1
|
Zhang J. Patterns and evolutionary consequences of pleiotropy. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2023; 54:1-19. [PMID: 39473988 PMCID: PMC11521367 DOI: 10.1146/annurev-ecolsys-022323-083451] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Pleiotropy refers to the phenomenon of one gene or one mutation affecting multiple phenotypic traits. While the concept of pleiotropy is as old as Mendelian genetics, functional genomics has finally allowed the first glimpses of the extent of pleiotropy for a large fraction of genes in a genome. After describing conceptual and operational difficulties in quantifying pleiotropy and the pros and cons of various methods for measuring pleiotropy, I review empirical data on pleiotropy, which generally show an L-shaped distribution of the degree of pleiotropy (i.e., the number of traits affected) with most genes having low pleiotropy. I then review the current understanding of the molecular basis of pleiotropy. The rest of the review discusses evolutionary consequences of pleiotropy, focusing on advances in topics including the cost of complexity, regulatory vs. coding evolution, environmental pleiotropy and adaptation, evolution of ageing and other seemingly harmful traits, and evolutionary resolution of pleiotropy.
Collapse
Affiliation(s)
- Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
2
|
da Cruz AL, Vilela B, Klein W. Morphological and physiological traits of the respiratory system in Iguana iguana and other non-avian reptiles. ZOOLOGY 2023; 157:126079. [PMID: 36868103 DOI: 10.1016/j.zool.2023.126079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 02/08/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023]
Abstract
Functional morphology considers form and function to be intrinsically related. To understand organismal functions, a detailed knowledge of morphological and physiological traits is necessary. Regarding the respiratory system, the combined knowledge about pulmonary morphology and respiratory physiology is fundamental to understand how animals exchange gases and regulate critical functions to sustain metabolic activity. In the present study, the paucicameral lungs of Iguana iguana were analyzed morphometrically through stereological analysis using light and transmission electron images and compared with unicameral and multicameral lungs of six other non-avian reptiles. The morphological data were combined with physiological information to perform a principal component analysis (PCA) and phylogenetic tests of the relationship of the respiratory system. Iguana iguana, Lacerta viridis, and Salvator merianae presented similar pulmonary morphologies and physiologies when compared to Varanus examthematicus, Gekko gecko, Trachemys scripta, and Crocodylus niloticus. The former species showed an elevated respiratory surface area (%AR), a high diffusion capacity, a low volume of total parenchyma (VP), a low percentage of parenchyma concerning the lung volume (VL), and a higher surface/volume ratio of the parenchyma (SAR/VP), with high respiratory frequency (fR) and consequently total ventilation. The total parenchymal surface area (SA), effective parenchymal surface-to-volume ratio (SAR/VP), respiratory surface area (SAR), and anatomical diffusion factor (ADF) showed a phylogenetic signal, evidence that the morphological traits are more strongly correlated with the species' phylogeny than the physiological traits. In sum, our results indicated that the pulmonary morphology is intrinsically related to physiological traits of the respiratory system. Furthermore, phylogenetic signal tests also indicate that morphological traits are more likely to be evolutionary conserved than physiological traits, suggesting that evolutive physiological adaptations in the respiratory system could happen faster than morphological changes.
Collapse
Affiliation(s)
- André Luis da Cruz
- Institute of Biology, Federal University of Bahia, Rua Barão de Jeremoabo 147, Ondina, CEP 40170-115 Salvador, Bahia, Brazil.
| | - Bruno Vilela
- Institute of Biology, Federal University of Bahia, Rua Barão de Jeremoabo 147, Ondina, CEP 40170-115 Salvador, Bahia, Brazil.
| | - Wilfried Klein
- School of Philosophy, Sciences and Literature of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes 3900. Monte Alegre, CEP 14040-900 Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
3
|
Sprengelmeyer QD, Lack JB, Braun DT, Monette MJ, Pool JE. The evolution of larger size in high-altitude Drosophila melanogaster has a variable genetic architecture. G3 GENES|GENOMES|GENETICS 2022; 12:6493269. [PMID: 35100377 PMCID: PMC8895999 DOI: 10.1093/g3journal/jkab454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/21/2021] [Indexed: 11/12/2022]
Abstract
Important uncertainties persist regarding the genetic architecture of adaptive trait evolution in natural populations, including the number of genetic variants involved, whether they are drawn from standing genetic variation, and whether directional selection drives them to complete fixation. Here, we take advantage of a unique natural population of Drosophila melanogaster from the Ethiopian highlands, which has evolved larger body size than any other known population of this species. We apply a bulk segregant quantitative trait locus mapping approach to 4 unique crosses between highland Ethiopian and lowland Zambian populations for both thorax length and wing length. Results indicated a persistently variable genetic basis for these evolved traits (with largely distinct sets of quantitative trait loci for each cross), and at least a moderately polygenic architecture with relatively strong effects present. We complemented these mapping experiments with population genetic analyses of quantitative trait locus regions and gene ontology enrichment analysis, generating strong hypotheses for specific genes and functional processes that may have contributed to these adaptive trait changes. Finally, we find that the genetic architectures indicated by our quantitative trait locus mapping results for size traits mirror those from similar experiments on other recently evolved traits in this species. Collectively, these studies suggest a recurring pattern of polygenic adaptation in this species, in which causative variants do not approach fixation and moderately strong effect loci are present.
Collapse
Affiliation(s)
| | - Justin B Lack
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Dylan T Braun
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Matthew J Monette
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - John E Pool
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
4
|
Exploration of space to achieve scientific breakthroughs. Biotechnol Adv 2020; 43:107572. [PMID: 32540473 DOI: 10.1016/j.biotechadv.2020.107572] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/05/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022]
Abstract
Living organisms adapt to changing environments using their amazing flexibility to remodel themselves by a process called evolution. Environmental stress causes selective pressure and is associated with genetic and phenotypic shifts for better modifications, maintenance, and functioning of organismal systems. The natural evolution process can be used in complement to rational strain engineering for the development of desired traits or phenotypes as well as for the production of novel biomaterials through the imposition of one or more selective pressures. Space provides a unique environment of stressors (e.g., weightlessness and high radiation) that organisms have never experienced on Earth. Cells in the outer space reorganize and develop or activate a range of molecular responses that lead to changes in cellular properties. Exposure of cells to the outer space will lead to the development of novel variants more efficiently than on Earth. For instance, natural crop varieties can be generated with higher nutrition value, yield, and improved features, such as resistance against high and low temperatures, salt stress, and microbial and pest attacks. The review summarizes the literature on the parameters of outer space that affect the growth and behavior of cells and organisms as well as complex colloidal systems. We illustrate an understanding of gravity-related basic biological mechanisms and enlighten the possibility to explore the outer space environment for application-oriented aspects. This will stimulate biological research in the pursuit of innovative approaches for the future of agriculture and health on Earth.
