1
|
Key J, Gispert S, Koepf G, Steinhoff-Wagner J, Reichlmeir M, Auburger G. Translation Fidelity and Respiration Deficits in CLPP-Deficient Tissues: Mechanistic Insights from Mitochondrial Complexome Profiling. Int J Mol Sci 2023; 24:17503. [PMID: 38139332 PMCID: PMC10743472 DOI: 10.3390/ijms242417503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The mitochondrial matrix peptidase CLPP is crucial during cell stress. Its loss causes Perrault syndrome type 3 (PRLTS3) with infertility, neurodegeneration, and a growth deficit. Its target proteins are disaggregated by CLPX, which also regulates heme biosynthesis via unfolding ALAS enzymes, providing access for pyridoxal-5'-phosphate (PLP). Despite efforts in diverse organisms with multiple techniques, CLPXP substrates remain controversial. Here, avoiding recombinant overexpression, we employed complexomics in mitochondria from three mouse tissues to identify endogenous targets. A CLPP absence caused the accumulation and dispersion of CLPX-VWA8 as AAA+ unfoldases, and of PLPBP. Similar changes and CLPX-VWA8 co-migration were evident for mitoribosomal central protuberance clusters, translation factors like GFM1-HARS2, the RNA granule components LRPPRC-SLIRP, and enzymes OAT-ALDH18A1. Mitochondrially translated proteins in testes showed reductions to <30% for MTCO1-3, the mis-assembly of the complex IV supercomplex, and accumulated metal-binding assembly factors COX15-SFXN4. Indeed, heavy metal levels were increased for iron, molybdenum, cobalt, and manganese. RT-qPCR showed compensatory downregulation only for Clpx mRNA; most accumulated proteins appeared transcriptionally upregulated. Immunoblots validated VWA8, MRPL38, MRPL18, GFM1, and OAT accumulation. Co-immunoprecipitation confirmed CLPX binding to MRPL38, GFM1, and OAT, so excess CLPX and PLP may affect their activity. Our data mechanistically elucidate the mitochondrial translation fidelity deficits which underlie progressive hearing impairment in PRLTS3.
Collapse
Affiliation(s)
- Jana Key
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| | - Suzana Gispert
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| | - Gabriele Koepf
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| | - Julia Steinhoff-Wagner
- TUM School of Life Sciences, Animal Nutrition and Metabolism, Technical University of Munich, Liesel-Beckmann-Str. 2, 85354 Freising-Weihenstephan, Germany;
| | - Marina Reichlmeir
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| | - Georg Auburger
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| |
Collapse
|
2
|
Bhandari V, Reichheld SE, Houliston S, Lemak A, Arrowsmith CH, Sharpe S, Houry WA. The RavA-ViaA chaperone complex modulates bacterial persistence through its association with the fumarate reductase enzyme. J Biol Chem 2023; 299:105199. [PMID: 37660904 PMCID: PMC10585395 DOI: 10.1016/j.jbc.2023.105199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023] Open
Abstract
Regulatory ATPase variant A (RavA) is a MoxR AAA+ protein that functions together with a partner protein termed von Willebrand factor type A interacting with AAA+ ATPase (ViaA). RavA-ViaA are functionally associated with anaerobic respiration in Escherichia coli through interactions with the fumarate reductase (Frd) electron transport complex. Through this association, RavA and ViaA modulate the activity of the Frd complex and, hence, are proposed to have chaperone-like activity. However, the functional role of RavA-ViaA in the cell is not yet well established. We had demonstrated that RavA-ViaA can sensitize E. coli cells to sublethal concentrations of the aminoglycoside class of antibiotics. Since Frd has been associated with bacterial persistence against antibiotics, the relationship of RavA-ViaA and Frd was explored within this context. Experiments performed here reveal a function of RavA-ViaA in bacterial persistence upon treatment with antibiotics through the association of the chaperone complex with Frd. As part of this work, the NMR structure of the N-terminal domain of ViaA was solved. The structure reveals a novel alpha helical fold, which we name the VAN fold, that has not been observed before. We show that this domain is required for the function of the chaperone complex. We propose that modulating the levels of RavA-ViaA could enhance the susceptibility of Gram-negative bacteria to antibiotics.
Collapse
Affiliation(s)
- Vaibhav Bhandari
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Sean E Reichheld
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Scott Houliston
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Alexander Lemak
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Cheryl H Arrowsmith
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Structural Genomics Consortium, Toronto, Ontario, Canada
| | - Simon Sharpe
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Walid A Houry
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Kahle M, Appelgren S, Elofsson A, Carroni M, Ädelroth P. Insights into the structure-function relationship of the NorQ/NorD chaperones from Paracoccus denitrificans reveal shared principles of interacting MoxR AAA+/VWA domain proteins. BMC Biol 2023; 21:47. [PMID: 36855050 PMCID: PMC9976466 DOI: 10.1186/s12915-023-01546-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/15/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND NorQ, a member of the MoxR-class of AAA+ ATPases, and NorD, a protein containing a Von Willebrand Factor Type A (VWA) domain, are essential for non-heme iron (FeB) cofactor insertion into cytochrome c-dependent nitric oxide reductase (cNOR). cNOR catalyzes NO reduction, a key step of bacterial denitrification. This work aimed at elucidating the specific mechanism of NorQD-catalyzed FeB insertion, and the general mechanism of the MoxR/VWA interacting protein families. RESULTS We show that NorQ-catalyzed ATP hydrolysis, an intact VWA domain in NorD, and specific surface carboxylates on cNOR are all features required for cNOR activation. Supported by BN-PAGE, low-resolution cryo-EM structures of NorQ and the NorQD complex show that NorQ forms a circular hexamer with a monomer of NorD binding both to the side and to the central pore of the NorQ ring. Guided by AlphaFold predictions, we assign the density that "plugs" the NorQ ring pore to the VWA domain of NorD with a protruding "finger" inserting through the pore and suggest this binding mode to be general for MoxR/VWA couples. CONCLUSIONS Based on our results, we present a tentative model for the mechanism of NorQD-catalyzed cNOR remodeling and suggest many of its features to be applicable to the whole MoxR/VWA family.
