1
|
Garrett JT, Tendler S, Feroz W, Kilroy MK, Yu H. Emerging importance of HER3 in tumorigenesis and cancer therapy. Nat Rev Clin Oncol 2025:10.1038/s41571-025-01008-y. [PMID: 40087402 DOI: 10.1038/s41571-025-01008-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2025] [Indexed: 03/17/2025]
Abstract
HER3 is a member of the HER/ErbB family of receptor tyrosine kinases, together with EGFR (HER1), HER2 and HER4. Despite having only weak intrinsic kinase activity, HER3 can contribute to oncogenic signalling via ligand-induced heterodimerization with other HER family members. Evidence indicates that HER3 is altered or aberrantly expressed across a variety of tumour types and can be associated with poor clinical outcomes. Whereas anticancer agents targeting EGFR and HER2 have been approved for decades, no drug targeting HER3 had been approved until very recently. Initial targeting of HER3 with monoclonal antibodies as single agents or in combination with other therapeutics produced disappointing clinical results. Subsequently, efforts have been made to target HER3 with novel agents such as antibody-drug conjugates and bispecific antibodies, with promising efficacy observed in several trials encompassing various tumour types. In December 2024, the HER3 × HER2 bispecific antibody zenocutuzumab was granted FDA Accelerated Approval for the treatment of non-small-cell lung cancers or pancreatic cancers harbouring fusions involving NRG1, the gene encoding the high-affinity HER3 ligand neuregulin 1. In this Review, we provide an essential guide to HER3 signalling and oncogenesis, HER3 expression in cancer and its prognostic implications, oncogenic HER3 somatic mutations as well as rare NRG1 fusions that might depend on HER3 signalling, and the roles of HER3 in resistance to cancer therapies. We also highlight efforts to target HER3 with diverse therapeutic strategies and the potential interplay between HER3 and the antitumour immune response.
Collapse
Affiliation(s)
- Joan T Garrett
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA.
| | - Salomon Tendler
- Department of Medicine, Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wasim Feroz
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Mary Kate Kilroy
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Helena Yu
- Department of Medicine, Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
2
|
Ryspayeva D, Seyhan AA, MacDonald WJ, Purcell C, Roady TJ, Ghandali M, Verovkina N, El-Deiry WS, Taylor MS, Graff SL. Signaling pathway dysregulation in breast cancer. Oncotarget 2025; 16:168-201. [PMID: 40080721 PMCID: PMC11906143 DOI: 10.18632/oncotarget.28701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/03/2025] [Indexed: 03/15/2025] Open
Abstract
This article provides a comprehensive analysis of the signaling pathways implicated in breast cancer (BC), the most prevalent malignancy among women and a leading cause of cancer-related mortality globally. Special emphasis is placed on the structural dynamics of protein complexes that are integral to the regulation of these signaling cascades. Dysregulation of cellular signaling is a fundamental aspect of BC pathophysiology, with both upstream and downstream signaling cascade activation contributing to cellular process aberrations that not only drive tumor growth, but also contribute to resistance against current treatments. The review explores alterations within these pathways across different BC subtypes and highlights potential therapeutic strategies targeting these pathways. Additionally, the influence of specific mutations on therapeutic decision-making is examined, underscoring their relevance to particular BC subtypes. The article also discusses both approved therapeutic modalities and ongoing clinical trials targeting disrupted signaling pathways. However, further investigation is necessary to fully elucidate the underlying mechanisms and optimize personalized treatment approaches.
Collapse
Affiliation(s)
- Dinara Ryspayeva
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Pathobiology Graduate Program, Brown University, RI 02903, USA
| | - William J. MacDonald
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Connor Purcell
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Tyler J. Roady
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Pathobiology Graduate Program, Brown University, RI 02903, USA
| | - Maryam Ghandali
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Nataliia Verovkina
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Pathobiology Graduate Program, Brown University, RI 02903, USA
- Department of Medicine, Hematology/Oncology Division, Lifespan Health System and Brown University, RI 02903, USA
| | - Martin S. Taylor
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Pathobiology Graduate Program, Brown University, RI 02903, USA
- Brown Center on the Biology of Aging, Brown University, RI 02903, USA
| | - Stephanie L. Graff
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Department of Medicine, Hematology/Oncology Division, Lifespan Health System and Brown University, RI 02903, USA
| |
Collapse
|
3
|
Chen Z, He R, Huang S, Zhou Y, Zhang Z, Wang Z, Ding K. Discovery of CZY43 as a new small-molecule degrader of pseudokinase HER3. Eur J Med Chem 2025; 285:117258. [PMID: 39818014 DOI: 10.1016/j.ejmech.2025.117258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/24/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025]
Abstract
The pseudokinase HER3 emerges as a promising anti-cancer target, especially for HER2-driven breast cancer and EGFR-mediated non-small cell lung cancer. However, it is challenging to target HER3 by ATP-competitive small molecules because HER3 is catalytically impaired. Herein, we report the discovery of a series of HER3 degraders by connecting a HER3 binder bosutinib with a hydrophobic tag adamantane. The optimal compound CZY43 effectively induced HER3 degradation in dose- and time-dependent manners in breast cancer SKBR3 cells. Mechanistic studies revealed compound CZY43 to induce HER3 degradation via autophagy. Importantly, compound CZY43 potently inhibited HER3-dependent signaling, cancer cell growth and cell adhesion, and was more potent than bosutinib. This study further suggested that HER3 can be modulated by small-molecule degraders, and compound CZY43 can serve as a lead compound for further optimization.
Collapse
Affiliation(s)
- Zhiyuan Chen
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Rd, Shanghai, 200032, China; University of Chinese Academy of Sciences, No. 1 Yanxihu Road Huairou District, Beijing, 101408, China
| | - Rui He
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou, 511400, China
| | - Shengjie Huang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou, 511400, China
| | - Yang Zhou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou, 511400, China
| | - Zhang Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou, 511400, China
| | - Zhen Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Rd, Shanghai, 200032, China; Ningbo Zhongke Creation Center of New Materials, Ningbo, 315000, China
| | - Ke Ding
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Rd, Shanghai, 200032, China.
| |
Collapse
|
4
|
Alavi M, Roudi R, D'Angelo A, Sobhani N, Safari F. Current understanding of PEAK family members in regulation of cellular signaling pathways and cancer therapy. Mol Cell Biochem 2025:10.1007/s11010-025-05219-w. [PMID: 39922936 DOI: 10.1007/s11010-025-05219-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/26/2025] [Indexed: 02/10/2025]
Abstract
Cancer evades therapy by multiple mechanisms, leading to uncontrolled cell growth and metastasis. Targeted therapies have shown promise in treating cancer by focusing on pathways within cancer cells. The PEAK family, comprising PEAK1 (SgK269), PEAK2 (SgK223/Pragmin), and the latest addition, PEAK3 (C19orf35), plays a crucial role in modulating cellular processes. Dysregulation and hyperactivity of these proteins, through overexpression or mutations, are associated with a wide range of cancers. This review delves into the different roles of the PEAK family members in regulating cell signaling pathways and highlights their potential in cancer therapy.
Collapse
Affiliation(s)
- Mana Alavi
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Raheleh Roudi
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | | | - Navid Sobhani
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Fatemeh Safari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran.
| |
Collapse
|
5
|
Trinder A, Ding K, Zhang J. The Therapeutic Significance of HER3 in Non-small Cell Lung Cancer (NSCLC): A Review Study. Curr Med Chem 2025; 32:434-446. [PMID: 38231075 DOI: 10.2174/0109298673269305231115102542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/07/2023] [Accepted: 10/08/2023] [Indexed: 01/18/2024]
Abstract
HER3 (Human Epidermal Growth Factor Receptor 3) is frequently overexpressed in various cancers, including non-small cell lung cancer (NSCLC), with a prevalence of 83% in primary tumors. Its involvement in tumorigenesis and resistance to targeted therapies makes HER3 a promising target for cancer treatment. Despite being initially considered "undruggable" due to its lack of catalytic activity, significant progress has been made in the development of anti-HER3 therapeutics. Monoclonal antibodies such as lumretuzumab, seribantumab, and patritumab have shown potential in targeting HER3 to overcome resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs). Additionally, antibody-drug conjugates (ADCs) like HER3-DXd (patritumab deruxtecan) are new drug candidates that have demonstrated selective delivery of cytotoxic chemicals to NSCLC cells by exploiting HER3's widespread expression, minimizing cytotoxicity. This review aims to evaluate the efficacy of current HER3 therapeutics in development and their therapeutic potential in NSCLC, incorporating evidence from clinical trials.
Collapse
Affiliation(s)
- Amelia Trinder
- Hatherly Laboratories, Faculty of Health and Life Sciences, Medical School, Institute of Biomedical and Clinical Sciences, University of Exeter, Streatham Campus, Exeter EX4 4PS, UK
| | - Ke Ding
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jinwei Zhang
- Hatherly Laboratories, Faculty of Health and Life Sciences, Medical School, Institute of Biomedical and Clinical Sciences, University of Exeter, Streatham Campus, Exeter EX4 4PS, UK
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
6
|
Satake T, Morizane C, Okada M, Nishioka M, Hiraoka N, Nara S, Kakegawa T, Kobayashi M, Koyama K, Esaki M, Okusaka T. Prevalence of HER3 Expression in Pancreatic Cancer Patients Treated With Systemic Chemotherapy. Cancer Med 2024; 13:e70474. [PMID: 39651731 PMCID: PMC11626478 DOI: 10.1002/cam4.70474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/09/2024] [Accepted: 11/24/2024] [Indexed: 12/11/2024] Open
Abstract
BACKGROUND Although activation of human epidermal growth factor receptor 3 (HER3) is linked to resistance to targeted therapies in several cancer types, the HER3 expression profile during pancreatic cancer treatment remains unknown. AIMS We evaluated the HER3 expression status after chemotherapy for pancreatic cancer and its association with clinicopathological features and clinical outcomes. MATERIALS & METHODS We included patients with pancreatic cancer who underwent chemotherapy and whose post-treatment archival tissue specimens were collected. HER3 expression was retrospectively assessed by immunohistochemistry scoring (0, 1+, 2+, and 3+) of the membranous staining intensity. RESULTS HER3 expression after chemotherapy was evaluated in 41 patients, with matched-pair analysis in five patients before and after chemotherapy. HER3 expression was observed in most of the patients after chemotherapy, demonstrating IHC scores of ≥ 1+ and ≥ 2+ in 40 (98%) and 26 (63%) of 41 patients, respectively. Of the 38 patients with adenocarcinoma, the median overall survival in the HER3 (2+/3+) and HER3 (0/1+) groups was 21.0 and 17.1 months, respectively. The comparison of HER3 expression before and after chemotherapy performed in five cases revealed that scores changed from 2+/3+ to 0/1+ in one case, 0/1+ to 2+/3+ in another case, and remained at 2+/3+ in three cases. Cancer genome profiling tests in eight cases found no HER3 amplification or mutation, and seven of these cases had adenocarcinomas with KRAS and TP53 mutations. CONCLUSION A high prevalence of HER3 expression was observed in pancreatic cancer patients after chemotherapy. Our findings indicate that HER3 is a potential therapeutic target for pancreatic cancer, deserving further clinical investigation.
