1
|
Multi-scale Chimerism: An experimental window on the algorithms of anatomical control. Cells Dev 2022; 169:203764. [PMID: 34974205 DOI: 10.1016/j.cdev.2021.203764] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/12/2021] [Accepted: 12/24/2021] [Indexed: 12/22/2022]
Abstract
Despite the immense progress in genetics and cell biology, major knowledge gaps remain with respect to prediction and control of the global morphologies that will result from the cooperation of cells with known genomes. The understanding of cooperativity, competition, and synergy across diverse biological scales has been obscured by a focus on standard model systems that exhibit invariant species-specific anatomies. Morphogenesis of chimeric biological material is an especially instructive window on the control of biological growth and form because it emphasizes the need for prediction without reliance on familiar, standard outcomes. Here, we review an important and fascinating body of data from experiments utilizing DNA transfer, cell transplantation, organ grafting, and parabiosis. We suggest that these are all instances (at different levels of organization) of one general phenomenon: chimerism. Multi-scale chimeras are a powerful conceptual and experimental tool with which to probe the mapping between properties of components and large-scale anatomy: the laws of morphogenesis. The existing data and future advances in this field will impact not only the understanding of cooperation and the evolution of body forms, but also the design of strategies for system-level outcomes in regenerative medicine and swarm robotics.
Collapse
|
2
|
Schroeder KM, Remage-Healey L. Adult-like neural representation of species-specific songs in the auditory forebrain of zebra finch nestlings. Dev Neurobiol 2021; 81:123-138. [PMID: 33369121 PMCID: PMC7969438 DOI: 10.1002/dneu.22802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/22/2020] [Accepted: 12/21/2020] [Indexed: 12/30/2022]
Abstract
Encoding of conspecific signals during development can reinforce species barriers as well as set the stage for learning and production of species-typical vocalizations. In altricial songbirds, the development of the auditory system is not complete at hatching, so it is unknown the degree to which recently hatched young can process auditory signals like birdsong. We measured in vivo extracellular responses to song stimuli in a zebra finch (Taeniopygia guttata) secondary auditory forebrain region, the caudomedial nidopallium (NCM). We recorded from three age groups between 13 days post-hatch and adult to identify possible shifts in stimulus encoding that occur before the opening of the sensitive period of song motor learning. We did not find differences in putative cell type composition, firing rate, response strength, and selectivity across ages. Across ages narrow-spiking units had higher firing rates, response strength, accuracy, and trial-by-trial reliability along with lower selectivity than broad-spiking units. In addition, we showed that stimulus-specific adaptation, a characteristic of adult NCM, was also present in nestlings and fledglings. These results indicate that most features of secondary auditory processing are already adult-like shortly after hatching. Furthermore, we showed that selectivity for species-specific stimuli is similar across all ages, with the greatest fidelity in temporal coding in response to conspecific song and domesticated Bengalese finch song, and reduced fidelity in response to owl finch song, a more ecologically relevant heterospecific, and white noise. Our study provides the first evidence that the electrophysiological properties of higher-order auditory neurons are already mature in nestling songbirds.
