1
|
Wang D, Zhao B, Zhou X, Zhou S, Yang L, Mao Y, Bai Q, Zhao W, Sun M, Liu M, Gu Z, He L, Chen J. Synergistic effects of GmLFYa and GmLFYb on Compound Leaf Development in Soybean. PHYSIOLOGIA PLANTARUM 2025; 177:e70092. [PMID: 39871103 DOI: 10.1111/ppl.70092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/26/2024] [Accepted: 01/08/2025] [Indexed: 01/29/2025]
Abstract
Legume leaves exhibit diverse compound forms, with various regulatory mechanisms underlying the development. The transcription factor-encoding KNOXI genes are required to promote leaflet initiation in most compound-leafed angiosperms. In non-IRLC (inverted repeat-lacking clade) legumes, KNOXI are expressed in compound leaf primordia but not in others (IRLC). Recent studies have highlighted LFY genes' role in regulating leaflet initiation across legumes. The LFY functions in leaf development are well understood in IRLC legumes but remain unclear in non-IRLC legumes. Soybean, a major crop belonging to non-IRLC legumes, has limited research on the trifoliate leaf morphogenesis. Here, we comprehensively analyzed soybean trifoliate leaf development and characterized two GmLFY gene copies, GmLFYa and GmLFYb, in compound leaf morphogenesis. Analyzing the loss-of-function mutants revealed that Gmlfya displayed a low frequency of simple-like leaves, while the Gmlfyb showed no visible phenotype. However, the Gmlfya Gmlfyb double mutant predominantly displayed simple-like leaves. Additionally, mutations in two genes also affect floral development: each single mutant exhibited slightly deformed floral organs, while double mutant produced inflorescence-like structures. The transformation from floral meristems to inflorescence-like structures is similar to lfy mutant in Arabidopsis but quite different from M. truncatula and L. japonicus. These findings suggest that the two GmLFY genes in soybean collaboratively regulate both compound leaf and flower morphogenesis. Our study not only creates foundational mutant materials for future research on leaf and flower development in soybean but also reinforces the role of LFY orthologs as master regulators in compound leaf morphogenesis across a broader range of legume taxa than previously recognized.
Collapse
Affiliation(s)
- Dongfa Wang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Baolin Zhao
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xuan Zhou
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- Academy of Sciences, University of Chinese, Beijing, China
| | - Shaoli Zhou
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Liling Yang
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yawen Mao
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- Academy of Sciences, University of Chinese, Beijing, China
| | - Quanzi Bai
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Weiyue Zhao
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Mingzhu Sun
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Mingli Liu
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Zhijia Gu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Liangliang He
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jianghua Chen
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- Academy of Sciences, University of Chinese, Beijing, China
| |
Collapse
|
2
|
Ye Q, Zhou C, Lin H, Luo D, Jain D, Chai M, Lu Z, Liu Z, Roy S, Dong J, Wang ZY, Wang T. Medicago2035: Genomes, functional genomics, and molecular breeding. MOLECULAR PLANT 2024:S1674-2052(24)00399-X. [PMID: 39741417 DOI: 10.1016/j.molp.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/22/2024] [Accepted: 12/27/2024] [Indexed: 01/03/2025]
Abstract
Medicago, a genus in the Leguminosae or Fabaceae family, includes the most globally significant forage crops, notably alfalfa (Medicago sativa). Its close diploid relative Medicago truncatula serves as an exemplary model plant for investigating legume growth and development, as well as symbiosis with rhizobia. Over the past decade, advances in Medicago genomics have significantly deepened our understanding of the molecular regulatory mechanisms that underlie various traits. In this review, we comprehensively summarize research progress on Medicago genomics, growth and development (including compound leaf development, shoot branching, flowering time regulation, inflorescence development, floral organ development, and seed dormancy), resistance to abiotic and biotic stresses, and symbiotic nitrogen fixation with rhizobia, as well as molecular breeding. We propose avenues for molecular biology research on Medicago in the coming decade, highlighting those areas that have yet to be investigated or that remain ambiguous.
Collapse
Affiliation(s)
- Qinyi Ye
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chuanen Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao 266237, China.
| | - Hao Lin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Dong Luo
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi Grass Station, Guangxi University, Nanning 530004, China
| | - Divya Jain
- College of Agriculture, Tennessee State University, Nashville, TN 37209, USA
| | - Maofeng Chai
- Shandong Key Laboratory for Germplasm Innovation of Saline-Alkaline Tolerant Grasses and Trees, Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhichao Lu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Zhipeng Liu
- College of Pastoral Agriculture Science and Technology, State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730020, China.
| | - Sonali Roy
- College of Agriculture, Tennessee State University, Nashville, TN 37209, USA.
| | - Jiangli Dong
- College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Zeng-Yu Wang
- Shandong Key Laboratory for Germplasm Innovation of Saline-Alkaline Tolerant Grasses and Trees, Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China.
| | - Tao Wang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Wang Z, Niu Y, Xie Y, Huang C, Yung WS, Li MW, Wong FL, Lam HM. QTL mapping and BSR-seq revealed loci and candidate genes associated with the sporadic multifoliolate phenotype in soybean (Glycine max). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:262. [PMID: 39511005 PMCID: PMC11543727 DOI: 10.1007/s00122-024-04765-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024]
Abstract
KEY MESSAGE The QTLs and candidate genes governing the multifoliolate phenotype were identified by combining linkage mapping with BSR-seq, revealing a possible interplay between genetics and the environment in soybean leaf development. Soybean, as a legume, is typified by trifoliolate leaves. Although multifoliolate leaves (compound leaves with more than three leaflets each) have been reported in soybean, including sporadic appearances in the first compound leaves in a recombinant inbred line (RIL) population from a cross between cultivated soybean C08 and wild soybean W05 from this study, the genetic basis of this phenomenon is still unclear. Here, we integrated quantitative trait locus (QTL) mapping with bulked segregant RNA sequencing (BSR-seq) to identify the genetic loci associated with the multifoliolate phenotype in soybean. Using linkage mapping, ten QTLs related to the multifoliolate trait were identified. Among these, a significant and major QTL, qMF-2-1 on chromosome 2 and consistently detected across biological replicates, explained more than 10% of the phenotypic variation. Together with BSR-seq analyses, which analyzed the RILs with the highest multifoliolate frequencies and those with the lowest frequencies as two distinct bulks, two candidate genes were identified: Glyma.06G204300 encoding the transcription factor TCP5, and Glyma.06G204400 encoding LONGIFOLIA 2 (LNG2). Transcriptome analyses revealed that stress-responsive genes were significantly differentially expressed between high-multifoliolate occurrence lines and low occurrence ones, indicating environmental factors probably influence the appearance of multifoliolate leaves in soybean through stress-responsive genes. Hence, this study offers new insights into the genetic mechanism behind the multifoliolate phenotype in soybean.
Collapse
Affiliation(s)
- Zhili Wang
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, China
| | - Yongchao Niu
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Yichun Xie
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, China
| | - Cheng Huang
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- Key Laboratory of the Ministry of Education for Crop Physiology and Molecular Biology, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Wai-Shing Yung
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, China
| | - Man-Wah Li
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Fuk-Ling Wong
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, China.
| |
Collapse
|
4
|
Tayeh N, Hofer JMI, Aubert G, Jacquin F, Turner L, Kreplak J, Paajanen P, Le Signor C, Dalmais M, Pflieger S, Geffroy V, Ellis N, Burstin J. afila, the origin and nature of a major innovation in the history of pea breeding. THE NEW PHYTOLOGIST 2024; 243:1247-1261. [PMID: 38837425 DOI: 10.1111/nph.19800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/22/2024] [Indexed: 06/07/2024]
Abstract
The afila (af) mutation causes the replacement of leaflets by a branched mass of tendrils in the compound leaves of pea - Pisum sativum L. This mutation was first described in 1953, and several reports of spontaneous af mutations and induced mutants with a similar phenotype exist. Despite widespread introgression into breeding material, the nature of af and the origin of the alleles used remain unknown. Here, we combine comparative genomics with reverse genetic approaches to elucidate the genetic determinants of af. We also investigate haplotype diversity using a set of AfAf and afaf cultivars and breeding lines and molecular markers linked to seven consecutive genes. Our results show that deletion of two tandemly arranged genes encoding Q-type Cys(2)His(2) zinc finger transcription factors, PsPALM1a and PsPALM1b, is responsible for the af phenotype in pea. Eight haplotypes were identified in the af-harbouring genomic region on chromosome 2. These haplotypes differ in the size of the deletion, covering more or less genes. Diversity at the af locus is valuable for crop improvement and sheds light on the history of pea breeding for improved standing ability. The results will be used to understand the function of PsPALM1a/b and to transfer the knowledge for innovation in related crops.
Collapse
Affiliation(s)
- Nadim Tayeh
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, F-21000, France
| | - Julie M I Hofer
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Grégoire Aubert
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, F-21000, France
| | - Françoise Jacquin
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, F-21000, France
| | - Lynda Turner
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Jonathan Kreplak
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, F-21000, France
| | - Pirita Paajanen
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Christine Le Signor
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, F-21000, France
| | - Marion Dalmais
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, 91190, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, 91190, France
| | - Stéphanie Pflieger
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, 91190, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, 91190, France
| | - Valérie Geffroy
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, 91190, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, 91190, France
| | - Noel Ellis
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Judith Burstin
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, F-21000, France
| |
Collapse
|
5
|
He L, Liu Y, Mao Y, Wu X, Zheng X, Zhao W, Mo X, Wang R, Wu Q, Wang D, Li Y, Yang Y, Bai Q, Zhang X, Zhou S, Zhao B, Liu C, Liu Y, Tadege M, Chen J. GRAS transcription factor PINNATE-LIKE PENTAFOLIATA2 controls compound leaf morphogenesis in Medicago truncatula. THE PLANT CELL 2024; 36:1755-1776. [PMID: 38318972 PMCID: PMC11062474 DOI: 10.1093/plcell/koae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/17/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024]
Abstract
The milestone of compound leaf development is the generation of separate leaflet primordia during the early stages, which involves two linked but distinct morphogenetic events: leaflet initiation and boundary establishment for leaflet separation. Although some progress in understanding the regulatory pathways for each event have been made, it is unclear how they are intrinsically coordinated. Here, we identify the PINNATE-LIKE PENTAFOLIATA2 (PINNA2) gene encoding a newly identified GRAS transcription factor in Medicago truncatula. PINNA2 transcripts are preferentially detected at organ boundaries. Its loss-of-function mutations convert trifoliate leaves into a pinnate pentafoliate pattern. PINNA2 directly binds to the promoter region of the LEAFY orthologue SINGLE LEAFLET1 (SGL1), which encodes a key positive regulator of leaflet initiation, and downregulates its expression. Further analysis revealed that PINNA2 synergizes with two other repressors of SGL1 expression, the BEL1-like homeodomain protein PINNA1 and the C2H2 zinc finger protein PALMATE-LIKE PENTAFOLIATA1 (PALM1), to precisely define the spatiotemporal expression of SGL1 in compound leaf primordia, thereby maintaining a proper pattern of leaflet initiation. Moreover, we showed that the enriched expression of PINNA2 at the leaflet-to-leaflet boundaries is positively regulated by the boundary-specific gene MtNAM, which is essential for leaflet boundary formation. Together, these results unveil a pivotal role of the boundary-expressed transcription factor PINNA2 in regulating leaflet initiation, providing molecular insights into the coordination of intricate developmental processes underlying compound leaf pattern formation.
Collapse
Affiliation(s)
- Liangliang He
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ye Liu
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yawen Mao
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyuan Wu
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoling Zheng
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Weiyue Zhao
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiaoyu Mo
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruoruo Wang
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinq Wu
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongfa Wang
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Youhan Li
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yuanfan Yang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Quanzi Bai
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiaojia Zhang
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Shaoli Zhou
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Baolin Zhao
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changning Liu
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Liu
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA
| | - Jianghua Chen
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| |
Collapse
|
6
|
Yuan Z, Xie X, Liu M, He Y, He L. Mutations of PsPALM1a and PsPALM1b associated with the afila phenotype in Pea. PHYSIOLOGIA PLANTARUM 2024; 176:e14310. [PMID: 38666425 DOI: 10.1111/ppl.14310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 05/01/2024]
Abstract
Semi-leafless represents an advantageous plant architecture in pea breeding due to its ability to enhance resistance to lodging and potentially to powdery mildew. The introduction of semi-leafless pea varieties is considered a seminal advancement in pea breeding over the past half-century. The afila (af) mutation leads to the replacement of lateral leaflets by highly branched tendrils; combined with the semi-dwarfing le mutation, it forms the semi-leafless cultivated variety. In this study, we identified that mutations in two tandemly-arrayed genes encoding Cys(2)His(2) zinc finger transcription factors, PsPALM1a and PsPALM1b, were closely associated with the afila phenotype. These two genes may be deleted in the af mutant. In situ hybridization showed that both genes exhibit specific expression in early leaflet primordia. Furthermore, suppression of PsPALM1a/PsPALM1b resulted in a high frequency of conversion of lateral leaflets into tendrils. In conclusion, our study provides genetic evidence demonstrating that mutations in PsPALM1a and PsPALM1b are responsible for the af locus, contributing to a better understanding of compound leaf formation in peas and offering new insights for breeding applications related to afila.
