1
|
Das B, Banerjee K, Gangopadhyay G. On the Role of Magnesium Ions in the DNA-Scissoring Activity of the Restriction Endonuclease ApaI: Stochastic Kinetics from a Single Molecule to Mesoscopic Paradigm. J Phys Chem B 2021; 125:4099-4107. [PMID: 33861609 DOI: 10.1021/acs.jpcb.0c10643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biochemical reactions occurring inside cells have significant stochastic signatures due to the low copy number of reacting species. Kinetics of DNA cleavage by restriction endonucleases are no exception as established by single-molecule experiments. Here, we propose a simple reaction scheme to understand the role of the cofactor magnesium ion in the action of the endonuclease ApaI. The methodology is based on the waiting time distribution of cleavage product formation that enables us to determine the corresponding rate both analytically and numerically. The theory is developed at the single-molecule level and then generalized to the biologically relevant case of a population of DNA-endonuclease complexes present inside a cell. The theoretical rate versus cofactor concentration curve is matched with relevant single-molecule experimental data that reveals positive cooperativity of cofactor binding and provides a reliable estimate of model parameters. Furthermore, a parameter range is identified where the dispersion of the waiting time, measured using the coefficient of variation, is significantly lower than the Poisson limit and becomes minimum at the in vivo magnesium ion concentration level. Such low dispersion can play a role in the robust DNA-scissoring activity of ApaI under in vivo conditions.
Collapse
Affiliation(s)
- Biswajit Das
- S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake City, Kolkata 700106, India
| | - Kinshuk Banerjee
- Department of Chemistry, Acharya Jagadish Chandra Bose College, Kolkata 700020, India
| | - Gautam Gangopadhyay
- S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake City, Kolkata 700106, India
| |
Collapse
|
2
|
Abstract
Experimental and geometrical approaches of new systems of mesomorphic 1:1 supramolecular H-bonded complexes (SMHBCs) of five rings are discussed. The H-bonding between 4-alkoxyphenylimino benzoic acids (An, as proton acceptor) and 4-(4′–pyridylazophenyl) 4′′-alkoxybenzoates (Bm, as proton donor) were investigated. Mesomorphic behaviors were analyzed by differential scanning calorimetry (DSC) and mesophase textures were identified by polarized light microscopy (POM). H-bonded assembly was established by FT-IR spectroscopic measurements via Fermi band discussion. Thermal and theoretical factors were predicted for all synthesized complexes by density functional theory (DFT) predictions. The results revealed that all prepared complexes were monomorphic, with a broad range of smectic A phases with a high thermal stability of enantiotropic mesophase. Furthermore, DFT stimulations illustrated the experimental results in terms of the influence of the chain length either of the acid or the base component. Many parameters, such as the calculated stability, the dipole moment and the polarizability of the H-bonded complexes, illustrate how these parameters work together to enhance the smectic mesophases with the obtained stability and range.
Collapse
|
3
|
Raji Reddy C, Ganesh V, Singh AK. E- Z isomerization of 3-benzylidene-indolin-2-ones using a microfluidic photo-reactor. RSC Adv 2020; 10:28630-28634. [PMID: 35520055 PMCID: PMC9055887 DOI: 10.1039/d0ra05288d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/21/2020] [Indexed: 01/17/2023] Open
Abstract
Here, we report controlled E-Z isomeric motion of the functionalized 3-benzylidene-indolin-2-ones under various solvents, temperature, light sources, and most importantly effective enhancement of light irradiance in microfluidic photoreactor conditions. Stabilization of the E-Z isomeric motion is failed in batch process, which might be due to the exponential decay of light intensity, variable irradiation, low mixing, low heat exchange, low photon flux etc. This photo-μ-flow light driven motion is further extended to the establishment of a photostationary state under solar light irradiation.
Collapse
Affiliation(s)
- Chada Raji Reddy
- Division of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology Hyderabad-500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 Uttar Pradesh India
| | - Veeramalla Ganesh
- Division of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology Hyderabad-500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 Uttar Pradesh India
| | - Ajay K Singh
- Division of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology Hyderabad-500007 India
| |
Collapse
|
4
|
Alaasar M, Schmidt JC, Darweesh AF, Tschierske C. Azobenzene-based supramolecular liquid crystals: The role of core fluorination. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
5
|
|
6
|
Guha TK, Wai A, Hausner G. Programmable Genome Editing Tools and their Regulation for Efficient Genome Engineering. Comput Struct Biotechnol J 2017; 15:146-160. [PMID: 28179977 PMCID: PMC5279741 DOI: 10.1016/j.csbj.2016.12.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/24/2016] [Accepted: 12/27/2016] [Indexed: 12/26/2022] Open
Abstract
Targeted genome editing has become a powerful genetic tool for studying gene function or for modifying genomes by correcting defective genes or introducing genes. A variety of reagents have been developed in recent years that can generate targeted double-stranded DNA cuts which can be repaired by the error-prone, non-homologous end joining repair system or via the homologous recombination-based double-strand break repair pathway provided a suitable template is available. These genome editing reagents require components for recognizing a specific DNA target site and for DNA-cleavage that generates the double-stranded break. In order to reduce potential toxic effects of genome editing reagents, it might be desirable to control the in vitro or in vivo activity of these reagents by incorporating regulatory switches that can reduce off-target activities and/or allow for these reagents to be turned on or off. This review will outline the various genome editing tools that are currently available and describe the strategies that have so far been employed for regulating these editing reagents. In addition, this review will examine potential regulatory switches/strategies that can be employed in the future in order to provide temporal control for these reagents.