Collapse
Affiliation(s)
- Maximilian Kahle
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91, Stockholm, Sweden. .,Present Address: Department of Biochemistry, University of Potsdam, 14476, Potsdam, Germany.
| | - Sofia Appelgren
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Arne Elofsson
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91, Stockholm, Sweden.,Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Marta Carroni
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91, Stockholm, Sweden. .,Swedish Cryo-EM Facility, Science for Life Laboratory Stockholm University, Solna, Sweden.
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
4
|
An Estuarine Cyanophage S-CREM1 Encodes Three Distinct Antitoxin Genes and a Large Number of Non-Coding RNA Genes. Viruses 2023; 15:v15020380. [PMID: 36851594 PMCID: PMC9964418 DOI: 10.3390/v15020380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Cyanophages play important roles in regulating the population dynamics, community structure, metabolism, and evolution of cyanobacteria in aquatic ecosystems. Here, we report the genomic analysis of an estuarine cyanophage, S-CREM1, which represents a new genus of T4-like cyanomyovirus and exhibits new genetic characteristics. S-CREM1 is a lytic phage which infects estuarine Synechococcus sp. CB0101. In contrast to many cyanomyoviruses that usually have a broad host range, S-CREM1 only infected the original host strain. In addition to cyanophage-featured auxiliary metabolic genes (AMGs), S-CREM1 also contains unique AMGs, including three antitoxin genes, a MoxR family ATPase gene, and a pyrimidine dimer DNA glycosylase gene. The finding of three antitoxin genes in S-CREM1 implies a possible phage control of host cells during infection. One small RNA (sRNA) gene and three cis-regulatory RNA genes in the S-CREM1 genome suggest potential molecular regulations of host metabolism by the phage. In addition, S-CREM1 contains a large number of tRNA genes which may reflect a genomic adaption to the nutrient-rich environment. Our study suggests that we are still far from understanding the viral diversity in nature, and the complicated virus-host interactions remain to be discovered. The isolation and characterization of S-CREM1 further our understanding of the gene diversity of cyanophages and phage-host interactions in the estuarine environment.
Collapse
|
5
|
Felix J, Bumba L, Liesche C, Fraudeau A, Rébeillé F, El Khoury JY, Huard K, Gallet B, Moriscot C, Kleman JP, Duhoo Y, Jessop M, Kandiah E, Barras F, Jouhet J, Gutsche I. The AAA+ ATPase RavA and its binding partner ViaA modulate E. coli aminoglycoside sensitivity through interaction with the inner membrane. Nat Commun 2022; 13:5502. [PMID: 36127320 PMCID: PMC9489729 DOI: 10.1038/s41467-022-32992-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/26/2022] [Indexed: 11/09/2022] Open
Abstract
Enteric bacteria have to adapt to environmental stresses in the human gastrointestinal tract such as acid and nutrient stress, oxygen limitation and exposure to antibiotics. Membrane lipid composition has recently emerged as a key factor for stress adaptation. The E. coli ravA-viaA operon is essential for aminoglycoside bactericidal activity under anaerobiosis but its mechanism of action is unclear. Here we characterise the VWA domain-protein ViaA and its interaction with the AAA+ ATPase RavA, and find that both proteins localise at the inner cell membrane. We demonstrate that RavA and ViaA target specific phospholipids and subsequently identify their lipid-binding sites. We further show that mutations abolishing interaction with lipids restore induced changes in cell membrane morphology and lipid composition. Finally we reveal that these mutations render E. coli gentamicin-resistant under fumarate respiration conditions. Our work thus uncovers a ravA-viaA-based pathway which is mobilised in response to aminoglycosides under anaerobiosis and engaged in cell membrane regulation.
Collapse
Affiliation(s)
- Jan Felix
- Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, Grenoble, France
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Ladislav Bumba
- Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, Grenoble, France
- Institute of Microbiology, The Academy of Sciences of the Czech Republic, Videnska, 1083, Prague, Czech Republic
| | - Clarissa Liesche
- Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, Grenoble, France
| | - Angélique Fraudeau
- Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, Grenoble, France
- EMBL Grenoble, 71 Avenue des martyrs, Grenoble, France
| | - Fabrice Rébeillé
- Laboratoire de Physiologie Cellulaire Végétale, Univ Grenoble Alpes, CEA, CNRS, INRAE, IRIG, 17 Avenue des martyrs, Grenoble, France
| | - Jessica Y El Khoury
- Institut Pasteur, Université de Paris, CNRS UMR6047, Stress Adaptation and Metabolism Unit, Department of Microbiology, Paris, France
| | - Karine Huard
- Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, Grenoble, France
| | - Benoit Gallet
- Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, Grenoble, France
| | - Christine Moriscot
- Univ Grenoble Alpes, CEA, CNRS, ISBG, 71 Avenue des martyrs, Grenoble, France
| | - Jean-Philippe Kleman
- Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, Grenoble, France
| | - Yoan Duhoo
- Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, Grenoble, France
| | - Matthew Jessop
- Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, Grenoble, France
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, UK
| | - Eaazhisai Kandiah
- Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, Grenoble, France
- European Synchrotron Radiation Facility, 71 Avenue des martyrs, Grenoble, France
| | - Frédéric Barras
- Institut Pasteur, Université de Paris, CNRS UMR6047, Stress Adaptation and Metabolism Unit, Department of Microbiology, Paris, France
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire Végétale, Univ Grenoble Alpes, CEA, CNRS, INRAE, IRIG, 17 Avenue des martyrs, Grenoble, France
| | - Irina Gutsche
- Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, Grenoble, France.