Collapse
|
5
|
Borges R, Fonseca J, Gomes C, Johnson WE, O'Brien SJ, Zhang G, Gilbert MTP, Jarvis ED, Antunes A. Avian Binocularity and Adaptation to Nocturnal Environments: Genomic Insights from a Highly Derived Visual Phenotype. Genome Biol Evol 2020; 11:2244-2255. [PMID: 31386143 PMCID: PMC6735850 DOI: 10.1093/gbe/evz111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2019] [Indexed: 01/04/2023] Open
Abstract
Typical avian eyes are phenotypically engineered for photopic vision (daylight). In contrast, the highly derived eyes of the barn owl (Tyto alba) are adapted for scotopic vision (dim light). The dramatic modifications distinguishing barn owl eyes from other birds include: 1) shifts in frontal orientation to improve binocularity, 2) rod-dominated retina, and 3) enlarged corneas and lenses. Some of these features parallel mammalian eye patterns, which are hypothesized to have initially evolved in nocturnal environments. Here, we used an integrative approach combining phylogenomics and functional phenotypes of 211 eye-development genes across 48 avian genomes representing most avian orders, including the stem lineage of the scotopic-adapted barn owl. Overall, we identified 25 eye-development genes that coevolved under intensified or relaxed selection in the retina, lens, cornea, and optic nerves of the barn owl. The agtpbp1 gene, which is associated with the survival of photoreceptor populations, was pseudogenized in the barn owl genome. Our results further revealed that barn owl retinal genes responsible for the maintenance, proliferation, and differentiation of photoreceptors experienced an evolutionary relaxation. Signatures of relaxed selection were also observed in the lens and cornea morphology-associated genes, suggesting that adaptive evolution in these structures was essentially structural. Four eye-development genes (ephb1, phactr4, prph2, and rs1) evolved in positive association with the orbit convergence in birds and under relaxed selection in the barn owl lineage, likely contributing to an increased reliance on binocular vision in the barn owl. Moreover, we found evidence of coevolutionary interactions among genes that are expressed in the retina, lens, and optic nerve, suggesting synergetic adaptive events. Our study disentangles the genomic changes governing the binocularity and low-light perception adaptations of barn owls to nocturnal environments while revealing the molecular mechanisms contributing to the shift from the typical avian photopic vision to the more-novel scotopic-adapted eye.
Collapse
Affiliation(s)
- Rui Borges
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Portugal
| | - João Fonseca
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal
| | - Cidália Gomes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal
| | - Warren E Johnson
- Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, Virginia.,Walter Reed Biosystematics Unit, Smithsonian Institution, Suitland, Maryland
| | - Stephen J O'Brien
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, Russia.,Guy Harvey Oceanographic Center, Halmos College of Natural Sciences and Oceanography, Nova Southeastern University
| | - Guojie Zhang
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Denmark.,China National GeneBank, BGI-Shenzen, Shenzhen, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - M Thomas P Gilbert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Denmark
| | - Erich D Jarvis
- Laboratory of Neurogenetics of Language, Rockefeller University.,Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Portugal
| |
Collapse
|
6
|
Courtier-Orgogozo V, Martin A. The coding loci of evolution and domestication: current knowledge and implications for bio-inspired genome editing. J Exp Biol 2020; 223:223/Suppl_1/jeb208934. [DOI: 10.1242/jeb.208934] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
ABSTRACT
One promising application of CRISPR/Cas9 is to create targeted mutations to introduce traits of interest into domesticated organisms. However, a major current limitation for crop and livestock improvement is to identify the precise genes and genetic changes that must be engineered to obtain traits of interest. Here, we discuss the advantages of bio-inspired genome editing, i.e. the engineered introduction of natural mutations that have already been associated with traits of interest in other lineages (breeds, populations or species). To obtain a landscape view of potential targets for genome editing, we used Gephebase (www.gephebase.org), a manually curated database compiling published data about the genes responsible for evolutionary and domesticated changes across eukaryotes, and examined the >1200 mutations that have been identified in the coding regions of more than 700 genes in animals, plants and yeasts. We observe that our genetic knowledge is relatively important for certain traits, such as xenobiotic resistance, and poor for others. We also note that protein-null alleles, often owing to nonsense and frameshift mutations, represent a large fraction of the known loci of domestication (42% of identified coding mutations), compared with intraspecific (27%) and interspecific evolution (11%). Although this trend may be subject to detection, publication and curation biases, it is consistent with the idea that breeders have selected large-effect mutations underlying adaptive traits in specific settings, but that these mutations and associated phenotypes would not survive the vagaries of changing external and internal environments. Our compilation of the loci of evolution and domestication uncovers interesting options for bio-inspired and transgene-free genome editing.
Collapse
Affiliation(s)
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
7
|
Huminiecki L. Magic roundabout is an endothelial-specific ohnolog of ROBO1 which neo-functionalized to an essential new role in angiogenesis. PLoS One 2019; 14:e0208952. [PMID: 30802244 PMCID: PMC6389290 DOI: 10.1371/journal.pone.0208952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/26/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Magic roundabout (ROBO4) is an unusual endothelial-specific paralog of the family of neuronally-expressed axon guidance receptors called roundabouts. Endothelial cells (ECs), whose uninterrupted sheet delimits the lumen of all vertebrate blood vessels and which are absent from invertebrate species, are a vertebrate-specific evolutionary novelty. RESULTS Herein, the evolutionary mechanism of the duplication, retention and divergence of ROBO4 was investigated for the first time. Phylogenetic analyses carried out suggested that ROBO4 is a fast-evolving paralog of ROBO1 formed at the base of vertebrates. The ancestral expression pattern was neuronal. ROBO4 dramatically shifted its expression and became exceptionally specific to ECs. The data-mining of FANTOM5 and ENCODE reveals that ROBO4's endothelial expression arises from a single transcription start site (TSS), conserved in mouse, controlled by a proximal promoter with a complex architecture suggestive of regulatory neo-functionalization. (An analysis of promoter probabilities suggested the architecture was not due to a chance arrangement of TFBSes). Further evidence for the neo-functionalization of ROBO4 comes from the analysis of its protein interactions, the rates of protein evolution, and of positively selected sites. CONCLUSIONS The neo-functionalization model explains why ROBO4 protein acquired new context-specific biological functions in the control of angiogenesis. This endothelial-specific roundabout receptor is an illustrative example of the emergence of an essential vertebrate molecular novelty and an endothelial-specific signaling sub-network through 2R-WGD. The emergence of novel cell types, such as ECs, might be a neglected evolutionary force contributing to the high rate of retention of duplicates post-2R-WGD. Crucially, expression neo-functionalization to evolutionarily novel sites of expression conceptually extends the classical model of neo-functionalization.
Collapse
Affiliation(s)
- Lukasz Huminiecki
- Instytut Genetyki i Hodowli Zwierząt Polskiej Akademii Nauk, Jastrzębiec, Magdalenka, Poland
| |
Collapse
|
8
|
Lipinska AP, Serrano-Serrano ML, Cormier A, Peters AF, Kogame K, Cock JM, Coelho SM. Rapid turnover of life-cycle-related genes in the brown algae. Genome Biol 2019; 20:35. [PMID: 30764885 PMCID: PMC6374913 DOI: 10.1186/s13059-019-1630-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 01/16/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sexual life cycles in eukaryotes involve a cyclic alternation between haploid and diploid phases. While most animals possess a diploid life cycle, many plants and algae alternate between multicellular haploid (gametophyte) and diploid (sporophyte) generations. In many algae, gametophytes and sporophytes are independent and free-living and may present dramatic phenotypic differences. The same shared genome can therefore be subject to different, even conflicting, selection pressures during each of the life cycle generations. Here, we analyze the nature and extent of genome-wide, generation-biased gene expression in four species of brown algae with contrasting levels of dimorphism between life cycle generations. RESULTS We show that the proportion of the transcriptome that is generation-specific is broadly associated with the level of phenotypic dimorphism between the life cycle stages. Importantly, our data reveals a remarkably high turnover rate for life-cycle-related gene sets across the brown algae and highlights the importance not only of co-option of regulatory programs from one generation to the other but also of a role for newly emerged, lineage-specific gene expression patterns in the evolution of the gametophyte and sporophyte developmental programs in this major eukaryotic group. Moreover, we show that generation-biased genes display distinct evolutionary modes, with gametophyte-biased genes evolving rapidly at the coding sequence level whereas sporophyte-biased genes tend to exhibit changes in their patterns of expression. CONCLUSION Our analysis uncovers the characteristics, expression patterns, and evolution of generation-biased genes and underlines the selective forces that shape this previously underappreciated source of phenotypic diversity.