Collapse
Affiliation(s)
- Tomoyuki Satake
- Department of Hepatobiliary and Pancreatic OncologyNational Cancer Center Hospital EastKashiwaJapan
- Department of Hepatobiliary and Pancreatic OncologyNational Cancer Center HospitalTokyoJapan
| | - Chigusa Morizane
- Department of Hepatobiliary and Pancreatic OncologyNational Cancer Center HospitalTokyoJapan
| | - Mao Okada
- Department of Hepatobiliary and Pancreatic OncologyNational Cancer Center HospitalTokyoJapan
| | - Mariko Nishioka
- Department of Hepatobiliary and Pancreatic OncologyNational Cancer Center HospitalTokyoJapan
| | - Nobuyoshi Hiraoka
- Division of Pathology and Clinical LaboratoriesNational Cancer Center HospitalTokyoJapan
| | - Satoshi Nara
- Department of Hepatobiliary and Pancreatic SurgeryNational Cancer Center HospitalTokyoJapan
| | - Tomoya Kakegawa
- Translational Research Laboratories, Daiichi Sankyo Co. Ltd.TokyoJapan
| | - Maki Kobayashi
- Translational Research Laboratories, Daiichi Sankyo Co. Ltd.TokyoJapan
| | - Kumiko Koyama
- Translational Research Laboratories, Daiichi Sankyo Co. Ltd.TokyoJapan
| | - Minoru Esaki
- Department of Hepatobiliary and Pancreatic SurgeryNational Cancer Center HospitalTokyoJapan
| | - Takuji Okusaka
- Department of Hepatobiliary and Pancreatic OncologyNational Cancer Center HospitalTokyoJapan
| |
Collapse
|
7
|
Hunt HL, Goncalves BG, Biggs MA, Rico MI, Murray ME, Lebedenko CG, Banerjee IA. Design and investigation of interactions of novel peptide conjugates of purine and pyrimidine derivatives with EGFR and its mutant T790M/L858R: an in silico and laboratory study. Mol Divers 2024; 28:3683-3711. [PMID: 38240950 DOI: 10.1007/s11030-023-10772-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/17/2023] [Indexed: 12/21/2024]
Abstract
Peptide-based therapeutics have been gaining attention due to their ability to actively target tumor cells. Additionally, several varieties of nucleotide derivatives have been developed to reduce cell proliferation and induce apoptosis of tumor cells. In this work, we have developed novel peptide conjugates with newly designed purine analogs and pyrimidine derivatives and explored the binding interactions with the kinase domain of wild-type EGFR and its mutant EGFR [L858R/ T790M] which are known to be over-expressed in tumor cells. The peptides explored included WNWKV (derived from sea cucumber) and LARFFS, which in previous work was predicted to bind to Domain I of EGFR. Computational studies conducted to explore binding interactions include molecular docking studies, molecular dynamics simulations and MMGBSA to investigate the binding abilities and stability of the complexes. The results indicate that conjugation enhanced binding capabilities, particularly for the WNWKV conjugates. MMGBSA analysis revealed nearly twofold higher binding toward the T790M/L858R double mutant receptor. Several conjugates were shown to have strong and stable binding with both wild-type and mutant EGFR. As a proof of concept, we synthesized pyrimidine conjugates with both peptides and determined the KD values using SPR analysis. The results corroborated with the computational analyses. Additionally, cell viability and apoptosis studies with lung cancer cells expressing the wild-type and double mutant proteins revealed that the WNWKV conjugate showed greater potency than the LARFFS conjugate, while LARFFS peptide alone showed poor binding to the kinase domain. Thus, we have designed peptide conjugates that show potential for further laboratory studies for developing therapeutics for targeting the EGFR receptor and its mutant T790M/L858R.
Collapse
Affiliation(s)
- Hannah L Hunt
- Department of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Beatriz G Goncalves
- Department of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Mary A Biggs
- Department of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Mia I Rico
- Department of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Molly E Murray
- Department of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Charlotta G Lebedenko
- Department of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Ipsita A Banerjee
- Department of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA.
| |
Collapse
|
8
|
Abe M, Yanagawa M, Hiroshima M, Kobayashi T, Sako Y. Bilateral regulation of EGFR activity and local PI(4,5)P 2 dynamics in mammalian cells observed with superresolution microscopy. eLife 2024; 13:e101652. [PMID: 39513999 PMCID: PMC11548882 DOI: 10.7554/elife.101652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/13/2024] [Indexed: 11/16/2024] Open
Abstract
Anionic lipid molecules, including phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), are implicated in the regulation of epidermal growth factor receptor (EGFR). However, the role of the spatiotemporal dynamics of PI(4,5)P2 in the regulation of EGFR activity in living cells is not fully understood, as it is difficult to visualize the local lipid domains around EGFR. Here, we visualized both EGFR and PI(4,5)P2 nanodomains in the plasma membrane of HeLa cells using super-resolution single-molecule microscopy. The EGFR and PI(4,5)P2 nanodomains aggregated before stimulation with epidermal growth factor (EGF) through transient visits of EGFR to the PI(4,5)P2 nanodomains. The degree of coaggregation decreased after EGF stimulation and depended on phospholipase Cγ, the EGFR effector hydrolyzing PI(4,5)P2. Artificial reduction in the PI(4,5)P2 content of the plasma membrane reduced both the dimerization and autophosphorylation of EGFR after stimulation with EGF. Inhibition of PI(4,5)P2 hydrolysis after EGF stimulation decreased phosphorylation of EGFR-Thr654. Thus, EGFR kinase activity and the density of PI(4,5)P2 around EGFR molecules were found to be mutually regulated.
Collapse
Affiliation(s)
- Mitsuhiro Abe
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering ResearchWakoJapan
| | - Masataka Yanagawa
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering ResearchWakoJapan
- Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku UniversitySendaiJapan
| | - Michio Hiroshima
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering ResearchWakoJapan
- Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka UniversityOsakaJapan
| | - Toshihide Kobayashi
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering ResearchWakoJapan
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de PharmacieIllkirchFrance
| | - Yasushi Sako
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering ResearchWakoJapan
| |
Collapse
|
9
|
Bermúdez-Abreut E, Bergado Báez G, Martínez Pestano M, Attanasio G, Gonzales Castillo CY, Hernández Fernández DR, Alvarez-Arzola R, Alimonti A, Sánchez-Ramírez B. Antitumor activity of PAbs generated by immunization with a novel HER3-targeting protein-based vaccine candidate in preclinical models. Front Oncol 2024; 14:1472607. [PMID: 39479017 PMCID: PMC11521786 DOI: 10.3389/fonc.2024.1472607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024] Open
Abstract
Despite the cumulative evidence supporting HER3 as a target for antitumor therapies, no agents targeting HER3 have been approved for cancer treatment. Most of the agents evaluated in preclinical and clinical trials have been specific monoclonal antibodies (MAbs), with few examples of active immunotherapy directed against this receptor. However, some cancer vaccine formats may generate polyclonal antibodies (PAbs) that replicate the diverse effector mechanisms of MAbs, including ligand neutralization and receptor degradation. In this study, we developed a protein subunit-based monovalent vaccine candidate targeting the extracellular domain (ECD) of HER3. Immunization of mice with a formulation targeting murine ErbB3-ECD successfully overcome tolerance to this self-antigen, inducing high titers of ErbB3-specific PAbs. The antitumor potential of this formulation and the induced PAbs was demonstrated in vivo and in vitro in an ErbB3-overexpressing 3LL-D122-derived tumor model. The immunogenicity of the HER3-ECD-based vaccine candidate was confirmed by the induction of high titers of HER3-specific PAbs. Consistent with the initial results, HER3-ECD-targeting PAbs were cytotoxic in several human epithelial tumor cell lines and exerted antitumor effects in vivo. These results support the value of HER3 as a tumor antigen and the effector mechanisms of HER3-specific therapeutic MAbs, while suggesting the potential of the proposed vaccine candidate for the treatment of HER3-expressing carcinomas.
Collapse
Affiliation(s)
| | - Gretchen Bergado Báez
- Immunology and Immunotherapy Division, Center of Molecular Immunology (CIM), Havana, Cuba
| | | | - Giuseppe Attanasio
- Department of Molecular Oncology, Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | | | | | - Rydell Alvarez-Arzola
- Immunology and Immunotherapy Division, Center of Molecular Immunology (CIM), Havana, Cuba
| | - Andrea Alimonti
- Department of Molecular Oncology, Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Faculty of Medicine, Università della Svizzera Italiana, Lugano, Switzerland
- Department of Medicine, University of Padua, Padua, Italy
- Medical Oncology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | | |
Collapse
|
10
|
Li Q, Geng S, Luo H, Wang W, Mo YQ, Luo Q, Wang L, Song GB, Sheng JP, Xu B. Signaling pathways involved in colorectal cancer: pathogenesis and targeted therapy. Signal Transduct Target Ther 2024; 9:266. [PMID: 39370455 PMCID: PMC11456611 DOI: 10.1038/s41392-024-01953-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/25/2024] [Accepted: 08/16/2024] [Indexed: 10/08/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide. Its complexity is influenced by various signal transduction networks that govern cellular proliferation, survival, differentiation, and apoptosis. The pathogenesis of CRC is a testament to the dysregulation of these signaling cascades, which culminates in the malignant transformation of colonic epithelium. This review aims to dissect the foundational signaling mechanisms implicated in CRC, to elucidate the generalized principles underpinning neoplastic evolution and progression. We discuss the molecular hallmarks of CRC, including the genomic, epigenomic and microbial features of CRC to highlight the role of signal transduction in the orchestration of the tumorigenic process. Concurrently, we review the advent of targeted and immune therapies in CRC, assessing their impact on the current clinical landscape. The development of these therapies has been informed by a deepening understanding of oncogenic signaling, leading to the identification of key nodes within these networks that can be exploited pharmacologically. Furthermore, we explore the potential of integrating AI to enhance the precision of therapeutic targeting and patient stratification, emphasizing their role in personalized medicine. In summary, our review captures the dynamic interplay between aberrant signaling in CRC pathogenesis and the concerted efforts to counteract these changes through targeted therapeutic strategies, ultimately aiming to pave the way for improved prognosis and personalized treatment modalities in colorectal cancer.
Collapse
Affiliation(s)
- Qing Li
- The Shapingba Hospital, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Shan Geng
- Central Laboratory, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Wei Wang
- Chongqing Municipal Health and Health Committee, Chongqing, China
| | - Ya-Qi Mo
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Lu Wang
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
| | - Guan-Bin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.
| | - Jian-Peng Sheng
- College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
| | - Bo Xu
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China.
| |
Collapse
|
11
|
Wenzell NA, Tuch BB, McMinn DL, Lyons MJ, Kirk CJ, Taunton J. Global signal peptide profiling reveals principles of selective Sec61 inhibition. Nat Chem Biol 2024; 20:1154-1163. [PMID: 38519575 DOI: 10.1038/s41589-024-01592-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 02/26/2024] [Indexed: 03/25/2024]
Abstract
Cotransins target the Sec61 translocon and inhibit the biogenesis of an undefined subset of secretory and membrane proteins. Remarkably, cotransin inhibition depends on the unique signal peptide (SP) of each Sec61 client, which is required for cotranslational translocation into the endoplasmic reticulum. It remains unknown how an SP's amino acid sequence and biophysical properties confer sensitivity to structurally distinct cotransins. Here we describe a fluorescence-based, pooled-cell screening platform to interrogate nearly all human SPs in parallel. We profiled two cotransins with distinct effects on cancer cells and discovered a small subset of SPs, including the oncoprotein human epidermal growth factor receptor 3 (HER3), with increased sensitivity to the more selective cotransin, KZR-9873. By comparing divergent mouse and human orthologs, we unveiled a position-dependent effect of arginine on SP sensitivity. Our multiplexed profiling platform reveals how cotransins can exploit subtle sequence differences to achieve SP discrimination.
Collapse
Affiliation(s)
- Nicole A Wenzell
- Chemistry and Chemical Biology Program, University of California, San Francisco, San Francisco, CA, USA
| | - Brian B Tuch
- Kezar Life Sciences, South San Francisco, CA, USA
| | | | - Matthew J Lyons
- Chemistry and Chemical Biology Program, University of California, San Francisco, San Francisco, CA, USA
| | | | - Jack Taunton
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
12
|
Chen Y, Lu A, Hu Z, Li J, Lu J. ERBB3 targeting: A promising approach to overcoming cancer therapeutic resistance. Cancer Lett 2024; 599:217146. [PMID: 39098760 DOI: 10.1016/j.canlet.2024.217146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024]
Abstract
Human epidermal growth factor receptor-3 (ERBB3) is a member of the ERBB receptor tyrosine kinases (RTKs) and is expressed in many malignancies. Along with other ERBB receptors, ERBB3 is associated with regulating normal cell proliferation, apoptosis, differentiation, and survival, and has received increased research attention for its involvement in cancer therapies. ERBB3 expression or co-expression levels have been investigated as predictive factors for cancer prognosis and drug sensitivity. Additionally, the association between the elevated expression of ERBB3 and treatment failure in cancer therapy further established ERBB3-targeting therapy as a crucial therapeutic approach. This review delves into the molecular mechanisms of ERBB3-driven resistance to targeted therapeutics against ERBB2 and EGFR and other signal transduction inhibitors, endocrine therapy, chemotherapy, and radiotherapy. Using preclinical and clinical evidence, we synthesise and explicate how various aspects of aberrant ERBB3 activities-such as compensatory activation, signal crosstalk interactions, dysregulation in the endocytic pathway, mutations, ligand-independent activation, intrinsic kinase activity, and homodimerisation-can lead to resistance development and/or treatment failures. Several ERBB3-directed monoclonal antibodies, bispecific antibodies, and the emerging antibody-drug conjugate demonstrate encouraging clinical outcomes for improving therapeutic efficacy and overcoming resistance, especially when combined with other anti-cancer approaches. More research efforts are needed to identify appropriate biomarkers tailored for ERBB3-targeted therapies.
