta and theta hippocampal phase resetting occurred in response to working memory stimulus presentation (Rz = 9, Rz = 8). Retrieval trials that were in-phase with the preferred phase angle were associated with faster reaction times (p = 0.01, p = 0.03). Concurrently, delta and theta coordinated interactions between the hippocampi and working memory-related networks were enhanced (PDD z-scores = 6-11). During retrieval trials with pre-encoding or pre-retrieval transient epileptic activity, phase resetting was attenuated (Rz = 5, Rz = 1), interregional connectivity was altered (PDD z-scores = 1-3), and reaction times were prolonged (p = 0.01, p = 0.03). SIGNIFICANCE This work highlights the role of hippocampal phase in working memory. We observe post-stimulus hippocampal phase resetting coincident with enhanced interregional connectivity. The precision of hippocampal phase predicts optimal working memory processing, and transient epileptic activity prolongs working memory processing. These findings can help guide future treatments aimed at restoring memory function in this patient population.
Collapse
Affiliation(s)
- Olivia N Arski
- Institute of Medical Science, University of Toronto, Toronto, Canada.,Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Canada
| | - Simeon M Wong
- Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Canada.,Division of Neurosurgery, Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, Canada
| | - Nebras M Warsi
- Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Canada.,Division of Neurosurgery, Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Elizabeth Pang
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Elizabeth Kerr
- Department of Psychology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Mary Lou Smith
- Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Canada.,Department of Psychology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Margot J Taylor
- Institute of Medical Science, University of Toronto, Toronto, Canada.,Diagnostic Imaging, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | | | - Ayako Ochi
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Hiroshi Otsubo
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Roy Sharma
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Ivanna Yau
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Puneet Jain
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Elizabeth J Donner
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - O Carter Snead
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - George M Ibrahim
- Institute of Medical Science, University of Toronto, Toronto, Canada.,Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Canada.,Division of Neurosurgery, Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| |
Collapse
|
5
|
Kerins S, Nottage J, Salazar de Pablo G, Kempton MJ, Tognin S, Niemann DH, de Haan L, van Amelsvoort T, Kwon JS, Nelson B, Mizrahi R, McGuire P, Fusar-Poli P. Identifying Electroencephalography Biomarkers in Individuals at Clinical High Risk for Psychosis in an International Multi-Site Study. Front Psychiatry 2022; 13:828376. [PMID: 35370849 PMCID: PMC8970279 DOI: 10.3389/fpsyt.2022.828376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/10/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The clinical high-risk for psychosis (CHR-P) paradigm was introduced to detect individuals at risk of developing psychosis and to establish preventive strategies. While current prediction of outcomes in the CHR-P state is based mostly on the clinical assessment of presenting features, several emerging biomarkers have been investigated in an attempt to stratify CHR-P individuals according to their individual trajectories and refine the diagnostic process. However, heterogeneity across subgroups is a key challenge that has limited the impact of the CHR-P prediction strategies, as the clinical validity of the current research is limited by a lack of external validation across sites and modalities. Despite these challenges, electroencephalography (EEG) biomarkers have been studied in this field and evidence suggests that EEG used in combination with clinical assessments may be a key measure for improving diagnostic and prognostic accuracy in the CHR-P state. The PSYSCAN EEG study is an international, multi-site, multimodal longitudinal project that aims to advance knowledge in this field. METHODS Participants at 6 international sites take part in an EEG protocol including EEG recording, cognitive and clinical assessments. CHR-P participants will be followed up after 2 years and subcategorised depending on their illness progression regarding transition to psychosis. Differences will be sought between CHR-P individuals and healthy controls and between CHR-P individuals who transition and those who do not transition to psychosis using data driven computational analyses. DISCUSSION This protocol addresses the challenges faced by previous studies of this kind to enable valid identification of predictive EEG biomarkers which will be combined with other biomarkers across sites to develop a prognostic tool in CHR-P. The PSYSCAN EEG study aims to pave the way for incorporating EEG biomarkers in the assessment of CHR-P individuals, to refine the diagnostic process and help to stratify CHR-P subjects according to risk of transition. This may improve our understanding of the CHR-P state and therefore aid the development of more personalized treatment strategies.
Collapse
Affiliation(s)
- Sarah Kerins
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Early Psychosis: Interventions and Clinical-Detection Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Judith Nottage
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Gonzalo Salazar de Pablo
- Early Psychosis: Interventions and Clinical-Detection Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Institute of Psychiatry and Mental Health, CIBERSAM, Madrid, Spain.,Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón School of Medicine, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, CIBERSAM, Madrid, Spain
| | - Matthew J Kempton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Stefania Tognin
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Outreach and Support in South London (OASIS), South London and Maudsley NHS Foundation Trust, London, United Kingdom.,Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht, Netherlands
| | - Dorien H Niemann
- Department of Psychiatry, Early Psychosis Section, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Lieuwe de Haan
- Department of Psychiatry, Early Psychosis Section, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Thérèse van Amelsvoort
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, Netherlands
| | - Jun Soo Kwon
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | - Barnaby Nelson
- Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, VIC, Australia.,Centre for Youth Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Romina Mizrahi
- Douglas Mental Health University Institute, Montreal, QC, Canada.,Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,National Institute for Health Research, Mental Health Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, King's College London, London, United Kingdom
| | - Paolo Fusar-Poli
- Early Psychosis: Interventions and Clinical-Detection Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón School of Medicine, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, CIBERSAM, Madrid, Spain.,National Institute for Health Research, Mental Health Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, King's College London, London, United Kingdom.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | |
Collapse
|
6
|
Maguire MJ, Schneider JM, Melamed TC, Ralph YK, Poudel S, Raval VM, Mikhail D, Abel AD. Temporal and topographical changes in theta power between middle childhood and adolescence during sentence comprehension. Dev Cogn Neurosci 2021; 53:101056. [PMID: 34979479 PMCID: PMC8728578 DOI: 10.1016/j.dcn.2021.101056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 12/15/2021] [Accepted: 12/29/2021] [Indexed: 11/08/2022] Open
Abstract
Time frequency analysis of the EEG is increasingly used to study the neural oscillations supporting language comprehension. Although this method holds promise for developmental research, most existing work focuses on adults. Theta power (4–8 Hz) in particular often corresponds to semantic processing of words in isolation and in ongoing text. Here we investigated how the timing and topography of theta engagement to individual words during written sentence processing changes between childhood and adolescence (8–15 years). Results show that topographically, the theta response is broadly distributed in children, occurring over left and right central-posterior and midline frontal areas, and localizes to left central-posterior areas by adolescence. There were two notable developmental shifts. First, in response to each word, early (150–300 msec) theta engagement over frontal areas significantly decreases between 8 and 9 years and 10–11 years. Second, throughout the sentence, theta engagement over the right parietal areas significantly decreases between 10 and 11 years and 12–13 years with younger children’s theta response remaining significantly elevated between words compared to adolescents’. We found no significant differences between 12 and 13 years and 14–15 years. These findings indicate that children’s engagement of the language network during sentence processing continues to change through middle childhood but stabilizes into adolescence.
Collapse
Affiliation(s)
- Mandy J Maguire
- University of Texas at Dallas Callier Center for Communication Disorders, 1966 Inwood Rd, Dallas, TX 75235, USA.
| | - Julie M Schneider
- Louisiana State University, 217 Thomas Boyd Hall, Baton Rouge, LA 70803, USA
| | - Tina C Melamed
- University of Texas at Dallas Callier Center for Communication Disorders, 1966 Inwood Rd, Dallas, TX 75235, USA
| | - Yvonne K Ralph
- University of Texas at Dallas Callier Center for Communication Disorders, 1966 Inwood Rd, Dallas, TX 75235, USA
| | - Sonali Poudel
- University of Texas at Dallas Callier Center for Communication Disorders, 1966 Inwood Rd, Dallas, TX 75235, USA
| | - Vyom M Raval
- University of Texas at Dallas Callier Center for Communication Disorders, 1966 Inwood Rd, Dallas, TX 75235, USA
| | - David Mikhail
- University of Texas at Dallas Callier Center for Communication Disorders, 1966 Inwood Rd, Dallas, TX 75235, USA
| | - Alyson D Abel
- San Diego State University, 5500 Campanile Dr, San Diego, CA 92182, USA
| |
Collapse
|
7
|
Arski ON, Young JM, Smith ML, Ibrahim GM. The Oscillatory Basis of Working Memory Function and Dysfunction in Epilepsy. Front Hum Neurosci 2021; 14:612024. [PMID: 33584224 PMCID: PMC7874181 DOI: 10.3389/fnhum.2020.612024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/10/2020] [Indexed: 11/16/2022] Open
Abstract
Working memory (WM) deficits are pervasive co-morbidities of epilepsy. Although the pathophysiological mechanisms underpinning these impairments remain elusive, it is thought that WM depends on oscillatory interactions within and between nodes of large-scale functional networks. These include the hippocampus and default mode network as well as the prefrontal cortex and frontoparietal central executive network. Here, we review the functional roles of neural oscillations in subserving WM and the putative mechanisms by which epilepsy disrupts normative activity, leading to aberrant oscillatory signatures. We highlight the particular role of interictal epileptic activity, including interictal epileptiform discharges and high frequency oscillations (HFOs) in WM deficits. We also discuss the translational opportunities presented by greater understanding of the oscillatory basis of WM function and dysfunction in epilepsy, including potential targets for neuromodulation.