| |
Collapse
|
6
|
Bhandari V, Van Ommen DAJ, Wong KS, Houry WA. Analysis of the Evolution of the MoxR ATPases. J Phys Chem A 2022; 126:4734-4746. [PMID: 35852937 DOI: 10.1021/acs.jpca.2c02554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
MoxR proteins comprise a family of ATPases Associated with diverse cellular Activities (AAA+). These proteins are widespread and found across the diversity of prokaryotic species. Despite their ubiquity, members of the group remain poorly characterized. Only a few examples of MoxR proteins have been associated with cellular roles, where they have been shown to perform chaperone-like functions. A characteristic feature of MoxR proteins is their association with proteins containing the von Willebrand factor type A (VWA) domain. In an effort to understand the spread and diversity of the MoxR family, an evolutionary approach was undertaken. Phylogenetic techniques were used to define nine major subfamilies within the MoxR family. A combination of phylogenetic and genomic approaches was utilized to explore the extent of the partnership between the MoxR and VWA domain containing proteins (VWA proteins). These analyses led to the clarification of genetic linkages between MoxR and VWA proteins. A significant partnership is described here, as seven of nine MoxR subfamilies were found to be linked to VWA proteins. Available genomic data were also used to assess the intraprotein diversification of MoxR and VWA protein sequences. Data clearly indicated that, in MoxR proteins, the ATPase domain is maintained with high conservation while the remaining protein sequence evolves at a faster rate; a similar pattern was observed for the VWA domain in VWA proteins. Overall, our data present insights into the modular evolution of MoxR ATPases.
Collapse
Affiliation(s)
- Vaibhav Bhandari
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| | - David A J Van Ommen
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| | - Keith S Wong
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| | - Walid A Houry
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1M1, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
7
|
Jessop M, Huard K, Desfosses A, Tetreau G, Carriel D, Bacia-Verloop M, Mas C, Mas P, Fraudeau A, Colletier JP, Gutsche I. Structural and biochemical characterisation of the Providencia stuartii arginine decarboxylase shows distinct polymerisation and regulation. Commun Biol 2022; 5:317. [PMID: 35383285 PMCID: PMC8983666 DOI: 10.1038/s42003-022-03276-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 03/15/2022] [Indexed: 11/29/2022] Open
Abstract
Bacterial homologous lysine and arginine decarboxylases play major roles in the acid stress response, physiology, antibiotic resistance and virulence. The Escherichia coli enzymes are considered as their archetypes. Whereas acid stress triggers polymerisation of the E. coli lysine decarboxylase LdcI, such behaviour has not been observed for the arginine decarboxylase Adc. Here we show that the Adc from a multidrug-resistant human pathogen Providencia stuartii massively polymerises into filaments whose cryo-EM structure reveals pronounced differences between Adc and LdcI assembly mechanisms. While the structural determinants of Adc polymerisation are conserved only in certain Providencia and Burkholderia species, acid stress-induced polymerisation of LdcI appears general for enterobacteria. Analysis of the expression, activity and oligomerisation of the P. stuartii Adc further highlights the distinct properties of this unusual protein and lays a platform for future investigation of the role of supramolecular assembly in the superfamily or arginine and lysine decarboxylases. Jessop et. al. investigate the expression, activity, structure and supramolecular assembly of the arginine decarboxylase from Providencia stuartii, compare its polymers with those formed by the Escherichia coli lysine decarboxylase, and analyse the evolutionary conservation of the structural determinants of the polymerisation of these enzymes in enterobacteria.
Collapse
Affiliation(s)
- Matthew Jessop
- Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044, Grenoble, France.,Division of Structural Biology, The Institute of Cancer Research (ICR), London, UK
| | - Karine Huard
- Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044, Grenoble, France
| | - Ambroise Desfosses
- Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044, Grenoble, France
| | - Guillaume Tetreau
- Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044, Grenoble, France
| | - Diego Carriel
- Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044, Grenoble, France
| | - Maria Bacia-Verloop
- Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044, Grenoble, France
| | - Caroline Mas
- Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044, Grenoble, France
| | - Philippe Mas
- Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044, Grenoble, France
| | - Angélique Fraudeau
- Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044, Grenoble, France
| | - Jacques-Philippe Colletier
- Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044, Grenoble, France
| | - Irina Gutsche
- Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044, Grenoble, France.