Collapse
Affiliation(s)
- Yutao Chen
- Auckland Bioengineering Institute, University of Auckland, Auckland, 1142, New Zealand
| | - Anni Lu
- Pinehurst School, Albany, Auckland, New Zealand
| | - Zhangli Hu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jinyao Li
- College of Life Sciences, Xijiang University, Urumqi, China
| | - Jun Lu
- Auckland Bioengineering Institute, University of Auckland, Auckland, 1142, New Zealand; College of Food Engineering and Nutrition Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi Province, China; College of Food Science and Technology, Nanchang University, Nanchang, 330031, Jiangxi Province, China; Department of Food and Agriculture Technology, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing, 314006, China.
| |
Collapse
|
13
|
He J, Zeng X, Wang C, Wang E, Li Y. Antibody-drug conjugates in cancer therapy: mechanisms and clinical studies. MedComm (Beijing) 2024; 5:e671. [PMID: 39070179 PMCID: PMC11283588 DOI: 10.1002/mco2.671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024] Open
Abstract
Antibody-drug conjugates (ADCs) consist of monoclonal antibodies that target tumor cells and cytotoxic drugs linked through linkers. By leveraging antibodies' targeting properties, ADCs deliver cytotoxic drugs into tumor cells via endocytosis after identifying the tumor antigen. This precise method aims to kill tumor cells selectively while minimizing harm to normal cells, offering safe and effective therapeutic benefits. Recent years have seen significant progress in antitumor treatment with ADC development, providing patients with new and potent treatment options. With over 300 ADCs explored for various tumor indications and some already approved for clinical use, challenges such as resistance due to factors like antigen expression, ADC processing, and payload have emerged. This review aims to outline the history of ADC development, their structure, mechanism of action, recent composition advancements, target selection, completed and ongoing clinical trials, resistance mechanisms, and intervention strategies. Additionally, it will delve into the potential of ADCs with novel markers, linkers, payloads, and innovative action mechanisms to enhance cancer treatment options. The evolution of ADCs has also led to the emergence of combination therapy as a new therapeutic approach to improve drug efficacy.
Collapse
Affiliation(s)
- Jun He
- Department of General Surgery Jiande Branch of the Second Affiliated Hospital, School of Medicine, Zhejiang University Jiande Zhejiang China
| | - Xianghua Zeng
- Department of Medical Oncology Chongqing University Cancer Hospital Chongqing China
| | - Chunmei Wang
- Department of Medical Oncology Chongqing University Cancer Hospital Chongqing China
| | - Enwen Wang
- Department of Medical Oncology Chongqing University Cancer Hospital Chongqing China
| | - Yongsheng Li
- Department of Medical Oncology Chongqing University Cancer Hospital Chongqing China
| |
Collapse
|
14
|
Zhu M, Yu M, Meng Y, Yang J, Wang X, Li L, Liang Y, Kong F. HER3 receptor and its role in the therapeutic management of metastatic breast cancer. J Transl Med 2024; 22:665. [PMID: 39020378 PMCID: PMC11253420 DOI: 10.1186/s12967-024-05445-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/27/2024] [Indexed: 07/19/2024] Open
Abstract
Metastatic breast cancer (mBC) poses a significant threat to women's health and is a major cause of malignant neoplasms in women. Human epidermal growth factor receptor (HER)3, an integral member of the ErbB/HER receptor tyrosine kinase family, is a crucial activator of the phosphoinositide-3 kinase/protein kinase B signaling pathway. HER3 overexpression significantly contributes to the development of resistance to drugs targeting other HER receptors, such as HER2 and epidermal growth factor receptors, and plays a crucial role in the onset and progression of mBC. Recently, numerous HER3-targeted therapeutic agents, such as monoclonal antibodies (mAbs), bispecific antibodies (bAbs), and antibody-drug conjugates (ADCs), have emerged. However, the efficacy of HER3-targeted mAbs and bAbs is limited when used individually, and their combination may result in toxic adverse effects. On the other hand, ADCs are cytotoxic to cancer cells and can bind to target cells through antibodies, which highlights their use in targeted HER3 therapy for mBC. This review provides an overview of recent advancements in HER3 research, historical initiatives, and innovative approaches in targeted HER3 therapy for metastatic breast cancer. Evaluating the advantages and disadvantages of current methods may yield valuable insights and lessons.
Collapse
Affiliation(s)
- Meiying Zhu
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin Cancer Institute of Traditional Chinese Medicine, Tianjin, China
| | - Minghui Yu
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yuan Meng
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jie Yang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xuerui Wang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Longhui Li
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yangyueying Liang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Fanming Kong
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
15
|
Kim M, Ju HM, Song JY, Sampson J, Bayliss R, Choi J. HER3 overexpression: a predictive marker for poor prognosis in advanced ALK-positive non-small cell lung cancer treated with ALK inhibitors. Transl Lung Cancer Res 2024; 13:321-333. [PMID: 38496685 PMCID: PMC10938092 DOI: 10.21037/tlcr-23-804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/02/2024] [Indexed: 03/19/2024]
Abstract
Background Anaplastic lymphoma kinase (ALK)-targeted tyrosine kinase inhibitors (TKIs) improve patient survival; however, some patients develop ALK-TKI resistance with unidentified mechanisms. We investigated ErbB family and c-MET expression in patients with ALK-positive non-small cell lung cancer (NSCLC) to understand their roles in the ALK-TKI response. Methods We studied 72 patients with advanced ALK-positive NSCLC with EML4-ALK fusion variant subtyping and immunostaining for c-MET, EGFR, HER2, and HER3 on tissue specimens both pre- (primary) and post-treatment (secondary) with ALK-TKI. We investigated the association of their expression with survival outcomes and assessed the effectiveness of combining ALK and EGFR inhibitors in ALK-positive NSCLC cell lines stimulated with the HER3-specific ligand HRG1. Results High expression of c-MET, EGFR, HER2, and HER3 was observed in 4.9%, 18.0%, 1.6%, and 25.8% of primary tumors, respectively, and 18.5%, 37.0%, 10.7%, and 35.7% of secondary tumors, respectively. HER3 overexpression in primary tumors showed inferior survival (P=0.132). In the subgroup with EML4-ALK variant 1/2 (V1/V2), HER3 overexpression was significantly associated with inferior survival in both primary and secondary tumors (P=0.022 and P=0.004, respectively). Combination treatment with lorlatinib and erlotinib significantly reduced HRG1-induced activation of RTK signaling in ALK-positive NSCLC cells. Conclusions HER3 overexpression has potential as a prognostic marker in ALK-positive NSCLCs, including ALK-TKI naïve and treated cases, especially those with EML4-ALK V1/V2. Assessing HER3 expression may be crucial for treatment planning and outcome prediction in these patients.
Collapse
Affiliation(s)
- Meejeong Kim
- Department of Pathology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyun-min Ju
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ji-young Song
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Josephina Sampson
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Richard Bayliss
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Jene Choi
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
16
|
Udagawa H, Nilsson MB, Robichaux JP, He J, Poteete A, Jiang H, Heeke S, Elamin YY, Shibata Y, Matsumoto S, Yoh K, Okazaki S, Masuko T, Odintsov I, Somwar R, Ladanyi M, Goto K, Heymach JV. HER4 and EGFR Activate Cell Signaling in NRG1 Fusion-Driven Cancers: Implications for HER2-HER3-specific Versus Pan-HER Targeting Strategies. J Thorac Oncol 2024; 19:106-118. [PMID: 37678511 PMCID: PMC11161205 DOI: 10.1016/j.jtho.2023.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/20/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
INTRODUCTION NRG1 gene fusions are clinically actionable alterations identified in NSCLC and other tumors. Previous studies have reported that NRG1 fusions signal through HER2 and HER3 but, thus far, strategies targeting HER3 specifically or HER2-HER3 signaling have exhibited modest activity in patients with NSCLC bearing NRG1 fusions. Although NRG1 fusion proteins can bind HER4 in addition to HER3, the contribution of HER4 and other HER family members in NRG1 fusion-positive cancers is not fully understood. METHODS We investigated the role of HER4 and EGFR-HER3 signaling in NRG1 fusion-positive cancers using Ba/F3 models engineered to express various HER family members in combination with NRG1 fusions and in vitro and in vivo models of NRG1 fusion-positive cancer. RESULTS We determined that NRG1 fusions can stimulate downstream signaling and tumor cell growth through HER4, independent of other HER family members. Moreover, EGFR-HER3 signaling is also activated in cells expressing NRG1 fusions, and inhibition of these receptors is also necessary to effectively inhibit tumor cell growth. We observed that cetuximab, an anti-EGFR antibody, in combination with anti-HER2 antibodies, trastuzumab and pertuzumab, yielded a synergistic effect. Furthermore, pan-HER tyrosine kinase inhibitors were more effective than tyrosine kinase inhibitors with greater specificity for EGFR, EGFR-HER2, or HER2-HER4, although the relative degree of dependence on EGFR or HER4 signaling varied between different NRG1 fusion-positive cancers. CONCLUSIONS Our findings indicate that pan-HER inhibition including HER4 and EGFR blockade is more effective than selectively targeting HER3 or HER2-HER3 in NRG1 fusion-positive cancers.
Collapse
Affiliation(s)
- Hibiki Udagawa
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Monique B Nilsson
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jacqulyne P Robichaux
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Junqin He
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alissa Poteete
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hong Jiang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Simon Heeke
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yasir Y Elamin
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yuji Shibata
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Shingo Matsumoto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Kiyotaka Yoh
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Shogo Okazaki
- Department of Microbiology and Immunology, Nihon University School of Dentistry, Tokyo, Japan
| | - Takashi Masuko
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Osaka, Japan
| | - Igor Odintsov
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Romel Somwar
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marc Ladanyi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Koichi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
17
|
Liu YN, Tsai MF, Wu SG, Chang TH, Shih JY. CD44s and CD44v8-10 isoforms confer acquired resistance to osimertinib by activating the ErbB3/STAT3 signaling pathway. Life Sci 2024; 336:122345. [PMID: 38092140 DOI: 10.1016/j.lfs.2023.122345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/24/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
AIMS Although epidermal growth factor receptor (EGFR)-mutant lung cancers respond well to osimertinib, acquired resistance to osimertinib eventually develops through EGFR-dependent and EGFR-independent resistance mechanisms. CD44 splicing variants are widely expressed in lung cancer tissues. However, it remains unclear whether specific splicing variants are involved in acquired resistance to osimertinib. MAIN METHODS The real-time PCR was performed to measure the expression levels of total CD44 and specific CD44 splicing variants (CD44s or CD44v). Gene knockdown and restoration were performed to investigate the effects of CD44 splicing variants on osimertinib sensitivity. Activation of the signaling pathway was evaluated using receptor-tyrosine-kinase phosphorylation membrane arrays, co-immunoprecipitation, and western blotting. KEY FINDINGS Clinical analysis demonstrated that the expression level of total CD44 increased in primary cancer cells from lung adenocarcinomas patients after the development of acquired resistance to osimertinib. Furthermore, osimertinib-resistant cells showed elevated levels of either the CD44s variant or CD44v variants. Manipulations of CD44s or CD44v8-10 were performed to investigate their effects on treatment sensitivity to osimertinib. Knockdown of CD44 increased osimertinib-induced cell death in osimertinib-resistant cells. However, restoration of CD44s or CD44v8-10 in CD44-knockdown H1975/AZD-sgCD44 cells induced osimertinib resistance. Mechanically, we showed that ErbB3 interacted with CD44 and was transactivated by CD44, that consequently triggered activation of the ErbB3/STAT3 signaling pathway and led to CD44s- or CD44v8-10-mediated osimertinib resistance. SIGNIFICANCE CD44 is a co-receptor for ErbB3 and triggers activation of the ErbB3 signaling axis, leading to acquired resistance to osimertinib. CD44/ErbB3 signaling may represent a therapeutic target for overcoming osimertinib resistance.