Collapse
Affiliation(s)
- Agnieszka P Lipinska
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | | | - Alexandre Cormier
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Poitiers, France
| | | | - Kazuhiro Kogame
- Department of Biological Sciences, Faculty of Sciences, Hokkaido University, Sapporo, 060-0810, Japan
| | - J Mark Cock
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Susana M Coelho
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France.
| |
Collapse
|
9
|
Yang JR, Maclean CJ, Park C, Zhao H, Zhang J. Intra and Interspecific Variations of Gene Expression Levels in Yeast Are Largely Neutral: (Nei Lecture, SMBE 2016, Gold Coast). Mol Biol Evol 2017; 34:2125-2139. [PMID: 28575451 PMCID: PMC5850415 DOI: 10.1093/molbev/msx171] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
It is commonly, although not universally, accepted that most intra and interspecific genome sequence variations are more or less neutral, whereas a large fraction of organism-level phenotypic variations are adaptive. Gene expression levels are molecular phenotypes that bridge the gap between genotypes and corresponding organism-level phenotypes. Yet, it is unknown whether natural variations in gene expression levels are mostly neutral or adaptive. Here we address this fundamental question by genome-wide profiling and comparison of gene expression levels in nine yeast strains belonging to three closely related Saccharomyces species and originating from five different ecological environments. We find that the transcriptome-based clustering of the nine strains approximates the genome sequence-based phylogeny irrespective of their ecological environments. Remarkably, only ∼0.5% of genes exhibit similar expression levels among strains from a common ecological environment, no greater than that among strains with comparable phylogenetic relationships but different environments. These and other observations strongly suggest that most intra and interspecific variations in yeast gene expression levels result from the accumulation of random mutations rather than environmental adaptations. This finding has profound implications for understanding the driving force of gene expression evolution, genetic basis of phenotypic adaptation, and general role of stochasticity in evolution.
Collapse
Affiliation(s)
- Jian-Rong Yang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| | - Calum J. Maclean
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| | - Chungoo Park
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| | - Huabin Zhao
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
10
|
Mähler N, Wang J, Terebieniec BK, Ingvarsson PK, Street NR, Hvidsten TR. Gene co-expression network connectivity is an important determinant of selective constraint. PLoS Genet 2017; 13:e1006402. [PMID: 28406900 PMCID: PMC5407845 DOI: 10.1371/journal.pgen.1006402] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 04/27/2017] [Accepted: 03/31/2017] [Indexed: 12/12/2022] Open
Abstract
While several studies have investigated general properties of the genetic architecture of natural variation in gene expression, few of these have considered natural, outbreeding populations. In parallel, systems biology has established that a general feature of biological networks is that they are scale-free, rendering them buffered against random mutations. To date, few studies have attempted to examine the relationship between the selective processes acting to maintain natural variation of gene expression and the associated co-expression network structure. Here we utilised RNA-Sequencing to assay gene expression in winter buds undergoing bud flush in a natural population of Populus tremula, an outbreeding forest tree species. We performed expression Quantitative Trait Locus (eQTL) mapping and identified 164,290 significant eQTLs associating 6,241 unique genes (eGenes) with 147,419 unique SNPs (eSNPs). We found approximately four times as many local as distant eQTLs, with local eQTLs having significantly higher effect sizes. eQTLs were primarily located in regulatory regions of genes (UTRs or flanking regions), regardless of whether they were local or distant. We used the gene expression data to infer a co-expression network and investigated the relationship between network topology, the genetic architecture of gene expression and signatures of selection. Within the co-expression network, eGenes were underrepresented in network module cores (hubs) and overrepresented in the periphery of the network, with a negative correlation between eQTL effect size and network connectivity. We additionally found that module core genes have experienced stronger selective constraint on coding and non-coding sequence, with connectivity associated with signatures of selection. Our integrated genetics and genomics results suggest that purifying selection is the primary mechanism underlying the genetic architecture of natural variation in gene expression assayed in flushing leaf buds of P. tremula and that connectivity within the co-expression network is linked to the strength of purifying selection.
Collapse
Affiliation(s)
- Niklas Mähler
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Jing Wang
- Umeå Plant Science Centre, Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
- Centre for Integrative Genetics, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Barbara K. Terebieniec
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Pär K. Ingvarsson
- Umeå Plant Science Centre, Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Nathaniel R. Street
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Torgeir R. Hvidsten
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| |
Collapse
|
11
|
Nevado B, Atchison GW, Hughes CE, Filatov DA. Widespread adaptive evolution during repeated evolutionary radiations in New World lupins. Nat Commun 2016; 7:12384. [PMID: 27498896 PMCID: PMC4979066 DOI: 10.1038/ncomms12384] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/28/2016] [Indexed: 01/13/2023] Open
Abstract
The evolutionary processes that drive rapid species diversification are poorly understood. In particular, it is unclear whether Darwinian adaptation or non-adaptive processes are the primary drivers of explosive species diversifications. Here we show that repeated rapid radiations within New World lupins (Lupinus, Leguminosae) were underpinned by a major increase in the frequency of adaptation acting on coding and regulatory changes genome-wide. This contrasts with far less frequent adaptation in genomes of slowly diversifying lupins and all other plant genera analysed. Furthermore, widespread shifts in optimal gene expression coincided with shifts to high rates of diversification and evolution of perenniality, a putative key adaptation trait thought to have triggered the evolutionary radiations in New World lupins. Our results reconcile long-standing debate about the relative importance of protein-coding and regulatory evolution, and represent the first unambiguous evidence for the rapid onset of lineage- and genome-wide accelerated Darwinian evolution during rapid species diversification. Species radiations can be driven by both adaptive and non-adaptive processes, but the relative importance of these drivers is unknown. Here, Nevado et al. show that multiple radiations in the New World lupins were associated with genome-wide accelerations in both coding and regulatory evolution, suggesting a strong influence of adaptive processes.
Collapse
Affiliation(s)
- Bruno Nevado
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Guy W Atchison
- Institute of Systematic Botany, University of Zurich, Zurich 8008, Switzerland
| | - Colin E Hughes
- Institute of Systematic Botany, University of Zurich, Zurich 8008, Switzerland
| | - Dmitry A Filatov
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| |
Collapse
|
12
|
Liao BY, Weng MP. Functionalities of expressed messenger RNAs revealed from mutant phenotypes. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:416-27. [PMID: 26748449 DOI: 10.1002/wrna.1329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/23/2015] [Accepted: 12/02/2015] [Indexed: 12/11/2022]
Abstract
Total messenger RNAs mRNAs that are produced from a given gene under a certain set of conditions include both functional and nonfunctional transcripts. The high prevalence of nonfunctional mRNAs that have been detected in cells has raised questions regarding the functional implications of mRNA expression patterns and divergences. Phenotypes that result from the mutagenesis of protein-coding genes have provided the most straightforward descriptions of gene functions, and such data obtained from model organisms have facilitated investigations of the functionalities of expressed mRNAs. Mutant phenotype data from mouse tissues have revealed various attributes of functional mRNAs, including tissue-specificity, strength of expression, and evolutionary conservation. In addition, the role that mRNA expression evolution plays in driving morphological evolution has been revealed from studies designed to exploit morphological and physiological phenotypes of mouse mutants. Investigations into yeast essential genes (defined by an absence of colony growth after gene deletion) have further described gene regulatory strategies that reduce protein expression noise by mediating the rates of transcription and translation. In addition to the functional significance of expressed mRNAs as described in the abovementioned findings, the functionalities of other type of RNAs (i.e., noncoding RNAs) remain to be characterized with systematic mutations and phenotyping of the DNA regions that encode these RNA molecules. WIREs RNA 2016, 7:416-427. doi: 10.1002/wrna.1329 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Ben-Yang Liao
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan, Republic of China
| | - Meng-Pin Weng
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan, Republic of China
| |
Collapse
|
13
|
|
14
|
Leder EH, McCairns RJS, Leinonen T, Cano JM, Viitaniemi HM, Nikinmaa M, Primmer CR, Merilä J. The evolution and adaptive potential of transcriptional variation in sticklebacks--signatures of selection and widespread heritability. Mol Biol Evol 2015; 32:674-89. [PMID: 25429004 PMCID: PMC4327155 DOI: 10.1093/molbev/msu328] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Evidence implicating differential gene expression as a significant driver of evolutionary novelty continues to accumulate, but our understanding of the underlying sources of variation in expression, both environmental and genetic, is wanting. Heritability in particular may be underestimated when inferred from genetic mapping studies, the predominant "genetical genomics" approach to the study of expression variation. Such uncertainty represents a fundamental limitation to testing for adaptive evolution at the transcriptomic level. By studying the inheritance of expression levels in 10,495 genes (10,527 splice variants) in a threespine stickleback pedigree consisting of 563 individuals, half of which were subjected to a thermal treatment, we show that 74-98% of transcripts exhibit significant additive genetic variance. Dominance variance is also prevalent (41-99% of transcripts), and genetic sources of variation seem to play a more significant role in expression variance in the liver than a key environmental variable, temperature. Among-population comparisons suggest that the majority of differential expression in the liver is likely due to neutral divergence; however, we also show that signatures of directional selection may be more prevalent than those of stabilizing selection. This predominantly aligns with the neutral model of evolution for gene expression but also suggests that natural selection may still act on transcriptional variation in the wild. As genetic variation both within- and among-populations ultimately defines adaptive potential, these results indicate that broad adaptive potential may be found within the transcriptome.