Collapse
Affiliation(s)
- Olivia N. Arski
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Julia M. Young
- Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Psychology, Hospital for Sick Children, Toronto, ON, Canada
| | - Mary-Lou Smith
- Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Psychology, Hospital for Sick Children, Toronto, ON, Canada
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - George M. Ibrahim
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Ondek K, Pevzner A, Tercovich K, Schedlbauer AM, Izadi A, Ekstrom AD, Cowen SL, Shahlaie K, Gurkoff GG. Recovery of Theta Frequency Oscillations in Rats Following Lateral Fluid Percussion Corresponds With a Mild Cognitive Phenotype. Front Neurol 2020; 11:600171. [PMID: 33343499 PMCID: PMC7746872 DOI: 10.3389/fneur.2020.600171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/21/2020] [Indexed: 01/31/2023] Open
Abstract
Whether from a fall, sports concussion, or even combat injury, there is a critical need to identify when an individual is able to return to play or work following traumatic brain injury (TBI). Electroencephalogram (EEG) and local field potentials (LFP) represent potential tools to monitor circuit-level abnormalities related to learning and memory: specifically, theta oscillations can be readily observed and play a critical role in cognition. Following moderate traumatic brain injury in the rat, lasting changes in theta oscillations coincide with deficits in spatial learning. We hypothesized, therefore, that theta oscillations can be used as an objective biomarker of recovery, with a return of oscillatory activity corresponding with improved spatial learning. In the current study, LFP were recorded from dorsal hippocampus and anterior cingulate in awake, behaving adult Sprague Dawley rats in both a novel environment on post-injury days 3 and 7, and Barnes maze spatial navigation on post-injury days 8–11. Theta oscillations, as measured by power, theta-delta ratio, peak theta frequency, and phase coherence, were significantly altered on day 3, but had largely recovered by day 7 post-injury. Injured rats had a mild behavioral phenotype and were not different from shams on the Barnes maze, as measured by escape latency. Injured rats did use suboptimal search strategies. Combined with our previous findings that demonstrated a correlation between persistent alterations in theta oscillations and spatial learning deficits, these new data suggest that neural oscillations, and particularly theta oscillations, have potential as a biomarker to monitor recovery of brain function following TBI. Specifically, we now demonstrate that oscillations are depressed following injury, but as oscillations recover, so does behavior.
Collapse
Affiliation(s)
- Katelynn Ondek
- Department of Neurological Surgery, University of California, Davis, Davis, CA, United States.,Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Aleksandr Pevzner
- Department of Neurological Surgery, University of California, Davis, Davis, CA, United States
| | - Kayleen Tercovich
- Department of Neurological Surgery, University of California, Davis, Davis, CA, United States.,Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Amber M Schedlbauer
- Department of Neurological Surgery, University of California, Davis, Davis, CA, United States.,Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Ali Izadi
- Department of Neurological Surgery, University of California, Davis, Davis, CA, United States.,Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Arne D Ekstrom
- Department of Psychology, The University of Arizona, Tucson, AZ, United States.,McKnight Brain Institute, The University of Arizona, Tucson, AZ, United States
| | - Stephen L Cowen
- Department of Psychology, The University of Arizona, Tucson, AZ, United States.,McKnight Brain Institute, The University of Arizona, Tucson, AZ, United States
| | - Kiarash Shahlaie
- Department of Neurological Surgery, University of California, Davis, Davis, CA, United States
| | - Gene G Gurkoff
- Department of Neurological Surgery, University of California, Davis, Davis, CA, United States.,Center for Neuroscience, University of California, Davis, Davis, CA, United States
| |
Collapse
|
9
|
Yuk V, Urbain C, Anagnostou E, Taylor MJ. Frontoparietal Network Connectivity During an N-Back Task in Adults With Autism Spectrum Disorder. Front Psychiatry 2020; 11:551808. [PMID: 33033481 PMCID: PMC7509600 DOI: 10.3389/fpsyt.2020.551808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/13/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Short-term and working memory (STM and WM) deficits have been demonstrated in individuals with autism spectrum disorder (ASD) and may emerge through atypical functional activity and connectivity of the frontoparietal network, which exerts top-down control necessary for successful STM and WM processes. Little is known regarding the spectral properties of the frontoparietal network during STM or WM processes in ASD, although certain neural frequencies have been linked to specific neural mechanisms. METHODS We analysed magnetoencephalographic data from 39 control adults (26 males; 27.15 ± 5.91 years old) and 40 adults with ASD (26 males; 27.17 ± 6.27 years old) during a 1-back condition (STM) of an n-back task, and from a subset of this sample during a 2-back condition (WM). We performed seed-based connectivity analyses using regions of the frontoparietal network. Interregional synchrony in theta, alpha, and beta bands was assessed with the phase difference derivative and compared between groups during periods of maintenance and recognition. RESULTS During maintenance of newly presented vs. repeated stimuli, the two groups did not differ significantly in theta, alpha, or beta phase synchrony for either condition. Adults with ASD showed alpha-band synchrony in a network containing the right dorsolateral prefrontal cortex, bilateral inferior parietal lobules (IPL), and precuneus in both 1- and 2-back tasks, whereas controls demonstrated alpha-band synchrony in a sparser set of regions, including the left insula and IPL, in only the 1-back task. During recognition of repeated vs. newly presented stimuli, adults with ASD exhibited decreased theta-band connectivity compared to controls in a network with hubs in the right inferior frontal gyrus and left IPL in the 1-back condition. Whilst there were no group differences in connectivity in the 2-back condition, adults with ASD showed no frontoparietal network recruitment during recognition, whilst controls activated networks in the theta and beta bands. CONCLUSIONS Our findings suggest that since adults with ASD performed well on the n-back task, their appropriate, but effortful recruitment of alpha-band mechanisms in the frontoparietal network to maintain items in STM and WM may compensate for atypical modulation of this network in the theta band to recognise previously presented items in STM.
Collapse
Affiliation(s)
- Veronica Yuk
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, Canada.,Neurosciences & Mental Health Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Charline Urbain
- Neuropsychology and Functional Neuroimaging Research Group, Center for Research in Cognition & Neurosciences and ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Laboratoire de Cartographie Fonctionnelle du Cerveau, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Evdokia Anagnostou
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada.,Department of Neurology, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Margot J Taylor
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, Canada.,Neurosciences & Mental Health Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada.,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Sadeh T, Pertzov Y. Scale-invariant Characteristics of Forgetting: Toward a Unifying Account of Hippocampal Forgetting across Short and Long Timescales. J Cogn Neurosci 2019; 32:386-402. [PMID: 31659923 DOI: 10.1162/jocn_a_01491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
After over 100 years of relative silence in the cognitive literature, recent advances in the study of the neural underpinnings of memory-specifically, the hippocampus-have led to a resurgence of interest in the topic of forgetting. This review draws a theoretically driven picture of the effects of time on forgetting of hippocampus-dependent memories. We review evidence indicating that time-dependent forgetting across short and long timescales is reflected in progressive degradation of hippocampal-dependent relational information. This evidence provides an important extension to a growing body of research accumulated in recent years, showing that-in contrast to the once prevailing view that the hippocampus is exclusively involved in memory and forgetting over long timescales-the role of the hippocampus also extends to memory and forgetting over short timescales. Thus, we maintain that similar rules govern not only remembering but also forgetting of hippocampus-dependent information over short and long timescales.
Collapse
|
11
|
Serrano N, López-Sanz D, Bruña R, Garcés P, Rodríguez-Rojo IC, Marcos A, Crespo DP, Maestú F. Spatiotemporal Oscillatory Patterns During Working Memory Maintenance in Mild Cognitive Impairment and Subjective Cognitive Decline. Int J Neural Syst 2019; 30:1950019. [DOI: 10.1142/s0129065719500199] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Working memory (WM) is a crucial cognitive process and its disruption is among the earliest symptoms of Alzheimer’s disease. While alterations of the neuronal processes underlying WM have been evidenced in mild cognitive impairment (MCI), scarce literature is available in subjective cognitive decline (SCD). We used magnetoencephalography during a WM task performed by MCI [Formula: see text], SCD [Formula: see text] and healthy elders [Formula: see text] to examine group differences during the maintenance period (0–4000[Formula: see text]ms). Data were analyzed using time–frequency analysis and significant oscillatory differences were localized at the source level. Our results indicated significant differences between groups, mainly during the early maintenance (250–1250[Formula: see text]ms) in the theta, alpha and beta bands and in the late maintenance (2750–3750[Formula: see text]ms) in the theta band. MCI showed lower local synchronization in fronto-temporal cortical regions in the early theta–alpha window relative to controls [Formula: see text] and SCD [Formula: see text], and in the late theta window relative to controls [Formula: see text] and SCD [Formula: see text]. Early theta–alpha power was significantly correlated with memory scores [Formula: see text] and late theta power was correlated with task performance [Formula: see text] and functional activity scores [Formula: see text]. In the early beta window, MCI showed reduced power in temporo-posterior regions relative to controls [Formula: see text] and SCD [Formula: see text]. Our results may suggest that these alterations would reflect that memory-related networks are damaged.
Collapse
Affiliation(s)
- N. Serrano
- Department of Experimental Psychology, Complutense University of Madrid, Pozuelo de Alarcón, Madrid 28223, Spain
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Center for Biomedical Technology (CTB), Pozuelo de Alarcón, Madrid 28223, Spain
| | - D. López-Sanz
- Department of Experimental Psychology, Complutense University of Madrid, Pozuelo de Alarcón, Madrid 28223, Spain
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Center for Biomedical Technology (CTB), Pozuelo de Alarcón, Madrid 28223, Spain
| | - R. Bruña
- Department of Experimental Psychology, Complutense University of Madrid, Pozuelo de Alarcón, Madrid 28223, Spain
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Center for Biomedical Technology (CTB), Pozuelo de Alarcón, Madrid 28223, Spain
- CIBER’s Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain
| | - P. Garcés
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Center for Biomedical Technology (CTB), Pozuelo de Alarcón, Madrid 28223, Spain
| | - I. C. Rodríguez-Rojo
- Department of Experimental Psychology, Complutense University of Madrid, Pozuelo de Alarcón, Madrid 28223, Spain
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Center for Biomedical Technology (CTB), Pozuelo de Alarcón, Madrid 28223, Spain
| | - A. Marcos
- Neurology Department, San Carlos Clinical Hospital, Madrid, Spain
| | - D. Prada Crespo
- Centro de Prevención del Deterioro Cognitivo del Ayuntamiento, de Madrid Madrid, Spain
| | - F. Maestú
- Department of Experimental Psychology, Complutense University of Madrid, Pozuelo de Alarcón, Madrid 28223, Spain
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Center for Biomedical Technology (CTB), Pozuelo de Alarcón, Madrid 28223, Spain
- CIBER’s Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
12
|
A Network Model Reveals That the Experimentally Observed Switch of the Granule Cell Phenotype During Epilepsy Can Maintain the Pattern Separation Function of the Dentate Gyrus. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-319-99103-0_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Steiger TK, Herweg NA, Menz MM, Bunzeck N. Working memory performance in the elderly relates to theta-alpha oscillations and is predicted by parahippocampal and striatal integrity. Sci Rep 2019; 9:706. [PMID: 30679512 PMCID: PMC6345832 DOI: 10.1038/s41598-018-36793-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 11/23/2018] [Indexed: 11/09/2022] Open
Abstract
The ability to maintain information for a short period of time (i.e. working memory, WM) tends to decrease across the life span with large inter-individual variability; the underlying neuronal bases, however, remain unclear. To address this issue, we used a multimodal imaging approach (voxel-based morphometry, diffusion-tensor imaging, electroencephalography) to test the contribution of brain structures and neural oscillations in an elderly population. Thirty-one healthy elderly participants performed a change-detection task with different load conditions. As expected, accuracy decreased with increasing WM load, reflected by power modulations in the theta-alpha band (5-12 Hz). Importantly, these power changes were directly related to the tract strength between parahippocampus and parietal cortex. Furthermore, between-subject variance in gray matter volume of the parahippocampus and dorsal striatum predicted WM accuracy. Together, our findings provide new evidence that WM performance critically depends on parahippocampal and striatal integrity, while theta-alpha oscillations may provide a mechanism to bind the nodes within the WM network.