Collapse
Affiliation(s)
- Yi-Nan Liu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Meng-Feng Tsai
- Department of Biomedical Sciences, Da-Yeh University, Changhua, Taiwan
| | - Shang-Gin Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Tzu-Hua Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jin-Yuan Shih
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
18
|
Shaban N, Kamashev D, Emelianova A, Buzdin A. Targeted Inhibitors of EGFR: Structure, Biology, Biomarkers, and Clinical Applications. Cells 2023; 13:47. [PMID: 38201251 PMCID: PMC10778338 DOI: 10.3390/cells13010047] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Members of the EGFR family of tyrosine kinase receptors are major regulators of cellular proliferation, differentiation, and survival. In humans, abnormal activation of EGFR is associated with the development and progression of many cancer types, which makes it an attractive target for molecular-guided therapy. Two classes of EGFR-targeted cancer therapeutics include monoclonal antibodies (mAbs), which bind to the extracellular domain of EGFR, and tyrosine kinase inhibitors (TKIs), which mostly target the intracellular part of EGFR and inhibit its activity in molecular signaling. While EGFR-specific mAbs and three generations of TKIs have demonstrated clinical efficacy in various settings, molecular evolution of tumors leads to apparent and sometimes inevitable resistance to current therapeutics, which highlights the need for deeper research in this field. Here, we tried to provide a comprehensive and systematic overview of the rationale, molecular mechanisms, and clinical significance of the current EGFR-targeting drugs, highlighting potential candidate molecules in development. We summarized the underlying mechanisms of resistance and available personalized predictive approaches that may lead to improved efficacy of EGFR-targeted therapies. We also discuss recent developments and the use of specific therapeutic strategies, such as multi-targeting agents and combination therapies, for overcoming cancer resistance to EGFR-specific drugs.
Collapse
Affiliation(s)
- Nina Shaban
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (D.K.); (A.B.)
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Dmitri Kamashev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (D.K.); (A.B.)
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
- Institute of Personalized Oncology, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Aleksandra Emelianova
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia;
| | - Anton Buzdin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (D.K.); (A.B.)
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
- Institute of Personalized Oncology, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
- PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), 1200 Brussels, Belgium
| |
Collapse
|
19
|
Majumder A. HER3: Toward the Prognostic Significance, Therapeutic Potential, Current Challenges, and Future Therapeutics in Different Types of Cancer. Cells 2023; 12:2517. [PMID: 37947595 PMCID: PMC10648638 DOI: 10.3390/cells12212517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/14/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023] Open
Abstract
Human epidermal growth factor receptor 3 (HER3) is the only family member of the EGRF/HER family of receptor tyrosine kinases that lacks an active kinase domain (KD), which makes it an obligate binding partner with other receptors for its oncogenic role. When HER3 is activated in a ligand-dependent (NRG1/HRG) or independent manner, it can bind to other receptors (the most potent binding partner is HER2) to regulate many biological functions (growth, survival, nutrient sensing, metabolic regulation, etc.) through the PI3K-AKT-mTOR pathway. HER3 has been found to promote tumorigenesis, tumor growth, and drug resistance in different cancer types, especially breast and non-small cell lung cancer. Given its ubiquitous expression across different solid tumors and role in oncogenesis and drug resistance, there has been a long effort to target HER3. As HER3 cannot be targeted through its KD with small-molecule kinase inhibitors via the conventional method, pharmaceutical companies have used various other approaches, including blocking either the ligand-binding domain or extracellular domain for dimerization with other receptors. The development of treatment options with anti-HER3 monoclonal antibodies, bispecific antibodies, and different combination therapies showed limited clinical efficiency for various reasons. Recent reports showed that the extracellular domain of HER3 is not required for its binding with other receptors, which raises doubt about the efforts and applicability of the development of the HER3-antibodies for treatment. Whereas HER3-directed antibody-drug conjugates showed potentiality for treatment, these drugs are still under clinical trial. The currently understood model for dimerization-induced signaling remains incomplete due to the absence of the crystal structure of HER3 signaling complexes, and many lines of evidence suggest that HER family signaling involves more than the interaction of two members. This review article will significantly expand our knowledge of HER3 signaling and shed light on developing a new generation of drugs that have fewer side effects than the current treatment regimen for these patients.
Collapse
Affiliation(s)
- Avisek Majumder
- Department of Medicine, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
20
|
Pal AA, Benman W, Mumford TR, Huang Z, Chow BY, Bugaj LJ. Optogenetic clustering and membrane translocation of the BcLOV4 photoreceptor. Proc Natl Acad Sci U S A 2023; 120:e2221615120. [PMID: 37527339 PMCID: PMC10410727 DOI: 10.1073/pnas.2221615120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/25/2023] [Indexed: 08/03/2023] Open
Abstract
Optogenetic tools respond to light through one of a small number of behaviors including allosteric changes, dimerization, clustering, or membrane translocation. Here, we describe a new class of optogenetic actuator that simultaneously clusters and translocates to the plasma membrane in response to blue light. We demonstrate that dual translocation and clustering of the BcLOV4 photoreceptor can be harnessed for novel single-component optogenetic tools, including for control of the entire family of epidermal growth factor receptor (ErbB1-4) tyrosine kinases. We further find that clustering and membrane translocation are mechanistically linked. Stronger clustering increased the magnitude of translocation and downstream signaling, increased sensitivity to light by ~threefold-to-fourfold, and decreased the expression levels needed for strong signal activation. Thus light-induced clustering of BcLOV4 provides a strategy to generate a new class of optogenetic tools and to enhance existing ones.
Collapse
Affiliation(s)
- Ayush Aditya Pal
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
| | - William Benman
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
| | - Thomas R. Mumford
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
| | - Zikang Huang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
| | - Brian Y. Chow
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
| | - Lukasz J. Bugaj
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA19104
- Institute of Regenerative Medicine, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
21
|
Moore B, Herrera M, Gairin E, Li C, Miura S, Jolly J, Mercader M, Izumiyama M, Kawai E, Ravasi T, Laudet V, Ryu T. The chromosome-scale genome assembly of the yellowtail clownfish Amphiprion clarkii provides insights into the melanic pigmentation of anemonefish. G3 (BETHESDA, MD.) 2023; 13:6982751. [PMID: 36626199 PMCID: PMC9997566 DOI: 10.1093/g3journal/jkad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/25/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023]
Abstract
Anemonefish are an emerging group of model organisms for studying genetic, ecological, evolutionary, and developmental traits of coral reef fish. The yellowtail clownfish Amphiprion clarkii possesses species-specific characteristics such as inter-species co-habitation, high intra-species color variation, no anemone specificity, and a broad geographic distribution, that can increase our understanding of anemonefish evolutionary history, behavioral strategies, fish-anemone symbiosis, and color pattern evolution. Despite its position as an emerging model species, the genome of A. clarkii is yet to be published. Using PacBio long-read sequencing and Hi-C chromatin capture technology, we generated a high-quality chromosome-scale genome assembly initially comprised of 1,840 contigs with an N50 of 1,203,211 bp. These contigs were successfully anchored into 24 chromosomes of 843,582,782 bp and annotated with 25,050 protein-coding genes encompassing 97.0% of conserved actinopterygian genes, making the quality and completeness of this genome the highest among all published anemonefish genomes to date. Transcriptomic analysis identified tissue-specific gene expression patterns, with the brain and optic lobe having the largest number of expressed genes. Further analyses revealed higher copy numbers of erbb3b (a gene involved in melanocyte development) in A. clarkii compared with other anemonefish, thus suggesting a possible link between erbb3b and the natural melanism polymorphism observed in A. clarkii. The publication of this high-quality genome, along with A. clarkii's many unique traits, position this species as an ideal model organism for addressing scientific questions across a range of disciplines.
Collapse
Affiliation(s)
- Billy Moore
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Marcela Herrera
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Emma Gairin
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Chengze Li
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Saori Miura
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Jeffrey Jolly
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Manon Mercader
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Michael Izumiyama
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Erina Kawai
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Timothy Ravasi
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan.,Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Vincent Laudet
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan.,Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, I-Lan 262, Taiwan
| | - Taewoo Ryu
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| |
Collapse
|
22
|
Uliano J, Corvaja C, Curigliano G, Tarantino P. Targeting HER3 for cancer treatment: a new horizon for an old target. ESMO Open 2023; 8:100790. [PMID: 36764093 PMCID: PMC9929675 DOI: 10.1016/j.esmoop.2023.100790] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 02/11/2023] Open
Abstract
Human epidermal growth factor receptor 3 (HER3) is a member of the human epidermal growth factor receptors family, having as its main ligands neuregulins 1 and 2. Although its poor tyrosine kinase activity entails a weak oncogenic power on its own, HER3 can heterodimerize with HER2 and/or epidermal growth factor receptor (EGFR), leading to a drastic enhancement of transphosphorylation and activation of downstream signaling pathways, ultimately promoting oncogenesis, metastatic dissemination, and drug resistance. Given its ubiquitous expression across solid tumors, multiple efforts have been done to therapeutically target HER3 by blocking either the ligand binding domain or its dimerization with other receptors. Treatment with anti-HER3 monoclonal antibodies or bispecific antibodies, both as single agents and in combination with other compounds, unfortunately led to unsatisfactory results across several tumor types. The HER3-directed delivery of cytotoxic payloads through antibody-drug conjugates has recently demonstrated encouraging activity in several tumor types, however, suggesting a potential role for the therapeutic targeting of HER3 in cancer treatment.
Collapse
Affiliation(s)
- J Uliano
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan; Department of Oncology and Hemato-Oncology, University of Milan, Milan. https://twitter.com/jacopo_uli
| | - C Corvaja
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan; Department of Oncology and Hemato-Oncology, University of Milan, Milan; Department of Medicine, University of Udine, Udine, Italy. https://twitter.com/carlacorvaja
| | - G Curigliano
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan; Department of Oncology and Hemato-Oncology, University of Milan, Milan. https://twitter.com/curijoey
| | - P Tarantino
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan; Department of Oncology and Hemato-Oncology, University of Milan, Milan; Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston; Harvard Medical School, Boston, USA.
| |
Collapse
|
23
|
Boch T, Köhler J, Janning M, Loges S. Targeting the EGF receptor family in non-small cell lung cancer-increased complexity and future perspectives. Cancer Biol Med 2022; 19:j.issn.2095-3941.2022.0540. [PMID: 36476337 PMCID: PMC9724226 DOI: 10.20892/j.issn.2095-3941.2022.0540] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lung cancer remains the leading cause of cancer-associated mortality worldwide, but with the emergence of oncogene targeted therapies, treatment options have tremendously improved. Owing to their biological relevance, members of the ERBB receptor family, including the EGF receptor (EGFR), HER2, HER3 and HER4, are among the best studied oncogenic drivers. Activating EGFR mutations are frequently observed in non-small cell lung cancer (NSCLC), and small molecule tyrosine kinase inhibitors (TKIs) are the established first line treatment option for patients whose tumors bear "typical/classical" EGFR mutations (exon 19 deletions, L858R point mutations). Additionally, new TKIs are rapidly evolving with better efficacy to overcome primary and secondary treatment resistance (e.g., that due to T790M or C797S resistance mutations). Some atypical EGFR mutations, such as the most frequent exon 20 insertions, exhibit relative resistance to earlier generation TKIs through steric hindrance. In this subgroup, newer TKIs, such as mobocertinib and the bi-specific antibody amivantamab have recently been approved, whereas less frequent atypical EGFR mutations remain understudied. In contrast to EGFR, HER2 has long remained a challenging target, but better structural understanding has led to the development of newer generations of TKIs. The recent FDA approval of the antibody-drug conjugate trastuzumab-deruxtecan for pretreated patients with HER2 mutant NSCLC has been an important therapeutic breakthrough. HER3 and HER4 also exert oncogenic potential, and targeted treatment approaches are being developed, particularly for HER3. Overall, strategies to inhibit the oncogenic function of ERBB receptors in NSCLC are currently evolving at an unprecedented pace; therefore, this review summarizes current treatment standards and discusses the outlook for future developments.