Collapse
Affiliation(s)
- Katie M. Schroeder
- Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Luke Remage-Healey
- Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, MA, USA
- Center for Neuroendocrine Studies, University of Massachusetts Amherst, Amherst, MA, USA
| |
Collapse
|
3
|
Louder MIM, Lawson S, Lynch KS, Balakrishnan CN, Hauber ME. Neural mechanisms of auditory species recognition in birds. Biol Rev Camb Philos Soc 2019; 94:1619-1635. [PMID: 31066222 DOI: 10.1111/brv.12518] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 01/23/2023]
Abstract
Auditory communication in humans and other animals frequently takes place in noisy environments with many co-occurring signallers. Receivers are thus challenged to rapidly recognize salient auditory signals and filter out irrelevant sounds. Most bird species produce a variety of complex vocalizations that function to communicate with other members of their own species and behavioural evidence broadly supports preferences for conspecific over heterospecific sounds (auditory species recognition). However, it remains unclear whether such auditory signals are categorically recognized by the sensory and central nervous system. Here, we review 53 published studies that compare avian neural responses between conspecific versus heterospecific vocalizations. Irrespective of the techniques used to characterize neural activity, distinct nuclei of the auditory forebrain are consistently shown to be repeatedly conspecific selective across taxa, even in response to unfamiliar individuals with distinct acoustic properties. Yet, species-specific neural discrimination is not a stereotyped auditory response, but is modulated according to its salience depending, for example, on ontogenetic exposure to conspecific versus heterospecific stimuli. Neuromodulators, in particular norepinephrine, may mediate species recognition by regulating the accuracy of neuronal coding for salient conspecific stimuli. Our review lends strong support for neural structures that categorically recognize conspecific signals despite the highly variable physical properties of the stimulus. The available data are in support of a 'perceptual filter'-based mechanism to determine the saliency of the signal, in that species identity and social experience combine to influence the neural processing of species-specific auditory stimuli. Finally, we present hypotheses and their testable predictions, to propose next steps in species-recognition research into the emerging model of the neural conceptual construct in avian auditory recognition.
Collapse
Affiliation(s)
- Matthew I M Louder
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A
| | - Shelby Lawson
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A
| | - Kathleen S Lynch
- Department of Biology, Hofstra University, Hempstead, NY 11759, U.S.A
| | | | - Mark E Hauber
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A
| |
Collapse
|
4
|
|
5
|
Wheatcroft D, Qvarnström A. Genetic divergence of early song discrimination between two young songbird species. Nat Ecol Evol 2017. [DOI: 10.1038/s41559-017-0192] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
6
|
Wheatcroft D, Qvarnström A. A blueprint for vocal learning: auditory predispositions from brains to genomes. Biol Lett 2016; 11:rsbl.2015.0155. [PMID: 26246333 DOI: 10.1098/rsbl.2015.0155] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Memorizing and producing complex strings of sound are requirements for spoken human language. We share these behaviours with likely more than 4000 species of songbirds, making birds our primary model for studying the cognitive basis of vocal learning and, more generally, an important model for how memories are encoded in the brain. In songbirds, as in humans, the sounds that a juvenile learns later in life depend on auditory memories formed early in development. Experiments on a wide variety of songbird species suggest that the formation and lability of these auditory memories, in turn, depend on auditory predispositions that stimulate learning when a juvenile hears relevant, species-typical sounds. We review evidence that variation in key features of these auditory predispositions are determined by variation in genes underlying the development of the auditory system. We argue that increased investigation of the neuronal basis of auditory predispositions expressed early in life in combination with modern comparative genomic approaches may provide insights into the evolution of vocal learning.
Collapse
Affiliation(s)
- David Wheatcroft
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Anna Qvarnström
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| |
Collapse
|
7
|
Rosa Salva O, Mayer U, Vallortigara G. Roots of a social brain: Developmental models of emerging animacy-detection mechanisms. Neurosci Biobehav Rev 2015; 50:150-68. [DOI: 10.1016/j.neubiorev.2014.12.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 12/16/2014] [Accepted: 12/18/2014] [Indexed: 10/24/2022]
|
8
|
Chen CC, Balaban E, Jarvis ED. Interspecies avian brain chimeras reveal that large brain size differences are influenced by cell-interdependent processes. PLoS One 2012; 7:e42477. [PMID: 22860132 PMCID: PMC3408455 DOI: 10.1371/journal.pone.0042477] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/09/2012] [Indexed: 11/19/2022] Open
Abstract
Like humans, birds that exhibit vocal learning have relatively delayed telencephalon maturation, resulting in a disproportionately smaller brain prenatally but enlarged telencephalon in adulthood relative to vocal non-learning birds. To determine if this size difference results from evolutionary changes in cell-autonomous or cell-interdependent developmental processes, we transplanted telencephala from zebra finch donors (a vocal-learning species) into Japanese quail hosts (a vocal non-learning species) during the early neural tube stage (day 2 of incubation), and harvested the chimeras at later embryonic stages (between 9-12 days of incubation). The donor and host tissues fused well with each other, with known major fiber pathways connecting the zebra finch and quail parts of the brain. However, the overall sizes of chimeric finch telencephala were larger than non-transplanted finch telencephala at the same developmental stages, even though the proportional sizes of telencephalic subregions and fiber tracts were similar to normal finches. There were no significant changes in the size of chimeric quail host midbrains, even though they were innervated by the physically smaller zebra finch brain, including the smaller retinae of the finch eyes. Chimeric zebra finch telencephala had a decreased cell density relative to normal finches. However, cell nucleus size differences between each species were maintained as in normal birds. These results suggest that telencephalic size development is partially cell-interdependent, and that the mechanisms controlling the size of different brain regions may be functionally independent.