Collapse
Affiliation(s)
- Tineke K Steiger
- Institute of Psychology I, University of Luebeck, 23562, Luebeck, Germany. .,Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| | - Nora A Herweg
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.,Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mareike M Menz
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Nico Bunzeck
- Institute of Psychology I, University of Luebeck, 23562, Luebeck, Germany. .,Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| |
Collapse
|
14
|
Theta oscillations underlie retrieval success effects in the nucleus accumbens and anterior thalamus: Evidence from human intracranial recordings. Neurobiol Learn Mem 2018; 155:104-112. [DOI: 10.1016/j.nlm.2018.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 06/07/2018] [Accepted: 07/03/2018] [Indexed: 11/21/2022]
|
15
|
van de Vijver I, van Driel J, Hillebrand A, Cohen MX. Interactions between frontal and posterior oscillatory dynamics support adjustment of stimulus processing during reinforcement learning. Neuroimage 2018; 181:170-181. [PMID: 29990582 DOI: 10.1016/j.neuroimage.2018.07.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/15/2018] [Accepted: 07/05/2018] [Indexed: 11/29/2022] Open
Abstract
Reinforcement learning (RL) in humans is subserved by a network of striatal and frontal brain areas. The electrophysiological signatures of feedback evaluation are increasingly well understood, but how those signatures relate to the use of feedback to guide subsequent behavioral adjustment remains unclear. One mechanism for post-feedback behavioral optimization is the modulation of sensory processing. We used source-reconstructed MEG to test whether feedback affects the interactions between sources of oscillatory activity in the learning network and task-relevant stimulus-processing areas. Participants performed a probabilistic RL task in which they learned associations between colored faces and response buttons using trial-and-error feedback. Delta-band (2-4 Hz) and theta-band (4-8 Hz) power in multiple frontal regions were sensitive to feedback valence. Low and high beta-band power (12-20 and 20-30 Hz) in occipital, parietal, and temporal regions differentiated between color and face information. Consistent with our hypothesis, single-trial power-power correlations between frontal and posterior-sensory areas were modulated by the interaction between feedback valence and the relevant stimulus characteristic (color versus identity). These results suggest that long-range oscillatory coupling supports post-feedback updating of stimulus processing.
Collapse
Affiliation(s)
- Irene van de Vijver
- University of Amsterdam, Department of Psychology, Amsterdam, The Netherlands; Radboud University, Behavioural Science Institute, Nijmegen, The Netherlands.
| | - Joram van Driel
- University of Amsterdam, Department of Psychology, Amsterdam, The Netherlands; Vrije Universiteit, Department of Cognitive Psychology, Amsterdam, The Netherlands
| | - Arjan Hillebrand
- Department of Clinical Neurophysiology and Magnetoencephalography Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Michael X Cohen
- University of Amsterdam, Department of Psychology, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Cashdollar N, Ruhnau P, Weisz N, Hasson U. The Role of Working Memory in the Probabilistic Inference of Future Sensory Events. Cereb Cortex 2018; 27:2955-2969. [PMID: 27226445 DOI: 10.1093/cercor/bhw138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The ability to represent the emerging regularity of sensory information from the external environment has been thought to allow one to probabilistically infer future sensory occurrences and thus optimize behavior. However, the underlying neural implementation of this process is still not comprehensively understood. Through a convergence of behavioral and neurophysiological evidence, we establish that the probabilistic inference of future events is critically linked to people's ability to maintain the recent past in working memory. Magnetoencephalography recordings demonstrated that when visual stimuli occurring over an extended time series had a greater statistical regularity, individuals with higher working-memory capacity (WMC) displayed enhanced slow-wave neural oscillations in the θ frequency band (4-8 Hz.) prior to, but not during stimulus appearance. This prestimulus neural activity was specifically linked to contexts where information could be anticipated and influenced the preferential sensory processing for this visual information after its appearance. A separate behavioral study demonstrated that this process intrinsically emerges during continuous perception and underpins a realistic advantage for efficient behavioral responses. In this way, WMC optimizes the anticipation of higher level semantic concepts expected to occur in the near future.
Collapse
Affiliation(s)
- Nathan Cashdollar
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento 38060, Italy
| | - Philipp Ruhnau
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento 38060, Italy.,Division of Physiological Psychology and Centre for Cognitive Neuroscience, University of Salzburg, Salzburg A-5020, Austria
| | - Nathan Weisz
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento 38060, Italy.,Division of Physiological Psychology and Centre for Cognitive Neuroscience, University of Salzburg, Salzburg A-5020, Austria
| | - Uri Hasson
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento 38060, Italy
| |
Collapse
|
17
|
MacQueen DA, Young JW, Cope ZA. Cognitive Phenotypes for Biomarker Identification in Mental Illness: Forward and Reverse Translation. Curr Top Behav Neurosci 2018; 40:111-166. [PMID: 29858983 DOI: 10.1007/7854_2018_50] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Psychiatric illness has been acknowledged for as long as people were able to describe behavioral abnormalities in the general population. In modern times, these descriptions have been codified and continuously updated into manuals by which clinicians can diagnose patients. None of these diagnostic manuals have attempted to tie abnormalities to neural dysfunction however, nor do they necessitate the quantification of cognitive function despite common knowledge of its ties to functional outcome. In fact, in recent years the National Institute of Mental Health released a novel transdiagnostic classification, the Research Domain Criteria (RDoC), which utilizes quantifiable behavioral abnormalities linked to neurophysiological processes. This reclassification highlights the utility of RDoC constructs as potential cognitive biomarkers of disease state. In addition, with RDoC and cognitive biomarkers, the onus of researchers utilizing animal models no longer necessitates the recreation of an entire disease state, but distinct processes. Here, we describe the utilization of constructs from the RDoC initiative to forward animal research on these cognitive and behavioral processes, agnostic of disease. By linking neural processes to these constructs, identifying putative abnormalities in diseased patients, more targeted therapeutics can be developed.
Collapse
Affiliation(s)
- David A MacQueen
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA.
| | - Zackary A Cope
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
18
|
Beta oscillations in major depression - signalling a new cortical circuit for central executive function. Sci Rep 2017; 7:18021. [PMID: 29269891 PMCID: PMC5740142 DOI: 10.1038/s41598-017-18306-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 12/08/2017] [Indexed: 11/26/2022] Open
Abstract
This study aimed to examine alterations in electroencephalography (EEG) phase synchronization in working memory processing in depressed patients. Sixty-four-channel EEG signals were recorded from 33 depressed patients and 32 healthy controls during a visual n-back task. Alterations in functional connections in the patients were investigated using event-related phase coherence in terms of the phase synchronization index (PSI). Compared with the control subjects, the depressed patients showed a lower task-dependent increase in the PSI of delta, theta, and alpha oscillations in a frontoparietal network, but a higher task-dependent increase in the PSI of beta oscillations in the frontoparietal network. Additionally, depressed patients showed a lower task-dependent decrease in the PSI of delta, theta, alpha, and beta oscillations in centro-parieto-occipital sites. Insufficient phase synchronization and desynchronization during working memory processing reflects impairments in cortical inhibition, memory, and attention efficiency in major depression, while the abnormal increase in phase synchronization in beta oscillations in the frontoparietal network may indicate a new cortical circuit concerned with the repair of impaired ability in attention, memory retention, and working memory central executive processing. These findings present a compensatory mechanism for impaired cognitive function in major depression, and advance our understanding of functional aspect of beta oscillations.
Collapse
|
19
|
Mental reinstatement of encoding context improves episodic remembering. Cortex 2017; 94:15-26. [DOI: 10.1016/j.cortex.2017.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/03/2017] [Accepted: 06/14/2017] [Indexed: 11/18/2022]
|
20
|
Johnson NW, Özkan M, Burgess AP, Prokic EJ, Wafford KA, O'Neill MJ, Greenhill SD, Stanford IM, Woodhall GL. Phase-amplitude coupled persistent theta and gamma oscillations in rat primary motor cortex in vitro. Neuropharmacology 2017; 119:141-156. [PMID: 28400257 DOI: 10.1016/j.neuropharm.2017.04.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 01/26/2023]
Abstract
In vivo, theta (4-7 Hz) and gamma (30-80 Hz) neuronal network oscillations are known to coexist and display phase-amplitude coupling (PAC). However, in vitro, these oscillations have for many years been studied in isolation. Using an improved brain slice preparation technique we have, using co-application of carbachol (10 μM) and kainic acid (150 nM), elicited simultaneous theta (6.6 ± 0.1 Hz) and gamma (36.6 ± 0.4 Hz) oscillations in rodent primary motor cortex (M1). Each oscillation showed greatest power in layer V. Using a variety of time series analyses we detected significant cross-frequency coupling in 74% of slice preparations. Differences were observed in the pharmacological profile of each oscillation. Thus, gamma oscillations were reduced by the GABAA receptor antagonists, gabazine (250 nM and 2 μM), and picrotoxin (50 μM) and augmented by AMPA receptor antagonism with SYM2206 (20 μM). In contrast, theta oscillatory power was increased by gabazine, picrotoxin and SYM2206. GABAB receptor blockade with CGP55845 (5 μM) increased both theta and gamma power, and similar effects were seen with diazepam, zolpidem, MK801 and a series of metabotropic glutamate receptor antagonists. Oscillatory activity at both frequencies was reduced by the gap junction blocker carbenoxolone (200 μM) and by atropine (5 μM). These data show theta and gamma oscillations in layer V of rat M1 in vitro are cross-frequency coupled, and are mechanistically distinct. The development of an in vitro model of phase-amplitude coupled oscillations will facilitate further mechanistic investigation of the generation and modulation of coupled activity in mammalian cortex.