Collapse
Affiliation(s)
- Zhuo Yuan
- Key Laboratory of Tropical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan Province, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoting Xie
- Key Laboratory of Tropical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan Province, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingli Liu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan Province, China
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Yexin He
- Key Laboratory of Tropical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan Province, China
| | - Liangliang He
- Key Laboratory of Tropical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan Province, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Zeng F, Ma Z, Feng Y, Shao M, Li Y, Wang H, Yang S, Mao J, Chen B. Mechanism of the Pulvinus-Driven Leaf Movement: An Overview. Int J Mol Sci 2024; 25:4582. [PMID: 38731801 PMCID: PMC11083266 DOI: 10.3390/ijms25094582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Leaf movement is a manifestation of plant response to the changing internal and external environment, aiming to optimize plant growth and development. Leaf movement is usually driven by a specialized motor organ, the pulvinus, and this movement is associated with different changes in volume and expansion on the two sides of the pulvinus. Blue light, auxin, GA, H+-ATPase, K+, Cl-, Ca2+, actin, and aquaporin collectively influence the changes in water flux in the tissue of the extensor and flexor of the pulvinus to establish a turgor pressure difference, thereby controlling leaf movement. However, how these factors regulate the multicellular motility of the pulvinus tissues in a species remains obscure. In addition, model plants such as Medicago truncatula, Mimosa pudica, and Samanea saman have been used to study pulvinus-driven leaf movement, showing a similarity in their pulvinus movement mechanisms. In this review, we summarize past research findings from the three model plants, and using Medicago truncatula as an example, suggest that genes regulating pulvinus movement are also involved in regulating plant growth and development. We also propose a model in which the variation of ion flux and water flux are critical steps to pulvinus movement and highlight questions for future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (F.Z.); (Z.M.); (Y.F.); (M.S.); (Y.L.); (H.W.); (S.Y.); (J.M.)
| |
Collapse
|
8
|
Liu Y, Yang Y, Wang R, Liu M, Ji X, He Y, Zhao B, Li W, Mo X, Zhang X, Gu Z, Pan B, Liu Y, Tadege M, Chen J, He L. Control of compound leaf patterning by MULTI-PINNATE LEAF1 (MPL1) in chickpea. Nat Commun 2023; 14:8088. [PMID: 38062032 PMCID: PMC10703836 DOI: 10.1038/s41467-023-43975-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
Plant lateral organs are often elaborated through repetitive formation of developmental units, which progress robustly in predetermined patterns along their axes. Leaflets in compound leaves provide an example of such units that are generated sequentially along the longitudinal axis, in species-specific patterns. In this context, we explored the molecular mechanisms underlying an acropetal mode of leaflet initiation in chickpea pinnate compound leaf patterning. By analyzing naturally occurring mutants multi-pinnate leaf1 (mpl1) that develop higher-ordered pinnate leaves with more than forty leaflets, we show that MPL1 encoding a C2H2-zinc finger protein sculpts a morphogenetic gradient along the proximodistal axis of the early leaf primordium, thereby conferring the acropetal leaflet formation. This is achieved by defining the spatiotemporal expression pattern of CaLEAFY, a key regulator of leaflet initiation, and also perhaps by modulating the auxin signaling pathway. Our work provides novel molecular insights into the sequential progression of leaflet formation.
Collapse
Affiliation(s)
- Ye Liu
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Yuanfan Yang
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, 650500, China
| | - Ruoruo Wang
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingli Liu
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Xiaomin Ji
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yexin He
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Baolin Zhao
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Wenju Li
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Xiaoyu Mo
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojia Zhang
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Zhijia Gu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Bo Pan
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Yu Liu
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA.
| | - Jianghua Chen
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
- University of Chinese Academy of Sciences, Beijing, China.
- College of Life Science, Southwest Forestry University, Kunming, China.
| | - Liangliang He
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
9
|
Shen Y, Ma Y, Li D, Kang M, Pei Y, Zhang R, Tao W, Huang S, Song W, Li Y, Huang W, Wang D, Chen Y. Biological and genomic analysis of a symbiotic nitrogen fixation defective mutant in Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2023; 14:1209664. [PMID: 37457346 PMCID: PMC10345209 DOI: 10.3389/fpls.2023.1209664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023]
Abstract
Medicago truncatula has been selected as one of the model legume species for gene functional studies. To elucidate the functions of the very large number of genes present in plant genomes, genetic mutant resources are very useful and necessary tools. Fast Neutron (FN) mutagenesis is effective in inducing deletion mutations in genomes of diverse species. Through this method, we have generated a large mutant resource in M. truncatula. This mutant resources have been used to screen for different mutant using a forward genetics methods. We have isolated and identified a large amount of symbiotic nitrogen fixation (SNF) deficiency mutants. Here, we describe the detail procedures that are being used to characterize symbiotic mutants in M. truncatula. In recent years, whole genome sequencing has been used to speed up and scale up the deletion identification in the mutant. Using this method, we have successfully isolated a SNF defective mutant FN007 and identified that it has a large segment deletion on chromosome 3. The causal deletion in the mutant was confirmed by tail PCR amplication and sequencing. Our results illustrate the utility of whole genome sequencing analysis in the characterization of FN induced deletion mutants for gene discovery and functional studies in the M. truncatula. It is expected to improve our understanding of molecular mechanisms underlying symbiotic nitrogen fixation in legume plants to a great extent.
Collapse
|
10
|
Basu U, Parida SK. The developmental dynamics in cool season legumes with focus on chickpea. PLANT MOLECULAR BIOLOGY 2023; 111:473-491. [PMID: 37016106 DOI: 10.1007/s11103-023-01340-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/09/2023] [Indexed: 06/19/2023]
Abstract
Chickpea is one of the most widely consumed grain legume world-wide. Advances in next-generation sequencing and genomics tools have led to genetic dissection and identification of potential candidate genes regulating agronomic traits in chickpea. However, the developmental particularities and its potential in reforming the yield and nutritional value remain largely unexplored. Studies in crops such as rice, maize, tomato and pea have highlighted the contribution of key regulator of developmental events in yield related traits. A comprehensive knowledge on the development aspects of a crop can pave way for new vistas to explore. Pea and Medicago are the close relatives of genus Cicer and the basic developmental events in these legumes are similar. However, there are some distinct developmental features in chickpea which hold potential for future crop improvement endeavours. The global chickpea germplasm encompasses wide range of diversities in terms of morphology at both vegetative and reproductive stages. There is an immediate need for understanding the genetic and molecular basis of this diversity and utilizing them for the yield contributing trait improvement. The review discusses some of the key developmental events which have potential in yield enhancement and the lessons which can be learnt from model legumes in this regard.
Collapse
Affiliation(s)
- Udita Basu
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, P.O. Box: 10531, New Delhi, 110067, India
| | - Swarup K Parida
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, P.O. Box: 10531, New Delhi, 110067, India.
| |
Collapse
|
11
|
Nandety RS, Wen J, Mysore KS. Medicago truncatula resources to study legume biology and symbiotic nitrogen fixation. FUNDAMENTAL RESEARCH 2023; 3:219-224. [PMID: 38932916 PMCID: PMC11197554 DOI: 10.1016/j.fmre.2022.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/01/2022] [Accepted: 06/19/2022] [Indexed: 10/17/2022] Open
Abstract
Medicago truncatula is a chosen model for legumes towards deciphering fundamental legume biology, especially symbiotic nitrogen fixation. Current genomic resources for M. truncatula include a completed whole genome sequence information for R108 and Jemalong A17 accessions along with the sparse draft genome sequences for other 226 M. truncatula accessions. These genomic resources are complemented by the availability of mutant resources such as retrotransposon (Tnt1) insertion mutants in R108 and fast neutron bombardment (FNB) mutants in A17. In addition, several M. truncatula databases such as small secreted peptides (SSPs) database, transporter protein database, gene expression atlas, proteomic atlas, and metabolite atlas are available to the research community. This review describes these resources and provide information regarding how to access these resources.
Collapse
Affiliation(s)
- Raja Sekhar Nandety
- Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK 73401, United States
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102, United States
| | - Jiangqi Wen
- Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK 73401, United States
| | - Kirankumar S. Mysore
- Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK 73401, United States
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, United States
| |
Collapse
|
12
|
Pi M, Zhong R, Hu S, Cai Z, Plunkert M, Zhang W, Liu Z, Kang C. A GT-1 and PKc domain-containing transcription regulator SIMPLE LEAF1 controls compound leaf development in woodland strawberry. THE NEW PHYTOLOGIST 2023; 237:1391-1404. [PMID: 36319612 DOI: 10.1111/nph.18589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Leaves are strikingly diverse in terms of shapes and complexity. The wild and cultivated strawberry plants mostly develop trifoliate compound leaves, yet the underlying genetic basis remains unclear in this important fruit crop in Rosaceae. Here, we identified two EMS mutants designated simple leaf1 (sl1-1 and sl1-2) and one natural simple-leafed mutant monophylla in Fragaria vesca. Their causative mutations all reside in SL1 (FvH4_7g28640) causing premature stop codon at different positions in sl1-1 and sl1-2 and an eight-nucleotide insertion (GTTCATCA) in monophylla. SL1 encodes a transcription regulator with the conserved DNA-binding domain GT-1 and the catalytic domain of protein kinases PKc. Expression of SL1pro::SL1 in sl1-1 completely restored compound leaf formation. The 35S::SL1 lines developed palmate-like leaves with four or five leaflets at a low penetrance. However, overexpressing the truncated SL1ΔPK caused no phenotypes, probably due to the disruption of homodimerization. SL1 is preferentially expressed at the tips of leaflets and serrations. Moreover, SL1 is closely associated with the auxin pathway and works synergistically with FveLFYa in leaf morphogenesis. Overall, our work uncovered a new type of transcription regulator that promotes compound leaf formation in the woodland strawberry and shed new lights on the diversity of leaf complexity control.
Collapse
Affiliation(s)
- Mengting Pi
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Ruhan Zhong
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Shaoqiang Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Zhuoying Cai
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Madison Plunkert
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Weiyi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Chunying Kang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
13
|
Wang M, Lavelle D, Yu C, Zhang W, Chen J, Wang X, Michelmore RW, Kuang H. The upregulated LsKN1 gene transforms pinnately to palmately lobed leaves through auxin, gibberellin, and leaf dorsiventrality pathways in lettuce. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1756-1769. [PMID: 35634731 PMCID: PMC9398307 DOI: 10.1111/pbi.13861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/09/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Leaf shape represents a vital agronomic trait for leafy vegetables such as lettuce. Some lettuce cultivars produce lobed leaves, varying from pinnately to palmately lobed, but the genetic mechanisms remain unclear. In this study, we cloned one major quantitative trait locus (QTL) controlling palmately lobed leaves. The candidate gene, LsKN1, encodes a homeobox transcription factor, and has been shown previously to be critical for the development of leafy heads in lettuce. The LsKN1 allele that is upregulated by the insertion of a transposon promotes the development of palmately lobed leaves. We demonstrated that LsKN1 upregulated LsCUC2 and LsCUC3 through different mechanisms, and their upregulation was critical for the development of palmately lobed leaves. LsKN1 binds the promoter of LsPID to promote auxin biosynthesis, which positively contributes to the development of palmately lobed leaves. In contrast, LsKN1 suppresses GA biosynthesis to promote palmately lobed leaves. LsKN1 also binds to the promoter of LsAS1, a dorsiventrality gene, to downregulate its expression. Overexpression of the LsAS1 gene compromised the effects of the LsKN1 gene changing palmately to pinnately lobed leaves. Our study illustrated that the upregulated LsKN1 gene led to palmately lobed leaves in lettuce by integrating several downstream pathways, including auxin, gibberellin, and leaf dorsiventrality pathways.