| |
Collapse
|
8
|
Khan YA, White KI, Brunger AT. The AAA+ superfamily: a review of the structural and mechanistic principles of these molecular machines. Crit Rev Biochem Mol Biol 2021; 57:156-187. [PMID: 34632886 DOI: 10.1080/10409238.2021.1979460] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ATPases associated with diverse cellular activities (AAA+ proteins) are a superfamily of proteins found throughout all domains of life. The hallmark of this family is a conserved AAA+ domain responsible for a diverse range of cellular activities. Typically, AAA+ proteins transduce chemical energy from the hydrolysis of ATP into mechanical energy through conformational change, which can drive a variety of biological processes. AAA+ proteins operate in a variety of cellular contexts with diverse functions including disassembly of SNARE proteins, protein quality control, DNA replication, ribosome assembly, and viral replication. This breadth of function illustrates both the importance of AAA+ proteins in health and disease and emphasizes the importance of understanding conserved mechanisms of chemo-mechanical energy transduction. This review is divided into three major portions. First, the core AAA+ fold is presented. Next, the seven different clades of AAA+ proteins and structural details and reclassification pertaining to proteins in each clade are described. Finally, two well-known AAA+ proteins, NSF and its close relative p97, are reviewed in detail.
Collapse
Affiliation(s)
- Yousuf A Khan
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.,Department of Structural Biology, Stanford University, Stanford, CA, USA.,Department of Photon Science, Stanford University, Stanford, CA, USA.,Center for Biomedical Informatics Research, Stanford University, Stanford, CA, USA
| | - K Ian White
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.,Department of Structural Biology, Stanford University, Stanford, CA, USA.,Department of Photon Science, Stanford University, Stanford, CA, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Axel T Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.,Department of Structural Biology, Stanford University, Stanford, CA, USA.,Department of Photon Science, Stanford University, Stanford, CA, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
9
|
Bange G, Brodersen DE, Liuzzi A, Steinchen W. Two P or Not Two P: Understanding Regulation by the Bacterial Second Messengers (p)ppGpp. Annu Rev Microbiol 2021; 75:383-406. [PMID: 34343020 DOI: 10.1146/annurev-micro-042621-122343] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Under stressful growth conditions and nutrient starvation, bacteria adapt by synthesizing signaling molecules that profoundly reprogram cellular physiology. At the onset of this process, called the stringent response, members of the RelA/SpoT homolog (RSH) protein superfamily are activated by specific stress stimuli to produce several hyperphosphorylated forms of guanine nucleotides, commonly referred to as (p)ppGpp. Some bifunctional RSH enzymes also harbor domains that allow for degradation of (p)ppGpp by hydrolysis. (p)ppGpp synthesis or hydrolysis may further be executed by single-domain alarmone synthetases or hydrolases, respectively. The downstream effects of (p)ppGpp rely mainly on direct interaction with specific intracellular effectors, which are widely used throughout most cellular processes. The growing number of identified (p)ppGpp targets allows us to deduce both common features of and differences between gram-negative and gram-positive bacteria. In this review, we give an overview of (p)ppGpp metabolism with a focus on the functional and structural aspects of the enzymes involved and discuss recent findings on alarmone-regulated cellular effectors. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Gert Bange
- SYNMIKRO Research Center, Philipps-University Marburg, 35043 Marburg, Germany; .,Department of Chemistry, Philipps-University Marburg, 35043 Marburg, Germany
| | - Ditlev E Brodersen
- Department of Molecular Biology and Genetics, Centre for Bacterial Stress Response and Persistence, Aarhus University, 8000 Aarhus C, Denmark
| | - Anastasia Liuzzi
- Department of Molecular Biology and Genetics, Centre for Bacterial Stress Response and Persistence, Aarhus University, 8000 Aarhus C, Denmark
| | - Wieland Steinchen
- SYNMIKRO Research Center, Philipps-University Marburg, 35043 Marburg, Germany; .,Department of Chemistry, Philipps-University Marburg, 35043 Marburg, Germany
| |
Collapse
|
10
|
Huang Y, Ji X, Ma Z, Łężyk M, Xue Y, Zhao H. Green chemical and biological synthesis of cadaverine: recent development and challenges. RSC Adv 2021; 11:23922-23942. [PMID: 35479032 PMCID: PMC9036910 DOI: 10.1039/d1ra02764f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/29/2021] [Indexed: 11/21/2022] Open
Abstract
Cadaverine has great potential to be used as an important monomer for the development of a series of high value-added products with market prospects. The most promising strategies for cadaverine synthesis involve using green chemical and bioconversion technologies. Herein, the review focuses on the progress and strategies towards the green chemical synthesis and biosynthesis of cadaverine. Specifically, we address the specific biosynthetic pathways of cadaverine from different substrates as well as extensively discussing the origination, structure and catalytic mechanism of the key lysine decarboxylases. The advanced strategies for process intensification, the separation and purification of cadaverine have been summarized. Furthermore, the challenging issues of the environmental, economic, and applicable impact for cadaverine production are also highlighted. This review concludes with the promising outlooks of state-of-the-art applications of cadaverine along with some insights toward their challenges and potential improvements.