Collapse
Affiliation(s)
- Tobias Boch
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim 68135, Germany,Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany,Department of Personalized Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim 68135, Germany
| | - Jens Köhler
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim 68135, Germany,Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany,Department of Personalized Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim 68135, Germany
| | - Melanie Janning
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim 68135, Germany,Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany,Department of Personalized Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim 68135, Germany
| | - Sonja Loges
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim 68135, Germany,Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany,Department of Personalized Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim 68135, Germany,Correspondence to: Sonja Loges, E-mail:
| |
Collapse
|
24
|
Sheetz JB, Lemmon MA. Looking lively: emerging principles of pseudokinase signaling. Trends Biochem Sci 2022; 47:875-891. [PMID: 35585008 PMCID: PMC9464697 DOI: 10.1016/j.tibs.2022.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/06/2022] [Accepted: 04/21/2022] [Indexed: 10/18/2022]
Abstract
Progress towards understanding catalytically 'dead' protein kinases - pseudokinases - in biology and disease has hastened over the past decade. An especially lively area for structural biology, pseudokinases appear to be strikingly similar to their kinase relatives, despite lacking key catalytic residues. Distinct active- and inactive-like conformation states, which are crucial for regulating bona fide protein kinases, are conserved in pseudokinases and appear to be essential for function. We discuss recent structural data on conformational transitions and nucleotide binding by pseudokinases, from which some common principles emerge. In both pseudokinases and bona fide kinases, a conformational toggle appears to control the ability to interact with signaling effectors. We also discuss how biasing this conformational toggle may provide opportunities to target pseudokinases pharmacologically in disease.
Collapse
Affiliation(s)
- Joshua B Sheetz
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06505, USA; Yale Cancer Biology Institute, Yale West Campus, West Haven, CT 06516, USA.
| | - Mark A Lemmon
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06505, USA; Yale Cancer Biology Institute, Yale West Campus, West Haven, CT 06516, USA.
| |
Collapse
|
25
|
Abstract
Single-pass transmembrane receptors (SPTMRs) represent a diverse group of integral membrane proteins that are involved in many essential cellular processes, including signal transduction, cell adhesion, and transmembrane transport of materials. Dysregulation of the SPTMRs is linked with many human diseases. Despite extensive efforts in past decades, the mechanisms of action of the SPTMRs remain incompletely understood. One major hurdle is the lack of structures of the full-length SPTMRs in different functional states. Such structural information is difficult to obtain by traditional structural biology methods such as X-ray crystallography and nuclear magnetic resonance (NMR). The recent rapid development of single-particle cryo-electron microscopy (cryo-EM) has led to an exponential surge in the number of high-resolution structures of integral membrane proteins, including SPTMRs. Cryo-EM structures of SPTMRs solved in the past few years have tremendously improved our understanding of how SPTMRs function. In this review, we will highlight these progresses in the structural studies of SPTMRs by single-particle cryo-EM, analyze important structural details of each protein involved, and discuss their implications on the underlying mechanisms. Finally, we also briefly discuss remaining challenges and exciting opportunities in the field.
Collapse
Affiliation(s)
- Kai Cai
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
| | - Xuewu Zhang
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Departments of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Corresponding Author: Xuewu Zhang, Department of pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Xiao-chen Bai
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Departments of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Corresponding Author: Xiao-chen Bai, Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| |
Collapse
|
26
|
Jamieson SA, Pudjihartono M, Horne CR, Viloria JS, Dunlop JL, McMillan HD, Day RC, Keeshan K, Murphy JM, Mace PD. Nanobodies identify an activated state of the TRIB2 pseudokinase. Structure 2022; 30:1518-1529.e5. [PMID: 36108635 DOI: 10.1016/j.str.2022.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/02/2022] [Accepted: 08/19/2022] [Indexed: 12/23/2022]
Abstract
Tribbles proteins (TRIB1-3) are pseudokinases that recruit substrates to the COP1 ubiquitin ligase. TRIB2 was the first Tribbles ortholog to be implicated as a myeloid leukemia oncogene, because it recruits the C/EBPα transcription factor for ubiquitination by COP1. Here we report identification of nanobodies that bind the TRIB2 pseudokinase domain with low nanomolar affinity. A crystal structure of the TRIB2-Nb4.103 complex identified the nanobody to bind the N-terminal lobe of TRIB2, enabling specific recognition of TRIB2 in an activated conformation that is similar to the C/EBPα-bound state of TRIB1. Characterization in solution revealed that Nb4.103 can stabilize a TRIB2 pseudokinase domain dimer in a face-to-face manner. Conversely, a distinct nanobody (Nb4.101) binds through a similar epitope but does not readily promote dimerization. In combination, this study identifies features of TRIB2 that could be exploited for the development of inhibitors and nanobody tools for future investigation of TRIB2 function.
Collapse
Affiliation(s)
- Sam A Jamieson
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Michael Pudjihartono
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Christopher R Horne
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Jessica L Dunlop
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Hamish D McMillan
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Robert C Day
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Karen Keeshan
- Paul O'Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, Scotland
| | - James M Murphy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Peter D Mace
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand.
| |
Collapse
|
27
|
Can EGFR be a therapeutic target in breast cancer? Biochim Biophys Acta Rev Cancer 2022; 1877:188789. [PMID: 36064121 DOI: 10.1016/j.bbcan.2022.188789] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/20/2022]
Abstract
Epidermal growth factor receptor (EGFR) is highly expressed in certain cancer types and is involved in regulating the biological characteristics of cancer progression, including proliferation, metastasis, and drug resistance. Various medicines targeting EGFR have been developed and approved for several cancer types, such as lung and colon cancer. To date, however, EGFR inhibitors have not achieved satisfactory clinical results in breast cancer, which continues to be the most serious malignant tumor type in females. Therefore, clarifying the underlying mechanisms related to the ineffectiveness of EGFR inhibitors in breast cancer and developing new EGFR-targeted strategies (e.g., combination therapy) remain critical challenges. Various studies have demonstrated aberrant expression and maintenance of EGFR levels in breast cancer. In this review, we summarize the regulatory mechanisms underlying EGFR protein expression in breast cancer cells, including EGFR mutations, amplification, endocytic dysfunction, recycling acceleration, and degradation disorders. We also discuss potential therapeutic strategies that act directly or indirectly on EGFR, including reducing EGFR protein expression, treating the target protein to mediate precise clearance, and inhibiting non-EGFR signaling pathways. This review should provide new therapeutic perspectives for breast cancer patients with high EGFR expression.
Collapse
|
28
|
Abstract
ABSTRACT Work over the past several decades has identified that aberrations in the ErbB signaling pathways are key drivers of oncogenesis, and concurrent efforts to discover targetable vulnerabilities to counter this aberrant oncogenic signaling offer tremendous promise in treating a host of human cancers. These efforts have been centered primarily on EGFR (also known as HER1), leading to the discovery of the first targeted therapies approved for head and neck cancer. More recently, HER2 and HER3 signaling pathways have been identified as highly dysregulated in head and neck cancer. This review highlights the HER2 and HER3 signaling pathways and clinical efforts to target these receptors and their aberrant signaling to treat head and neck squamous cell carcinomas and other head and neck malignancies, including salivary gland carcinomas. This includes the use of small molecule inhibitors and blocking antibodies, both as single agents or as part of multimodal precision targeted and immunotherapies.
Collapse
Affiliation(s)
- Robert Saddawi-Konefka
- Department of Otolaryngology-Head and Neck Surgery, UC San Diego School of Medicine; San Diego, CA, United States
- Moores Cancer Center, UC San Diego; La Jolla, CA, United States
- Gleiberman Head and Neck Cancer Center, UC San Diego; La Jolla, CA, United States
| | - Shiruyeh Schokrpur
- Moores Cancer Center, UC San Diego; La Jolla, CA, United States
- Gleiberman Head and Neck Cancer Center, UC San Diego; La Jolla, CA, United States
- Department of Medicine, Division of Hematology-Oncology, UC San Diego School of Medicine; San Diego, CA, United States
| | - Asona J. Lui
- Moores Cancer Center, UC San Diego; La Jolla, CA, United States
- Department of Radiation Medicine and Applied Sciences, UC San Diego School of Medicine; San Diego, CA, United States
| | - J. Silvio Gutkind
- Moores Cancer Center, UC San Diego; La Jolla, CA, United States
- Gleiberman Head and Neck Cancer Center, UC San Diego; La Jolla, CA, United States
- Department of Pharmacology, UC San Diego; La Jolla, CA, United States
| |
Collapse
|
29
|
Riegel K, Vijayarangakannan P, Kechagioglou P, Bogucka K, Rajalingam K. Recent advances in targeting protein kinases and pseudokinases in cancer biology. Front Cell Dev Biol 2022; 10:942500. [PMID: 35938171 PMCID: PMC9354965 DOI: 10.3389/fcell.2022.942500] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
Kinases still remain the most favorable members of the druggable genome, and there are an increasing number of kinase inhibitors approved by the FDA to treat a variety of cancers. Here, we summarize recent developments in targeting kinases and pseudokinases with some examples. Targeting the cell cycle machinery garnered significant clinical success, however, a large section of the kinome remains understudied. We also review recent developments in the understanding of pseudokinases and discuss approaches on how to effectively target in cancer.
Collapse
Affiliation(s)
- Kristina Riegel
- Cell Biology Unit, University Medical Center Mainz, JGU-Mainz, Mainz, Germany
| | | | - Petros Kechagioglou
- Cell Biology Unit, University Medical Center Mainz, JGU-Mainz, Mainz, Germany
| | - Katarzyna Bogucka
- Cell Biology Unit, University Medical Center Mainz, JGU-Mainz, Mainz, Germany
| | - Krishnaraj Rajalingam
- Cell Biology Unit, University Medical Center Mainz, JGU-Mainz, Mainz, Germany
- *Correspondence: Krishnaraj Rajalingam,
| |
Collapse
|
30
|
Maeda R, Tamagaki-Asahina H, Sato T, Yanagawa M, Sako Y. Threonine phosphorylation regulates the molecular assembly and signaling of EGFR in cooperation with membrane lipids. J Cell Sci 2022; 135:275916. [PMID: 35791809 DOI: 10.1242/jcs.260355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 06/28/2022] [Indexed: 11/20/2022] Open
Abstract
The cytoplasmic domain of the receptor tyrosine kinases (RTKs) plays roles as a phosphorylation enzyme and a protein scaffold but the allocation of these two functions is not fully understood. We here analyzed assembly of the transmembrane (TM)-juxtamembrane (JM) region of EGFR, one of the best studied species of RTKs, by combining single-pair FRET imaging and a nanodisc technique. The JM domain of EGFR contains a threonine residue (Thr654) that is phosphorylated after ligand association. We observed that the TM-JM peptides of EGFR form anionic lipid-induced dimers and cholesterol-induced oligomers. The two forms involve distinct molecular interactions, with a bias towards oligomer formation upon threonine phosphorylation. We further analyzed the functions and oligomerization of whole EGFR molecules, with or without a substitution of Thr654 to alanine, in living cells. The results suggested an autoregulatory mechanism in which Thr654 phosphorylation causes a switch of the major function of EGFR from kinase activation dimers to scaffolding oligomers.