Collapse
Affiliation(s)
- Menglu Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of EducationCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Dean Lavelle
- Genome Center and Department of Plant SciencesUniversity of CaliforniaDavisCaliforniaUSA
| | - Changchun Yu
- Key Laboratory of Horticultural Plant Biology, Ministry of EducationCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Weiyi Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of EducationCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Jiongjiong Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of EducationCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Xin Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of EducationCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Richard W Michelmore
- Genome Center and Department of Plant SciencesUniversity of CaliforniaDavisCaliforniaUSA
| | - Hanhui Kuang
- Key Laboratory of Horticultural Plant Biology, Ministry of EducationCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
14
|
Du L, Adkins S, Xu M. Leaf Development in Medicago truncatula. Genes (Basel) 2022; 13:genes13071203. [PMID: 35885986 PMCID: PMC9321518 DOI: 10.3390/genes13071203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 01/11/2023] Open
Abstract
Forage yield is largely dependent on leaf development, during which the number of leaves, leaflets, leaf size, and shape are determined. In this mini-review, we briefly summarize recent studies of leaf development in Medicago truncatula, a model plant for legumes, with a focus on factors that could affect biomass of leaves. These include: floral development and related genes, lateral organ boundary genes, auxin biosynthesis, transportation and signaling genes, and WOX related genes.
Collapse
|
15
|
Feng X, Yang X, Zhong M, Li X, Zhu P. BoALG10, an α-1,2 glycosyltransferase, plays an essential role in maintaining leaf margin shape in ornamental kale. HORTICULTURE RESEARCH 2022; 9:uhac137. [PMID: 36072832 PMCID: PMC9437718 DOI: 10.1093/hr/uhac137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
The morphological diversity of leaf margin shapes is an identifying characteristic of many plant species. In our previous work, BoALG10 (α-1,2 glycosyltransferase) was predicted to be a key regulator of leaf margin shape in ornamental kale (Brassica oleracea var. acephala). An alanine and a leucine residue in the conserved domain of the smooth-margined S0835 were replaced by an aspartate and a phenylalanine, respectively, in the corresponding positions of the feathered-margined F0819. However, the expression pattern and function of this gene remain unclear. Here, we examined the expression patterns of BoALG10 using quantitative real-time PCR, and found that statistically significant differences in expression existed between F0819 and S0835 in nine developmental stages. The BoALG10 protein localized to the endoplasmic reticulum. The function of BoALG10 was then examined using complementary mutant assays. The overexpression strains phenocopied the smooth leaf margin after introduction of BoALG10 S0835 into the feathered-margined inbred line F0819. Simultaneously, irregular dissections appeared in the leaf margins of knockout mutants KO-1 and KO-2, which were generated by CRISPR/Cas9 technology from the smooth-margined inbred line S0835. Microscopic observation showed that the leaf margin cells of the smooth-margined plants S0835 and OE-3 were arranged regularly, while the cells of the feathered-margined plants F0819 and KO-1 were of inconsistent size and distributed in an irregular manner, particularly around the indentations of the leaf. This elucidation of BoALG10 function provides a novel insight into the morphological regulation of leaf margin shape.
Collapse
Affiliation(s)
- Xin Feng
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang 110866, China
| | - Xinru Yang
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
| | - Meiqin Zhong
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
| | - Xin Li
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
| | | |
Collapse
|
16
|
Guk J, Jang M, Choi J, Lee YM, Kim S. De novo phasing resolves haplotype sequences in complex plant genomes. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1031-1041. [PMID: 35332665 PMCID: PMC9129073 DOI: 10.1111/pbi.13815] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/07/2022] [Accepted: 03/20/2022] [Indexed: 05/12/2023]
Abstract
Genome phasing is a recently developed assembly method that separates heterozygous eukaryotic genomic regions and builds haplotype-resolved assemblies. Because differences between haplotypes are ignored in most published de novo genomes, assemblies are available as consensus genomes consisting of haplotype mixtures, thus increasing the need for genome phasing. Here, we review the operating principles and characteristics of several freely available and widely used phasing tools (TrioCanu, FALCON-Phase, and ALLHiC). An examination of downstream analyses using haplotype-resolved genome assemblies in plants indicated significant differences among haplotypes regarding chromosomal rearrangements, sequence insertions, and expression of specific alleles that contribute to the acquisition of the biological characteristics of plant species. Finally, we suggest directions to solve addressing limitations of current genome-phasing methods. This review provides insights into the current progress, limitations, and future directions of de novo genome phasing, which will enable researchers to easily access and utilize genome-phasing in studies involving highly heterozygous complex plant genomes.
Collapse
Affiliation(s)
- Ji‐Yoon Guk
- Department of Environmental HorticultureUniversity of SeoulSeoulKorea
| | - Min‐Jeong Jang
- Department of Environmental HorticultureUniversity of SeoulSeoulKorea
| | - Jin‐Wook Choi
- Department of Environmental HorticultureUniversity of SeoulSeoulKorea
| | - Yeon Mi Lee
- Department of Environmental HorticultureUniversity of SeoulSeoulKorea
| | - Seungill Kim
- Department of Environmental HorticultureUniversity of SeoulSeoulKorea
| |
Collapse
|
17
|
Zeng RF, Fu LM, Deng L, Liu MF, Gan ZM, Zhou H, Hu SF, Hu CG, Zhang JZ. CiKN1 and CiKN6 are involved in leaf development in citrus by regulating CimiR164. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:828-848. [PMID: 35165956 DOI: 10.1111/tpj.15707] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Ren-Fang Zeng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Li-Ming Fu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Luo Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mei-Feng Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhi-Meng Gan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huan Zhou
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Si-Fan Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chun-Gen Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jin-Zhi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
18
|
Sun R, Peng Z, Li S, Mei H, Xu Y, Yang W, Lu Z, Wang H, Zhang J, Zhou C. Developmental Analysis of Compound Leaf Development in Arachis hypogaea. FRONTIERS IN PLANT SCIENCE 2022; 13:749809. [PMID: 35222458 PMCID: PMC8866456 DOI: 10.3389/fpls.2022.749809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Leaves are the primary photosynthetic structures, while photosynthesis is the direct motivation of crop yield formation. As a legume plant, peanut (Arachis hypogaea) is one of the most economically essential crops as well as an important source of edible oil and protein. The leaves of A. hypogaea are in the tetrafoliate form, which is different from the trifoliate leaf pattern of Medicago truncatula, a model legume species. In A. hypogaea, an even-pinnate leaf with a pair of proximal and distal leaflets was developed; however, only a single terminal leaflet and a pair of lateral leaflets were formed in the odd-pinnate leaf in M. truncatula. In this study, the development of compound leaf in A. hypogaea was investigated. Transcriptomic profiles revealed that the common and unique differentially expressed genes were identified in a proximal leaflet and a distal leaflet, which provided a research route to understand the leaf development in A. hypogaea. Then, a naturally occurring mutant line with leaf developmental defects in A. hypogaea was obtained, which displayed a pentafoliate form with an extra terminal leaflet. The characterization of the mutant indicated that cytokinin and class I KNOTTED-LIKE HOMEOBOX were involved in the control of compound leaf pattern in A. hypogaea. These results expand our knowledge and provide insights into the molecular mechanism underlying the formation of different compound leaf patterns among species.
Collapse
Affiliation(s)
- Ruiqi Sun
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Zhenying Peng
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Shuangshuang Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Hongyao Mei
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Yiteng Xu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Wenying Yang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Zhichao Lu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Hongfeng Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Jing Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Chuanen Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| |
Collapse
|
19
|
Mo X, He L, Liu Y, Wang D, Zhao B, Chen J. The Genetic Control of the Compound Leaf Patterning in Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2022; 12:749989. [PMID: 35095943 PMCID: PMC8792858 DOI: 10.3389/fpls.2021.749989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Simple and compound which are the two basic types of leaves are distinguished by the pattern of the distribution of blades on the petiole. Compared to simple leaves comprising a single blade, compound leaves have multiple blade units and exhibit more complex and diverse patterns of organ organization, and the molecular mechanisms underlying their pattern formation are receiving more and more attention in recent years. Studies in model legume Medicago truncatula have led to an improved understanding of the genetic control of the compound leaf patterning. This review is an attempt to summarize the current knowledge about the compound leaf morphogenesis of M. truncatula, with a focus on the molecular mechanisms involved in pattern formation. It also includes some comparisons of the molecular mechanisms between leaf morphogenesis of different model species and offers useful information for the molecular design of legume crops.
Collapse
Affiliation(s)
- Xiaoyu Mo
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liangliang He
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Ye Liu
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Dongfa Wang
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Baolin Zhao
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Jianghua Chen
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
20
|
Jozefkowicz C, Gómez C, Odorizzi A, Iantcheva A, Ratet P, Ayub N, Soto G. Expanding the Benefits of Tnt1 for the Identification of Dominant Mutations in Polyploid Crops: A Single Allelic Mutation in the MsNAC39 Gene Produces Multifoliated Alfalfa. FRONTIERS IN PLANT SCIENCE 2021; 12:805032. [PMID: 35046986 PMCID: PMC8763170 DOI: 10.3389/fpls.2021.805032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Most major crops are polyploid species and the production of genetically engineered cultivars normally requires the introgression of transgenic or gene-edited traits into elite germplasm. Thus, a main goal of plant research is the search of systems to identify dominant mutations. In this article, we show that the Tnt1 element can be used to identify dominant mutations in allogamous tetraploid cultivated alfalfa. Specifically, we show that a single allelic mutation in the MsNAC39 gene produces multifoliate leaves (mfl) alfalfa plants, a pivot trait of breeding programs of this forage species. Finally, we discuss the potential application of a combination of preliminary screening of beneficial dominant mutants using Tnt1 mutant libraries and genome editing via the CRISPR/Cas9 system to identify target genes and to rapidly improve both autogamous and allogamous polyploid crops.
Collapse
Affiliation(s)
- Cintia Jozefkowicz
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Buenos Aires, Argentina
- Instituto de Genética (IGEAF), Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina
| | - Cristina Gómez
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Buenos Aires, Argentina
- Instituto de Genética (IGEAF), Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina
| | - Ariel Odorizzi
- Estación Experimental Agropecuaria Manfredi, Instituto Nacional de Tecnología Agropecuaria (INTA), Córdoba, Argentina
| | | | - Pascal Ratet
- Université Paris-Saclay, INRAE, CNRS, Université d’Évry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris Saclay (IPS2), Orsay, France
| | - Nicolás Ayub
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Buenos Aires, Argentina
- Instituto de Genética (IGEAF), Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina
| | - Gabriela Soto
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Buenos Aires, Argentina
- Instituto de Genética (IGEAF), Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina
| |
Collapse
|
21
|
Kumar S, Sharma V, Kumari R. Fabaceae leaf morphogenetic evolution: the leaf-lamina architectural variation in the Fabaceae flora of Indian Western Ghats, compared with that genetically characterized in the Fabaceae model species Pisum sativum and Medicago truncatula. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2021. [DOI: 10.1007/s43538-021-00037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Petroll R, Schreiber M, Finke H, Cock JM, Gould SB, Rensing SA. Signatures of Transcription Factor Evolution and the Secondary Gain of Red Algae Complexity. Genes (Basel) 2021; 12:1055. [PMID: 34356071 PMCID: PMC8304369 DOI: 10.3390/genes12071055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 01/01/2023] Open
Abstract
Red algae (Rhodophyta) belong to the superphylum Archaeplastida, and are a species-rich group exhibiting diverse morphologies. Theory has it that the unicellular red algal ancestor went through a phase of genome contraction caused by adaptation to extreme environments. More recently, the classes Porphyridiophyceae, Bangiophyceae, and Florideophyceae experienced genome expansions, coinciding with an increase in morphological complexity. Transcription-associated proteins (TAPs) regulate transcription, show lineage-specific patterns, and are related to organismal complexity. To better understand red algal TAP complexity and evolution, we investigated the TAP family complement of uni- and multi-cellular red algae. We found that the TAP family complement correlates with gain of morphological complexity in the multicellular Bangiophyceae and Florideophyceae, and that abundance of the C2H2 zinc finger transcription factor family may be associated with the acquisition of morphological complexity. An expansion of heat shock transcription factors (HSF) occurred within the unicellular Cyanidiales, potentially as an adaption to extreme environmental conditions.