Collapse
Affiliation(s)
- Yuhong Huang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences Beijing 100190 China
- Zhengzhou Institute of Emerging Industrial Technology Zhengzhou City Henan 450000 China
- Zhongke Langfang Institute of Process Engineering Langfang 065001 China
| | - Xiuling Ji
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
| | - Zhanling Ma
- Zhengzhou Institute of Emerging Industrial Technology Zhengzhou City Henan 450000 China
| | - Mateusz Łężyk
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology Berdychowo 4 60-965 Poznan Poland
| | - Yaju Xue
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
| | - Hai Zhao
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
11
|
Structural and functional analysis of the Francisella lysine decarboxylase as a key actor in oxidative stress resistance. Sci Rep 2021; 11:972. [PMID: 33441661 PMCID: PMC7806604 DOI: 10.1038/s41598-020-79611-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 12/07/2020] [Indexed: 01/29/2023] Open
Abstract
Francisella tularensis is one of the most virulent pathogenic bacteria causing the acute human respiratory disease tularemia. While the mechanisms underlying F. tularensis pathogenesis are largely unknown, previous studies have shown that a F. novicida transposon mutant with insertions in a gene coding for a putative lysine decarboxylase was attenuated in mouse spleen, suggesting a possible role of its protein product as a virulence factor. Therefore, we set out to structurally and functionally characterize the F. novicida lysine decarboxylase, which we termed LdcF. Here, we investigate the genetic environment of ldcF as well as its evolutionary relationships with other basic AAT-fold amino acid decarboxylase superfamily members, known as key actors in bacterial adaptative stress response and polyamine biosynthesis. We determine the crystal structure of LdcF and compare it with the most thoroughly studied lysine decarboxylase, E. coli LdcI. We analyze the influence of ldcF deletion on bacterial growth under different stress conditions in dedicated growth media, as well as in infected macrophages, and demonstrate its involvement in oxidative stress resistance. Finally, our mass spectrometry-based quantitative proteomic analysis enables identification of 80 proteins with expression levels significantly affected by ldcF deletion, including several DNA repair proteins potentially involved in the diminished capacity of the F. novicida mutant to deal with oxidative stress. Taken together, we uncover an important role of LdcF in F. novicida survival in host cells through participation in oxidative stress response, thereby singling out this previously uncharacterized protein as a potential drug target.
Collapse
|
12
|
Abstract
Bacteria possess a sophisticated arsenal of defense mechanisms that allow them to survive in adverse conditions. Adaptation to acid stress and hypoxia is crucial for the enterobacterial transmission in the gastrointestinal tract of their human host. When subjected to low pH, Escherichia coli and many other enterobacteria activate a proton-consuming resistance system based on the acid stress-inducible lysine decarboxylase LdcI. Here we develop generally applicable tools to uncover the spatial localization of LdcI inside the cell by superresolution fluorescence microscopy and investigate the in vitro supramolecular organization of this enzyme by cryo-EM. We build on these results to propose a mechanistic model for LdcI function and offer tools for further in vivo investigations. Pathogenic and commensal bacteria often have to resist the harsh acidity of the host stomach. The inducible lysine decarboxylase LdcI buffers the cytosol and the local extracellular environment to ensure enterobacterial survival at low pH. Here, we investigate the acid stress-response regulation of Escherichia coli LdcI by combining biochemical and biophysical characterization with negative stain and cryoelectron microscopy (cryo-EM) and wide-field and superresolution fluorescence imaging. Due to deleterious effects of fluorescent protein fusions on native LdcI decamers, we opt for three-dimensional localization of nanobody-labeled endogenous wild-type LdcI in acid-stressed E. coli cells and show that it organizes into distinct patches at the cell periphery. Consistent with recent hypotheses that in vivo clustering of metabolic enzymes often reflects their polymerization as a means of stimulus-induced regulation, we show that LdcI assembles into filaments in vitro at physiologically relevant low pH. We solve the structures of these filaments and of the LdcI decamer formed at neutral pH by cryo-EM and reveal the molecular determinants of LdcI polymerization, confirmed by mutational analysis. Finally, we propose a model for LdcI function inside the enterobacterial cell, providing a structural and mechanistic basis for further investigation of the role of its supramolecular organization in the acid stress response.
Collapse
|
13
|
Kaur G, Burroughs AM, Iyer LM, Aravind L. Highly regulated, diversifying NTP-dependent biological conflict systems with implications for the emergence of multicellularity. eLife 2020; 9:e52696. [PMID: 32101166 PMCID: PMC7159879 DOI: 10.7554/elife.52696] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
Social cellular aggregation or multicellular organization pose increased risk of transmission of infections through the system upon infection of a single cell. The generality of the evolutionary responses to this outside of Metazoa remains unclear. We report the discovery of several thematically unified, remarkable biological conflict systems preponderantly present in multicellular prokaryotes. These combine thresholding mechanisms utilizing NTPase chaperones (the MoxR-vWA couple), GTPases and proteolytic cascades with hypervariable effectors, which vary either by using a reverse transcriptase-dependent diversity-generating system or through a system of acquisition of diverse protein modules, typically in inactive form, from various cellular subsystems. Conciliant lines of evidence indicate their deployment against invasive entities, like viruses, to limit their spread in multicellular/social contexts via physical containment, dominant-negative interactions or apoptosis. These findings argue for both a similar operational 'grammar' and shared protein domains in the sensing and limiting of infections during the multiple emergences of multicellularity.