Collapse
Affiliation(s)
- Nicholas W Johnson
- Aston Brain Centre, Aston University, School of Life and Health Sciences, Birmingham, B4 7ET, United Kingdom
| | - Mazhar Özkan
- Department of Anatomy, School of Medicine, Marmara University, Istanbul, Turkey
| | - Adrian P Burgess
- Aston Brain Centre, Aston University, School of Life and Health Sciences, Birmingham, B4 7ET, United Kingdom
| | - Emma J Prokic
- Aston Brain Centre, Aston University, School of Life and Health Sciences, Birmingham, B4 7ET, United Kingdom
| | - Keith A Wafford
- Neuroscience Division, Eli Lilly & Co. Ltd., Windlesham, GU20 6PH, United Kingdom
| | - Michael J O'Neill
- Neuroscience Division, Eli Lilly & Co. Ltd., Windlesham, GU20 6PH, United Kingdom
| | - Stuart D Greenhill
- Aston Brain Centre, Aston University, School of Life and Health Sciences, Birmingham, B4 7ET, United Kingdom
| | - Ian M Stanford
- Aston Brain Centre, Aston University, School of Life and Health Sciences, Birmingham, B4 7ET, United Kingdom
| | - Gavin L Woodhall
- Aston Brain Centre, Aston University, School of Life and Health Sciences, Birmingham, B4 7ET, United Kingdom.
| |
Collapse
|
21
|
Kaplan R, Bush D, Bisby JA, Horner AJ, Meyer SS, Burgess N. Medial Prefrontal-Medial Temporal Theta Phase Coupling in Dynamic Spatial Imagery. J Cogn Neurosci 2017; 29:507-519. [PMID: 27779906 PMCID: PMC5321531 DOI: 10.1162/jocn_a_01064] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hippocampal-medial prefrontal interactions are thought to play a crucial role in mental simulation. Notably, the frontal midline/medial pFC (mPFC) theta rhythm in humans has been linked to introspective thought and working memory. In parallel, theta rhythms have been proposed to coordinate processing in the medial temporal cortex, retrosplenial cortex (RSc), and parietal cortex during the movement of viewpoint in imagery, extending their association with physical movement in rodent models. Here, we used noninvasive whole-head MEG to investigate theta oscillatory power and phase-locking during the 18-sec postencoding delay period of a spatial working memory task, in which participants imagined previously learned object sequences either on a blank background (object maintenance), from a first-person viewpoint in a scene (static imagery), or moving along a path past the objects (dynamic imagery). We found increases in 4- to 7-Hz theta power in mPFC when comparing the delay period with a preencoding baseline. We then examined whether the mPFC theta rhythm was phase-coupled with ongoing theta oscillations elsewhere in the brain. The same mPFC region showed significantly higher theta phase coupling with the posterior medial temporal lobe/RSc for dynamic imagery versus either object maintenance or static imagery. mPFC theta phase coupling was not observed with any other brain region. These results implicate oscillatory coupling between mPFC and medial temporal lobe/RSc theta rhythms in the dynamic mental exploration of imagined scenes.
Collapse
Affiliation(s)
- Raphael Kaplan
- University College London
- Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
22
|
Pavlov YG, Kotchoubey B. EEG correlates of working memory performance in females. BMC Neurosci 2017; 18:26. [PMID: 28193169 PMCID: PMC5307759 DOI: 10.1186/s12868-017-0344-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/04/2017] [Indexed: 01/06/2023] Open
Abstract
Background The study investigates oscillatory brain activity during working memory (WM) tasks. The tasks employed varied in two dimensions. First, they differed in complexity from average to highly demanding. Second, we used two types of tasks, which required either only retention of stimulus set or retention and manipulation of the content. We expected to reveal EEG correlates of temporary storage and central executive components of WM and to assess their contribution to individual differences. Results Generally, as compared with the retention condition, manipulation of stimuli in WM was associated with distributed suppression of alpha1 activity and with the increase of the midline theta activity. Load and task dependent decrement of beta1 power was found during task performance. Beta2 power increased with the increasing WM load and did not significantly depend on the type of the task. At the level of individual differences, we found that the high performance (HP) group was characterized by higher alpha rhythm power. The HP group demonstrated task-related increment of theta power in the left anterior area and a gradual increase of theta power at midline area. In contrast, the low performance (LP) group exhibited a drop of theta power in the most challenging condition. HP group was also characterized by stronger desynchronization of beta1 rhythm over the left posterior area in the manipulation condition. In this condition, beta2 power increased in the HP group over anterior areas, but in the LP group over posterior areas. Conclusions WM performance is accompanied by changes in EEG in a broad frequency range from theta to higher beta bands. The most pronounced differences in oscillatory activity between individuals with high and low WM performance can be observed in the most challenging WM task.
Collapse
Affiliation(s)
- Yuri G Pavlov
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany. .,Department of Psychology, Ural Federal University, Yekaterinburg, Russia.
| | - Boris Kotchoubey
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
23
|
Eckart C, Woźniak-Kwaśniewska A, Herweg NA, Fuentemilla L, Bunzeck N. Acetylcholine modulates human working memory and subsequent familiarity based recognition via alpha oscillations. Neuroimage 2016; 137:61-69. [PMID: 27222217 DOI: 10.1016/j.neuroimage.2016.05.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/18/2016] [Accepted: 05/18/2016] [Indexed: 12/26/2022] Open
Abstract
Working memory (WM) can be defined as the ability to maintain and process physically absent information for a short period of time. This vital cognitive function has been related to cholinergic neuromodulation and, in independent work, to theta (4-8Hz) and alpha (9-14Hz) band oscillations. However, the relationship between both aspects remains unclear. To fill this apparent gap, we used electroencephalography (EEG) and a within-subject design in healthy humans who either received the acetylcholinesterase inhibitor galantamine (8mg) or a placebo before they performed a Sternberg WM paradigm. Here, sequences of sample images were memorized for a delay of 5s in three different load conditions (two, four or six items). On the next day, long-term memory (LTM) for the images was tested according to a remember/know paradigm. As a main finding, we can show that both theta and alpha oscillations scale during WM maintenance as a function of WM load; this resembles the typical performance decrease. Importantly, cholinergic stimulation via galantamine administration slowed down retrieval speed during WM and reduced associated alpha but not theta power, suggesting a functional relationship between alpha oscillations and WM performance. At LTM, this pattern was accompanied by impaired familiarity based recognition. These findings show that stimulating the healthy cholinergic system impairs WM and subsequent recognition, which is in line with the notion of a quadratic relationship between acetylcholine levels and cognitive functions. Moreover, our data provide empirical evidence for a specific role of alpha oscillations in acetylcholine dependent WM and associated LTM formation.
Collapse
Affiliation(s)
- Cindy Eckart
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; Department of Psychology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | - Nora A Herweg
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Lluis Fuentemilla
- Cognition and Brain Plasticity Group, [Bellvitge Biomedical Research Institute] IDIBELL, L'Hospitalet de Llobregat, Barcelona 08097, Spain; Department of Cognition, Development and Educational Psychology, Faculty of Psychology, and Institute of Neuroscience, University of Barcelona, Barcelona 08035, Spain
| | - Nico Bunzeck
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; Department of Psychology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany.
| |
Collapse
|
24
|
Lam NHL, Schoffelen JM, Uddén J, Hultén A, Hagoort P. Neural activity during sentence processing as reflected in theta, alpha, beta, and gamma oscillations. Neuroimage 2016; 142:43-54. [PMID: 26970187 DOI: 10.1016/j.neuroimage.2016.03.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 02/04/2016] [Accepted: 03/03/2016] [Indexed: 12/14/2022] Open
Abstract
We used magnetoencephalography (MEG) to explore the spatiotemporal dynamics of neural oscillations associated with sentence processing in 102 participants. We quantified changes in oscillatory power as the sentence unfolded, and in response to individual words in the sentence. For words early in a sentence compared to those late in the same sentence, we observed differences in left temporal and frontal areas, and bilateral frontal and right parietal regions for the theta, alpha, and beta frequency bands. The neural response to words in a sentence differed from the response to words in scrambled sentences in left-lateralized theta, alpha, beta, and gamma. The theta band effects suggest that a sentential context facilitates lexical retrieval, and that this facilitation is stronger for words late in the sentence. Effects in the alpha and beta bands may reflect the unification of semantic and syntactic information, and are suggestive of easier unification late in a sentence. The gamma oscillations are indicative of predicting the upcoming word during sentence processing. In conclusion, changes in oscillatory neuronal activity capture aspects of sentence processing. Our results support earlier claims that language (sentence) processing recruits areas distributed across both hemispheres, and extends beyond the classical language regions.
Collapse
Affiliation(s)
- Nietzsche H L Lam
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, Nijmegen, Netherlands; Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
| | - Jan-Mathijs Schoffelen
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, Nijmegen, Netherlands; Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands.
| | - Julia Uddén
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, Nijmegen, Netherlands; Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
| | - Annika Hultén
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, Nijmegen, Netherlands; Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
| | - Peter Hagoort
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, Nijmegen, Netherlands; Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands.
| |
Collapse
|
25
|
Abstract
The lesion-deficit model dominates neuropsychology. This is unsurprising given powerful demonstrations that focal brain lesions can affect specific aspects of cognition. Nowhere is this more evident than in patients with bilateral hippocampal damage. In the past 60 years, the amnesia and other impairments exhibited by these patients have helped to delineate the functions of the hippocampus and shape the field of memory. We do not question the value of this approach. However, less prominent are the cognitive processes that remain intact following hippocampal lesions. Here, we collate the piecemeal reports of preservation of function following focal bilateral hippocampal damage, highlighting a wealth of information often veiled by the field's focus on deficits. We consider how a systematic understanding of what is preserved as well as what is lost could add an important layer of precision to models of memory and the hippocampus.