Collapse
Affiliation(s)
- Romy Petroll
- Plant Cell Biology, Department of Biology, University of Marburg, 35037 Marburg, Germany; (R.P.); (M.S.); (H.F.); (S.B.G.)
| | - Mona Schreiber
- Plant Cell Biology, Department of Biology, University of Marburg, 35037 Marburg, Germany; (R.P.); (M.S.); (H.F.); (S.B.G.)
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Hermann Finke
- Plant Cell Biology, Department of Biology, University of Marburg, 35037 Marburg, Germany; (R.P.); (M.S.); (H.F.); (S.B.G.)
| | - J. Mark Cock
- Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université, CNRS, UPMC University Paris 06, CS 90074, 29688 Roscoff, France;
| | - Sven B. Gould
- Plant Cell Biology, Department of Biology, University of Marburg, 35037 Marburg, Germany; (R.P.); (M.S.); (H.F.); (S.B.G.)
- Institute for Molecular Evolution, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Stefan A. Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, 35037 Marburg, Germany; (R.P.); (M.S.); (H.F.); (S.B.G.)
- Centre for Biological Signaling Studies (BIOSS), University of Freiburg, 79108 Freiburg, Germany
| |
Collapse
|
23
|
Wang H, Kong F, Zhou C. From genes to networks: The genetic control of leaf development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1181-1196. [PMID: 33615731 DOI: 10.1111/jipb.13084] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/16/2021] [Indexed: 05/15/2023]
Abstract
Substantial diversity exists for both the size and shape of the leaf, the main photosynthetic organ of flowering plants. The two major forms of leaf are simple leaves, in which the leaf blade is undivided, and compound leaves, which comprise several leaflets. Leaves form at the shoot apical meristem from a group of undifferentiated cells, which first establish polarity, then grow and differentiate. Each of these processes is controlled by a combination of transcriptional regulators, microRNAs and phytohormones. The present review documents recent advances in our understanding of how these various factors modulate the development of both simple leaves (focusing mainly on the model plant Arabidopsis thaliana) and compound leaves (focusing mainly on the model legume species Medicago truncatula).
Collapse
Affiliation(s)
- Hongfeng Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266101, China
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Chuanen Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266101, China
| |
Collapse
|
24
|
Du H, Jiao Z, Liu J, Huang W, Ge L. Rapid identification of mutations caused by fast neutron bombardment in Medicago truncatula. PLANT METHODS 2021; 17:62. [PMID: 34134730 PMCID: PMC8207604 DOI: 10.1186/s13007-021-00765-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/09/2021] [Indexed: 05/14/2023]
Abstract
BACKGROUND Fast neutron bombardment (FNB) is a very effective approach for mutagenesis and has been widely used in generating mutant libraries in many plant species. The main type of mutations of FNB mutants are deletions of DNA fragments ranging from few base pairs to several hundred kilobases, thus usually leading to the null mutation of genes. Despite its efficiency in mutagenesis, identification of the mutation sites is still challenging in many species. The traditional strategy of positional cloning is very effective in identifying the mutation but time-consuming. With the availability of genome sequences, the array-based comparative genomic hybridization (CGH) method has been developed to detect the mutation sites by comparing the signal intensities of probes between wild-type and mutant plants. Though CGH method is effective in detecting copy number variations (CNVs), the resolution and coverage of CGH probes are not adequate to identify mutations other than CNVs. RESULTS We report a new strategy and pipeline to sensitively identify the mutation sites of FNB mutants by combining deep-coverage whole-genome sequencing (WGS), polymorphism calling, and customized filtering in Medicago truncatula. Initially, we performed a bulked sequencing for a FNB white nodule (wn) mutant and its wild-type like plants derived from a backcross population. Following polymorphism calling and filtering, validation by manual check and Sanger sequencing, we identified that SymCRK is the causative gene of white nodule mutant. We also sequenced an individual FNB mutant yellow leaves 1 (yl1) and wild-type plant. We identified that ETHYLENE-DEPENDENT GRAVITROPISM-DEFICIENT AND YELLOW-GREEN 1 (EGY1) is the candidate gene for M. truncatula yl1 mutant. CONCLUSION Our results demonstrated that the method reported here is rather robust in identifying the mutation sites for FNB mutants.
Collapse
Affiliation(s)
- Huan Du
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Engineering Research Center for Grassland Science, South China Agricultural University, Guangzhou, China
| | - Zhicheng Jiao
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Engineering Research Center for Grassland Science, South China Agricultural University, Guangzhou, China
| | - Junjie Liu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Engineering Research Center for Grassland Science, South China Agricultural University, Guangzhou, China
| | - Wei Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Liangfa Ge
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
- Guangdong Engineering Research Center for Grassland Science, South China Agricultural University, Guangzhou, China.
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
25
|
Zhou S, Yang T, Mao Y, Liu Y, Guo S, Wang R, Fangyue G, He L, Zhao B, Bai Q, Li Y, Zhang X, Wang D, Wang C, Wu Q, Yang Y, Liu Y, Tadege M, Chen J. The F-box protein MIO1/SLB1 regulates organ size and leaf movement in Medicago truncatula. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2995-3011. [PMID: 33506247 PMCID: PMC8023213 DOI: 10.1093/jxb/erab033] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
The size of leaf and seed organs, determined by the interplay of cell proliferation and expansion, is closely related to the final yield and quality of forage and crops. Yet the cellular and molecular mechanisms underlying organ size modulation remain poorly understood, especially in legumes. Here, MINI ORGAN1 (MIO1), which encodes an F-box protein SMALL LEAF AND BUSHY1 (SLB1) recently reported to control lateral branching in Medicago truncatula, was identified as a key regulator of organ size. We show that loss-of-function of MIO1/SLB1 severely reduced organ size. Conversely, plants overexpressing MIO1/SLB1 had enlarged organs. Cellular analysis revealed that MIO1/SLB1 controlled organ size mainly by modulating primary cell proliferation during the early stages of leaf development. Biochemical analysis revealed that MIO1/SLB1 could form part of SKP1/Cullin/F-box (SCF) E3 ubiquitin ligase complex, to target BIG SEEDS1 (BS1), a repressor of primary cell division, for degradation. Interestingly, we found that MIO1/SLB1 also played a key role in pulvinus development and leaf movement by modulating cell proliferation of the pulvinus as leaves developed. Our study not only demonstrates a conserved role of MIO1/SLB1 in the control of organ size in legumes, but also sheds light on the novel function of MIO1/SLB1 in leaf movement.
Collapse
Affiliation(s)
- Shaoli Zhou
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tianquan Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yawen Mao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ye Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Shiqi Guo
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruoruo Wang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Genwang Fangyue
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liangliang He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Baolin Zhao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Quanzi Bai
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Youhan Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiaojia Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dongfa Wang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Chaoqun Wang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qing Wu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuanfan Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- School of Ecology and Environmental Sciences, Yunnan University, Kunming, China
| | - Yu Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, USA
| | - Jianghua Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
- School of Ecology and Environmental Sciences, Yunnan University, Kunming, China
| |
Collapse
|
26
|
Zhao W, Bai Q, Zhao B, Wu Q, Wang C, Liu Y, Yang T, Liu Y, He H, Du S, Tadege M, He L, Chen J. The geometry of the compound leaf plays a significant role in the leaf movement of Medicago truncatula modulated by mtdwarf4a. THE NEW PHYTOLOGIST 2021; 230:475-484. [PMID: 33458826 DOI: 10.1111/nph.17198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
In most legumes, two typical features found in leaves are diverse compound forms and the pulvinus-driven nyctinastic movement. Many genes have been identified for leaf-shape determination, but the underlying nature of leaf movement as well as its association with the compound form remains largely unknown. Using forward-genetic screening and whole-genome resequencing, we found that two allelic mutants of Medicago truncatula with unclosed leaflets at night were impaired in MtDWARF4A (MtDWF4A), a gene encoding a cytochrome P450 protein orthologous to Arabidopsis DWARF4. The mtdwf4a mutant also had a mild brassinosteroid (BR)-deficient phenotype bearing pulvini without significant deficiency in organ identity. Both mtdwf4a and dwf4 could be fully rescued by MtDWF4A, and mtdwf4a could close their leaflets at night after the application of exogenous 24-epi-BL. Surgical experiments and genetic analysis of double mutants revealed that the failure to exhibit leaf movement in mtdwf4a is a consequence of the physical obstruction of the overlapping leaflet laminae, suggesting a proper geometry of leaflets is important for their movement in M. truncatula. These observations provide a novel insight into the nyctinastic movement of compound leaves, shedding light on the importance of open space for organ movements in plants.
Collapse
Affiliation(s)
- Weiyue Zhao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, Yunnan, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Quanzi Bai
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, Yunnan, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baolin Zhao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, Yunnan, 650223, China
| | - Qing Wu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, Yunnan, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chaoqun Wang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, Yunnan, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ye Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, Yunnan, 650223, China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Tianquan Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, Yunnan, 650223, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yu Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, Yunnan, 650223, China
| | - Hua He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, Yunnan, 650223, China
| | - Shanshan Du
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, Yunnan, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Liangliang He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, Yunnan, 650223, China
| | - Jianghua Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, Yunnan, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| |
Collapse
|
27
|
Malaviya DR, Roy AK, Kaushal P, Pathak S, Kalendar R. Phenotype study of multifoliolate leaf formation in Trifolium alexandrinum L. PeerJ 2021; 9:e10874. [PMID: 33717683 PMCID: PMC7936568 DOI: 10.7717/peerj.10874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/11/2021] [Indexed: 12/02/2022] Open
Abstract
Background The genus Trifolium is characterized by typical trifoliolate leaves. Alterations in leaf formats from trifoliolate to multifoliolate, i.e., individual plants bearing trifoliolate, quadrifoliolate, pentafoliolate or more leaflets, were previously reported among many species of the genus. The study is an attempt to develop pure pentafoliolate plants of T. alexandrinum and to understand its genetic control. Methods The experimental material consisted of two populations of T. alexandrinum with multifoliolate leaf expression, i.e.,interspecific hybrid progenies of T. alexandrinum with T. apertum, and T. alexandrinum genotype Penta-1. Penetrance of the multifoliolate trait was observed among multifoliolate and trifoliolate plant progenies. In vitro culture and regeneration of plantlets from the axillary buds from different plant sources was also attempted. Results The inheritance among a large number of plant progenies together with in vitro micro-propagation results did not establish a definite pattern. The multifoliolate leaf formation was of chimeric nature, i.e., more than one leaf format appearing on individual branches. Reversal to normal trifoliolate from multifoliolate was also quite common. Penetrance and expression of multifoliolate leaf formation was higher among the plants raised from multifoliolate plants. Multifoliolate and pure pentafoliolate plants were observed in the progenies of pure trifoliolate plants and vice-versa. There was an apparent increase in the pentafoliolate leaf formation frequency over the years due to targeted selection. A few progenies of the complete pentafoliolate plants in the first year were true breeding in the second year. Frequency of plantlets with multifoliolate leaf formation was also higher in in vitro axillary bud multiplication when the explant bud was excised from the multifoliolate leaf node. Conclusion Number of leaflets being a discrete variable, occurrence of multifoliolate leaves on individual branches, reversal of leaf formats on branches and developing true breeding pentafoliolates were the factors leading to a hypothesis beyond normal Mendelian inheritance. Transposable elements (TEs) involved in leaf development in combination with epigenetics were probably responsible for alterations in the expression of leaflet number. Putative TE’s movement owing to chromosomal rearrangements possibly resulted in homozygous pentafoliolate trait with evolutionary significance. The hypothesis provides a new insight into understanding the genetic control of this trait in T. alexandrinum and may also be useful in other Trifolium species where such observations are reported.