Collapse
Affiliation(s)
- Gurmeet Kaur
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - A Maxwell Burroughs
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Lakshminarayan M Iyer
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - L Aravind
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
14
|
Jessop M, Arragain B, Miras R, Fraudeau A, Huard K, Bacia-Verloop M, Catty P, Felix J, Malet H, Gutsche I. Structural insights into ATP hydrolysis by the MoxR ATPase RavA and the LdcI-RavA cage-like complex. Commun Biol 2020; 3:46. [PMID: 31992852 PMCID: PMC6987120 DOI: 10.1038/s42003-020-0772-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/11/2020] [Indexed: 01/13/2023] Open
Abstract
The hexameric MoxR AAA+ ATPase RavA and the decameric lysine decarboxylase LdcI form a 3.3 MDa cage, proposed to assist assembly of specific respiratory complexes in E. coli. Here, we show that inside the LdcI-RavA cage, RavA hexamers adopt an asymmetric spiral conformation in which the nucleotide-free seam is constrained to two opposite orientations. Cryo-EM reconstructions of free RavA reveal two co-existing structural states: an asymmetric spiral, and a flat C2-symmetric closed ring characterised by two nucleotide-free seams. The closed ring RavA state bears close structural similarity to the pseudo two-fold symmetric crystal structure of the AAA+ unfoldase ClpX, suggesting a common ATPase mechanism. Based on these structures, and in light of the current knowledge regarding AAA+ ATPases, we propose different scenarios for the ATP hydrolysis cycle of free RavA and the LdcI-RavA cage-like complex, and extend the comparison to other AAA+ ATPases of clade 7.
Collapse
Affiliation(s)
- Matthew Jessop
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044, Grenoble, France
| | - Benoit Arragain
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044, Grenoble, France
| | - Roger Miras
- Laboratoire de Chimie et Biologie des Métaux, Univ. Grenoble Alpes, CEA, CNRS, DRF, IRIG, UMR 5249, 17 rue des Martyrs, F-38054, Grenoble, France
| | - Angélique Fraudeau
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044, Grenoble, France
| | - Karine Huard
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044, Grenoble, France
| | - Maria Bacia-Verloop
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044, Grenoble, France
| | - Patrice Catty
- Laboratoire de Chimie et Biologie des Métaux, Univ. Grenoble Alpes, CEA, CNRS, DRF, IRIG, UMR 5249, 17 rue des Martyrs, F-38054, Grenoble, France
| | - Jan Felix
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044, Grenoble, France.
| | - Hélène Malet
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044, Grenoble, France.
| | - Irina Gutsche
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044, Grenoble, France.
| |
Collapse
|
15
|
Insights into the mechanism and regulation of the CbbQO-type Rubisco activase, a MoxR AAA+ ATPase. Proc Natl Acad Sci U S A 2019; 117:381-387. [PMID: 31848241 DOI: 10.1073/pnas.1911123117] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The vast majority of biological carbon dioxide fixation relies on the function of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco). In most cases the enzyme exhibits a tendency to become inhibited by its substrate RuBP and other sugar phosphates. The inhibition is counteracted by diverse molecular chaperones known as Rubisco activases (Rcas). In some chemoautotrophic bacteria, the CbbQO-type Rca Q2O2 repairs inhibited active sites of hexameric form II Rubisco. The 2.2-Å crystal structure of the MoxR AAA+ protein CbbQ2 from Acidithiobacillus ferrooxidans reveals the helix 2 insert (H2I) that is critical for Rca function and forms the axial pore of the CbbQ hexamer. Negative-stain electron microscopy shows that the essential CbbO adaptor protein binds to the conserved, concave side of the CbbQ2 hexamer. Site-directed mutagenesis supports a model in which adenosine 5'-triphosphate (ATP)-powered movements of the H2I are transmitted to CbbO via the concave residue L85. The basal ATPase activity of Q2O2 Rca is repressed but strongly stimulated by inhibited Rubisco. The characterization of multiple variants where this repression is released indicates that binding of inhibited Rubisco to the C-terminal CbbO VWA domain initiates a signal toward the CbbQ active site that is propagated via elements that include the CbbQ α4-β4 loop, pore loop 1, and the presensor 1-β hairpin (PS1-βH). Detailed mechanistic insights into the enzyme repair chaperones of the highly diverse CO2 fixation machinery of Proteobacteria will facilitate their successful implementation in synthetic biology ventures.
Collapse
|
16
|
Kandiah E, Carriel D, Garcia PS, Felix J, Banzhaf M, Kritikos G, Bacia-Verloop M, Brochier-Armanet C, Elsen S, Gutsche I. Structure, Function, and Evolution of the Pseudomonas aeruginosa Lysine Decarboxylase LdcA. Structure 2019; 27:1842-1854.e4. [PMID: 31653338 DOI: 10.1016/j.str.2019.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/09/2019] [Accepted: 10/01/2019] [Indexed: 11/28/2022]
Abstract
The only enzyme responsible for cadaverine production in the major multidrug-resistant human pathogen Pseudomonas aeruginosa is the lysine decarboxylase LdcA. This enzyme modulates the general polyamine homeostasis, promotes growth, and reduces bacterial persistence during carbenicillin treatment. Here we present a 3.7-Å resolution cryoelectron microscopy structure of LdcA. We introduce an original approach correlating phylogenetic signal with structural information and reveal possible recombination among LdcA and arginine decarboxylase subfamilies within structural domain boundaries. We show that LdcA is involved in full virulence in an insect pathogenesis model. Furthermore, unlike its enterobacterial counterparts, LdcA is regulated neither by the stringent response alarmone ppGpp nor by the AAA+ ATPase RavA. Instead, the P. aeruginosa ravA gene seems to play a defensive role. Altogether, our study identifies LdcA as an important player in P. aeruginosa physiology and virulence and as a potential drug target.