Collapse
Affiliation(s)
- Erica H Leder
- Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Finland
| | - R J Scott McCairns
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Tuomas Leinonen
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - José M Cano
- Research Unit of Biodiversity (UO-CSIC-PA), University of Oviedo, Mieres, Spain
| | - Heidi M Viitaniemi
- Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Finland
| | - Mikko Nikinmaa
- Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Finland
| | - Craig R Primmer
- Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Finland
| | - Juha Merilä
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
15
|
Nadimpalli S, Persikov AV, Singh M. Pervasive variation of transcription factor orthologs contributes to regulatory network evolution. PLoS Genet 2015; 11:e1005011. [PMID: 25748510 PMCID: PMC4351887 DOI: 10.1371/journal.pgen.1005011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 01/18/2015] [Indexed: 01/17/2023] Open
Abstract
Differences in transcriptional regulatory networks underlie much of the phenotypic variation observed across organisms. Changes to cis-regulatory elements are widely believed to be the predominant means by which regulatory networks evolve, yet examples of regulatory network divergence due to transcription factor (TF) variation have also been observed. To systematically ascertain the extent to which TFs contribute to regulatory divergence, we analyzed the evolution of the largest class of metazoan TFs, Cys2-His2 zinc finger (C2H2-ZF) TFs, across 12 Drosophila species spanning ~45 million years of evolution. Remarkably, we uncovered that a significant fraction of all C2H2-ZF 1-to-1 orthologs in flies exhibit variations that can affect their DNA-binding specificities. In addition to loss and recruitment of C2H2-ZF domains, we found diverging DNA-contacting residues in ~44% of domains shared between D. melanogaster and the other fly species. These diverging DNA-contacting residues, found in ~70% of the D. melanogaster C2H2-ZF genes in our analysis and corresponding to ~26% of all annotated D. melanogaster TFs, show evidence of functional constraint: they tend to be conserved across phylogenetic clades and evolve slower than other diverging residues. These same variations were rarely found as polymorphisms within a population of D. melanogaster flies, indicating their rapid fixation. The predicted specificities of these dynamic domains gradually change across phylogenetic distances, suggesting stepwise evolutionary trajectories for TF divergence. Further, whereas proteins with conserved C2H2-ZF domains are enriched in developmental functions, those with varying domains exhibit no functional enrichments. Our work suggests that a subset of highly dynamic and largely unstudied TFs are a likely source of regulatory variation in Drosophila and other metazoans.
Collapse
Affiliation(s)
- Shilpa Nadimpalli
- Department of Computer Science, Princeton University, Princeton, New Jersey, United States of America
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Anton V. Persikov
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Mona Singh
- Department of Computer Science, Princeton University, Princeton, New Jersey, United States of America
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
16
|
Barrios AW, Sánchez-Quinteiro P, Salazar I. Dog and mouse: toward a balanced view of the mammalian olfactory system. Front Neuroanat 2014; 8:106. [PMID: 25309347 PMCID: PMC4174761 DOI: 10.3389/fnana.2014.00106] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/09/2014] [Indexed: 11/23/2022] Open
Abstract
Although the most intensively studied mammalian olfactory system is that of the mouse, in which olfactory chemical cues of one kind or another are detected in four different nasal areas [the main olfactory epithelium (MOE), the septal organ (SO), Grüneberg's ganglion, and the sensory epithelium of the vomeronasal organ (VNO)], the extraordinarily sensitive olfactory system of the dog is also an important model that is increasingly used, for example in genomic studies of species evolution. Here we describe the topography and extent of the main olfactory and vomeronasal sensory epithelia of the dog, and we report finding no structures equivalent to the Grüneberg ganglion and SO of the mouse. Since we examined adults, newborns, and fetuses we conclude that these latter structures are absent in dogs, possibly as the result of regression or involution. The absence of a vomeronasal component based on VR2 receptors suggests that the VNO may be undergoing a similar involutionary process.
Collapse
Affiliation(s)
| | | | - Ignacio Salazar
- Unit of Anatomy and Embryology, Department of Anatomy and Animal Production, Faculty of Veterinary, University of Santiago de CompostelaLugo, Spain
| |
Collapse
|
17
|
Warnefors M, Kaessmann H. Evolution of the correlation between expression divergence and protein divergence in mammals. Genome Biol Evol 2013; 5:1324-35. [PMID: 23781097 PMCID: PMC3730345 DOI: 10.1093/gbe/evt093] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Divergence of protein sequences and gene expression patterns are two fundamental mechanisms that generate organismal diversity. Here, we have used genome and transcriptome data from eight mammals and one bird to study the positive correlation of these two processes throughout mammalian evolution. We demonstrate that the correlation is stable over time and most pronounced in neural tissues, which indicates that it is the result of strong negative selection. The correlation is not driven by genes with specific functions and may instead best be viewed as an evolutionary default state, which can nevertheless be evaded by certain gene types. In particular, genes with developmental and neural functions are skewed toward changes in gene expression, consistent with selection against pleiotropic effects associated with changes in protein sequences. Surprisingly, we find that the correlation between expression divergence and protein divergence is not explained by between-gene variation in expression level, tissue specificity, protein connectivity, or other investigated gene characteristics, suggesting that it arises independently of these gene traits. The selective constraints on protein sequences and gene expression patterns also fluctuate in a coordinate manner across phylogenetic branches: We find that gene-specific changes in the rate of protein evolution in a specific mammalian lineage tend to be accompanied by similar changes in the rate of expression evolution. Taken together, our findings highlight many new aspects of the correlation between protein divergence and expression divergence, and attest to its role as a fundamental property of mammalian genome evolution.