Collapse
Affiliation(s)
- Devendra Ram Malaviya
- ICAR - Indian Institute of Sugarcane Research, Lucknow, India.,ICAR - Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Ajoy Kumar Roy
- ICAR - Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Pankaj Kaushal
- ICAR - Indian Grassland and Fodder Research Institute, Jhansi, India.,ICAR - National Institute of Biotic Stress Management, Raipur, India
| | - Shalini Pathak
- ICAR - Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Ruslan Kalendar
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Uusimaa, Finland.,National Laboratory Astana, Nazarbayev University, Nur-Sultan, Aqmola, Kazakhstan
| |
Collapse
|
28
|
Israeli A, Ben-Herzel O, Burko Y, Shwartz I, Ben-Gera H, Harpaz-Saad S, Bar M, Efroni I, Ori N. Coordination of differentiation rate and local patterning in compound-leaf development. THE NEW PHYTOLOGIST 2021; 229:3558-3572. [PMID: 33259078 DOI: 10.1111/nph.17124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
The variability in leaf form in nature is immense. Leaf patterning occurs by differential growth, taking place during a limited window of morphogenetic activity at the leaf marginal meristem. While many regulators have been implicated in the designation of the morphogenetic window and in leaf patterning, how these effectors interact to generate a particular form is still not well understood. We investigated the interaction among different effectors of tomato (Solanum lycopersicum) compound-leaf development, using genetic and molecular analyses. Mutations in the tomato auxin response factor SlARF5/SlMP, which normally promotes leaflet formation, suppressed the increased leaf complexity of mutants with extended morphogenetic window. Impaired activity of the NAC/CUC transcription factor GOBLET (GOB), which specifies leaflet boundaries, also reduced leaf complexity in these backgrounds. Analysis of genetic interactions showed that the patterning factors SlMP, GOB and the MYB transcription factor LYRATE (LYR) coordinately regulate leaf patterning by modulating in parallel different aspects of leaflet formation and shaping. This work places an array of developmental regulators in a morphogenetic context. It reveals how organ-level differentiation rate and local growth are coordinated to sculpture an organ. These concepts are applicable to the coordination of pattering and differentiation in other species and developmental processes.
Collapse
Affiliation(s)
- Alon Israeli
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, PO Box 12, Rehovot, 76100, Israel
| | - Ori Ben-Herzel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, PO Box 12, Rehovot, 76100, Israel
| | - Yogev Burko
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, PO Box 12, Rehovot, 76100, Israel
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Plant Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Ido Shwartz
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, PO Box 12, Rehovot, 76100, Israel
| | - Hadas Ben-Gera
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, PO Box 12, Rehovot, 76100, Israel
- Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Agricultural Research Organization, PO Box 102, Ramat Yishay, 30095, Israel
| | - Smadar Harpaz-Saad
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, PO Box 12, Rehovot, 76100, Israel
| | - Maya Bar
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, PO Box 12, Rehovot, 76100, Israel
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, Rishon LeZion, 7505101, Israel
| | - Idan Efroni
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, PO Box 12, Rehovot, 76100, Israel
| | - Naomi Ori
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, PO Box 12, Rehovot, 76100, Israel
| |
Collapse
|
29
|
Yang T, Li Y, Liu Y, He L, Liu A, Wen J, Mysore KS, Tadege M, Chen J. The 3-ketoacyl-CoA synthase WFL is involved in lateral organ development and cuticular wax synthesis in Medicago truncatula. PLANT MOLECULAR BIOLOGY 2021; 105:193-204. [PMID: 33037987 DOI: 10.1007/s11103-020-01080-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 10/02/2020] [Indexed: 05/05/2023]
Abstract
A 3-ketoacyl-CoA synthase involved in biosynthesis of very long chain fatty acids and cuticular wax plays a vital role in aerial organ development in M. truncatula. Cuticular wax is composed of very long chain fatty acids and their derivatives. Defects in cuticular wax often result in organ fusion, but little is known about the role of cuticular wax in compound leaf and flower development in Medicago truncatula. In this study, through an extensive screen of a Tnt1 retrotransposon insertion population in M. truncatula, we identified four mutant lines, named wrinkled flower and leaf (wfl) for their phenotype. The phenotype of the wfl mutants is caused by a Tnt1 insertion in Medtr3g105550, encoding 3-ketoacyl-CoA synthase (KCS), which functions as a rate-limiting enzyme in very long chain fatty acid elongation. Reverse transcription-quantitative PCR showed that WFL was broadly expressed in aerial organs of the wild type, such as leaves, floral organs, and the shoot apical meristem, but was expressed at lower levels in roots. In situ hybridization showed a similar expression pattern, mainly detecting the WFL transcript in epidermal cells of the shoot apical meristem, leaf primordia, and floral organs. The wfl mutant leaves showed sparser epicuticular wax crystals on the surface and increased water permeability compared with wild type. Further analysis showed that in wfl leaves, the percentage of C20:0, C22:0, and C24:0 fatty acids was significantly increased, the amount of cuticular wax was markedly reduced, and wax constituents were altered compared to the wild type. The reduced formation of cuticular wax and wax composition changes on the leaf surface might lead to the developmental defects observed in the wfl mutants. These findings suggest that WFL plays a key role in cuticular wax formation and in the late stage of leaf and flower development in M. truncatula.
Collapse
Affiliation(s)
- Tianquan Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
| | - Youhan Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
| | - Yu Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
| | - Liangliang He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
| | - Aizhong Liu
- Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Jiangqi Wen
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Kirankumar S Mysore
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Jianghua Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
30
|
He S, Dong X, Zhang G, Fan W, Duan S, Shi H, Li D, Li R, Chen G, Long G, Zhao Y, Chen M, Yan M, Yang J, Lu Y, Zhou Y, Chen W, Dong Y, Yang S. High quality genome of Erigeron breviscapus provides a reference for herbal plants in Asteraceae. Mol Ecol Resour 2020; 21:153-169. [PMID: 32985109 PMCID: PMC7756436 DOI: 10.1111/1755-0998.13257] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 01/02/2023]
Abstract
Erigeron breviscapus is an important medicinal plant in Compositae and the first species to realize the whole process from the decoding of the draft genome sequence to scutellarin biosynthesis in yeast. However, the previous low‐quality genome assembly has hindered the optimization of candidate genes involved in scutellarin synthesis and the development of molecular‐assisted breeding based on the genome. Here, the E. breviscapus genome was updated using PacBio RSII sequencing data and Hi‐C data, and increased in size from 1.2 Gb to 1.43 Gb, with a scaffold N50 of 156.82 Mb and contig N50 of 140.95 kb, and a total of 43,514 protein‐coding genes were obtained and oriented onto nine pseudo‐chromosomes, thus becoming the third plant species assembled to chromosome level after sunflower and lettuce in Compositae. Fourteen genes with evidence for positive selection were identified and found to be related to leaf morphology, flowering and secondary metabolism. The number of genes in some gene families involved in flavonoid biosynthesis in E. breviscapus have been significantly expanded. In particular, additional candidate genes involved in scutellarin biosynthesis, such as flavonoid‐7‐O‐glucuronosyltransferase genes (F7GATs) were identified using updated genome. In addition, three candidate genes encoding indole‐3‐pyruvate monooxygenase YUCCA2 (YUC2), serine carboxypeptidase‐like 18 (SCPL18), and F‐box protein (FBP), respectively, were identified to be probably related to leaf development and flowering by resequencing 99 individuals. These results provided a substantial genetic basis for improving agronomic and quality traits of E. breviscapus, and provided a platform for improving other draft genome assemblies to chromosome‐level.
Collapse
Affiliation(s)
- Simei He
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Xiao Dong
- Province Key Laboratory, Biological Big Data College, Yunnan Agricultural University, Kunming, China
| | - Guanghui Zhang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Wei Fan
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Shengchang Duan
- Province Key Laboratory, Biological Big Data College, Yunnan Agricultural University, Kunming, China
| | - Hong Shi
- Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Dawei Li
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Rui Li
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Geng Chen
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Guangqiang Long
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Yan Zhao
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Mo Chen
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Mi Yan
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Jianli Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yingchun Lu
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Yanli Zhou
- Plant Germplasm and Genomics Center, The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Wei Chen
- Province Key Laboratory, Biological Big Data College, Yunnan Agricultural University, Kunming, China
| | - Yang Dong
- Province Key Laboratory, Biological Big Data College, Yunnan Agricultural University, Kunming, China
| | - Shengchao Yang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
31
|
Ballerini ES, Min Y, Edwards MB, Kramer EM, Hodges SA. POPOVICH, encoding a C2H2 zinc-finger transcription factor, plays a central role in the development of a key innovation, floral nectar spurs, in Aquilegia. Proc Natl Acad Sci U S A 2020; 117:22552-22560. [PMID: 32848061 PMCID: PMC7486772 DOI: 10.1073/pnas.2006912117] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The evolution of novel features, such as eyes or wings, that allow organisms to exploit their environment in new ways can lead to increased diversification rates. Therefore, understanding the genetic and developmental mechanisms involved in the origin of these key innovations has long been of interest to evolutionary biologists. In flowering plants, floral nectar spurs are a prime example of a key innovation, with the independent evolution of spurs associated with increased diversification rates in multiple angiosperm lineages due to their ability to promote reproductive isolation via pollinator specialization. As none of the traditional plant model taxa have nectar spurs, little is known about the genetic and developmental basis of this trait. Nectar spurs are a defining feature of the columbine genus Aquilegia (Ranunculaceae), a lineage that has experienced a relatively recent and rapid radiation. We use a combination of genetic mapping, gene expression analyses, and functional assays to identify a gene crucial for nectar spur development, POPOVICH (POP), which encodes a C2H2 zinc-finger transcription factor. POP plays a central role in regulating cell proliferation in the Aquilegia petal during the early phase (phase I) of spur development and also appears to be necessary for the subsequent development of nectaries. The identification of POP opens up numerous avenues for continued scientific exploration, including further elucidating of the genetic pathway of which it is a part, determining its role in the initial evolution of the Aquilegia nectar spur, and examining its potential role in the subsequent evolution of diverse spur morphologies across the genus.
Collapse
Affiliation(s)
- Evangeline S Ballerini
- Ecology, Evolution and Marine Biology Department, University of California, Santa Barbara, CA 93106;
| | - Ya Min
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02318
| | - Molly B Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02318
| | - Elena M Kramer
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02318
| | - Scott A Hodges
- Ecology, Evolution and Marine Biology Department, University of California, Santa Barbara, CA 93106;
| |
Collapse
|
32
|
Jiao Z, Wang L, Du H, Wang Y, Wang W, Liu J, Huang J, Huang W, Ge L. Genome-wide study of C2H2 zinc finger gene family in Medicago truncatula. BMC PLANT BIOLOGY 2020; 20:401. [PMID: 32867687 PMCID: PMC7460785 DOI: 10.1186/s12870-020-02619-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND C2H2 zinc finger proteins (C2H2 ZFPs) play vital roles in shaping many aspects of plant growth and adaptation to the environment. Plant genomes harbor hundreds of C2H2 ZFPs, which compose one of the most important and largest transcription factor families in higher plants. Although the C2H2 ZFP gene family has been reported in several plant species, it has not been described in the model leguminous species Medicago truncatula. RESULTS In this study, we identified 218 C2H2 type ZFPs with 337 individual C2H2 motifs in M. truncatula. We showed that the high rate of local gene duplication has significantly contributed to the expansion of the C2H2 gene family in M. truncatula. The identified ZFPs exhibit high variation in motif arrangement and expression pattern, suggesting that the short C2H2 zinc finger motif has been adopted as a scaffold by numerous transcription factors with different functions to recognize cis-elements. By analyzing the public expression datasets and quantitative RT-PCR (qRT-PCR), we identified several C2H2 ZFPs that are specifically expressed in certain tissues, such as the nodule, seed, and flower. CONCLUSION Our genome-wide work revealed an expanded C2H2 ZFP gene family in an important legume M. truncatula, and provides new insights into the diversification and expansion of C2H2 ZFPs in higher plants.
Collapse
Affiliation(s)
- Zhicheng Jiao
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Engineering Research Center for Grassland Science, Tianhe, 483 Wushan Road, Guangzhou, 510642, Guangdong, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Liping Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Huan Du
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Engineering Research Center for Grassland Science, Tianhe, 483 Wushan Road, Guangzhou, 510642, Guangdong, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Ying Wang
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Engineering Research Center for Grassland Science, Tianhe, 483 Wushan Road, Guangzhou, 510642, Guangdong, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Weixu Wang
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Engineering Research Center for Grassland Science, Tianhe, 483 Wushan Road, Guangzhou, 510642, Guangdong, China
| | - Junjie Liu
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Engineering Research Center for Grassland Science, Tianhe, 483 Wushan Road, Guangzhou, 510642, Guangdong, China
| | - Jinhang Huang
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Engineering Research Center for Grassland Science, Tianhe, 483 Wushan Road, Guangzhou, 510642, Guangdong, China
| | - Wei Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Liangfa Ge
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
- Guangdong Engineering Research Center for Grassland Science, Tianhe, 483 Wushan Road, Guangzhou, 510642, Guangdong, China.