Collapse
Affiliation(s)
- Eaazhisai Kandiah
- Univ. Grenoble Alpes, CNRS, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Diego Carriel
- Univ. Grenoble Alpes, CNRS, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France; Biology of Cancer and Infection, U1036 INSERM, CEA, University of Grenoble Alpes, ERL5261 CNRS, Grenoble, France
| | - Pierre Simon Garcia
- Univ Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918, 69622 Villeurbanne, France; MMSB Molecular Microbiology and Structural Biochemistry, Institut de Biologie et de Chimie des Protéines 7 Passage du Vercors, 69367 Lyon Cedex 07, France
| | - Jan Felix
- Univ. Grenoble Alpes, CNRS, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Manuel Banzhaf
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, B15 2TT Birmingham, UK
| | - George Kritikos
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, B15 2TT Birmingham, UK
| | - Maria Bacia-Verloop
- Univ. Grenoble Alpes, CNRS, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Céline Brochier-Armanet
- Univ Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918, 69622 Villeurbanne, France; MMSB Molecular Microbiology and Structural Biochemistry, Institut de Biologie et de Chimie des Protéines 7 Passage du Vercors, 69367 Lyon Cedex 07, France
| | - Sylvie Elsen
- Biology of Cancer and Infection, U1036 INSERM, CEA, University of Grenoble Alpes, ERL5261 CNRS, Grenoble, France
| | - Irina Gutsche
- Univ. Grenoble Alpes, CNRS, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France.
| |
Collapse
|
17
|
Carriel D, Simon Garcia P, Castelli F, Lamourette P, Fenaille F, Brochier-Armanet C, Elsen S, Gutsche I. A Novel Subfamily of Bacterial AAT-Fold Basic Amino Acid Decarboxylases and Functional Characterization of Its First Representative: Pseudomonas aeruginosa LdcA. Genome Biol Evol 2018; 10:3058-3075. [PMID: 30321344 PMCID: PMC6257575 DOI: 10.1093/gbe/evy228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2018] [Indexed: 12/30/2022] Open
Abstract
Polyamines are small amino-acid derived polycations capable of binding negatively charged macromolecules. Bacterial polyamines are structurally and functionally diverse, and are mainly produced biosynthetically by pyridoxal-5-phosphate-dependent amino acid decarboxylases referred to as Lysine-Arginine-Ornithine decarboxylases (LAOdcs). In a phylogenetically limited group of bacteria, LAOdcs are also induced in response to acid stress. Here, we performed an exhaustive phylogenetic analysis of the AAT-fold LAOdcs which showcased the ancient nature of their short forms in Cyanobacteria and Firmicutes, and emergence of distinct subfamilies of long LAOdcs in Proteobacteria. We identified a novel subfamily of lysine decarboxylases, LdcA, ancestral in Betaproteobacteria and Pseudomonadaceae. We analyzed the expression of LdcA from Pseudomonas aeruginosa, and uncovered its role, intimately linked to cadaverine (Cad) production, in promoting growth and reducing persistence of this multidrug resistant human pathogen during carbenicillin treatment. Finally, we documented a certain redundancy in the function of the three main polyamines—Cad, putrescine (Put), and spermidine (Spd)—in P. aeruginosa by demonstrating the link between their intracellular level, as well as the capacity of Put and Spd to complement the growth phenotype of the ldcA mutant.
Collapse
Affiliation(s)
- Diego Carriel
- University of Grenoble Alpes, CNRS, CEA, CNRS, IBS, France.,University of Grenoble Alpes, INSERM, CEA, ERL5261 CNRS, BIG BCI, France
| | - Pierre Simon Garcia
- Laboratoire de Biométrie et Biologie Évolutive, Université Lyon 1, CNRS, UMR5558, Villeurbanne, France.,MMSB Molecular Microbiology and Structural Biochemistry, Institut de Biologie et de Chimie des Protéines, Lyon, France
| | - Florence Castelli
- Service de Pharmacologie et Immuno-Analyse (SPI), Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris Saclay, France
| | - Patricia Lamourette
- Service de Pharmacologie et Immuno-Analyse (SPI), Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris Saclay, France
| | - François Fenaille
- Service de Pharmacologie et Immuno-Analyse (SPI), Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris Saclay, France
| | - Céline Brochier-Armanet
- Laboratoire de Biométrie et Biologie Évolutive, Université Lyon 1, CNRS, UMR5558, Villeurbanne, France.,MMSB Molecular Microbiology and Structural Biochemistry, Institut de Biologie et de Chimie des Protéines, Lyon, France
| | - Sylvie Elsen
- University of Grenoble Alpes, INSERM, CEA, ERL5261 CNRS, BIG BCI, France
| | - Irina Gutsche
- University of Grenoble Alpes, CNRS, CEA, CNRS, IBS, France
| |
Collapse
|
18
|
Mueller-Cajar O. The Diverse AAA+ Machines that Repair Inhibited Rubisco Active Sites. Front Mol Biosci 2017; 4:31. [PMID: 28580359 PMCID: PMC5437159 DOI: 10.3389/fmolb.2017.00031] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/29/2017] [Indexed: 11/13/2022] Open
Abstract
Gaseous carbon dioxide enters the biosphere almost exclusively via the active site of the enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco). This highly conserved catalyst has an almost universal propensity to non-productively interact with its substrate ribulose 1,5-bisphosphate, leading to the formation of dead-end inhibited complexes. In diverse autotrophic organisms this tendency has been counteracted by the recruitment of dedicated AAA+ (ATPases associated with various cellular activities) proteins that all use the energy of ATP hydrolysis to remodel inhibited Rubisco active sites leading to release of the inhibitor. Three evolutionarily distinct classes of these Rubisco activases (Rcas) have been discovered so far. Green and red-type Rca are mostly found in photosynthetic eukaryotes of the green and red plastid lineage respectively, whereas CbbQO is associated with chemoautotrophic bacteria. Ongoing mechanistic studies are elucidating how the various motors are utilizing both similar and contrasting strategies to ultimately perform their common function of cracking the inhibited Rubisco active site. The best studied mechanism utilized by red-type Rca appears to involve transient threading of the Rubisco large subunit C-terminal peptide, reminiscent of the action performed by Clp proteases. As well as providing a fascinating example of convergent molecular evolution, Rca proteins can be considered promising crop-improvement targets. Approaches aiming to replace Rubisco in plants with improved enzymes will need to ensure the presence of a compatible Rca protein. The thermolability of the Rca protein found in crop plants provides an opportunity to fortify photosynthesis against high temperature stress. Photosynthesis also appears to be limited by Rca when light conditions are fluctuating. Synthetic biology strategies aiming to enhance the autotrophic CO2 fixation machinery will need to take into consideration the requirement for Rubisco activases as well as their properties.