Collapse
Affiliation(s)
- Chun-Chun Chen
- Department of Neurobiology, Howard Hughes Medical Institute, Duke University, Durham, North Carolina, United States of America
| | - Evan Balaban
- Behavioral Neurosciences Program, McGill University, Montreal, Quebec, Canada
| | - Erich D. Jarvis
- Department of Neurobiology, Howard Hughes Medical Institute, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
9
|
Balaban E, Desco M, Vaquero JJ. Waking-like Brain Function in Embryos. Curr Biol 2012; 22:852-61. [DOI: 10.1016/j.cub.2012.03.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 03/13/2012] [Accepted: 03/13/2012] [Indexed: 10/28/2022]
|
10
|
Harshaw C, Lickliter R. Biased embryos: Prenatal experience alters the postnatal malleability of auditory preferences in bobwhite quail. Dev Psychobiol 2010; 53:291-302. [PMID: 21400491 DOI: 10.1002/dev.20521] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Accepted: 11/04/2010] [Indexed: 11/06/2022]
Abstract
Many precocial birds show a robust preference for the maternal call of their own species before and after hatching. This differential responsiveness to species-specific auditory stimuli by embryos and neonates has been the subject of study for more than four decades, but much remains unknown about the dynamics of this ability. Gottlieb [Gottlieb [1971]. Development of species identification in birds: An enquiry into the prenatal determinants of perception. Chicago/London: University of Chicago Press.] demonstrated that prenatal exposure to embryonic vocalizations serves to canalize the formation of species-specific preferences in ducklings. Apart from this, little is known about the features of the developmental system that serve to canalize such species-typical preferences, on the one hand, and generate novel behavioral phenotypes, on the other. In the current study, we show that briefly exposing bobwhite quail embryos to a heterospecific Japanese quail (JQ) maternal call significantly enhanced their acquisition of a preference for that call when chicks were provided with subsequent postnatal exposure to the same call. This was true whether postnatal exposure involved playback of the maternal call contingent upon chick contact vocalizations or yoked, non-contingent exposure to the call. Chicks that received both passive prenatal and contingent postnatal exposure to the JQ maternal call redirected their species-typical auditory preference, showing a significant preference for JQ call over the call of their own species. In contrast, chicks receiving only prenatal or only postnatal exposure to the JQ call did not show this redirection of their auditory preference. Our results indicate that prenatal sensory stimulation can significantly bias postnatal responsiveness to social stimuli, thereby altering the course of early learning and memory.
Collapse
Affiliation(s)
- Christopher Harshaw
- Department of Psychology, Florida International University, Miami, FL 33199, USA.
| | | |
Collapse
|
11
|
Harshaw C, Tourgeman IP, Lickliter R. Stimulus contingency and the malleability of species-typical auditory preferences in Northern bobwhite (Colinus virginianus) hatchlings. Dev Psychobiol 2008; 50:460-72. [PMID: 18551463 DOI: 10.1002/dev.20309] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Precocial avian hatchlings are typically highly social and show strong species-typical preferences for the maternal calls of their own species. The influence of social contingencies on the acquisition of species-specific preferences has, however, largely been neglected. We found that exposing bobwhite (BW) quail chicks to a Japanese quail (JQ) call contingent on their own vocalizations for 5 min was sufficient to eliminate their species-typical preference for the BW maternal call. Yoked, noncontingent exposure had no such effect. The introduction of variability to the contingency, but not a lengthening of the training session, was found to engender even higher preferences for the JQ call. Chicks provided with contingent exposure to the JQ call on a variable ratio schedule showed a significant preference for the JQ over the BW maternal call, whereas chicks provided with equivalent fixed ratio exposure did not. These results highlight the role that social interaction and contingency can play in the acquisition and maintenance of species-specific auditory preferences in precocial avian species.