Collapse
Affiliation(s)
- Ryo Maeda
- Cellular Informatics Laboratory, RIKEN CPR, Wako, Saitama 351-0198, Japan
| | | | - Takeshi Sato
- Kyoto Pharmaceutical University, 5, Misasagi-cho, Yamashina, Kyoto, 607-8414, Japan
| | - Masataka Yanagawa
- Cellular Informatics Laboratory, RIKEN CPR, Wako, Saitama 351-0198, Japan
| | - Yasushi Sako
- Cellular Informatics Laboratory, RIKEN CPR, Wako, Saitama 351-0198, Japan.,CREST JST, 4-1-8, Honcho, Kawaguchi, 332-0012, Japan
| |
Collapse
|
31
|
Trenker R, Diwanji D, Verba KA, Jura N. An effective strategy for ligand-mediated pulldown of the HER2/HER3/NRG1β heterocomplex and cryo-EM structure determination at low sample concentrations. Methods Enzymol 2022; 667:633-662. [PMID: 35525557 PMCID: PMC9288110 DOI: 10.1016/bs.mie.2022.03.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Obtaining high-resolution structures of Receptor Tyrosine Kinases that visualize extracellular, transmembrane and intracellular kinase regions simultaneously is an eagerly pursued but still unmet challenge of structural biology. The Human Epidermal Growth Factor Receptor 3 (HER3) that has a catalytically inactive kinase domain (pseudokinase) forms a potent signaling complex upon binding of growth factor neuregulin 1β (NRG1β) and upon dimerization with a close homolog, the HER2 receptor. The HER2/HER3/NRG1β complex is often referred to as an oncogenic driver in breast cancer and is an attractive target for anti-cancer therapies. After overcoming significant hurdles in isolating sufficient amounts of the HER2/HER3/NRG1β complex for structural studies by cryo-electron microscopy (cryo-EM), we recently obtained the first high-resolution structures of the extracellular portion of this complex. Here we describe a step-by-step protocol for obtaining a stable and homogenous HER2/HER3/NRG1β complex for structural studies and our recommendation for collecting and processing cryo-EM data for this sample. We also show improved EM density for the transmembrane and kinase domains of the receptors, which continue to evade structural determination at high resolution. The discussed strategies are tunable and applicable to other membrane receptor complexes.
Collapse
Affiliation(s)
- Raphael Trenker
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, United States
| | - Devan Diwanji
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, United States; Medical Scientist Training Program, University of California San Francisco, San Francisco, CA, United States
| | - Kliment A Verba
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, United States; Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, United States.
| | - Natalia Jura
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, United States; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|
32
|
Diwanji D, Trenker R, Jura N, Verba KA. Efficient expression, purification, and visualization by cryo-EM of unliganded near full-length HER3. Methods Enzymol 2022; 667:611-632. [PMID: 35525556 PMCID: PMC9288109 DOI: 10.1016/bs.mie.2022.03.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Biochemical analyses of membrane receptor kinases have been limited by challenges in obtaining sufficient homogeneous receptor samples for downstream structural and biophysical characterization. Here, we report a suite of methods for the efficient expression, purification, and visualization by cryo-electron microscopy (cryo-EM) of near full-length Human Epidermal Growth Factor Receptor 3 (HER3), a receptor tyrosine pseudokinase, in the unliganded state. Through transient mammalian cell expression, a two-step purification with detergent exchange into lauryl maltose neopentyl glycol (LMNG), and freezing devoid of background detergent micelle, we obtained ~6Å reconstructions of the ~60kDa fully-glycosylated unliganded extracellular domain of HER3 from just 30mL of suspension culture. The reconstructions reveal previously unappreciated extracellular domain dynamics and glycosylation sites.
Collapse
Affiliation(s)
- Devan Diwanji
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, United States; Medical Scientist Training Program, University of California San Francisco, San Francisco, CA, United States
| | - Raphael Trenker
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, United States
| | - Natalia Jura
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, United States; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, United States; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, United States.
| | - Kliment A Verba
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, United States; Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|
33
|
Targeting the HER3 pseudokinase domain with small molecule inhibitors. Methods Enzymol 2022; 667:455-505. [PMID: 35525551 DOI: 10.1016/bs.mie.2022.03.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
HER3 is a potent oncogenic growth factor receptor belonging to the human epidermal growth factor (HER/EGFR) family of receptor tyrosine kinases. In contrast to other EGFR family members, HER3 is a pseudokinase, lacking functional kinase activity. As such, efforts to develop small molecule tyrosine kinase inhibitors against this family member have been limited. In response to HER3-specific growth factors such as neuregulin (NRG, also known as heregulin or HRG), HER3 must couple with catalytically active family members, including its preferred partner HER2. Dimerization of the intracellular HER2:HER3 kinase domains is a critical part of the activation mechanism and HER3 plays a specialized role as an allosteric activator of the active HER2 kinase partner. Intriguingly, many pseudokinases retain functionally important nucleotide binding capacity, despite loss of kinase activity. We demonstrated that occupation of the nucleotide pocket of the pseudokinase HER3 retains functional importance for growth factor signaling through oncogenic HER2:HER3 heterodimers. Mutation of the HER3 nucleotide pocket both disrupts signaling and disrupts HER2:HER3 dimerization. Conversely, ATP competitive drugs which bind to HER3, but not HER2, can stabilize HER2:HER3 dimers, induce signaling and promote cell growth in breast cancer models. This indicates a nucleotide-dependent conformational role for the HER3 kinase domain. Critically, our recent proof-of-concept work demonstrated that HER3-directed small molecule inhibitors can also disrupt HER2:HER3 dimerization and signaling, supporting the prospect that HER3 can be a direct drug target despite its lack of intrinsic activity. In this chapter we will describe methods for identifying and validating small molecule inhibitors against the HER3 pseudokinase.
Collapse
|
34
|
Sunderhaus A, Imran R, Enoh E, Adedeji A, Obafemi T, Abdel Aziz MH. Comparative expression of soluble, active human kinases in specialized bacterial strains. PLoS One 2022; 17:e0267226. [PMID: 35439268 PMCID: PMC9017934 DOI: 10.1371/journal.pone.0267226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/05/2022] [Indexed: 11/19/2022] Open
Abstract
Kinases act as molecular switches for cellular functions and are involved in multiple human pathogeneses, most notably cancer. There is a continuous need for soluble and active kinases for in-vitro drug discovery and structural biology purposes. Kinases remain challenging to express using Escherichia coli, the most widely utilized host for heterologous expression. In this work, four bacterial strains, BL21 (DE3), BL21 (DE3) pLysS, Rosetta, and Arctic Express, were chosen for parallel expression trials along with BL21 (DE3) complemented with folding chaperones DnaJ/K and GroEL/ES to compare their performance in producing soluble and active human kinases. Three representative diverse kinases were studied, Epidermal Growth Factor Receptor kinase domain, Aurora Kinase A kinase domain, and Mitogen-activated protein Kinase Kinase. The genes encoding the kinases were subcloned into pET15b bacterial plasmid and transformed into the bacterial strains. Soluble kinase expression was tested using different IPTG concentrations (1–0.05 mM) at varying temperatures (37°C– 10°C) and induction times (3–24 hours). The optimum conditions for each kinase in all strains were then used for 1L large scale cultures from which each kinase was purified to compare yield, purity, oligomerization status, and activity. Although using specialized strains achieved improvements in yield and/or activity for the three kinases, none of the tested strains was universally superior, highlighting the individuality in kinase expression.
Collapse
Affiliation(s)
- Allison Sunderhaus
- Department of Pharmaceutical Sciences and Health Outcomes, Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, Texas, United States of America
| | - Ramsha Imran
- Department of Pharmaceutical Sciences and Health Outcomes, Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, Texas, United States of America
| | - Elanzou Enoh
- Department of Pharmaceutical Sciences and Health Outcomes, Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, Texas, United States of America
| | - Adesola Adedeji
- Department of Pharmaceutical Sciences and Health Outcomes, Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, Texas, United States of America
| | - Taiye Obafemi
- Department of Pharmaceutical Sciences and Health Outcomes, Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, Texas, United States of America
| | - May H. Abdel Aziz
- Department of Pharmaceutical Sciences and Health Outcomes, Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, Texas, United States of America
- * E-mail:
| |
Collapse
|
35
|
EGFR signaling pathway as therapeutic target in human cancers. Semin Cancer Biol 2022; 85:253-275. [PMID: 35427766 DOI: 10.1016/j.semcancer.2022.04.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/12/2022] [Accepted: 04/04/2022] [Indexed: 02/08/2023]
Abstract
Epidermal Growth Factor Receptor (EGFR) enacts major roles in the maintenance of epithelial tissues. However, when EGFR signaling is altered, it becomes the grand orchestrator of epithelial transformation, and hence one of the most world-wide studied tyrosine kinase receptors involved in neoplasia, in several tissues. In the last decades, EGFR-targeted therapies shaped the new era of precision-oncology. Despite major advances, the dream of converting solid tumors into a chronic disease is still unfulfilled, and long-term remission eludes us. Studies investigating the function of this protein in solid malignancies have revealed numerous ways how tumor cells dysregulate EGFR function. Starting from preclinical models (cell lines, organoids, murine models) and validating in clinical specimens, EGFR-related oncogenic pathways, mechanisms of resistance, and novel avenues to inhibit tumor growth and metastatic spread enriching the therapeutic portfolios, were identified. Focusing on non-small cell lung cancer (NSCLC), where EGFR mutations are major players in the adenocarcinoma subtype, we will go over the most relevant discoveries that led us to understand EGFR and beyond, and highlight how they revolutionized cancer treatment by expanding the therapeutic arsenal at our disposal.
Collapse
|
36
|
Yu X, Ji X, Su C. HER2-Altered Non-Small Cell Lung Cancer: Biology, Clinicopathologic Features, and Emerging Therapies. Front Oncol 2022; 12:860313. [PMID: 35425713 PMCID: PMC9002096 DOI: 10.3389/fonc.2022.860313] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/09/2022] [Indexed: 12/26/2022] Open
Abstract
Multiple oncogenic molecular alterations have been discovered that serve as potential drug targets in non-small cell lung cancer (NSCLC). While the pathogenic and pharmacological features of common targets in NSCLC have been widely investigated, those of uncommon targets are still needed to be clarified. Human epidermal growth factor receptor 2 (HER2, ERBB2)-altered tumors represent a highly heterogeneous group of diseases, which consists of three distinct situations including mutation, amplification and overexpression. Compared with breast and gastric cancer, previous studies have shown modest and variable results of anti-HER2 treatments in lung cancers with HER2 aberrations, thus effective therapies in these patients represent an unmet medical need. By far, encouraging efforts towards novel treatment strategies have been made to improve the clinical outcomes of these patients. In this review, we describe the biological and clinicopathological characteristics of HER2 alterations and systematically sum up recent studies on emerging therapies for this subset of patients.
Collapse
Affiliation(s)
| | | | - Chunxia Su
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
37
|
It Takes More than Two to Tango: Complex, Hierarchal, and Membrane-Modulated Interactions in the Regulation of Receptor Tyrosine Kinases. Cancers (Basel) 2022; 14:cancers14040944. [PMID: 35205690 PMCID: PMC8869822 DOI: 10.3390/cancers14040944] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 12/18/2022] Open
Abstract
The search for an understanding of how cell fate and motility are regulated is not a purely scientific undertaking, but it can also lead to rationally designed therapies against cancer. The discovery of tyrosine kinases about half a century ago, the subsequent characterization of certain transmembrane receptors harboring tyrosine kinase activity, and their connection to the development of human cancer ushered in a new age with the hope of finding a treatment for malignant diseases in the foreseeable future. However, painstaking efforts were required to uncover the principles of how these receptors with intrinsic tyrosine kinase activity are regulated. Developments in molecular and structural biology and biophysical approaches paved the way towards better understanding of these pathways. Discoveries in the past twenty years first resulted in the formulation of textbook dogmas, such as dimerization-driven receptor association, which were followed by fine-tuning the model. In this review, the role of molecular interactions taking place during the activation of receptor tyrosine kinases, with special attention to the epidermal growth factor receptor family, will be discussed. The fact that these receptors are anchored in the membrane provides ample opportunities for modulatory lipid-protein interactions that will be considered in detail in the second part of the manuscript. Although qualitative and quantitative alterations in lipids in cancer are not sufficient in their own right to drive the malignant transformation, they both contribute to tumor formation and also provide ways to treat cancer. The review will be concluded with a summary of these medical aspects of lipid-protein interactions.