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
33
|
Yadav A, Fernández-Baca D, Cannon SB. Family-Specific Gains and Losses of Protein Domains in the Legume and Grass Plant Families. Evol Bioinform Online 2020; 16:1176934320939943. [PMID: 32694909 PMCID: PMC7350399 DOI: 10.1177/1176934320939943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 11/27/2022] Open
Abstract
Protein domains can be regarded as sections of protein sequences capable of folding independently and performing specific functions. In addition to amino-acid level changes, protein sequences can also evolve through domain shuffling events such as domain insertion, deletion, or duplication. The evolution of protein domains can be studied by tracking domain changes in a selected set of species with known phylogenetic relationships. Here, we conduct such an analysis by defining domains as “features” or “descriptors,” and considering the species (target + outgroup) as instances or data-points in a data matrix. We then look for features (domains) that are significantly different between the target species and the outgroup species. We study the domain changes in 2 large, distinct groups of plant species: legumes (Fabaceae) and grasses (Poaceae), with respect to selected outgroup species. We evaluate 4 types of domain feature matrices: domain content, domain duplication, domain abundance, and domain versatility. The 4 types of domain feature matrices attempt to capture different aspects of domain changes through which the protein sequences may evolve—that is, via gain or loss of domains, increase or decrease in the copy number of domains along the sequences, expansion or contraction of domains, or through changes in the number of adjacent domain partners. All the feature matrices were analyzed using feature selection techniques and statistical tests to select protein domains that have significant different feature values in legumes and grasses. We report the biological functions of the top selected domains from the analysis of all the feature matrices. In addition, we also perform domain-centric gene ontology (dcGO) enrichment analysis on all selected domains from all 4 feature matrices to study the gene ontology terms associated with the significantly evolving domains in legumes and grasses. Domain content analysis revealed a striking loss of protein domains from the Fanconi anemia (FA) pathway, the pathway responsible for the repair of interstrand DNA crosslinks. The abundance analysis of domains found in legumes revealed an increase in glutathione synthase enzyme, an antioxidant required from nitrogen fixation, and a decrease in xanthine oxidizing enzymes, a phenomenon confirmed by previous studies. In grasses, the abundance analysis showed increases in domains related to gene silencing which could be due to polyploidy or due to enhanced response to viral infection. We provide a docker container that can be used to perform this analysis workflow on any user-defined sets of species, available at https://cloud.docker.com/u/akshayayadav/repository/docker/akshayayadav/protein-domain-evolution-project.
Collapse
Affiliation(s)
- Akshay Yadav
- Bioinformatics and Computational Biology Graduate Program, Iowa State University, Ames, IA, USA
| | | | - Steven B Cannon
- Corn Insects and Crop Genetics Research Unit, USDA-Agricultural Research Service, Ames, IA, USA
| |
Collapse
|
34
|
Zhao B, He L, Jiang C, Liu Y, He H, Bai Q, Zhou S, Zheng X, Wen J, Mysore KS, Tadege M, Liu Y, Liu R, Chen J. Lateral Leaflet Suppression 1 (LLS1), encoding the MtYUCCA1 protein, regulates lateral leaflet development in Medicago truncatula. THE NEW PHYTOLOGIST 2020; 227:613-628. [PMID: 32170762 DOI: 10.1111/nph.16539] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
In species with compound leaves, the positions of leaflet primordium initiation are associated with local peaks of auxin accumulation. However, the role of auxin during the late developmental stages and outgrowth of compound leaves remains largely unknown. Using genome resequencing approaches, we identified insertion sites at four alleles of the LATERAL LEAFLET SUPPRESSION1 (LLS1) gene, encoding the auxin biosynthetic enzyme YUCCA1 in Medicago truncatula. Linkage analysis and complementation tests showed that the lls1 mutant phenotypes were caused by the Tnt1 insertions that disrupted the LLS1 gene. The transcripts of LLS1 can be detected in primordia at early stages of leaf initiation and later in the basal regions of leaflets, and finally in vein tissues at late leaf developmental stages. Vein numbers and auxin content are reduced in the lls1-1 mutant. Analysis of the lls1 sgl1 and lls1 palm1 double mutants revealed that SGL1 is epistatic to LLS1, and LLS1 works with PALM1 in an independent pathway to regulate the growth of lateral leaflets. Our work demonstrates that the YUCCA1/YUCCA4 subgroup plays very important roles in the outgrowth of lateral leaflets during compound leaf development of M. truncatula, in addition to leaf venation.
Collapse
Affiliation(s)
- Baolin Zhao
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, Yunnan, 650223, China
| | - Liangliang He
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, Yunnan, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuan Jiang
- College of Life Science, Hebei Normal University, 20 East 2nd Ring South, Shijiazhuang, 050024, China
| | - Ye Liu
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, Yunnan, 650223, China
- School of life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Hua He
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, Yunnan, 650223, China
| | - Quanzi Bai
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, Yunnan, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shaoli Zhou
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, Yunnan, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoling Zheng
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, Yunnan, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiangqi Wen
- Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | | | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Yu Liu
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, Yunnan, 650223, China
| | - Renyi Liu
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianghua Chen
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, Yunnan, 650223, China
| |
Collapse
|
35
|
Chen H, Zeng Y, Yang Y, Huang L, Tang B, Zhang H, Hao F, Liu W, Li Y, Liu Y, Zhang X, Zhang R, Zhang Y, Li Y, Wang K, He H, Wang Z, Fan G, Yang H, Bao A, Shang Z, Chen J, Wang W, Qiu Q. Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa. Nat Commun 2020; 11:2494. [PMID: 32427850 PMCID: PMC7237683 DOI: 10.1038/s41467-020-16338-x] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 04/28/2020] [Indexed: 02/07/2023] Open
Abstract
Artificially improving traits of cultivated alfalfa (Medicago sativa L.), one of the most important forage crops, is challenging due to the lack of a reference genome and an efficient genome editing protocol, which mainly result from its autotetraploidy and self-incompatibility. Here, we generate an allele-aware chromosome-level genome assembly for the cultivated alfalfa consisting of 32 allelic chromosomes by integrating high-fidelity single-molecule sequencing and Hi-C data. We further establish an efficient CRISPR/Cas9-based genome editing protocol on the basis of this genome assembly and precisely introduce tetra-allelic mutations into null mutants that display obvious phenotype changes. The mutated alleles and phenotypes of null mutants can be stably inherited in generations in a transgene-free manner by cross pollination, which may help in bypassing the debate about transgenic plants. The presented genome and CRISPR/Cas9-based transgene-free genome editing protocol provide key foundations for accelerating research and molecular breeding of this important forage crop.
Collapse
Affiliation(s)
- Haitao Chen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
- Guangdong Sanjie Forage Biotechnology Co., Ltd., 510630, Guangzhou, China
- Sanjie Institute of Forage, 712100, Yangling, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, 650204, Kunming, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yan Zeng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, 650204, Kunming, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yongzhi Yang
- State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University, 730000, Lanzhou, China
| | - Lingli Huang
- Guangdong Sanjie Forage Biotechnology Co., Ltd., 510630, Guangzhou, China
- Sanjie Institute of Forage, 712100, Yangling, China
- School of Ecology and Environment, Northwestern Polytechnical University, 710072, Xi'an, China
| | - Bolin Tang
- Guangdong Sanjie Forage Biotechnology Co., Ltd., 510630, Guangzhou, China
- Sanjie Institute of Forage, 712100, Yangling, China
- State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University, 730000, Lanzhou, China
| | - He Zhang
- BGI-Qingdao, 266555, Qingdao, China
| | - Fei Hao
- Center of Special Environmental Biomechanics & Biomedical Engineering, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, China
| | - Wei Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
- Guangdong Sanjie Forage Biotechnology Co., Ltd., 510630, Guangzhou, China
- Sanjie Institute of Forage, 712100, Yangling, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, 650204, Kunming, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Youhan Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, 650223, Kunming, China
| | - Yanbin Liu
- State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University, 730000, Lanzhou, China
| | - Xiaoshuang Zhang
- Guangdong Sanjie Forage Biotechnology Co., Ltd., 510630, Guangzhou, China
- Sanjie Institute of Forage, 712100, Yangling, China
| | - Ru Zhang
- School of Ecology and Environment, Northwestern Polytechnical University, 710072, Xi'an, China
| | - Yesheng Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
| | - Yongxin Li
- School of Ecology and Environment, Northwestern Polytechnical University, 710072, Xi'an, China
| | - Kun Wang
- School of Ecology and Environment, Northwestern Polytechnical University, 710072, Xi'an, China
| | - Hua He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, 650223, Kunming, China
| | - Zhongkai Wang
- School of Ecology and Environment, Northwestern Polytechnical University, 710072, Xi'an, China
| | | | - Hui Yang
- Center of Special Environmental Biomechanics & Biomedical Engineering, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, China
| | - Aike Bao
- State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University, 730000, Lanzhou, China
| | - Zhanhuan Shang
- State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University, 730000, Lanzhou, China
| | - Jianghua Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, 650223, Kunming, China.
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China.
- School of Ecology and Environment, Northwestern Polytechnical University, 710072, Xi'an, China.
| | - Qiang Qiu
- School of Ecology and Environment, Northwestern Polytechnical University, 710072, Xi'an, China.
| |
Collapse
|
36
|
He L, Liu Y, He H, Liu Y, Qi J, Zhang X, Li Y, Mao Y, Zhou S, Zheng X, Bai Q, Zhao B, Wang D, Wen J, Mysore KS, Tadege M, Xia Y, Chen J. A molecular framework underlying the compound leaf pattern of Medicago truncatula. NATURE PLANTS 2020; 6:511-521. [PMID: 32393879 DOI: 10.1038/s41477-020-0642-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Abstract
Compound leaves show more complex patterns than simple leaves, and this is mainly because of a specific morphogenetic process (leaflet initiation and arrangement) that occurs during their development. How the relevant morphogenetic activity is established and modulated to form a proper pattern of leaflets is a central question. Here we show that the trifoliate leaf pattern of the model leguminous plant Medicago truncatula is controlled by the BEL1-like homeodomain protein PINNATE-LIKE PENTAFOLIATA1 (PINNA1). We identify PINNA1 as a determinacy factor during leaf morphogenesis that directly represses transcription of the LEAFY (LFY) orthologue SINGLE LEAFLET1 (SGL1), which encodes an indeterminacy factor key to the morphogenetic activity maintenance. PINNA1 functions alone in the terminal leaflet region and synergizes with another determinacy factor, the C2H2 zinc finger protein PALMATE-LIKE PENTAFOLIATA1 (PALM1), in the lateral leaflet regions to define the spatiotemporal expression of SGL1, leading to an elaborate control of morphogenetic activity. This study reveals a framework for trifoliate leaf-pattern formation and sheds light on mechanisms generating diverse leaf forms.
Collapse
Affiliation(s)
- Liangliang He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, China
| | - Hua He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Ye Liu
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Jinfeng Qi
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xiaojia Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Youhan Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Yawen Mao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shaoli Zhou
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoling Zheng
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Quanzi Bai
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Baolin Zhao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Dongfa Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | | | | | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, USA
| | - Yongmei Xia
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Jianghua Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Life Sciences, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
37
|
Affiliation(s)
- Ying Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
38
|
Afzal M, Alghamdi SS, Migdadi HH, Khan MA, Nurmansyah, Mirza SB, El-Harty E. Legume genomics and transcriptomics: From classic breeding to modern technologies. Saudi J Biol Sci 2019; 27:543-555. [PMID: 31889880 PMCID: PMC6933173 DOI: 10.1016/j.sjbs.2019.11.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/16/2019] [Accepted: 11/17/2019] [Indexed: 02/06/2023] Open
Abstract
Legumes are essential and play a significant role in maintaining food standards and augmenting physiochemical soil properties through the biological nitrogen fixation process. Biotic and abiotic factors are the main factors limiting legume production. Classical breeding methodologies have been explored extensively about the problem of truncated yield in legumes but have not succeeded at the desired rate. Conventional breeding improved legume genotypes but with more resources and time. Recently, the invention of next-generation sequencing (NGS) and high-throughput methods for genotyping have opened new avenues for research and developments in legume studies. During the last decade, genome sequencing for many legume crops documented. Sequencing and re-sequencing of important legume species have made structural variation and functional genomics conceivable. NGS and other molecular techniques such as the development of markers; genotyping; high density genetic linkage maps; quantitative trait loci (QTLs) identification, expressed sequence tags (ESTs), single nucleotide polymorphisms (SNPs); and transcription factors incorporated into existing breeding technologies have made possible the accurate and accelerated delivery of information for researchers. The application of genome sequencing, RNA sequencing (transcriptome sequencing), and DNA sequencing (re-sequencing) provide considerable insights for legume development and improvement programs. Moreover, RNA-Seq helps to characterize genes, including differentially expressed genes, and can be applied for functional genomics studies, especially when there is limited information available for the studied genomes. Genome-based crop development studies and the availability of genomics data as well as decision-making gears look be specific for breeding programs. This review mainly presents an overview of the path from classical breeding to new emerging genomics tools, which will trigger and accelerate genomics-assisted breeding for recognition of novel genes for yield and quality characters for sustainable legume crop production.