Collapse
Affiliation(s)
- Ian A Clark
- Wellcome Trust Center for Neuroimaging, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom; ,
| | - Eleanor A Maguire
- Wellcome Trust Center for Neuroimaging, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom; ,
| |
Collapse
|
26
|
Bergmann HC, Daselaar SM, Beul SF, Rijpkema M, Fernández G, Kessels RPC. Brain activation during associative short-term memory maintenance is not predictive for subsequent retrieval. Front Hum Neurosci 2015; 9:479. [PMID: 26388758 PMCID: PMC4556991 DOI: 10.3389/fnhum.2015.00479] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/17/2015] [Indexed: 12/02/2022] Open
Abstract
Performance on working memory (WM) tasks may partially be supported by long-term memory (LTM) processing. Hence, brain activation recently being implicated in WM may actually have been driven by (incidental) LTM formation. We examined which brain regions actually support successful WM processing, rather than being confounded by LTM processes, during the maintenance and probe phase of a WM task. We administered a four-pair (faces and houses) associative delayed-match-to-sample (WM) task using event-related functional MRI (fMRI) and a subsequent associative recognition LTM task, using the same stimuli. This enabled us to analyze subsequent memory effects for both the WM and the LTM test by contrasting correctly recognized pairs with incorrect pairs for either task. Critically, with respect to the subsequent WM effect, we computed this analysis exclusively for trials that were forgotten in the subsequent LTM recognition task. Hence, brain activity associated with successful WM processing was less likely to be confounded by incidental LTM formation. The subsequent LTM effect, in contrast, was analyzed exclusively for pairs that previously had been correctly recognized in the WM task, disclosing brain regions involved in successful LTM formation after successful WM processing. Results for the subsequent WM effect showed no significantly activated brain areas for WM maintenance, possibly due to an insensitivity of fMRI to mechanisms underlying active WM maintenance. In contrast, a correct decision at WM probe was linked to activation in the “retrieval success network” (anterior and posterior midline brain structures). The subsequent LTM analyses revealed greater activation in left dorsolateral prefrontal cortex and posterior parietal cortex in the early phase of the maintenance stage. No supra-threshold activation was found during the WM probe. Together, we obtained clearer insights in which brain regions support successful WM and LTM without the potential confound of the respective memory system.
Collapse
Affiliation(s)
- Heiko C Bergmann
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Netherlands
| | - Sander M Daselaar
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Netherlands
| | - Sarah F Beul
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Netherlands ; Department of Computational Neuroscience, University Medical Center Hamburg-Eppendorf Hamburg, Germany
| | - Mark Rijpkema
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Netherlands ; Department of Radiology and Nuclear Medicine, Radboud University Medical Center Nijmegen, Netherlands
| | - Guillén Fernández
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Netherlands ; Department of Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Netherlands
| | - Roy P C Kessels
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Netherlands ; Department of Medical Psychology, Radboud University Medical Center Nijmegen, Netherlands
| |
Collapse
|
27
|
Lee DJ, Gurkoff GG, Izadi A, Seidl SE, Echeverri A, Melnik M, Berman RF, Ekstrom AD, Muizelaar JP, Lyeth BG, Shahlaie K. Septohippocampal Neuromodulation Improves Cognition after Traumatic Brain Injury. J Neurotrauma 2015; 32:1822-32. [PMID: 26096267 DOI: 10.1089/neu.2014.3744] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) often results in persistent attention and memory deficits that are associated with hippocampal dysfunction. Although deep brain stimulation (DBS) is used to treat neurological disorders related to motor dysfunction, the effectiveness of stimulation to treat cognition remains largely unknown. In this study, adult male Harlan Sprague-Dawley rats underwent a lateral fluid percussion or sham injury followed by implantation of bipolar electrodes in the medial septal nucleus (MSN) and ipsilateral hippocampus. In the first week after injury, there was a significant decrease in hippocampal theta oscillations that correlated with decreased object exploration and impaired performance in the Barnes maze spatial learning task. Continuous 7.7 Hz theta stimulation of the medial septum significantly increased hippocampal theta oscillations, restored normal object exploration, and improved spatial learning in injured animals. There were no benefits with 100 Hz gamma stimulation, and stimulation of sham animals at either frequency did not enhance performance. We conclude, therefore, that there was a theta frequency-specific benefit of DBS that restored cognitive function in brain-injured rats. These data suggest that septal theta stimulation may be an effective and novel neuromodulatory therapy for treatment of persistent cognitive deficits following TBI.
Collapse
Affiliation(s)
- Darrin J Lee
- 1 Department of Neurological Surgery, University of California , Davis, Sacramento, California
| | - Gene G Gurkoff
- 1 Department of Neurological Surgery, University of California , Davis, Sacramento, California
| | - Ali Izadi
- 1 Department of Neurological Surgery, University of California , Davis, Sacramento, California
| | | | - Angela Echeverri
- 1 Department of Neurological Surgery, University of California , Davis, Sacramento, California
| | - Mikhail Melnik
- 1 Department of Neurological Surgery, University of California , Davis, Sacramento, California
| | - Robert F Berman
- 1 Department of Neurological Surgery, University of California , Davis, Sacramento, California.,2 Center for Neuroscience, University of California , Davis, Sacramento, California
| | - Arne D Ekstrom
- 2 Center for Neuroscience, University of California , Davis, Sacramento, California
| | - J Paul Muizelaar
- 1 Department of Neurological Surgery, University of California , Davis, Sacramento, California
| | - Bruce G Lyeth
- 1 Department of Neurological Surgery, University of California , Davis, Sacramento, California.,2 Center for Neuroscience, University of California , Davis, Sacramento, California
| | - Kiarash Shahlaie
- 1 Department of Neurological Surgery, University of California , Davis, Sacramento, California.,2 Center for Neuroscience, University of California , Davis, Sacramento, California
| |
Collapse
|
28
|
Memory integration in amnesia: prior knowledge supports verbal short-term memory. Neuropsychologia 2015; 70:272-80. [PMID: 25752585 DOI: 10.1016/j.neuropsychologia.2015.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/22/2015] [Accepted: 02/03/2015] [Indexed: 11/21/2022]
Abstract
Short-term memory (STM) and long-term memory (LTM) have traditionally been considered cognitively distinct. However, it is known that STM can improve when to-be-remembered information appears in contexts that make contact with prior knowledge, suggesting a more interactive relationship between STM and LTM. The current study investigated whether the ability to leverage LTM in support of STM critically depends on the integrity of the hippocampus. Specifically, we investigated whether the hippocampus differentially supports between-domain versus within-domain STM-LTM integration given prior evidence that the representational domain of the elements being integrated in memory is a critical determinant of whether memory performance depends on the hippocampus. In Experiment 1, we investigated hippocampal contributions to within-domain STM-LTM integration by testing whether immediate verbal recall of words improves in MTL amnesic patients when words are presented in familiar verbal contexts (meaningful sentences) compared to unfamiliar verbal contexts (random word lists). Patients demonstrated a robust sentence superiority effect, whereby verbal STM performance improved in familiar compared to unfamiliar verbal contexts, and the magnitude of this effect did not differ from that in controls. In Experiment 2, we investigated hippocampal contributions to between-domain STM-LTM integration by testing whether immediate verbal recall of digits improves in MTL amnesic patients when digits are presented in a familiar visuospatial context (a typical keypad layout) compared to an unfamiliar visuospatial context (a random keypad layout). Immediate verbal recall improved in both patients and controls when digits were presented in the familiar compared to the unfamiliar keypad array, indicating a preserved ability to integrate activated verbal information with stored visuospatial knowledge. Together, these results demonstrate that immediate verbal recall in amnesia can benefit from two distinct types of semantic support, verbal and visuospatial, and that the hippocampus is not critical for leveraging stored semantic knowledge to improve memory performance.
Collapse
|
29
|
Medial temporal lobe coding of item and spatial information during relational binding in working memory. J Neurosci 2015; 34:14233-42. [PMID: 25339737 DOI: 10.1523/jneurosci.0655-14.2014] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Several models have proposed that different medial temporal lobe (MTL) regions represent different kinds of information in the service of long-term memory. For instance, it has been proposed that perirhinal cortex (PRC), parahippocampal cortex (PHC), and hippocampus differentially support long-term memory for item information, spatial context, and item-context relations present during an event, respectively. Recent evidence has indicated that, in addition to long-term memory, MTL subregions may similarly contribute to processes that support the retention of complex spatial arrangements of objects across short delays. Here, we used functional magnetic resonance imaging and multivoxel pattern similarity analysis to investigate the extent to which human MTL regions independently code for object and spatial information, as well as the conjunction of this information, during working memory encoding and active maintenance. Voxel activity patterns in PRC, temporopolar cortex, and amygdala carried information about individual objects, whereas activity patterns in the PHC and posterior hippocampus carried information about the configuration of spatial locations that was to be remembered. Additionally, the integrity of multivoxel patterns in the right anterior hippocampus across encoding and delay periods was predictive of accurate short-term memory for object-location relationships. These results are consistent with parallel processing of item and spatial context information by PRC and PHC, respectively, and the binding of item and context by the hippocampus.