Collapse
|
38
|
Campbell MR, Ruiz-Saenz A, Peterson E, Agnew C, Ayaz P, Garfinkle S, Littlefield P, Steri V, Oeffinger J, Sampang M, Shan Y, Shaw DE, Jura N, Moasser MM. Targetable HER3 functions driving tumorigenic signaling in HER2-amplified cancers. Cell Rep 2022; 38:110291. [PMID: 35108525 PMCID: PMC8889928 DOI: 10.1016/j.celrep.2021.110291] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 08/30/2021] [Accepted: 12/29/2021] [Indexed: 12/26/2022] Open
Abstract
Effective inactivation of the HER2-HER3 tumor driver has remained elusive because of the challenging attributes of the pseudokinase HER3. We report a structure-function study of constitutive HER2-HER3 signaling to identify opportunities for targeting. The allosteric activation of the HER2 kinase domain (KD) by the HER3 KD is required for tumorigenic signaling and can potentially be targeted by allosteric inhibitors. ATP binding within the catalytically inactive HER3 KD provides structural rigidity that is important for signaling, but this is mimicked, not opposed, by small molecule ATP analogs, reported here in a bosutinib-bound crystal structure. Mutational disruption of ATP binding and molecular dynamics simulation of the apo KD of HER3 identify a conformational coupling of the ATP pocket with a hydrophobic AP-2 pocket, analogous to EGFR, that is critical for tumorigenic signaling and feasible for targeting. The value of these potential target sites is confirmed in tumor growth assays using gene replacement techniques.
Collapse
Affiliation(s)
- Marcia R Campbell
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ana Ruiz-Saenz
- Departments of Cell Biology & Medical Oncology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Elliott Peterson
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Christopher Agnew
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Pelin Ayaz
- D. E. Shaw Research, New York, NY 10036, USA
| | | | - Peter Littlefield
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Veronica Steri
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Julie Oeffinger
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Maryjo Sampang
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yibing Shan
- D. E. Shaw Research, New York, NY 10036, USA
| | - David E Shaw
- D. E. Shaw Research, New York, NY 10036, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Natalia Jura
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mark M Moasser
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
39
|
Role of glycosyltransferases in carcinogenesis; growth factor signaling and EMT/MET programs. Glycoconj J 2022; 39:167-176. [PMID: 35089466 PMCID: PMC8795723 DOI: 10.1007/s10719-022-10041-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 02/06/2023]
Abstract
The glycosylation of cell surface receptors has been shown to regulate each step of signal transduction, including receptor trafficking to the cell surface, ligand binding, dimerization, phosphorylation, and endocytosis. In this review we focus on the role of glycosyltransferases that are involved in the modification of N-glycans, such as the effect of branching and elongation in signaling by various cell surface receptors. In addition, the role of those enzymes in the EMT/MET programs, as related to differentiation and cancer development, progress and therapy resistance is discussed.
Collapse
|
40
|
Valle‑Mendiola A, Bustos‑Rodríguez R, Domínguez‑Melendez V, Zerecero‑Carreón O, Gutiérrez‑Hoya A, Weiss‑Steider B, Soto‑cruz I. Mutations in the helix αC of the catalytic domain from the EGFR affect its activity in cervical cancer cell lines. Oncol Lett 2022; 23:71. [PMID: 35069880 PMCID: PMC8756430 DOI: 10.3892/ol.2022.13191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/26/2021] [Indexed: 11/06/2022] Open
Abstract
The EGFR is a protein that belongs to the ErbB family of tyrosine kinase receptors. The EGFR is often overexpressed in human carcinomas. Amplification of the EGFR gene and mutations in the EGFR tyrosine kinase domain occur in patients with cancer. In cervical cancer, the expression level of the EGFR protein appears to directly associate with human papillomavirus infection. Our previous research demonstrated that in the cervical cancer cell lines, CALO and INBL, the EGFR is non-phosphorylated. The aim of the current study was to analyze the catalytic activity of the isolated EGFR and the presence of mutations in the control region αC. Catalytic activity was assessed by a universal in vitro kinase assay using polyGluTyr as a substrate, and the proteins were visualized by western blotting. For mutation analysis, DNA from CALO and INBL cell lines was isolated, and PCR was used to amplify the exons corresponding to the helix αC in the EGFR. The PCR products were visualized by agarose gel electrophoresis. The bands were isolated using a Zymoclean Gel DNA Recovery kit and directly sequenced. The EGFR, which was isolated and analyzed using the in vitro kinase assay, had catalytic activity. The receptor contained some mutations in the helix αC of the catalytic domain in both cell lines. The observed changes in the amino acid sequence may induce a different spatial arrangement and, therefore, a different conformation, which may confer different activities to this receptor. Thus, it was concluded that non-phosphorylated EGFR has catalytic activity, and it bears some amino acid changes in the helix αC of the catalytic domain in the CALO and INBL cells. These results suggest that the EGFR may function as an activator of other ErbB family receptors in these cervical cancer cells.
Collapse
Affiliation(s)
- Arturo Valle‑Mendiola
- Molecular Oncology Laboratory, Cell Differentiation and Cancer Research Unit, UMIEZ Campus II, FES Zaragoza, National University of Mexico, Iztapalapa, Mexico City 09230, Mexico
| | - Ricardo Bustos‑Rodríguez
- Molecular Oncology Laboratory, Cell Differentiation and Cancer Research Unit, UMIEZ Campus II, FES Zaragoza, National University of Mexico, Iztapalapa, Mexico City 09230, Mexico
| | | | - Octavio Zerecero‑Carreón
- Molecular Oncology Laboratory, Cell Differentiation and Cancer Research Unit, UMIEZ Campus II, FES Zaragoza, National University of Mexico, Iztapalapa, Mexico City 09230, Mexico
| | - Adriana Gutiérrez‑Hoya
- Molecular Oncology Laboratory, Cell Differentiation and Cancer Research Unit, UMIEZ Campus II, FES Zaragoza, National University of Mexico, Iztapalapa, Mexico City 09230, Mexico
| | - Benny Weiss‑Steider
- Molecular Oncology Laboratory, Cell Differentiation and Cancer Research Unit, UMIEZ Campus II, FES Zaragoza, National University of Mexico, Iztapalapa, Mexico City 09230, Mexico
| | - Isabel Soto‑cruz
- Molecular Oncology Laboratory, Cell Differentiation and Cancer Research Unit, UMIEZ Campus II, FES Zaragoza, National University of Mexico, Iztapalapa, Mexico City 09230, Mexico
| |
Collapse
|
41
|
DARPP-32 promotes ERBB3-mediated resistance to molecular targeted therapy in EGFR-mutated lung adenocarcinoma. Oncogene 2022; 41:83-98. [PMID: 34675407 PMCID: PMC8529229 DOI: 10.1038/s41388-021-02028-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/03/2021] [Accepted: 09/17/2021] [Indexed: 12/11/2022]
Abstract
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI)-refractory lung adenocarcinoma (LUAD) progression is a major clinical problem. New approaches to predict and prevent acquired resistance to EGFR TKIs are urgently needed. Here, we show that dopamine and cyclic AMP-regulated phosphoprotein, Mr 32000 (DARPP-32) physically recruits ERBB3 (HER3) to EGFR to mediate switching from EGFR homodimers to EGFR:ERBB3 heterodimers to bypass EGFR TKI-mediated inhibition by potentiating ERBB3-dependent activation of oncogenic signaling. In paired LUAD patient-derived specimens before and after EGFR TKI-refractory disease progression, we reveal that DARPP-32 and kinase-activated EGFR and ERBB3 proteins are overexpressed upon acquired resistance. In mice, DARPP-32 ablation sensitizes gefitinib-resistant xenografts to EGFR TKIs, while DARPP-32 overexpression increases gefitinib-refractory LUAD progression in gefitinib-sensitive lung tumors. We introduce a DARPP-32-mediated, ERBB3-dependent mechanism the LUAD cells use to evade EGFR TKI-induced cell death, potentially paving the way for the development of therapies to better combat therapy-refractory LUAD progression.
Collapse
|
42
|
Vathiotis IA, Charpidou A, Gavrielatou N, Syrigos KN. HER2 Aberrations in Non-Small Cell Lung Cancer: From Pathophysiology to Targeted Therapy. Pharmaceuticals (Basel) 2021; 14:1300. [PMID: 34959700 PMCID: PMC8705364 DOI: 10.3390/ph14121300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 12/17/2022] Open
Abstract
While human epidermal growth factor receptor 2 (HER2) aberrations have long been described in patients with non-small cell lung cancer (NSCLC), they have only recently been effectively targeted. Unlike patients with breast cancer, NSCLC patients can harbor either HER2-activating mutations or HER2 amplification coupled with protein overexpression. The latter has also been the case for patients with acquired resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs). As preclinical data continue to accumulate, clinical trials evaluating novel agents that target HER2 have produced promising preliminary results. Here, we review existing data on HER2 aberrations in NSCLC. Starting from HER2 biology in normal and disease processes, we summarize discrepancies in HER2 diagnostic assays between breast cancer and NSCLC. Finally, to dissect the therapeutic implications of HER2-activating mutations versus gene amplification and/or protein overexpression, we present data from prospective clinical trials that have employed distinct classes of agents to target HER2 in patients with NSCLC.
Collapse
Affiliation(s)
- Ioannis A. Vathiotis
- Section of Medical Oncology, Third Department of Internal Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.C.); (K.N.S.)
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA;
| | - Andriani Charpidou
- Section of Medical Oncology, Third Department of Internal Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.C.); (K.N.S.)
| | - Niki Gavrielatou
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA;
| | - Konstantinos N. Syrigos
- Section of Medical Oncology, Third Department of Internal Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.C.); (K.N.S.)
| |
Collapse
|
43
|
Diwanji D, Trenker R, Thaker TM, Wang F, Agard DA, Verba KA, Jura N. Structures of the HER2-HER3-NRG1β complex reveal a dynamic dimer interface. Nature 2021; 600:339-343. [PMID: 34759323 PMCID: PMC9298180 DOI: 10.1038/s41586-021-04084-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 09/29/2021] [Indexed: 02/04/2023]
Abstract
Human epidermal growth factor receptor 2 (HER2) and HER3 form a potent pro-oncogenic heterocomplex1-3 upon binding of growth factor neuregulin-1β (NRG1β). The mechanism by which HER2 and HER3 interact remains unknown in the absence of any structures of the complex. Here we isolated the NRG1β-bound near full-length HER2-HER3 dimer and, using cryo-electron microscopy, reconstructed the extracellulardomain module, revealing unexpected dynamics at the HER2-HER3 dimerization interface. We show that the dimerization arm of NRG1β-bound HER3 is unresolved because the apo HER2 monomer does not undergo a ligand-induced conformational change needed to establish a HER3 dimerization arm-binding pocket. In a structure of the oncogenic extracellular domain mutant HER2(S310F), we observe a compensatory interaction with the HER3 dimerization arm that stabilizes the dimerization interface. Both HER2-HER3 and HER2(S310F)-HER3 retain the capacity to bind to the HER2-directed therapeutic antibody trastuzumab, but the mutant complex does not bind to pertuzumab. Our structure of the HER2(S310F)-HER3-NRG1β-trastuzumab Fab complex reveals that the receptor dimer undergoes a conformational change to accommodate trastuzumab. Thus, similar to oncogenic mutations, therapeutic agents exploit the intrinsic dynamics of the HER2-HER3 heterodimer. The unique features of a singly liganded HER2-HER3 heterodimer underscore the allosteric sensing of ligand occupancy by the dimerization interface and explain why extracellular domains of HER2 do not homo-associate via a canonical active dimer interface.