Collapse
Affiliation(s)
- Maria Warnefors
- Center for Integrative Genomics, University of Lausanne, Switzerland.
| | | |
Collapse
|
18
|
Frazer KK, Russello MA. Lack of parallel genetic patterns underlying the repeated ecological divergence of beach and stream-spawning kokanee salmon. J Evol Biol 2013; 26:2606-21. [DOI: 10.1111/jeb.12250] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 07/21/2013] [Accepted: 08/25/2013] [Indexed: 12/23/2022]
Affiliation(s)
- K. K. Frazer
- Department of Biology; The University of British Columbia; Okanagan Campus Kelowna BC Canada
| | - M. A. Russello
- Department of Biology; The University of British Columbia; Okanagan Campus Kelowna BC Canada
| |
Collapse
|
19
|
Wang Y. Locally duplicated ohnologs evolve faster than nonlocally duplicated ohnologs in Arabidopsis and rice. Genome Biol Evol 2013; 5:362-9. [PMID: 23362157 PMCID: PMC3590777 DOI: 10.1093/gbe/evt016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Whole-genome duplications (WGDs) have recurred in the evolution of angiosperms, resulting in many duplicated chromosomal segments. Local gene duplications are also widespread in angiosperms. WGD-derived duplicates, that is, ohnologs, and local duplicates often show contrasting patterns of gene retention and evolution. However, many genes in angiosperms underwent multiple gene duplication events, possibly by different modes, indicating that different modes of gene duplication are not mutually exclusive. In two representative angiosperm genomes, Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), we found that 9.6% and 11.3% of unique ohnologs, corresponding to 15.5% and 17.1% of ohnolog pairs, were also involved in local duplications, respectively. Locally duplicated ohnologs are widely distributed in different duplicated chromosomal segments and functionally biased. Coding sequence divergence between duplicated genes is denoted by nonsynonymous (Ka) and synonymous (Ks) substitution rates. Locally duplicated ohnolog pairs tend to have higher Ka, Ka/Ks, and gene expression divergence than nonlocally duplicated ohnolog pairs. Locally duplicated ohnologs also tend to have higher interspecies sequence divergence. These observations indicate that locally duplicated ohnologs evolve faster than nonlocally duplicated ohnologs. This study highlights the necessity to take local duplications into account when analyzing the evolutionary dynamics of ohnologs.
Collapse
Affiliation(s)
- Yupeng Wang
- Computational Biology Service Unit, Cornell University, USA.
| |
Collapse
|
20
|
On the definition and measurement of pleiotropy. Trends Genet 2013; 29:383-4. [PMID: 23727272 DOI: 10.1016/j.tig.2013.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 05/06/2013] [Indexed: 01/08/2023]
|
21
|
Martin A, Orgogozo V. The Loci of repeated evolution: a catalog of genetic hotspots of phenotypic variation. Evolution 2013; 67:1235-50. [PMID: 23617905 DOI: 10.1111/evo.12081] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 01/26/2013] [Indexed: 12/11/2022]
Abstract
What is the nature of the genetic changes underlying phenotypic evolution? We have catalogued 1008 alleles described in the literature that cause phenotypic differences among animals, plants, and yeasts. Surprisingly, evolution of similar traits in distinct lineages often involves mutations in the same gene ("gene reuse"). This compilation yields three important qualitative implications about repeated evolution. First, the apparent evolution of similar traits by gene reuse can be traced back to two alternatives, either several independent causative mutations or a single original mutational event followed by sorting processes. Second, hotspots of evolution-defined as the repeated occurrence of de novo mutations at orthologous loci and causing similar phenotypic variation-are omnipresent in the literature with more than 100 examples covering various levels of analysis, including numerous gain-of-function events. Finally, several alleles of large effect have been shown to result from the aggregation of multiple small-effect mutations at the same hotspot locus, thus reconciling micromutationist theories of adaptation with the empirical observation of large-effect variants. Although data heterogeneity and experimental biases prevented us from extracting quantitative trends, our synthesis highlights the existence of genetic paths of least resistance leading to viable evolutionary change.
Collapse
Affiliation(s)
- Arnaud Martin
- Department of Ecology and Evolutionary Biology, Cornell University, Corson Hall, 215 Tower Road, Ithaca, New York, 14853, USA.
| | | |
Collapse
|
22
|
Liao BY, Weng MP. Natural selection drives rapid evolution of mouse embryonic heart enhancers. BMC SYSTEMS BIOLOGY 2012; 6 Suppl 2:S1. [PMID: 23281795 PMCID: PMC3521173 DOI: 10.1186/1752-0509-6-s2-s1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background Mouse E11.5 embryonic heart enhancers were found to exhibit exceptionally weak sequence conservation during vertebrate evolution compared to enhancers of other developing organs. However, it is unknown whether this phenomenon is due to elevated mutation rates, or is a consequence of natural selection. Results In this study, based on the aligned orthologous genomic sequences of mouse and other closely related mammals, the substitution rates of fourfold degenerate sites or intron sequences in neighboring genes were used as neutral references to normalize substitution rates of mouse enhancers. Subsequent comparisons indicated that heart enhancers' evolutionary rates were increased by natural selection. Correspondingly, the results of Fisher's exact tests to examine the differential enrichment of substitutions between enhancers and neutral sequences suggest that both relaxed purifying selection and positive selection caused the rapid evolution of heart enhancers. Analyses on recombination rates and substitution patterns indicated that GC-biased gene conversion does not contribute to evolutionary rate variations among enhancers. In general, pleiotropic enhancers and enhancers in proximity to weakly expressed genes, tend to evolve slowly. Although heart enhancers are less pleiotropic and are adjacent to highly expressed genes, these biases do not account for the rapid evolution observed. Conclusions In combination, the results of the present study suggest that factors associated with functions or characteristics of the tissue may exert direct and profound effects on the intensity and direction of the natural selection applied to regulatory DNAs, such as enhancers.
Collapse
Affiliation(s)
- Ben-Yang Liao
- Division of Biostatistics & Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan, ROC.
| | | |
Collapse
|
23
|
Salazar I, Cifuentes JM, Sánchez-Quinteiro P. Morphological and Immunohistochemical Features of the Vomeronasal System in Dogs. Anat Rec (Hoboken) 2012; 296:146-55. [DOI: 10.1002/ar.22617] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 08/30/2012] [Accepted: 09/18/2012] [Indexed: 01/12/2023]
|
24
|
Park S, Yang JS, Kim J, Shin YE, Hwang J, Park J, Jang SK, Kim S. Evolutionary history of human disease genes reveals phenotypic connections and comorbidity among genetic diseases. Sci Rep 2012; 2:757. [PMID: 23091697 PMCID: PMC3477654 DOI: 10.1038/srep00757] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 10/03/2012] [Indexed: 01/02/2023] Open
Abstract
The extent to which evolutionary changes have impacted the phenotypic relationships among human diseases remains unclear. In this work, we report that phenotypically similar diseases are connected by the evolutionary constraints on human disease genes. Human disease groups can be classified into slowly or rapidly evolving classes, where the diseases in the slowly evolving class are enriched with morphological phenotypes and those in the rapidly evolving class are enriched with physiological phenotypes. Our findings establish a clear evolutionary connection between disease classes and disease phenotypes for the first time. Furthermore, the high comorbidity found between diseases connected by similar evolutionary constraints enables us to improve the predictability of the relative risk of human diseases. We find the evolutionary constraints on disease genes are a new layer of molecular connection in the network-based exploration of human diseases.
Collapse
Affiliation(s)
- Solip Park
- School of Interdisciplinary Bioscience and Bioengineering, Biotechnology Research Center, Pohang University of Science and Technology, Pohang, Korea
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Escalante AE, Inouye S, Travisano M. A spectrum of pleiotropic consequences in development due to changes in a regulatory pathway. PLoS One 2012; 7:e43413. [PMID: 22937047 PMCID: PMC3427377 DOI: 10.1371/journal.pone.0043413] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 07/20/2012] [Indexed: 01/29/2023] Open
Abstract
Regulatory evolution has frequently been proposed as the primary mechanism driving morphological evolution. This is because regulatory changes may be less likely to cause deleterious pleiotropic effects than changes in protein structure, and consequently have a higher likelihood to be beneficial. We examined the potential for mutations in trans acting regulatory elements to drive phenotypic change, and the predictability of such change. We approach these questions by the study of the phenotypic scope and size of controlled alteration in the developmental network of the bacterium Myxococcus xanthus. We perturbed the expression of a key regulatory gene (fruA) by constructing independent in-frame deletions of four trans acting regulatory loci that modify its expression. While mutants retained developmental capability, the deletions caused changes in the expression of fruA and a dramatic shortening of time required for completion of development. We found phenotypic changes in the majority of traits measured, indicating pleiotropic effects of changes in regulation. The magnitude of the change for different traits was variable but the extent of differences between the mutants and parental type were consistent with changes in fruA expression. We conclude that changes in the expression of essential regulatory regions of developmental networks may simultaneously lead to modest as well as dramatic morphological changes upon which selection may subsequently act.