Collapse
Affiliation(s)
- Muhammad Afzal
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Salem S Alghamdi
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Hussein H Migdadi
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Altaf Khan
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nurmansyah
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Shaher Bano Mirza
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University (BAU), Istanbul, Turkey.,Department of Biosciences, COMSATS Institute of Information Technology (CIIT), Chak Shahzad, Islamabad, Pakistan
| | - Ehab El-Harty
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
39
|
Li Y, Yang Y, Liu Y, Li D, Zhao Y, Li Z, Liu Y, Jiang D, Li J, Zhou H, Chen J, Zhuang C, Liu Z. Overexpression of OsAGO1b Induces Adaxially Rolled Leaves by Affecting Leaf Abaxial Sclerenchymatous Cell Development in Rice. RICE (NEW YORK, N.Y.) 2019; 12:60. [PMID: 31396773 PMCID: PMC6687834 DOI: 10.1186/s12284-019-0323-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 08/02/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND ARGONAUTE 1 (AGO1) proteins can recruit small RNAs to regulate gene expression, involving several growth and development processes in Arabidopsis. Rice genome contains four AGO1 genes, OsAGO1a to OsAGO1d. However, the regulatory functions to rice growth and development of each AGO1 gene are still unknown. RESULTS We obtained overexpression and RNAi transgenic lines of each OsAGO1 gene. However, only up- and down-regulation of OsAGO1b caused multiple abnormal phenotypic changes in rice, indicating that OsAGO1b is the key player in rice growth and organ development compared with other three OsAGO1s. qRT-PCR assays showed that OsAGO1b was almost unanimously expressed in leaves at different developmental stages, and strongly expressed in spikelets at S1 to S3 stages. OsAGO1b is a typical AGO protein, and co-localized in both the nucleus and cytoplasm simultaneously. Overexpression of OsAGO1b caused adaxially rolled leaves and a series of abnormal phenotypes, such as the reduced tiller number and plant height. Knockdown lines of OsAGO1b showed almost normal leaves, but the seed setting percentage was significantly reduced accompanied by the disturbed anther patterning and reduced pollen fertility. Further anatomical observation revealed that OsAGO1b overexpression plants showed the partially defective development of sclerenchymatous cells on the abaxial side of leaves. In situ hybridization showed OsAGO1b mRNA was uniformly accumulated in P1 to P3 primordia without polarity property, suggesting OsAGO1b did not regulate the adaxial-abaxial polarity development directly. The expression levels of several genes related to leaf polarity development and vascular bundle differentiation were observably changed. Notably, the accumulation of miR166 and TAS3-siRNA was decreased, and their targeted OSHBs and OsARFs were significantly up-regulated. The mRNA distribution patterns of OSHB3 and OsARF4 in leaves remained almost unchanged between ZH11 and OsAGO1b overexpression lines, but their expression levels were enhanced at the regions of vascular bundles and sclerenchymatous cell differentiation. CONCLUSIONS In summary, we demonstrated OsAGO1b is the leading player among four OsAGO1s in rice growth and development. We propose that OsAGO1b may regulate the abaxial sclerenchymatous cell differentiation by affecting the expression of OSHBs in rice.
Collapse
Affiliation(s)
- Youhan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
- Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223 China
| | - Yiqi Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
| | - Ye Liu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223 China
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026 China
| | - Dexia Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
| | - Yahuan Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
| | - Zhijie Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
| | - Ying Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
| | - Dagang Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
| | - Jing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
| | - Hai Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
| | - Jianghua Chen
- Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223 China
| | - Chuxiong Zhuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
| | - Zhenlan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
40
|
Sun L, Gill US, Nandety RS, Kwon S, Mehta P, Dickstein R, Udvardi MK, Mysore KS, Wen J. Genome-wide analysis of flanking sequences reveals that Tnt1 insertion is positively correlated with gene methylation in Medicago truncatula. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:1106-1119. [PMID: 30776165 DOI: 10.1111/tpj.14291] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/07/2019] [Accepted: 02/14/2019] [Indexed: 05/07/2023]
Abstract
From a single transgenic line harboring five Tnt1 transposon insertions, we generated a near-saturated insertion population in Medicago truncatula. Using thermal asymmetric interlaced-polymerase chain reaction followed by sequencing, we recovered 388 888 flanking sequence tags (FSTs) from 21 741 insertion lines in this population. FST recovery from 14 Tnt1 lines using the whole-genome sequencing (WGS) and/or Tnt1-capture sequencing approaches suggests an average of 80 insertions per line, which is more than the previous estimation of 25 insertions. Analysis of the distribution pattern and preference of Tnt1 insertions showed that Tnt1 is overall randomly distributed throughout the M. truncatula genome. At the chromosomal level, Tnt1 insertions occurred on both arms of all chromosomes, with insertion frequency negatively correlated with the GC content. Based on 174 546 filtered FSTs that show exact insertion locations in the M. truncatula genome version 4.0 (Mt4.0), 0.44 Tnt1 insertions occurred per kb, and 19 583 genes contained Tnt1 with an average of 3.43 insertions per gene. Pathway and gene ontology analyses revealed that Tnt1-inserted genes are significantly enriched in processes associated with 'stress', 'transport', 'signaling' and 'stimulus response'. Surprisingly, gene groups with higher methylation frequency were more frequently targeted for insertion. Analysis of 19 583 Tnt1-inserted genes revealed that 59% (1265) of 2144 transcription factors, 63% (765) of 1216 receptor kinases and 56% (343) of 616 nucleotide-binding site-leucine-rich repeat genes harbored at least one Tnt1 insertion, compared with the overall 38% of Tnt1-inserted genes out of 50 894 annotated genes in the genome.
Collapse
Affiliation(s)
- Liang Sun
- Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Upinder S Gill
- Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | | | - Soonil Kwon
- Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Perdeep Mehta
- Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Rebecca Dickstein
- Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX, 76203, USA
| | - Michael K Udvardi
- Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | | | - Jiangqi Wen
- Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| |
Collapse
|
41
|
Chen R. Functional Genomics and Genetic Control of Compound Leaf Development in Medicago truncatula: An Overview. Methods Mol Biol 2019; 1822:197-203. [PMID: 30043306 DOI: 10.1007/978-1-4939-8633-0_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Diverse forms of leaves are present in nature. However, the regulatory mechanisms that underpin the development of diverse leaf forms remain enigmatic. The initiation of leaf primordia from the periphery of shoot apical meristem (SAM) requires downregulation of the class 1 knotted-like homeobox KNOXI proteins. In plants with simple leaves, this downregulation is permanent, consistent with leaves being determinant organs. In most of plants with compound leaves, the KNOXI proteins are reactivated in developing leaf primordia, and this reactivation is required for the development of compound leaves in these plants. Surprisingly, in Medicago truncatula and pea (Pisum sativum) that belong to the so-called inverted repeat-lacking clade (IRLC) of legume plants, the KNOXI proteins are not reactivated in leaf primordia and therefore not likely involved in the development of compound leaves in these plants. Instead, the legume FLORICAULA/LEAFY orthologues, UNIFOLIATA (UNI) and SINGLE LEAFLET1 (SGL1), are required for the initiation and development of lateral leaflet primordia in pea and M. truncatula plants, respectively. On the other hand, PALMATE-LIKE PENTAFOLIATA1 (PALM1) encoding a novel Cys(2)His(2) zinc finger transcription factor is required to suppress a morphogenetic activity at the leaf margin by negatively regulating SGL1 gene expression, and FUSED COMPOUND LEAF1 (FCL1) encoding a class M KNOX protein is required for the development of the leaf proximo-distal axis and organ boundary separation in M. truncatula. Thus, these recent studies have shown that SGL1/UNI, FCL1, and PALM1 provide a genetic framework for our understanding of compound leaf development in the legume plants.
Collapse
Affiliation(s)
- Rujin Chen
- School of Life Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China.
| |
Collapse
|
42
|
Jiao K, Li X, Guo Y, Guan Y, Guo W, Luo D, Hu Z, Shen Z. Regulation of compound leaf development in mungbean (Vigna radiata L.) by CUP-SHAPED COTYLEDON/NO APICAL MERISTEM (CUC/NAM) gene. PLANTA 2019; 249:765-774. [PMID: 30390139 DOI: 10.1007/s00425-018-3038-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 10/31/2018] [Indexed: 05/09/2023]
Abstract
The results provide a significant verification of functional redundancy and diversity of CUC/NAM genes in legumes. The CUP-SHAPED COTYLEDON/NO APICAL MERISTEM (CUC/NAM) orthologs play key roles for plant organ boundary formation and organ development. Here, we performed a forward screen of the gamma irradiation mutagenesis population in mungbean and characterised a mutant, reduced rachis and fused leaflets (rrf1), which gave rise to the formation of compound leaves with reduced rachis and fused leaflets. Map-based cloning revealed that RRF1 encoded a CUC/NAM protein in mungbean. Phylogenetic analysis indicated that legume CUC1/CUC2 genes were classified as belonging to two subclades, and there are different copies of CUC1/CUC2 genes in legumes. Transcriptomic analysis showed that expression levels of a set of developmental regulators, including class I KNOTTED-LIKE HOMEOBOXI (KNOXI) gene and LATERAL ORGAN BOUNDARIES DOMAIN (LBD) gene, were altered in rrf1 mutants compared to the wild-type plants. Furthermore, rrf1 genetically interacted with heptafoliate leaflets1 (hel1), a mutant displaying a seven-leaflet compound leaf, to regulate leaf development in mungbean. Our results suggest functional redundancy and diversity of two subclades of CUC1/CUC2 genes in legumes, following the duplication of an ancestral gene.
Collapse
Affiliation(s)
- Keyuan Jiao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Xin Li
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Yafang Guo
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yining Guan
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wuxiu Guo
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Da Luo
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhubing Hu
- State Key Laboratory of Cotton Biology, Department of Biology, Institute of Plant Stress Biology, Henan University, Kaifeng, China
| | - Zhenguo Shen
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
43
|
Jiao K, Li X, Su S, Guo W, Guo Y, Guan Y, Hu Z, Shen Z, Luo D. Genetic control of compound leaf development in the mungbean ( Vigna radiata L.). HORTICULTURE RESEARCH 2019; 6:23. [PMID: 30729013 PMCID: PMC6355865 DOI: 10.1038/s41438-018-0088-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 07/25/2018] [Accepted: 08/07/2018] [Indexed: 05/09/2023]
Abstract
Many studies suggest that there are distinct regulatory processes controlling compound leaf development in different clades of legumes. Loss of function of the LEAFY (LFY) orthologs results in a reduction of leaf complexity to different degrees in inverted repeat-lacking clade (IRLC) and non-IRLC species. To further understand the role of LFY orthologs and the molecular mechanism in compound leaf development in non-IRLC plants, we studied leaf development in unifoliate leaf (un) mutant, a classical mutant of mungbean (Vigna radiata L.), which showed a complete conversion of compound leaves into simple leaves. Our analysis revealed that UN encoded the mungbean LFY ortholog (VrLFY) and played a significant role in leaf development. In situ RNA hybridization results showed that STM-like KNOXI genes were expressed in compound leaf primordia in mungbean. Furthermore, increased leaflet number in heptafoliate leaflets1 (hel1) mutants was demonstrated to depend on the function of VrLFY and KNOXI genes in mungbean. Our results suggested that HEL1 is a key factor coordinating distinct processes in the control of compound leaf development in mungbean and its related non-IRLC legumes.