Collapse
Affiliation(s)
- Devan Diwanji
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA,Medical Scientist Training Program, University of California San Francisco, San Francisco, CA 94158, USA
| | - Raphael Trenker
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Tarjani M. Thaker
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA,Department of Chemistry and Biochemistry, The University of Arizona, AZ 85721, USA
| | - Feng Wang
- Department of Biochemistry and Biophysics, University of California San Francisco, CA 94158, USA
| | - David A. Agard
- Department of Biochemistry and Biophysics, University of California San Francisco, CA 94158, USA
| | - Kliment A. Verba
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA 94158, USA,Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA,Correspondence should be addressed to K.A.V. () or N.J. ()
| | - Natalia Jura
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA. .,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
44
|
Passirani C, Vessières A, La Regina G, Link W, Silvestri R. Modulating undruggable targets to overcome cancer therapy resistance. Drug Resist Updat 2021; 60:100788. [DOI: 10.1016/j.drup.2021.100788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/03/2022]
|
45
|
Cancer-associated mutations in the p85α N-terminal SH2 domain activate a spectrum of receptor tyrosine kinases. Proc Natl Acad Sci U S A 2021; 118:2101751118. [PMID: 34507989 PMCID: PMC8449365 DOI: 10.1073/pnas.2101751118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2021] [Indexed: 11/18/2022] Open
Abstract
Phosphoinositide 3-kinase activation typically occurs following stimulation by upstream receptor tyrosine kinases (RTKs), which alleviate p110α inhibition by p85α. p85α and p110α driver mutations have been reported to activate p110α by disrupting the inhibitory interface between p85α and p110α. This study revealed that driver mutations in the p85α N-terminal SH2 domain can enhance p110α activity by inducing the activation of multiple RTKs. Furthermore, combination treatment with RTK and AKT inhibitors provides synergistic therapeutic efficacy. This previously uncharacterized oncogenic mechanism presents the exploitable vulnerability of a class of p85α mutant tumors. The phosphoinositide 3-kinase regulatory subunit p85α is a key regulator of kinase signaling and is frequently mutated in cancers. In the present study, we showed that in addition to weakening the inhibitory interaction between p85α and p110α, a group of driver mutations in the p85α N-terminal SH2 domain activated EGFR, HER2, HER3, c-Met, and IGF-1R in a p110α-independent manner. Cancer cells expressing these mutations exhibited the activation of p110α and the AKT pathway. Interestingly, the activation of EGFR, HER2, and c-Met was attributed to the ability of driver mutations to inhibit HER3 ubiquitination and degradation. The resulting increase in HER3 protein levels promoted its heterodimerization with EGFR, HER2, and c-Met, as well as the allosteric activation of these dimerized partners; however, HER3 silencing abolished this transactivation. Accordingly, inhibitors of either AKT or the HER family reduced the oncogenicity of driver mutations. The combination of these inhibitors resulted in marked synergy. Taken together, our findings provide mechanistic insights and suggest therapeutic strategies targeting a class of recurrent p85α mutations.
Collapse
|
46
|
Wang L, Zhang G, Qin L, Ye H, Wang Y, Long B, Jiao Z. Anti-EGFR Binding Nanobody Delivery System to Improve the Diagnosis and Treatment of Solid Tumours. Recent Pat Anticancer Drug Discov 2021; 15:200-211. [PMID: 32885759 DOI: 10.2174/1574892815666200904111728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 12/09/2022]
Abstract
BACKGROUND Epidermal Growth Factor Receptor (EGFR) and members of its homologous protein family mediate transmembrane signal transduction by binding to a specific ligand, which leads to regulated cell growth, differentiation, proliferation and metastasis. With the development and application of Genetically Engineered Antibodies (GEAs), Nanobodies (Nbs) constitute a new research hot spot in many diseases. A Nb is characterized by its low molecular weight, deep tissue penetration, good solubility and high antigen-binding affinity, the anti-EGFR Nbs are of significance for the diagnosis and treatment of EGFR-positive tumours. OBJECTIVE This review aims to provide a comprehensive overview of the information about the molecular structure of EGFR and its transmembrane signal transduction mechanism, and discuss the anti-EGFR-Nbs influence on the diagnosis and treatment of solid tumours. METHODS Data were obtained from PubMed, Embase and Web of Science. All patents are searched from the following websites: the World Intellectual Property Organization (WIPO®), the United States Patent Trademark Office (USPTO®) and Google Patents. RESULTS EGFR is a key target for regulating transmembrane signaling. The anti-EGFR-Nbs for targeted drugs could effectively improve the diagnosis and treatment of solid tumours. CONCLUSION EGFR plays a role in transmembrane signal transduction. The Nbs, especially anti- EGFR-Nbs, have shown effectiveness in the diagnosis and treatment of solid tumours. How to increase the affinity of Nb and reduce its immunogenicity remain a great challenge.
Collapse
Affiliation(s)
- Long Wang
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, Gansu Province, China
| | - Gengyuan Zhang
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, Gansu Province, China
| | - Long Qin
- The Cuiying Center, Lanzhou University Second Hospital, Lanzhou 730000, Gansu, China
| | - Huili Ye
- The Cuiying Center, Lanzhou University Second Hospital, Lanzhou 730000, Gansu, China
| | - Yan Wang
- The Cuiying Center, Lanzhou University Second Hospital, Lanzhou 730000, Gansu, China
| | - Bo Long
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, Gansu Province, China
| | - Zuoyi Jiao
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
47
|
The EphB6 Receptor: Kinase-Dead but Very Much Alive. Int J Mol Sci 2021; 22:ijms22158211. [PMID: 34360976 PMCID: PMC8347583 DOI: 10.3390/ijms22158211] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 01/15/2023] Open
Abstract
The Eph receptor tyrosine kinase member EphB6 is a pseudokinase, and similar to other pseudoenzymes has not attracted an equivalent amount of interest as its enzymatically-active counterparts. However, a greater appreciation for the role pseudoenzymes perform in expanding the repertoire of signals generated by signal transduction systems has fostered more interest in the field. EphB6 acts as a molecular switch that is capable of modulating the signal transduction output of Eph receptor clusters. Although the biological effects of EphB6 activity are well defined, the molecular mechanisms of EphB6 function remain enigmatic. In this review, we use a comparative approach to postulate how EphB6 acts as a scaffold to recruit adaptor proteins to an Eph receptor cluster and how this function is regulated. We suggest that the evolutionary repurposing of EphB6 into a kinase-independent molecular switch in mammals has involved repurposing the kinase activation loop into an SH3 domain-binding site. In addition, we suggest that EphB6 employs the same SAM domain linker and juxtamembrane domain allosteric regulatory mechanisms that are used in kinase-positive Eph receptors to regulate its scaffold function. As a result, although kinase-dead, EphB6 remains a strategically active component of Eph receptor signaling.
Collapse
|
48
|
Radom F, Vonrhein C, Mittl PRE, Plückthun A. Crystal structures of HER3 extracellular domain 4 in complex with the designed ankyrin-repeat protein D5. Acta Crystallogr F Struct Biol Commun 2021; 77:192-201. [PMID: 34196609 PMCID: PMC8248824 DOI: 10.1107/s2053230x21006002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/09/2021] [Indexed: 11/10/2022] Open
Abstract
The members of the human epidermal growth factor receptor (HER) family are among the most intensely studied oncological targets. HER3 (ErbB3), which had long been neglected, has emerged as a key oncogene, regulating the activity of other receptors and being involved in progression and tumor escape in multiple types of cancer. Designed ankyrin-repeat proteins (DARPins) serve as antibody mimetics that have proven to be useful in the clinic, in diagnostics and in research. DARPins have previously been selected against EGFR (HER1), HER2 and HER4. In particular, their combination into bivalent binders that separate or lock receptors in their inactive conformation has proved to be a promising strategy for the design of potent anticancer therapeutics. Here, the selection of DARPins targeting extracellular domain 4 of HER3 (HER3d4) is described. One of the selected DARPins, D5, in complex with HER3d4 crystallized in two closely related crystal forms that diffracted to 2.3 and 2.0 Å resolution, respectively. The DARPin D5 epitope comprises HER3d4 residues 568-577. These residues also contribute to interactions within the tethered (inactive) and extended (active) conformations of the extracellular domain of HER3.
Collapse
Affiliation(s)
- Filip Radom
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Clemens Vonrhein
- Global Phasing Ltd, Sheraton House, Castle Park, Cambridge CB3 0AX, United Kingdom
| | - Peer R. E. Mittl
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
49
|
Nishiyama K, Maekawa M, Nakagita T, Nakayama J, Kiyoi T, Chosei M, Murakami A, Kamei Y, Takeda H, Takada Y, Higashiyama S. CNKSR1 serves as a scaffold to activate an EGFR phosphatase via exclusive interaction with RhoB-GTP. Life Sci Alliance 2021; 4:4/9/e202101095. [PMID: 34187934 PMCID: PMC8321701 DOI: 10.26508/lsa.202101095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
CNKSR1 functions as a scaffold protein for activation of an EGFR phosphatase, PTPRH, at the plasma membrane through the exclusive interaction with RhoB-GTP which is constitutively degraded by the CUL3/KCTD10 E3 complex. Epidermal growth factor receptor (EGFR) and human EGFR 2 (HER2) phosphorylation drives HER2-positive breast cancer cell proliferation. Enforced activation of phosphatases for those receptors could be a therapeutic option for HER2-positive breast cancers. Here, we report that degradation of an endosomal small GTPase, RhoB, by the ubiquitin ligase complex cullin-3 (CUL3)/KCTD10 is essential for both EGFR and HER2 phosphorylation in HER2-positive breast cancer cells. Using human protein arrays produced in a wheat cell-free protein synthesis system, RhoB-GTP, and protein tyrosine phosphatase receptor type H (PTPRH) were identified as interacting proteins of connector enhancer of kinase suppressor of Ras1 (CNKSR1). Mechanistically, constitutive degradation of RhoB, which is mediated by the CUL3/KCTD10 E3 complex, enabled CNKSR1 to interact with PTPRH at the plasma membrane resulting in inactivation of EGFR phosphatase activity. Depletion of CUL3 or KCTD10 led to the accumulation of RhoB-GTP at the plasma membrane followed by its interaction with CNKSR1, which released activated PTPRH from CNKSR1. This study suggests a mechanism of PTPRH activation through the exclusive binding of RhoB-GTP to CNKSR1.
Collapse
Affiliation(s)
- Kanako Nishiyama
- Department of Hepato-Biliary-Pancreatic Surgery and Breast Surgery, Ehime University Graduate School of Medicine, Toon, Japan.,Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Japan
| | - Masashi Maekawa
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Japan .,Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Japan
| | - Tomoya Nakagita
- Division of Proteo-Drug-Discovery Sciences, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Jun Nakayama
- Division of Cellular Signaling, National Cancer Center Research Institute, Chuo-ku, Japan
| | - Takeshi Kiyoi
- Division of Analytical Bio-medicine, Advanced Research Support Center, Ehime University, Toon, Japan
| | - Mami Chosei
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Japan
| | - Akari Murakami
- Department of Hepato-Biliary-Pancreatic Surgery and Breast Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Yoshiaki Kamei
- Department of Hepato-Biliary-Pancreatic Surgery and Breast Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Hiroyuki Takeda
- Division of Proteo-Drug-Discovery Sciences, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Yasutsugu Takada
- Department of Hepato-Biliary-Pancreatic Surgery and Breast Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Shigeki Higashiyama
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Japan .,Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Japan.,Department of Molecular and Cellular Biology, Osaka International Cancer Institute, Chuo-ku, Osaka, Japan
| |
Collapse
|
50
|
You KS, Yi YW, Cho J, Park JS, Seong YS. Potentiating Therapeutic Effects of Epidermal Growth Factor Receptor Inhibition in Triple-Negative Breast Cancer. Pharmaceuticals (Basel) 2021; 14:589. [PMID: 34207383 PMCID: PMC8233743 DOI: 10.3390/ph14060589] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a subset of breast cancer with aggressive characteristics and few therapeutic options. The lack of an appropriate therapeutic target is a challenging issue in treating TNBC. Although a high level expression of epidermal growth factor receptor (EGFR) has been associated with a poor prognosis among patients with TNBC, targeted anti-EGFR therapies have demonstrated limited efficacy for TNBC treatment in both clinical and preclinical settings. However, with the advantage of a number of clinically approved EGFR inhibitors (EGFRis), combination strategies have been explored as a promising approach to overcome the intrinsic resistance of TNBC to EGFRis. In this review, we analyzed the literature on the combination of EGFRis with other molecularly targeted therapeutics or conventional chemotherapeutics to understand the current knowledge and to provide potential therapeutic options for TNBC treatment.
Collapse
Affiliation(s)
- Kyu Sic You
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 3116, Chungcheongnam-do, Korea
| | - Yong Weon Yi
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| | - Jeonghee Cho
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| | - Jeong-Soo Park
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
| | - Yeon-Sun Seong
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 3116, Chungcheongnam-do, Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| |
Collapse
|