Collapse
Affiliation(s)
- Ana E Escalante
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America.
| | | | | |
Collapse
|
26
|
Piasecka B, Robinson-Rechavi M, Bergmann S. Correcting for the bias due to expression specificity improves the estimation of constrained evolution of expression between mouse and human. ACTA ACUST UNITED AC 2012; 28:1865-72. [PMID: 22576178 PMCID: PMC3389764 DOI: 10.1093/bioinformatics/bts266] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Motivation: Comparative analyses of gene expression data from different species have become an important component of the study of molecular evolution. Thus methods are needed to estimate evolutionary distances between expression profiles, as well as a neutral reference to estimate selective pressure. Divergence between expression profiles of homologous genes is often calculated with Pearson's or Euclidean distance. Neutral divergence is usually inferred from randomized data. Despite being widely used, neither of these two steps has been well studied. Here, we analyze these methods formally and on real data, highlight their limitations and propose improvements. Results: It has been demonstrated that Pearson's distance, in contrast to Euclidean distance, leads to underestimation of the expression similarity between homologous genes with a conserved uniform pattern of expression. Here, we first extend this study to genes with conserved, but specific pattern of expression. Surprisingly, we find that both Pearson's and Euclidean distances used as a measure of expression similarity between genes depend on the expression specificity of those genes. We also show that the Euclidean distance depends strongly on data normalization. Next, we show that the randomization procedure that is widely used to estimate the rate of neutral evolution is biased when broadly expressed genes are abundant in the data. To overcome this problem, we propose a novel randomization procedure that is unbiased with respect to expression profiles present in the datasets. Applying our method to the mouse and human gene expression data suggests significant gene expression conservation between these species. Contact:marc.robinson-rechavi@unil.ch; sven.bergmann@unil.ch Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Barbara Piasecka
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | | | | |
Collapse
|
27
|
Yang D, Zhong F, Li D, Liu Z, Wei H, Jiang Y, He F. General trends in the utilization of structural factors contributing to biological complexity. Mol Biol Evol 2012; 29:1957-68. [PMID: 22328715 DOI: 10.1093/molbev/mss064] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
During evolution, proteins containing newly emerged domains and the increasing proportion of multidomain proteins in the full genome-encoded proteome (GEP) have substantially contributed to increasing biological complexity. However, it is not known how these two potential structural factors are preferentially utilized at given physiological states. Here, we classified proteins according to domain number and domain age and explored the general trends across species for the utilization of proteins from GEP to various certain-state proteomes (CSPs, i.e., all the proteins expressed at certain physiological states). We found that multidomain proteins or only older domain-containing proteins are significantly overrepresented in CSPs compared with GEP, which is a trend that is stronger in multicellular organisms than in unicellular organisms. Interestingly, the strengths of overrepresentation decreased during evolution of multicellular eukaryotes. When comparing across CSPs, we found that multidomain proteins are more overrepresented in complex tissues than in simpler ones, whereas no difference among proteins with domains of different ages is evident between complex and simple tissues. Thus, biological complexity under certain conditions is more significantly realized by diverse domain organization than by the emergence of new types of domain. In addition, we found that multidomain or only older domain-containing proteins tend to evolve slowly and generally are under stronger purifying selection, which may partly result from their general overrepresentation trends in CSPs.
Collapse
Affiliation(s)
- Dong Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P R China
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Gene duplication plays key roles in organismal evolution. Duplicate genes, if they survive, tend to diverge in regulatory and coding regions. Divergences in coding regions, especially those that can change the function of the gene, can be caused by amino acid-altering substitutions and/or alterations in exon-intron structure. Much has been learned about the mode, tempo, and consequences of nucleotide substitutions, yet relatively little is known about structural divergences. In this study, by analyzing 612 pairs of sibling paralogs from seven representative gene families and 300 pairs of one-to-one orthologs from different species, we investigated the occurrence and relative importance of structural divergences during the evolution of duplicate and nonduplicate genes. We found that structural divergences have been very prevalent in duplicate genes and, in many cases, have led to the generation of functionally distinct paralogs. Comparisons of the genomic sequences of these genes further indicated that the differences in exon-intron structure were actually accomplished by three main types of mechanisms (exon/intron gain/loss, exonization/pseudoexonization, and insertion/deletion), each of which contributed differently to structural divergence. Like nucleotide substitutions, insertion/deletion and exonization/pseudoexonization occurred more or less randomly, with the number of observable mutational events per gene pair being largely proportional to evolutionary time. Notably, however, compared with paralogs with similar evolutionary times, orthologs have accumulated significantly fewer structural changes, whereas the amounts of amino acid replacements accumulated did not show clear differences. This finding suggests that structural divergences have played a more important role during the evolution of duplicate than nonduplicate genes.
Collapse
|
29
|
Wang Y, Wang X, Tang H, Tan X, Ficklin SP, Feltus FA, Paterson AH. Modes of gene duplication contribute differently to genetic novelty and redundancy, but show parallels across divergent angiosperms. PLoS One 2011; 6:e28150. [PMID: 22164235 PMCID: PMC3229532 DOI: 10.1371/journal.pone.0028150] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 11/02/2011] [Indexed: 11/18/2022] Open
Abstract
Background Both single gene and whole genome duplications (WGD) have recurred in angiosperm evolution. However, the evolutionary effects of different modes of gene duplication, especially regarding their contributions to genetic novelty or redundancy, have been inadequately explored. Results In Arabidopsis thaliana and Oryza sativa (rice), species that deeply sample botanical diversity and for which expression data are available from a wide range of tissues and physiological conditions, we have compared expression divergence between genes duplicated by six different mechanisms (WGD, tandem, proximal, DNA based transposed, retrotransposed and dispersed), and between positional orthologs. Both neo-functionalization and genetic redundancy appear to contribute to retention of duplicate genes. Genes resulting from WGD and tandem duplications diverge slowest in both coding sequences and gene expression, and contribute most to genetic redundancy, while other duplication modes contribute more to evolutionary novelty. WGD duplicates may more frequently be retained due to dosage amplification, while inferred transposon mediated gene duplications tend to reduce gene expression levels. The extent of expression divergence between duplicates is discernibly related to duplication modes, different WGD events, amino acid divergence, and putatively neutral divergence (time), but the contribution of each factor is heterogeneous among duplication modes. Gene loss may retard inter-species expression divergence. Members of different gene families may have non-random patterns of origin that are similar in Arabidopsis and rice, suggesting the action of pan-taxon principles of molecular evolution. Conclusion Gene duplication modes differ in contribution to genetic novelty and redundancy, but show some parallels in taxa separated by hundreds of millions of years of evolution.