Collapse
Affiliation(s)
| | | | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T2N2, Canada
| |
Collapse
|
7
|
Garcia-Amorós J, Reig M, Cuadrado A, Ortega M, Nonell S, Velasco D. A photoswitchable bis-azo derivative with a high temporal resolution. Chem Commun (Camb) 2015; 50:11462-4. [PMID: 25132052 DOI: 10.1039/c4cc05331a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The novel photoswitchable bis-azo derivative reported herein shows a high temporal resolution of 2 × 10(8) times between the thermal relaxation rates of its two constituting photochromes. Moreover, the slow and fast azo building blocks of this molecular construct can be triggered by using UV and visible light, respectively.
Collapse
Affiliation(s)
- Jaume Garcia-Amorós
- Grup de Materials Orgànics, Institut de Nanociència i Nanotecnologia (IN2UB), Departament de Química Orgànica, Universitat de Barcelona, Martí i Franquès 1, E-08028, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
8
|
Wang B, Yuan H, Liu Z, Nie C, Liu L, Lv F, Wang Y, Wang S. Cationic oligo(p-phenylene vinylene) materials for combating drug resistance of cancer cells by light manipulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:5986-5990. [PMID: 25044102 DOI: 10.1002/adma.201402183] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 06/10/2014] [Indexed: 06/03/2023]
Abstract
An unconventional strategy that can be temporally and remotely activated with light to combat the drug resistance of cancer cells is developed. A cell-membrane-anchored photosensitizer (OPV) is used to enhance anticancer drug uptake and restore toxicity in resistant cancer cells. This method recovers the activity of the already established anticancer drugs, and provides a new strategy for the development of light manipulation to combat anticancer resistance.
Collapse
Affiliation(s)
- Bing Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Bandara HMD, Basa PN, Yan J, Camire CE, MacDonald JC, Jackson RK, Burdette SC. Systematic Modulation of Hydrogen Bond Donors in Aminoazobenzene Derivatives Provides Further Evidence for the Concerted Inversion Photoisomerization Pathway. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300525] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Schierling B, Pingoud A. Controlling the DNA cleavage activity of light-inducible chimeric endonucleases by bidirectional photoactivation. Bioconjug Chem 2012; 23:1105-9. [PMID: 22559722 DOI: 10.1021/bc3001326] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A functional coupling of photosensory domains derived from photoreceptors to effector proteins is a promising strategy for engineering novel photoresponsive proteins in optogenetics. Here, we have fused the light-sensitive LOV2 domain from Avena sativa phototropin1 to the restriction enzyme PvuII to generate a genetically encoded, light-controllable endonuclease. By analyzing several LOV-PvuII fusion enzymes, variants were obtained that show a 3-fold difference in DNA cleavage activity, when illuminated with blue light or kept in the dark. The effect is fully reversible over multiple photocycles. Depending on the particular fusion interface, the LOV-PvuII variants obtained had a bidirectional polarity in photoactivation; i.e., increased DNA cleavage activity was observed either in the dark state, with a compact folded LOV domain, or in the blue light photoexcitation state, when the LOV domain is partially unfolded.
Collapse
Affiliation(s)
- Benno Schierling
- Institute of Biochemistry, Justus-Liebig University , Heinrich-Buff-Ring 58, D-35392 Giessen, Germany
| | | |
Collapse
|
11
|
Towards artificial metallonucleases for gene therapy: recent advances and new perspectives. Future Med Chem 2011; 3:1935-66. [DOI: 10.4155/fmc.11.139] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The process of DNA targeting or repair of mutated genes within the cell, induced by specifically positioned double-strand cleavage of DNA near the mutated sequence, can be applied for gene therapy of monogenic diseases. For this purpose, highly specific artificial metallonucleases are developed. They are expected to be important future tools of modern genetics. The present state of art and strategies of research are summarized, including protein engineering and artificial ‘chemical’ nucleases. From the results, we learn about the basic role of the metal ions and the various ligands, and about the DNA binding and cleavage mechanism. The results collected provide useful guidance for engineering highly controlled enzymes for use in gene therapy.
Collapse
|
12
|
Zhang W, Yoshida K, Fujiki M, Zhu X. Unpolarized-Light-Driven Amplified Chiroptical Modulation Between Chiral Aggregation and Achiral Disaggregation of an Azobenzene-alt-Fluorene Copolymer in Limonene. Macromolecules 2011. [DOI: 10.1021/ma2012128] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wei Zhang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0036, Japan
| | - Kana Yoshida
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0036, Japan
| | - Michiya Fujiki
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0036, Japan
| | - Xiulin Zhu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|