Collapse
|
30
|
Zhao F, Kang H, You L, Rastogi P, Venkatesh D, Chandra M. Neuropsychological deficits in temporal lobe epilepsy: A comprehensive review. Ann Indian Acad Neurol 2015; 17:374-82. [PMID: 25506156 PMCID: PMC4251008 DOI: 10.4103/0972-2327.144003] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 03/24/2014] [Accepted: 03/24/2014] [Indexed: 11/23/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is the most prevalent form of complex partial seizures with temporal lobe origin of electrical abnormality. Studies have shown that recurrent seizures affect all aspects of cognitive functioning, including memory, language, praxis, executive functions, and social judgment, among several others. In this article, we will review these cognitive impairments along with their neuropathological correlates in a comprehensive manner. We will see that neuropsychological deficits are prevalent in TLE. Much of the effort has been laid on memory due to the notion that temporal lobe brain structures involved in TLE play a central role in consolidating information into memory. It seems that damage to the mesial structure of the temporal lobe, particularly the amygdale and hippocampus, has the main role in these memory difficulties and the neurobiological plausibility of the role of the temporal lobe in different aspects of memory. Here, we will cover the sub-domains of working memory and episodic memory deficits. This is we will further proceed to evaluate the evidences of executive function deficits in TLE and will see that set-shifting among other EFs is specifically affected in TLE as is social cognition. Finally, critical components of language related deficits are also found in the form of word-finding difficulties. To conclude, TLE affects several of cognitive function domains, but the etiopathogenesis of all these dysfunctions remain elusive. Further well-designed studies are needed for a better understanding of these disorders.
Collapse
Affiliation(s)
- Fengqing Zhao
- Department of Emergency, Yantai Yuhuangding Hospital, Yantai 264000, Shandong Province, China
| | - Hai Kang
- Department of Emergency, Yantai Yuhuangding Hospital, Yantai 264000, Shandong Province, China
| | - Libo You
- Operating RoomYantaishan Hospital, Yantai 264000, Shandong Province, China
| | - Priyanka Rastogi
- Department of Clinical Psychology, Ranchi Institute of Neuropsychiatry and Allied Sciences, Kanke, Ranchi, Jharkhand, India
| | - D Venkatesh
- Department of Physiology, M. S. Ramaiah Medical College, Mathikere, Bengaluru, Karnataka, India
| | - Mina Chandra
- Department of Psychiatry, Post Graduate Institute of Medical Education and Research and Dr. Ram Manohar Lohia Hospital, Formerly Willingdon Hospital, New Delhi, India
| |
Collapse
|
31
|
Laminar activity in the hippocampus and entorhinal cortex related to novelty and episodic encoding. Nat Commun 2014; 5:5547. [PMID: 25424131 PMCID: PMC4263140 DOI: 10.1038/ncomms6547] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 10/13/2014] [Indexed: 12/20/2022] Open
Abstract
The ability to form long-term memories for novel events depends on information processing within the hippocampus (HC) and entorhinal cortex (EC). The HC-EC circuitry shows a quantitative segregation of anatomical directionality into different neuronal layers. Whereas superficial EC layers mainly project to dentate gyrus (DG), CA3 and apical CA1 layers, HC output is primarily sent from pyramidal CA1 layers and subiculum to deep EC layers. Here we utilize this directionality information by measuring encoding activity within HC/EC subregions with 7 T high resolution functional magnetic resonance imaging (fMRI). Multivariate Bayes decoding within HC/EC subregions shows that processing of novel information most strongly engages the input structures (superficial EC and DG/CA2-3), whereas subsequent memory is more dependent on activation of output regions (deep EC and pyramidal CA1). This suggests that while novelty processing is strongly related to HC-EC input pathways, the memory fate of a novel stimulus depends more on HC-EC output.
Collapse
|
32
|
Zeidman P, Mullally SL, Maguire EA. Constructing, Perceiving, and Maintaining Scenes: Hippocampal Activity and Connectivity. Cereb Cortex 2014; 25:3836-55. [PMID: 25405941 PMCID: PMC4585517 DOI: 10.1093/cercor/bhu266] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In recent years, evidence has accumulated to suggest the hippocampus plays a role beyond memory. A strong hippocampal response to scenes has been noted, and patients with bilateral hippocampal damage cannot vividly recall scenes from their past or construct scenes in their imagination. There is debate about whether the hippocampus is involved in the online processing of scenes independent of memory. Here, we investigated the hippocampal response to visually perceiving scenes, constructing scenes in the imagination, and maintaining scenes in working memory. We found extensive hippocampal activation for perceiving scenes, and a circumscribed area of anterior medial hippocampus common to perception and construction. There was significantly less hippocampal activity for maintaining scenes in working memory. We also explored the functional connectivity of the anterior medial hippocampus and found significantly stronger connectivity with a distributed set of brain areas during scene construction compared with scene perception. These results increase our knowledge of the hippocampus by identifying a subregion commonly engaged by scenes, whether perceived or constructed, by separating scene construction from working memory, and by revealing the functional network underlying scene construction, offering new insights into why patients with hippocampal lesions cannot construct scenes.
Collapse
Affiliation(s)
- Peter Zeidman
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Sinéad L Mullally
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Eleanor A Maguire
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
33
|
Yim MY, Hanuschkin A, Wolfart J. Intrinsic rescaling of granule cells restores pattern separation ability of a dentate gyrus network model during epileptic hyperexcitability. Hippocampus 2014; 25:297-308. [DOI: 10.1002/hipo.22373] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 09/29/2014] [Accepted: 09/29/2014] [Indexed: 01/12/2023]
Affiliation(s)
- Man Yi Yim
- Department of Mathematics; University of Hong Kong; Hong Kong
| | - Alexander Hanuschkin
- Institute of Neuroinformatics, University of Zurich and ETH Zurich; Zurich Switzerland
| | - Jakob Wolfart
- Oscar Langendorff Institute of Physiology, University of Rostock; Rostock Germany
| |
Collapse
|
34
|
Banta Lavenex PA, Colombo F, Ribordy Lambert F, Lavenex P. The human hippocampus beyond the cognitive map: evidence from a densely amnesic patient. Front Hum Neurosci 2014; 8:711. [PMID: 25309387 PMCID: PMC4164002 DOI: 10.3389/fnhum.2014.00711] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 08/26/2014] [Indexed: 11/13/2022] Open
Abstract
We tested a densely amnesic patient (P9), with bilateral hippocampal damage resulting from an autoimmune disorder, and 12 age- and sex-matched controls on a series of memory tasks designed to characterize allocentric spatial learning and memory abilities. We compared P9's ability to perform spatial memory tasks with her ability to perform non-spatial, color memory tasks. First, P9's performance was impaired as compared to controls even in the simplest versions of an allocentric spatial memory task, in which she had to find repeatedly over 10 trials the same location(s) of one, two or three illuminating foot pad(s) among 23 pads distributed in an open-field arena. In contrast, she performed as well as controls when she had to find repeatedly over 10 trials the same one, two or three pad(s) marked by color cue(s), whose locations varied between trials. Second, P9's performance was severely impaired in working memory tasks, when she had to learn on a trial-unique basis and remember the location(s) or the color(s) of one, two or three pad(s), while performing an interfering task during the 1-min interval separating encoding and retrieval. Without interference during the retention interval of the trial-unique tasks, P9's performance was partially preserved in the color tasks, whereas it remained severely impaired in the allocentric spatial tasks. Detailed behavioral analyses indicate that P9's memory representations are more limited than those of controls both in their precision (metric coding) and in the number of items that can be maintained in memory (capacity). These findings are consistent with the theory that the hippocampus contributes to the integration or binding of multiple items, in order to produce high-resolution/high-capacity representations of spatial and non-spatial information in the service of short-term/working and long-term memory.
Collapse
Affiliation(s)
- Pamela A Banta Lavenex
- Laboratory for Experimental Research on Behavior, Institute of Psychology, University of Lausanne Lausanne, Switzerland
| | - Françoise Colombo
- Unit of Neuropsychology and Aphasiology, Cantonal Hospital of Fribourg Fribourg, Switzerland
| | - Farfalla Ribordy Lambert
- Laboratory of Brain and Cognitive Development, Department of Medicine and Fribourg Center for Cognition, University of Fribourg Fribourg, Switzerland
| | - Pierre Lavenex
- Laboratory for Experimental Research on Behavior, Institute of Psychology, University of Lausanne Lausanne, Switzerland ; Laboratory of Brain and Cognitive Development, Department of Medicine and Fribourg Center for Cognition, University of Fribourg Fribourg, Switzerland
| |
Collapse
|
35
|
Hannula DE, Tranel D, Allen JS, Kirchhoff BA, Nickel AE, Cohen NJ. Memory for items and relationships among items embedded in realistic scenes: disproportionate relational memory impairments in amnesia. Neuropsychology 2014; 29:126-38. [PMID: 25068665 DOI: 10.1037/neu0000119] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE The objective of this study was to examine the dependence of item memory and relational memory on medial temporal lobe (MTL) structures. Patients with amnesia, who either had extensive MTL damage or damage that was relatively restricted to the hippocampus, were tested, as was a matched comparison group. Disproportionate relational memory impairments were predicted for both patient groups, and those with extensive MTL damage were also expected to have impaired item memory. METHOD Participants studied scenes, and were tested with interleaved 2-alternative forced-choice probe trials. Probe trials were either presented immediately after the corresponding study trial (Lag 1), 5 trials later (Lag 5), or 9 trials later (Lag 9) and consisted of the studied scene along with a manipulated version of that scene in which 1 item was replaced with a different exemplar (item memory test) or was moved to a new location (relational memory test). Participants were to identify the exact match of the studied scene. RESULTS As predicted, patients were disproportionately impaired on the test of relational memory. Item memory performance was marginally poorer among patients with extensive MTL damage, but both groups were impaired relative to matched comparison participants. Impaired performance was evident at all lags, including the shortest possible lag (Lag 1). CONCLUSIONS The results are consistent with the proposed role of the hippocampus in relational memory binding and representation, even at short delays, and suggest that the hippocampus may also contribute to successful item memory when items are embedded in complex scenes.