Collapse
Affiliation(s)
- Yupeng Wang
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia, United States of America
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
| | - Xiyin Wang
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia, United States of America
- College of Life Sciences, Hebei United University, Tangshan, Hebei, China
| | - Haibao Tang
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia, United States of America
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - Xu Tan
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia, United States of America
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - Stephen P. Ficklin
- Plant and Environmental Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - F. Alex Feltus
- Plant and Environmental Sciences, Clemson University, Clemson, South Carolina, United States of America
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Andrew H. Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia, United States of America
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
- Department of Crop and Soil Sciences, University of Georgia, Athens, Georgia, United States of America
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
30
|
Muralla R, Lloyd J, Meinke D. Molecular foundations of reproductive lethality in Arabidopsis thaliana. PLoS One 2011; 6:e28398. [PMID: 22164284 PMCID: PMC3229588 DOI: 10.1371/journal.pone.0028398] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 11/07/2011] [Indexed: 11/23/2022] Open
Abstract
The SeedGenes database (www.seedgenes.org) contains information on more than 400 genes required for embryo development in Arabidopsis. Many of these EMBRYO-DEFECTIVE (EMB) genes encode proteins with an essential function required throughout the life cycle. This raises a fundamental question. Why does elimination of an essential gene in Arabidopsis often result in embryo lethality rather than gametophyte lethality? In other words, how do mutant (emb) gametophytes survive and participate in fertilization when an essential cellular function is disrupted? Furthermore, why do some mutant embryos proceed further in development than others? To address these questions, we first established a curated dataset of genes required for gametophyte development in Arabidopsis based on information extracted from the literature. This provided a basis for comparison with EMB genes obtained from the SeedGenes dataset. We also identified genes that exhibited both embryo and gametophyte defects when disrupted by a loss-of-function mutation. We then evaluated the relationship between mutant phenotype, gene redundancy, mutant allele strength, gene expression pattern, protein function, and intracellular protein localization to determine what factors influence the phenotypes of lethal mutants in Arabidopsis. After removing cases where continued development potentially resulted from gene redundancy or residual function of a weak mutant allele, we identified numerous examples of viable mutant (emb) gametophytes that required further explanation. We propose that the presence of gene products derived from transcription in diploid (heterozygous) sporocytes often enables mutant gametophytes to survive the loss of an essential gene in Arabidopsis. Whether gene disruption results in embryo or gametophyte lethality therefore depends in part on the ability of residual, parental gene products to support gametophyte development. We also highlight here 70 preglobular embryo mutants with a zygotic pattern of inheritance, which provide valuable insights into the maternal-to-zygotic transition in Arabidopsis and the timing of paternal gene activation during embryo development.
Collapse
Affiliation(s)
- Rosanna Muralla
- Department of Botany, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Johnny Lloyd
- Department of Botany, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - David Meinke
- Department of Botany, Oklahoma State University, Stillwater, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
31
|
Chang AYF, Liao BY. DNA methylation rebalances gene dosage after mammalian gene duplications. Mol Biol Evol 2011; 29:133-44. [PMID: 21821837 DOI: 10.1093/molbev/msr174] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although gene duplication plays a major role in organismal evolution, it may also lead to gene dosage imbalance, thereby having an immediate adverse effect on an organism's fitness. Investigating the evolution of the expression patterns of genes that duplicated after the divergence of rodents and primates, we confirm that adaptive evolution has been involved in dosage rebalance after gene duplication. To understand mechanisms underlying this process, we examined 1) microRNA (miRNA)-mediated gene regulation, 2) cis-regulatory sequence modifications, and 3) DNA methylation. Neither miRNA-mediated regulation nor cis-regulatory changes was found to be associated with expression reduction of duplicate genes. By contrast, duplicate genes, especially lowly expressed copies, were heavily methylated in the upstream region. However, for duplicate genes encoding proteins that are members of macromolecular complexes, heavy methylation in the genic region was not consistently observed. This result held after controlling potential confounding factors, such as enrichment in functional categories. Our results suggest that during mammalian evolution, DNA methylation plays a dominant role in dosage rebalance after gene duplication by inhibiting transcription initiation of duplicate genes.
Collapse
Affiliation(s)
- Andrew Ying-Fei Chang
- Division of Biostatistics & Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Taiwan, Republic of China
| | | |
Collapse
|
32
|
Abstract
Despite our extensive knowledge about the rate of protein sequence evolution for thousands of genes in hundreds of species, the corresponding rate of protein function evolution is virtually unknown, especially at the genomic scale. This lack of knowledge is primarily because of the huge diversity in protein function and the consequent difficulty in gauging and comparing rates of protein function evolution. Nevertheless, most proteins function through interacting with other proteins, and protein-protein interaction (PPI) can be tested by standard assays. Thus, the rate of protein function evolution may be measured by the rate of PPI evolution. Here, we experimentally examine 87 potential interactions between Kluyveromyces waltii proteins, whose one to one orthologs in the related budding yeast Saccharomyces cerevisiae have been reported to interact. Combining our results with available data from other eukaryotes, we estimate that the evolutionary rate of protein interaction is (2.6 ± 1.6) × 10(-10) per PPI per year, which is three orders of magnitude lower than the rate of protein sequence evolution measured by the number of amino acid substitutions per protein per year. The extremely slow evolution of protein molecular function may account for the remarkable conservation of life at molecular and cellular levels and allow for studying the mechanistic basis of human disease in much simpler organisms.
Collapse
|
33
|
Fraser HB. Genome-wide approaches to the study of adaptive gene expression evolution: systematic studies of evolutionary adaptations involving gene expression will allow many fundamental questions in evolutionary biology to be addressed. Bioessays 2011; 33:469-77. [PMID: 21538412 DOI: 10.1002/bies.201000094] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The role of gene expression in evolutionary adaptation has been a subject of debate for over 40 years. cis-regulation of transcription has been proposed to be the primary source of morphological novelty in evolution, though this is based on only a handful of examples. Recently the first genome-wide studies of gene expression adaptation have been published, giving us an initial global view of this process. Systematic studies such as these will allow a number of key questions currently facing the field of gene expression evolution to be addressed.
Collapse
Affiliation(s)
- Hunter B Fraser
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
34
|
Fraser HB, Babak T, Tsang J, Zhou Y, Zhang B, Mehrabian M, Schadt EE. Systematic detection of polygenic cis-regulatory evolution. PLoS Genet 2011; 7:e1002023. [PMID: 21483757 PMCID: PMC3069120 DOI: 10.1371/journal.pgen.1002023] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 01/26/2011] [Indexed: 01/07/2023] Open
Abstract
The idea that most morphological adaptations can be attributed to changes in the cis-regulation of gene expression levels has been gaining increasing acceptance, despite the fact that only a handful of such cases have so far been demonstrated. Moreover, because each of these cases involves only one gene, we lack any understanding of how natural selection may act on cis-regulation across entire pathways or networks. Here we apply a genome-wide test for selection on cis-regulation to two subspecies of the mouse Mus musculus. We find evidence for lineage-specific selection at over 100 genes involved in diverse processes such as growth, locomotion, and memory. These gene sets implicate candidate genes that are supported by both quantitative trait loci and a validated causality-testing framework, and they predict a number of phenotypic differences, which we confirm in all four cases tested. Our results suggest that gene expression adaptation is widespread and that these adaptations can be highly polygenic, involving cis-regulatory changes at numerous functionally related genes. These coordinated adaptations may contribute to divergence in a wide range of morphological, physiological, and behavioral phenotypes.