Collapse
Affiliation(s)
- Christopher Harshaw
- Department of Psychology, Florida International University, Miami, FL 33199, USA.
| | | | | |
Collapse
|
12
|
Greene M, Schill K, Takahashi S, Bateman-House A, Beauchamp T, Bok H, Cheney D, Coyle J, Deacon T, Dennett D, Donovan P, Flanagan O, Goldman S, Greely H, Martin L, Miller E, Mueller D, Siegel A, Solter D, Gearhart J, McKhann G, Faden R. Ethics: Moral issues of human-non-human primate neural grafting. Science 2005; 309:385-6. [PMID: 16020716 DOI: 10.1126/science.1112207] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Mark Greene
- Department of Philosophy, University of Delaware, Newark, DE 19716, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
The auditory template theory-the conversion of memorized song to produced song using feedback as an error-correction mechanism-is central to neurobiological studies of birdsong learning. The essence of the theory is the construction of a complex sound replica based on a set of both genetic and environmental instructions. These premises, as yet unchallenged, have stimulated much research on the process of vocal imitation. Two somewhat distinct, but closely related streams of research have emerged. One seeks to determine the neural mechanisms that underlie the formation, storage, and retrieval of vocal memories as a consequence of experience during a sensitive phase-the template concept in its purest form. The other aims at establishing an explanatory basis for genetically based species differences in auditory responsiveness; here, the prime focus is on innately specified templates that guide learning preferences in young, naïve birds. The chapter begins with an historical overview of conceptual issues. Then recent progress in the attempt to characterize template properties is reviewed, focusing on selected studies of sparrows, nightingales, and zebra finches. The chapter concludes with a discussion of research strategy and tactics, including suggestions for criteria that must be met in identifying neural substrates for template specification and localization. The chapter is intended to provide a conceptual framework for further progress in this critical area.
Collapse
Affiliation(s)
- Patrice Adret
- Department of Organismal Biology & Anatomy, The University of Chicago, 1027 E. 57th St., Chicago, IL 60637, USA.
| |
Collapse
|
14
|
Halle F, Gahr M, Pieneman AW, Kreutzer M. Recovery of song preferences after excitotoxic HVC lesion in female canaries. JOURNAL OF NEUROBIOLOGY 2002; 52:1-13. [PMID: 12115889 DOI: 10.1002/neu.10058] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The courtship solicitation display (CSD) of the female canary is a model to study estrogen dependent auditory preferences for male songs. The forebrain auditory-vocal nucleus, HVC, is part of the circuit that determines such preferences. To further develop this model we show that bilateral excitotoxic lesions of the medial part of HVC involving between 18-60% of the bilateral nucleus are behaviorally effective while complete unilateral lesions are not. Further, we show that animals recover their song preferences over a period of several months after the lesion. This functional recovery does not involve anatomical recovery of the HVC. Even 9 months after the lesion, the HVC size of these females was similar to that of females sacrificed 2 days after the lesion and thus was 40 +/- 8% smaller compared to normal females. Further, ipsilaterally, the lesion procedure transiently disturbed the neurochemistry, such as GAD-mRNA expression, in the part of HVC that did not undergo cell death. These results suggest that the integrity of the lateral part of at least one HVC is required to perform CSD in response to relevant auditory stimuli.
Collapse
Affiliation(s)
- F Halle
- Laboratoire de Psychophysiologie et d'Ethologie, Université Paris X., 92000 Nanterre, France.
| | | | | | | |
Collapse
|