Collapse
Affiliation(s)
| | | | - John S Allen
- Dornsife Cognitive Neuroscience Imaging Center and Brain and Creativity Institute, University of Southern California
| | | | | | - Neal J Cohen
- Department of Psychology, University of Illinois, Urbana-Champaign
| |
Collapse
|
36
|
Frontal-medial temporal interactions mediate transitions among representational states in short-term memory. J Neurosci 2014; 34:7964-75. [PMID: 24899718 DOI: 10.1523/jneurosci.0130-14.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Short-term memory (STM), the brief maintenance of information in the absence of external stimulation, is central to higher-level cognition. Behavioral and neural data indicate that information maintained in STM can be represented in qualitatively distinct states. These states include a single chunk held in the focus of attention available for immediate processing (the "focus"), a capacity-limited set of additional actively maintained items that the focus can access (the "active state"), and passively maintained items (the "passive state"). Little is known about how information is shifted among these states. Here, we used fMRI in humans to examine the neural correlates of shifting information among representational states of STM. We used a paradigm that has demonstrated dissociable performance costs associated with shifting the focus among active items and switching sets of items between active and passive states. Behavioral results confirmed distinct behavioral costs associated with different representational states. Neural results indicated that the caudal superior frontal sulcus (cSFS), in the vicinity of the frontal eye fields, was associated with shifting the focus, consistent with the role of this region in internal and external attention. By contrast, the ventral premotor cortex (PMv) was associated with shifting between active and passive states. Increased cSFS-medial temporal lobe (MTL) connectivity was associated with shifting the focus, while cSFS-MTL connectivity was disrupted when the active state was changed. By contrast, PMv-MTL connectivity increased when the active state was switched. These data indicate that dissociable frontal-MTL interactions mediate shifts of information among different representational states in STM.
Collapse
|
37
|
Eckart C, Fuentemilla L, Bauch EM, Bunzeck N. Dopaminergic stimulation facilitates working memory and differentially affects prefrontal low theta oscillations. Neuroimage 2014; 94:185-192. [DOI: 10.1016/j.neuroimage.2014.03.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 02/11/2014] [Accepted: 03/08/2014] [Indexed: 12/25/2022] Open
|
38
|
Waldhauser GT, Bäuml KHT, Hanslmayr S. Brain Oscillations Mediate Successful Suppression of Unwanted Memories. Cereb Cortex 2014; 25:4180-90. [PMID: 24962991 DOI: 10.1093/cercor/bhu138] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To avoid thinking of unwanted memories can be a successful strategy to forget. Studying brain oscillations as measures of local and inter-regional processing, we shed light on the neural dynamics underlying memory suppression. Employing the think/no-think paradigm, 24 healthy human subjects repeatedly retrieved (think condition) or avoided thinking of (no-think condition) a previously learned target memory upon being presented with a reminder stimulus. Think and no-think instructions were delivered by means of a precue that preceded the reminder by 1 s. This allowed us to segregate neural control mechanisms that were triggered by the precue from the effect of suppression on target memory networks after presentation of the reminder. Control effects were reflected in increased power in the theta (5-9 Hz) frequency band in the medial and dorsolateral prefrontal cortex and higher long-range alpha (10-14 Hz) phase synchronization. Successful suppression of target memories was reflected in a decrease of theta oscillatory power in the medial temporal lobes and reduced long-range theta phase synchronization emerged after presentation of the reminder. Our results suggest that intentional memory suppression correlates with increased neural communication in cognitive control networks that act in down-regulating local and inter-regional processing related to memory retrieval.
Collapse
Affiliation(s)
| | - Karl-Heinz T Bäuml
- Department of Experimental Psychology, Regensburg University, Regensburg, Germany
| | - Simon Hanslmayr
- Department of Psychology, University of Konstanz, Konstanz, Germany School of Psychology, University of Birmingham, Birmingham, UK
| |
Collapse
|
39
|
Stretton J, Sidhu MK, Winston GP, Bartlett P, McEvoy AW, Symms MR, Koepp MJ, Thompson PJ, Duncan JS. Working memory network plasticity after anterior temporal lobe resection: a longitudinal functional magnetic resonance imaging study. ACTA ACUST UNITED AC 2014; 137:1439-53. [PMID: 24691395 PMCID: PMC3999723 DOI: 10.1093/brain/awu061] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Temporal lobe surgery can control seizures in drug-resistant epilepsy, but its impact on working memory is poorly understood. Using functional MRI, Stretton et al. reveal improvements in working memory post-surgery, which depend upon the functional capacity of the hippocampal remnant and the functional reserve of the contralateral hippocampus. Working memory is a crucial cognitive function that is disrupted in temporal lobe epilepsy. It is unclear whether this impairment is a consequence of temporal lobe involvement in working memory processes or due to seizure spread to extratemporal eloquent cortex. Anterior temporal lobe resection controls seizures in 50–80% of patients with drug-resistant temporal lobe epilepsy and the effect of surgery on working memory are poorly understood both at a behavioural and neural level. We investigated the impact of temporal lobe resection on the efficiency and functional anatomy of working memory networks. We studied 33 patients with unilateral medial temporal lobe epilepsy (16 left) before, 3 and 12 months after anterior temporal lobe resection. Fifteen healthy control subjects were also assessed in parallel. All subjects had neuropsychological testing and performed a visuospatial working memory functional magnetic resonance imaging paradigm on these three separate occasions. Changes in activation and deactivation patterns were modelled individually and compared between groups. Changes in task performance were included as regressors of interest to assess the efficiency of changes in the networks. Left and right temporal lobe epilepsy patients were impaired on preoperative measures of working memory compared to controls. Working memory performance did not decline following left or right temporal lobe resection, but improved at 3 and 12 months following left and, to a lesser extent, following right anterior temporal lobe resection. After left anterior temporal lobe resection, improved performance correlated with greater deactivation of the left hippocampal remnant and the contralateral right hippocampus. There was a failure of increased deactivation of the left hippocampal remnant at 3 months after left temporal lobe resection compared to control subjects, which had normalized 12 months after surgery. Following right anterior temporal lobe resection there was a progressive increase of activation in the right superior parietal lobe at 3 and 12 months after surgery. There was greater deactivation of the right hippocampal remnant compared to controls between 3 and 12 months after right anterior temporal lobe resection that was associated with lesser improvement in task performance. Working memory improved after anterior temporal lobe resection, particularly following left-sided resections. Postoperative working memory was reliant on the functional capacity of the hippocampal remnant and, following left resections, the functional reserve of the right hippocampus. These data suggest that working memory following temporal lobe resection is dependent on the engagement of the posterior medial temporal lobes and eloquent cortex.
Collapse
Affiliation(s)
- Jason Stretton
- 1 Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Calderone DJ, Lakatos P, Butler PD, Castellanos FX. Entrainment of neural oscillations as a modifiable substrate of attention. Trends Cogn Sci 2014; 18:300-9. [PMID: 24630166 DOI: 10.1016/j.tics.2014.02.005] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/09/2014] [Accepted: 02/10/2014] [Indexed: 11/28/2022]
Abstract
Brain operation is profoundly rhythmic. Oscillations of neural excitability shape sensory, motor, and cognitive processes. Intrinsic oscillations also entrain to external rhythms, allowing the brain to optimize the processing of predictable events such as speech. Moreover, selective attention to a particular rhythm in a complex environment entails entrainment of neural oscillations to its temporal structure. Entrainment appears to form one of the core mechanisms of selective attention, which is likely to be relevant to certain psychiatric disorders. Deficient entrainment has been found in schizophrenia and dyslexia and mounting evidence also suggests that it may be abnormal in attention-deficit/hyperactivity disorder (ADHD). Accordingly, we suggest that studying entrainment in selective-attention paradigms is likely to reveal mechanisms underlying deficits across multiple disorders.
Collapse
Affiliation(s)
- Daniel J Calderone
- Department of Child and Adolescent Psychiatry, NYU Langone School of Medicine, New York, NY, USA.
| | - Peter Lakatos
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Pamela D Butler
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Psychiatry, NYU Langone School of Medicine, New York, NY, USA; Department of Psychology, City University of New York, New York, NY, USA
| | - F Xavier Castellanos
- Department of Child and Adolescent Psychiatry, NYU Langone School of Medicine, New York, NY, USA; Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA.
| |
Collapse
|
41
|
Medial septum-diagonal band of Broca (MSDB) GABAergic regulation of hippocampal acetylcholine efflux is dependent on cognitive demands. J Neurosci 2014; 34:506-14. [PMID: 24403150 DOI: 10.1523/jneurosci.2352-13.2014] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The septohippocampal pathway contains cholinergic, GABAergic, and glutamatergic projections and has an established role in learning, memory, and hippocampal theta rhythm. Both GABAergic and cholinergic neurons in the medial septum-diagonal band of Broca (MSDB) have been associated with spatial memory, but the relationship between the two neuronal populations is not fully understood. The present study investigated the effect of selective GABAergic MSDB lesions on hippocampal acetylcholine (ACh) efflux and spatial memory during tasks that varied in memory demand. Male Sprague Dawley rats were given GABAergic lesions of the MSDB using GAT1-saporin (GAT1-SAP) and examined on spontaneous exploration (Experiment 1) and non-matching to position without (NMTP; Experiment 2) and with a delay (DNMTP; Experiment 3), while concurrently using in vivo microdialysis to measure hippocampal ACh efflux. Intraseptal GAT1-SAP treatment did not alter baseline or behaviorally stimulated hippocampal ACh efflux or maze exploration (Experiment 1). Moreover, GAT1-SAP did not alter evoked hippocampal ACh efflux related to NMTP nor did it impair working memory in NMTP (Experiment 2). In contrast, both ACh efflux and performance in DNMTP were impaired by intraseptal GAT1-SAP. Thus, GABAergic MSDB neurons are important for spatial working memory and modulate hippocampal ACh efflux under conditions of high memory load. The relationship between the septohippocampal cholinergic and GABAergic systems and working memory will be discussed.
Collapse
|
42
|
Watrous AJ, Ekstrom AD. The spectro-contextual encoding and retrieval theory of episodic memory. Front Hum Neurosci 2014; 8:75. [PMID: 24600373 PMCID: PMC3927099 DOI: 10.3389/fnhum.2014.00075] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 01/29/2014] [Indexed: 11/13/2022] Open
Abstract
The spectral fingerprint hypothesis, which posits that different frequencies of oscillations underlie different cognitive operations, provides one account for how interactions between brain regions support perceptual and attentive processes (Siegel etal., 2012). Here, we explore and extend this idea to the domain of human episodic memory encoding and retrieval. Incorporating findings from the synaptic to cognitive levels of organization, we argue that spectrally precise cross-frequency coupling and phase-synchronization promote the formation of hippocampal-neocortical cell assemblies that form the basis for episodic memory. We suggest that both cell assembly firing patterns as well as the global pattern of brain oscillatory activity within hippocampal-neocortical networks represents the contents of a particular memory. Drawing upon the ideas of context reinstatement and multiple trace theory, we argue that memory retrieval is driven by internal and/or external factors which recreate these frequency-specific oscillatory patterns which occur during episodic encoding. These ideas are synthesized into a novel model of episodic memory (the spectro-contextual encoding and retrieval theory, or "SCERT") that provides several testable predictions for future research.