Collapse
Affiliation(s)
- Hunter B. Fraser
- Rosetta Inpharmatics, Seattle, Washington, United States of
America
| | - Tomas Babak
- Rosetta Inpharmatics, Seattle, Washington, United States of
America
| | - John Tsang
- Rosetta Inpharmatics, Seattle, Washington, United States of
America
| | - Yiqi Zhou
- Department of Biology, Stanford University, Stanford, California, United
States of America
| | - Bin Zhang
- Rosetta Inpharmatics, Seattle, Washington, United States of
America
| | - Margarete Mehrabian
- Department of Medicine, David Geffen School of Medicine, University of
California Los Angeles, Los Angeles, California, United States of
America
| | - Eric E. Schadt
- Rosetta Inpharmatics, Seattle, Washington, United States of
America
| |
Collapse
|
35
|
Abstract
That regulatory evolution is important in generating phenotypic diversity was suggested soon after the discovery of gene regulation. In the past few decades, studies in animals have provided a number of examples in which phenotypic changes can be traced back to specific alterations in transcriptional regulation. Recent advances in DNA sequencing technology and functional genomics have stimulated a new wave of investigation in simple model organisms. In particular, several genome-wide comparative analyses of transcriptional circuits across different yeast species have been performed. These studies have revealed that transcription networks are remarkably plastic: large scale rewiring in which target genes move in and out of regulons through changes in cis-regulatory sequences appears to be a general phenomenon. Transcription factor substitution and the formation of new combinatorial interactions are also important contributors to the rewiring. In several cases, a transition through intermediates with redundant regulatory programs has been suggested as a mechanism through which rewiring can occur without a loss in fitness. Because the basic features of transcriptional regulation are deeply conserved, we speculate that large scale rewiring may underlie the evolution of complex phenotypes in multi-cellular organisms; if so, such rewiring may leave traceable changes in the genome from which the genetic basis of functional innovation can be detected.
Collapse
Affiliation(s)
- Hao Li
- Department of Biochemistry and Biophysics, University of California-San Francisco, CA, USA.
| | | |
Collapse
|
36
|
Streisfeld MA, Rausher MD. Population genetics, pleiotropy, and the preferential fixation of mutations during adaptive evolution. Evolution 2010; 65:629-42. [PMID: 21054357 DOI: 10.1111/j.1558-5646.2010.01165.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Ongoing debate centers on whether certain types of mutations are fixed preferentially during adaptive evolution. Although there has been much discussion, no quantitative framework currently exists to test for these biases. Here, we describe a method for distinguishing between the two processes that likely account for biased rates of substitution: variation in mutation rates and variation in the probability that a mutation becomes fixed once it arises. We then use this approach to examine the type and magnitude of these biases during evolutionary transitions across multiple scales: those involving repeated origins of individual traits (flower color change), and transitions involving broad suites of traits (morphological and physiological trait evolution in plants and animals). We show that fixation biases can be strong at both levels of comparison, likely due to differences in the magnitude of deleterious pleiotropy associated with alternative mutation categories. However, we also show that the scale at which these comparisons are made greatly influences the results, as broad comparisons that simultaneously analyze multiple traits obscure heterogeneity in the direction and magnitude of these biases. We conclude that preferential fixation of mutations likely is common in nature, but should be studied on a trait-by-trait basis.
Collapse
Affiliation(s)
- Matthew A Streisfeld
- Center for Ecology and Evolutionary Biology, 5289 University of Oregon, Eugene, Oregon 97403, USA.
| | | |
Collapse
|
37
|
Wang Y, Robbins KR, Rekaya R. Comparison of computational models for assessing conservation of gene expression across species. PLoS One 2010; 5:e13239. [PMID: 20949029 PMCID: PMC2951896 DOI: 10.1371/journal.pone.0013239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 09/10/2010] [Indexed: 11/22/2022] Open
Abstract
Assessing conservation/divergence of gene expression across species is important for the understanding of gene regulation evolution. Although advances in microarray technology have provided massive high-dimensional gene expression data, the analysis of such data is still challenging. To date, assessing cross-species conservation of gene expression using microarray data has been mainly based on comparison of expression patterns across corresponding tissues, or comparison of co-expression of a gene with a reference set of genes. Because direct and reliable high-throughput experimental data on conservation of gene expression are often unavailable, the assessment of these two computational models is very challenging and has not been reported yet. In this study, we compared one corresponding tissue based method and three co-expression based methods for assessing conservation of gene expression, in terms of their pair-wise agreements, using a frequently used human-mouse tissue expression dataset. We find that 1) the co-expression based methods are only moderately correlated with the corresponding tissue based methods, 2) the reliability of co-expression based methods is affected by the size of the reference ortholog set, and 3) the corresponding tissue based methods may lose some information for assessing conservation of gene expression. We suggest that the use of either of these two computational models to study the evolution of a gene's expression may be subject to great uncertainty, and the investigation of changes in both gene expression patterns over corresponding tissues and co-expression of the gene with other genes is necessary.
Collapse
Affiliation(s)
- Yupeng Wang
- Department of Animal and Dairy Science, University of Georgia, Athens, Georgia, United States of America.
| | | | | |
Collapse
|
38
|
Olsson L, Levit GS, Hossfeld U. Evolutionary developmental biology: its concepts and history with a focus on Russian and German contributions. Naturwissenschaften 2010; 97:951-69. [PMID: 20865238 DOI: 10.1007/s00114-010-0720-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 09/13/2010] [Accepted: 09/14/2010] [Indexed: 10/19/2022]
Abstract
Evolutionary theory has been likened to a "universal acid" (Dennett 1995) that eats its way into more and more areas of science. Recently, developmental biology has been infused by evolutionary concepts and perspectives, and a new field of research--evolutionary developmental biology--has been created and is often called EvoDevo for short. However, this is not the first attempt to make a synthesis between these two areas of biology. In contrast, beginning right after the publication of Darwin's Origin in 1859, Ernst Haeckel formulated his biogenetic law in 1872, famously stating that ontogeny recapitulates phylogeny. Haeckel was in his turn influenced by pre-Darwinian thinkers such as Karl Ernst von Baer, who had noted that earlier developmental stages show similarities not seen in the adults. In this review, written for an audience of non-specialists, we first give an overview of the history of EvoDevo, especially the tradition emanating from Haeckel and other comparative embryologists and morphologists, which has often been neglected in discussions about the history of EvoDevo and evolutionary biology. Here we emphasize contributions from Russian and German scientists to compensate for the Anglo-American bias in the literature. In Germany, the direct influence of Ernst Haeckel was felt particularly in Jena, where he spent his entire career as a professor, and we give an overview of the "Jena school" of evolutionary morphology, with protagonists such as Oscar Hertwig, Ludwig Plate, and Victor Franz, who all developed ideas that we would nowadays think of as belonging to EvoDevo. Franz ideas about "biometabolic modi" are similar to those of a Russian comparative morphologist that visited Jena repeatedly, A. N. Sewertzoff, who made important contributions to what we now call heterochrony research--heterochrony meaning changes in the relative timing of developmental events. His student I. I. Schmalhausen became an important contributor to the synthetic theory of evolution in Russia and is only partly known outside of the Russian-reading world because only one of his many books was translated into English early on. He made many important contributions to evolutionary theory and we point out the important parallels between Schmalhausen's ideas (stabilizing selection, autonomization) and C. H. Waddington's (canalization, genetic assimilation). This is one of the many parallels that have contributed to an increased appreciation of the internationality of progress in evolutionary thinking in the first half of the twentieth century. A direct link between German and Russian evolutionary biology is provided by N. V. Timoféeff-Ressovsky, whose work on, e.g., fly genetics in Berlin is a crucial part of the history of evo-devo. To emphasize the international nature of heterochrony research as predecessor to the modern era of EvoDevo, we include Sir G. R. de Beer's work in the UK. This historical part is followed by a short review of the discovery and importance of homeobox genes and of some of the major concepts that form the core of modern EvoDevo, such as modularity, constraints, and evolutionary novelties. Major trends in contemporary EvoDevo are then outlined, such as increased use of genomics and molecular genetics, computational and bioinformatics approaches, ecological developmental biology (eco-devo), and phylogenetically informed comparative embryology. Based on our survey, we end the review with an outlook on future trends and important issues in EvoDevo.
Collapse
Affiliation(s)
- Lennart Olsson
- Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-Universität, Erbertstr. 1, 07743, Jena, Germany.
| | | | | |
Collapse
|