Collapse
Affiliation(s)
- Keyuan Jiao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Xin Li
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shihao Su
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Wuxiu Guo
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yafang Guo
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yining Guan
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zhubing Hu
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng, China
| | - Zhenguo Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Da Luo
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
44
|
Abstract
Many researchers have sought along the last two decades a legume species that could serve as a model system for genetic studies to resolve specific developmental or metabolic processes that cannot be studied in other model plants. Nitrogen fixation, nodulation, compound leaf, inflorescence and plant architecture, floral development, pod formation, secondary metabolite biosynthesis, and other developmental and metabolic aspects are legume-specific or show important differences with those described in Arabidopsis thaliana, the most studied model plant. Mainly Medicago truncatula and Lotus japonicus were proposed in the 1990s as model systems due to their key attributes, diploid genome, autogamous nature, short generation times, small genome sizes, and both species can be readily transformed. After more than decade-long, the genome sequences of both species are essentially complete, and a series of functional genomics tools have been successfully developed and applied. Mutagens that cause insertions or deletions are being used in these model systems because these kinds of DNA rearrangements are expected to assist in the isolation of the corresponding genes by Target-Induced Local Lesions IN Genomes (TILLING) approaches. Different M. truncatula mutants have been obtained following γ-irradiation or fast neutron bombardment (FNB), ethyl-nitrosourea (ENU) or ethyl-methanesulfonate (EMS) treatments, T-DNA and activation tagging, use of the tobacco retrotransposon Tnt1 to produce insertional mutants, gene silencing by RNAi, and transient post-transcriptional gene silencing by virus-induced gene silencing (VIGS). Emerging technologies of targeted mutagenesis and gene editing, such as the CRISPR-Cas9 system, could open a new era in this field. Functional genomics tools and phenotypic analyses of several mutants generated in M. truncatula have been essential to better understand differential aspects of legumes development and metabolism.
Collapse
Affiliation(s)
- Luis A Cañas
- CSIC-UPV, Institute for Plant Cell and Molecular Biology (IBMCP), Valencia, Spain.
| | - José Pío Beltrán
- CSIC-UPV, Institute for Plant Cell and Molecular Biology (IBMCP), Valencia, Spain
| |
Collapse
|
45
|
Chen Y, Wang X, Lu S, Wang H, Li S, Chen R. An Array-based Comparative Genomic Hybridization Platform for Efficient Detection of Copy Number Variations in Fast Neutron-induced Medicago truncatula Mutants. J Vis Exp 2017. [PMID: 29155794 DOI: 10.3791/56470] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mutants are invaluable genetic resources for gene function studies. To generate mutant collections, three types of mutagens can be utilized, including biological such as T-DNA or transposon, chemical such as ethyl methanesulfonate (EMS), or physical such as ionization radiation. The type of mutation observed varies depending on the mutagen used. For ionization radiation induced mutants, mutations include deletion, duplication, or rearrangement. While T-DNA or transposon-based mutagenesis is limited to species that are susceptible to transformation, chemical or physical mutagenesis can be applied to a broad range of species. However, the characterization of mutations derived from chemical or physical mutagenesis traditionally relies on a map-based cloning approach, which is labor intensive and time consuming. Here, we show that a high-density genome array-based comparative genomic hybridization (aCGH) platform can be applied to efficiently detect and characterize copy number variations (CNVs) in mutants derived from fast neutron bombardment (FNB) mutagenesis in Medicago truncatula, a legume species. Whole genome sequence analysis shows that there are more than 50,000 genes or gene models in M. truncatula. At present, FNB-induced mutants in M. truncatula are derived from more than 150,000 M1 lines, representing invaluable genetic resources for functional studies of genes in the genome. The aCGH platform described here is an efficient tool for characterizing FNB-induced mutants in M. truncatula.
Collapse
Affiliation(s)
- Yuhui Chen
- Laboratory of Plant Genetics and Development, Noble Research Institute
| | - Xianfu Wang
- Genetics Laboratory, University of Oklahoma Health Science Center
| | - Shunfei Lu
- Medicine and Health School, Li Shui University
| | - Hongcheng Wang
- Genetics Laboratory, University of Oklahoma Health Science Center
| | - Shibo Li
- Genetics Laboratory, University of Oklahoma Health Science Center
| | - Rujin Chen
- Laboratory of Plant Genetics and Development, Noble Research Institute;
| |
Collapse
|
46
|
Monniaux M, McKim SM, Cartolano M, Thévenon E, Parcy F, Tsiantis M, Hay A. Conservation vs divergence in LEAFY and APETALA1 functions between Arabidopsis thaliana and Cardamine hirsuta. THE NEW PHYTOLOGIST 2017; 216:549-561. [PMID: 28098947 DOI: 10.1111/nph.14419] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 11/28/2016] [Indexed: 05/13/2023]
Abstract
A conserved genetic toolkit underlies the development of diverse floral forms among angiosperms. However, the degree of conservation vs divergence in the configuration of these gene regulatory networks is less clear. We addressed this question in a parallel genetic study between the closely related species Arabidopsis thaliana and Cardamine hirsuta. We identified leafy (lfy) and apetala1 (ap1) alleles in a mutant screen for floral regulators in C. hirsuta. C. hirsuta lfy mutants showed a complete homeotic conversion of flowers to leafy shoots, mimicking lfy ap1 double mutants in A. thaliana. Through genetic and molecular experiments, we showed that AP1 activation is fully dependent on LFY in C. hirsuta, by contrast to A. thaliana. Additionally, we found that LFY influences heteroblasty in C. hirsuta, such that loss or gain of LFY function affects its progression. Overexpression of UNUSUAL FLORAL ORGANS also alters C. hirsuta leaf shape in an LFY-dependent manner. We found that LFY and AP1 are conserved floral regulators that act nonredundantly in C. hirsuta, such that LFY has more obvious roles in floral and leaf development in C. hirsuta than in A. thaliana.
Collapse
Affiliation(s)
- Marie Monniaux
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Köln, Germany
| | - Sarah M McKim
- Plant Sciences Department, University of Oxford, South Parks Rd, Oxford, OX1 3RB, UK
| | - Maria Cartolano
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Köln, Germany
| | - Emmanuel Thévenon
- Laboratory of Plant & Cell Physiology, CNRS, CEA, University of Grenoble Alpes, INRA, 38000, Grenoble, France
| | - François Parcy
- Laboratory of Plant & Cell Physiology, CNRS, CEA, University of Grenoble Alpes, INRA, 38000, Grenoble, France
| | - Miltos Tsiantis
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Köln, Germany
| | - Angela Hay
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Köln, Germany
| |
Collapse
|
47
|
Peng J, Berbel A, Madueño F, Chen R. AUXIN RESPONSE FACTOR3 Regulates Compound Leaf Patterning by Directly Repressing PALMATE-LIKE PENTAFOLIATA1 Expression in Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2017; 8:1630. [PMID: 28979286 PMCID: PMC5611443 DOI: 10.3389/fpls.2017.01630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/05/2017] [Indexed: 05/12/2023]
Abstract
Diverse leaf forms can be seen in nature. In Medicago truncatula, PALM1 encoding a Cys(2)His(2) transcription factor is a key regulator of compound leaf patterning. PALM1 negatively regulates expression of SGL1, a key regulator of lateral leaflet initiation. However, how PALM1 itself is regulated is not yet known. To answer this question, we used promoter sequence analysis, yeast one-hybrid tests, quantitative transcription activity assays, ChIP-PCR analysis, and phenotypic analyses of overexpression lines and mutant plants. The results show that M. truncatula AUXIN RESPONSE FACTOR3 (MtARF3) functions as a direct transcriptional repressor of PALM1. MtARF3 physically binds to the PALM1 promoter sequence in yeast cells. MtARF3 selectively interacts with specific auxin response elements (AuxREs) in the PALM1 promoter to repress reporter gene expression in tobacco leaves and binds to specific sequences in the PALM1 promoter in vivo. Upregulation of MtARF3 or removal of both PHANTASTICA (PHAN) and ARGONAUTE7 (AGO7) pathways resulted in compound leaves with five narrow leaflets arranged in a palmate-like configuration. These results support that MtARF3, in addition as an adaxial-abaxial polarity regulator, functions to restrict spatiotemporal expression of PALM1, linking auxin signaling to compound leaf patterning in the legume plant M. truncatula.
Collapse
Affiliation(s)
| | - Ana Berbel
- Insituto de Biología Molecular Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de ValenciaValencia, Spain
| | - Francisco Madueño
- Insituto de Biología Molecular Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de ValenciaValencia, Spain
| | - Rujin Chen
- Noble Research Institute, ArdmoreOK, United States
- *Correspondence: Rujin Chen,
| |
Collapse
|
48
|
Ge L, Yu J, Wang H, Luth D, Bai G, Wang K, Chen R. Increasing seed size and quality by manipulating BIG SEEDS1 in legume species. Proc Natl Acad Sci U S A 2016; 113:12414-12419. [PMID: 27791139 PMCID: PMC5098654 DOI: 10.1073/pnas.1611763113] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Plant organs, such as seeds, are primary sources of food for both humans and animals. Seed size is one of the major agronomic traits that have been selected in crop plants during their domestication. Legume seeds are a major source of dietary proteins and oils. Here, we report a conserved role for the BIG SEEDS1 (BS1) gene in the control of seed size and weight in the model legume Medicago truncatula and the grain legume soybean (Glycine max). BS1 encodes a plant-specific transcription regulator and plays a key role in the control of the size of plant organs, including seeds, seed pods, and leaves, through a regulatory module that targets primary cell proliferation. Importantly, down-regulation of BS1 orthologs in soybean by an artificial microRNA significantly increased soybean seed size, weight, and amino acid content. Our results provide a strategy for the increase in yield and seed quality in legumes.
Collapse
Affiliation(s)
- Liangfa Ge
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, OK 73401
| | - Jianbin Yu
- Department of Agronomy, Kansas State University, Manhattan, KS 66506
| | - Hongliang Wang
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, OK 73401
| | - Diane Luth
- Center for Plant Transformation, Plant Sciences Institute, Iowa State University, Ames, IA 50011
- Department of Agronomy, Iowa State University, Ames, IA 50011
| | - Guihua Bai
- Department of Agronomy, Kansas State University, Manhattan, KS 66506
- Hard Winter Wheat Genetics Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66506
| | - Kan Wang
- Center for Plant Transformation, Plant Sciences Institute, Iowa State University, Ames, IA 50011
- Department of Agronomy, Iowa State University, Ames, IA 50011
| | - Rujin Chen
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, OK 73401;
| |
Collapse
|
49
|
Ge L, Chen R. Negative gravitropism in plant roots. NATURE PLANTS 2016; 2:16155. [PMID: 27748769 DOI: 10.1038/nplants.2016.155] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/13/2016] [Indexed: 05/03/2023]
Abstract
Plants are capable of orienting their root growth towards gravity in a process termed gravitropism, which is necessary for roots to grow into soil, for water and nutrient acquisition and to anchor plants. Here we show that root gravitropism depends on the novel protein, NEGATIVE GRAVITROPIC RESPONSE OF ROOTS (NGR). In both Medicago truncatula and Arabidopsis thaliana, loss of NGR reverses the direction of root gravitropism, resulting in roots growing upward.
Collapse
Affiliation(s)
- Liangfa Ge
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401, USA
| | - Rujin Chen
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401, USA
| |
Collapse
|
50
|
Sluis A, Hake S. Organogenesis in plants: initiation and elaboration of leaves. Trends Genet 2015; 31:300-6. [PMID: 26003219 DOI: 10.1016/j.tig.2015.04.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 11/24/2022]
Abstract
Plant organs initiate from meristems and grow into diverse forms. After initiation, organs enter a morphological phase where they develop their shape, followed by differentiation into mature tissue. Investigations into these processes have revealed numerous factors necessary for proper development, including transcription factors such as the KNOTTED-LIKE HOMEOBOX (KNOX) genes, the hormone auxin, and miRNAs. Importantly, these factors have been shown to play a role in organogenesis in various diverse model species, revealing both deep conservation of regulatory strategies and evolutionary novelties that led to new plant forms. We review here recent work in understanding the regulation of organogenesis and in particular leaf formation, highlighting how regulatory modules are often redeployed in different organ types and stages of development to achieve diverse forms through the balance of growth and differentiation.
Collapse
Affiliation(s)
- Aaron Sluis
- Plant Gene Expression Center, UC Berkeley and USDA-ARS, 800 Buchanan Street, Albany, CA 94710, USA
| | - Sarah Hake
- Plant Gene Expression Center, UC Berkeley and USDA-ARS, 800 Buchanan Street, Albany, CA 94710, USA
| |
Collapse
|