Collapse
Affiliation(s)
- Andrew J Watrous
- Center for Neuroscience, University of California Davis, CA, USA ; University of Bonn, Bonn Germany
| | - Arne D Ekstrom
- Center for Neuroscience, University of California Davis, CA, USA ; Neuroscience Graduate Group, University of California Davis, CA, USA ; Department of Psychology, University of California Davis, CA, USA
| |
Collapse
|
43
|
Attention to memory: orienting attention to sound object representations. PSYCHOLOGICAL RESEARCH 2013; 78:439-52. [PMID: 24352689 DOI: 10.1007/s00426-013-0531-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 11/29/2013] [Indexed: 01/08/2023]
Abstract
Despite a growing acceptance that attention and memory interact, and that attention can be focused on an active internal mental representation (i.e., reflective attention), there has been a paucity of work focusing on reflective attention to 'sound objects' (i.e., mental representations of actual sound sources in the environment). Further research on the dynamic interactions between auditory attention and memory, as well as its degree of neuroplasticity, is important for understanding how sound objects are represented, maintained, and accessed in the brain. This knowledge can then guide the development of training programs to help individuals with attention and memory problems. This review article focuses on attention to memory with an emphasis on behavioral and neuroimaging studies that have begun to explore the mechanisms that mediate reflective attentional orienting in vision and more recently, in audition. Reflective attention refers to situations in which attention is oriented toward internal representations rather than focused on external stimuli. We propose four general principles underlying attention to short-term memory. Furthermore, we suggest that mechanisms involved in orienting attention to visual object representations may also apply for orienting attention to sound object representations.
Collapse
|
44
|
Abstract
Distraction typically has a negative impact on memory for recent events and patients with existing memory impairment are particularly vulnerable to distractor interference. In contrast, here we establish a beneficial effect for distractor presentation in humans for both patients with memory impairment due to bilateral hippocampal lesions and healthy adults with low memory performance. Recognition memory for images of place scenes, which had to be memorized for short delay periods was significantly improved with the presentation of a distractor face during the delay. Magnetoencephalography recordings of neural oscillations in the theta frequency range obtained in healthy adults suggest that this memory improvement results from the interruption of rehearsal by the distractor. Our results highlight circumstances where active memory rehearsal may paradoxically increase memory impairments and distraction alleviates these memory deficits in patients with hippocampal injury and healthy adults.
Collapse
|
45
|
Nee DE, Jonides J. Trisecting representational states in short-term memory. Front Hum Neurosci 2013; 7:796. [PMID: 24324424 PMCID: PMC3840432 DOI: 10.3389/fnhum.2013.00796] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 11/01/2013] [Indexed: 11/25/2022] Open
Abstract
The ability to hold information briefly in mind in the absence of external stimulation forms the core of much of higher-order cognition. This ability is referred to as short-term memory (STM). However, single-term labels such as this belie the complexity of the underlying construct. Here, we review evidence that STM is an amalgamation of three qualitatively distinct states. We argue that these distinct states emerge from the combination of frontal selection mechanisms (often considered the domain of attention and cognitive control), medial temporal binding mechanisms (often considered the domain of long-term memory, LTM), and synaptic plasticity. These various contributions lead to a single representation amenable to elaborated processing (focus of attention), a limited set of active representations among which attention can be flexibly switched (direct-access region), and passive representations whose residual traces facilitate re-activation (activated LTM). We suggest that selection and binding mechanisms are typically engaged simultaneously, providing multiple forms and routes of short-term maintenance. We propose that such a framework can resolve discrepancies among recent studies that have attempted to understand the relationship between attention and STM on the one hand, and between LTM and STM on the other. We anticipate that recent advances in neuroimaging and neurophysiology will elucidate the mechanisms underlying shifts and transformations among these representational states, providing a window into the dynamic processes of higher-order cognition.
Collapse
Affiliation(s)
- Derek Evan Nee
- Helen Wills Neuroscience Institute, University of California Berkeley, CA, USA
| | | |
Collapse
|
46
|
Fellner MC, Bäuml KHT, Hanslmayr S. Brain oscillatory subsequent memory effects differ in power and long-range synchronization between semantic and survival processing. Neuroimage 2013; 79:361-70. [PMID: 23664950 DOI: 10.1016/j.neuroimage.2013.04.121] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 03/27/2013] [Accepted: 04/27/2013] [Indexed: 11/16/2022] Open
|
47
|
Abstract
Some patients with disorders affecting the hippocampus have relatively intact memory, but the mechanisms underlying this preservation of function are still debated. In particular, it is unclear whether preserved memory is attributable to significant residual function of unaffected hippocampus or to functional brain reorganization. Here, we investigated brain activation during an associative short-term memory task in two human patient groups matched for extent of postsurgical damage to the right hippocampal formation that differed in two key features, memory performance and preoperative disease course. Patients showed strikingly distinct activation patterns that correlated differentially with behavioral performance, strongly suggesting that intact associative short-term memory with hippocampal dysfunction is indeed related to compensatory brain reorganization. This process appears to depend both on activation of the contralesional hippocampus and on increased engagement of a distributed short-term memory network in neocortex. These data clarify the existence of an efficient hippocampal-neocortical mechanism that compensates for hippocampal dysfunction.
Collapse
|
48
|
Race E, LaRocque KF, Keane MM, Verfaellie M. Medial temporal lobe contributions to short-term memory for faces. J Exp Psychol Gen 2013; 142:1309-22. [PMID: 23937185 DOI: 10.1037/a0033612] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The role of the medial temporal lobes (MTL) in short-term memory (STM) remains a matter of debate. Whereas imaging studies commonly show hippocampal activation during short-delay memory tasks, evidence from amnesic patients with MTL lesions is mixed. It has been argued that apparent STM impairments in amnesia may reflect long-term memory (LTM) contributions to performance. We challenge this conclusion by demonstrating that MTL amnesic patients show impaired delayed matching-to-sample (DMS) for faces in a task that meets both a traditional delay-based and a recently proposed distractor-based criterion for classification as an STM task. In Experiment 1, we demonstrate that our face DMS task meets the proposed distractor-based criterion for STM classification, in that extensive processing of delay-period distractor stimuli disrupts performance of healthy individuals. In Experiment 2, MTL amnesic patients with lesions extending into anterior subhippocampal cortex, but not patients with lesions limited to the hippocampus, show impaired performance on this task without distraction at delays as short as 8 s, within temporal range of delay-based STM classification, in the context of intact perceptual matching performance. Experiment 3 provides support for the hypothesis that STM for faces relies on configural processing by showing that the extent to which healthy participants' performance is disrupted by interference depends on the configural demands of the distractor task. Together, these findings are consistent with the notion that the amnesic impairment in STM for faces reflects a deficit in configural processing associated with subhippocampal cortices and provide novel evidence that the MTL supports cognition beyond the LTM domain.
Collapse
Affiliation(s)
- Elizabeth Race
- Memory Disorders Research Center, VA Boston Healthcare System
| | | | | | | |
Collapse
|
49
|
Hsieh LT, Ranganath C. Frontal midline theta oscillations during working memory maintenance and episodic encoding and retrieval. Neuroimage 2013; 85 Pt 2:721-9. [PMID: 23933041 DOI: 10.1016/j.neuroimage.2013.08.003] [Citation(s) in RCA: 306] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 07/31/2013] [Accepted: 08/01/2013] [Indexed: 10/26/2022] Open
Abstract
Neural oscillations in the theta band (4-8 Hz) are prominent in the human electroencephalogram (EEG), and many recent electrophysiological studies in animals and humans have implicated scalp-recorded frontal midline theta (FMT) in working memory and episodic memory encoding and retrieval processes. However, the functional significance of theta oscillations in human memory processes remains largely unknown. Here, we review studies in human and animals examining how scalp-recorded FMT relates to memory behaviors and also their possible neural generators. We also discuss models of the functional relevance of theta oscillations to memory processes and suggest promising directions for future research.
Collapse
Affiliation(s)
- Liang-Tien Hsieh
- Center for Neuroscience, University of California at Davis.,Department of Psychology, University of California at Davis
| | - Charan Ranganath
- Center for Neuroscience, University of California at Davis.,Department of Psychology, University of California at Davis
| |
Collapse
|
50
|
Nucleus accumbens activity dissociates different forms of salience: evidence from human intracranial recordings. J Neurosci 2013; 33:8764-71. [PMID: 23678119 DOI: 10.1523/jneurosci.5276-12.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Theoretical models and empirical work indicate a critical role of the NAcc in salience processing. For instance, the NAcc not only responds to appetitive and aversive information, but it also signals novelty, contextual deviance, and action monitoring. However, because most studies have investigated only one specific type of salience independently, it remains unclear how the NAcc concurrently differentiates between different forms of salience. To investigate this issue, we used intracranial electroencephalography in human epilepsy patients together with a previously established visual oddball paradigm. Here, three different oddball categories (novel, neutral, and target images) were infrequently presented among a standard scene image, and subjects responded to the target via button press. This task allowed us to differentiate "item novelty" (new vs neutral oddballs) from "contextual deviance" (neutral oddballs vs standard images) and "targetness" (target vs neutral oddballs). Time-frequency analysis revealed a dissociation between item novelty and contextual deviance on the basis of decreases in either θ (4-8 Hz) or β power (20-30 Hz). Targetness, on the other hand, was signaled by positive deflections in the stimulus-locked local field potentials, which, importantly, correlated with subjects' reaction times. These findings indicate that, in an ongoing stream of information, the NAcc differentiates between types of salience by distinct neural mechanisms to guide goal-directed behavior.
Collapse
|