Collapse
Affiliation(s)
- Oliver Mueller-Cajar
- School of Biological Sciences, Nanyang Technological UniversitySingapore, Singapore
| |
Collapse
|
19
|
Wong KS, Bhandari V, Janga SC, Houry WA. The RavA-ViaA Chaperone-Like System Interacts with and Modulates the Activity of the Fumarate Reductase Respiratory Complex. J Mol Biol 2017; 429:324-344. [DOI: 10.1016/j.jmb.2016.12.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/05/2016] [Accepted: 12/05/2016] [Indexed: 01/02/2023]
|
20
|
Transcriptomes of the Extremely Thermoacidophilic Archaeon Metallosphaera sedula Exposed to Metal "Shock" Reveal Generic and Specific Metal Responses. Appl Environ Microbiol 2016; 82:4613-4627. [PMID: 27208114 DOI: 10.1128/aem.01176-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/17/2016] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED The extremely thermoacidophilic archaeon Metallosphaera sedula mobilizes metals by novel membrane-associated oxidase clusters and, consequently, requires metal resistance strategies. This issue was examined by "shocking" M. sedula with representative metals (Co(2+), Cu(2+), Ni(2+), UO2 (2+), Zn(2+)) at inhibitory and subinhibitory levels. Collectively, one-quarter of the genome (554 open reading frames [ORFs]) responded to inhibitory levels, and two-thirds (354) of the ORFs were responsive to a single metal. Cu(2+) (259 ORFs, 106 Cu(2+)-specific ORFs) and Zn(2+) (262 ORFs, 131 Zn(2+)-specific ORFs) triggered the largest responses, followed by UO2 (2+) (187 ORFs, 91 UO2 (2+)-specific ORFs), Ni(2+) (93 ORFs, 25 Ni(2+)-specific ORFs), and Co(2+) (61 ORFs, 1 Co(2+)-specific ORF). While one-third of the metal-responsive ORFs are annotated as encoding hypothetical proteins, metal challenge also impacted ORFs responsible for identifiable processes related to the cell cycle, DNA repair, and oxidative stress. Surprisingly, there were only 30 ORFs that responded to at least four metals, and 10 of these responded to all five metals. This core transcriptome indicated induction of Fe-S cluster assembly (Msed_1656-Msed_1657), tungsten/molybdenum transport (Msed_1780-Msed_1781), and decreased central metabolism. Not surprisingly, a metal-translocating P-type ATPase (Msed_0490) associated with a copper resistance system (Cop) was upregulated in response to Cu(2+) (6-fold) but also in response to UO2 (2+) (4-fold) and Zn(2+) (9-fold). Cu(2+) challenge uniquely induced assimilatory sulfur metabolism for cysteine biosynthesis, suggesting a role for this amino acid in Cu(2+) resistance or issues in sulfur metabolism. The results indicate that M. sedula employs a range of physiological and biochemical responses to metal challenge, many of which are specific to a single metal and involve proteins with yet unassigned or definitive functions. IMPORTANCE The mechanisms by which extremely thermoacidophilic archaea resist and are negatively impacted by metals encountered in their natural environments are important to understand so that technologies such as bioleaching, which leverage microbially based conversion of insoluble metal sulfides to soluble species, can be improved. Transcriptomic analysis of the cellular response to metal challenge provided both global and specific insights into how these novel microorganisms negotiate metal toxicity in natural and technological settings. As genetics tools are further developed and implemented for extreme thermoacidophiles, information about metal toxicity and resistance can be leveraged to create metabolically engineered strains with improved bioleaching characteristics.
Collapse
|
21
|
Chan SWS, Yau J, Ing C, Liu K, Farber P, Won A, Bhandari V, Kara-Yacoubian N, Seraphim TV, Chakrabarti N, Kay LE, Yip CM, Pomès R, Sharpe S, Houry WA. Mechanism of Amyloidogenesis of a Bacterial AAA+ Chaperone. Structure 2016; 24:1095-109. [PMID: 27265850 DOI: 10.1016/j.str.2016.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 04/27/2016] [Accepted: 05/01/2016] [Indexed: 10/21/2022]
Abstract
Amyloids are fibrillar protein superstructures that are commonly associated with diseases in humans and with physiological functions in various organisms. The precise mechanisms of amyloid formation remain to be elucidated. Surprisingly, we discovered that a bacterial Escherichia coli chaperone-like ATPase, regulatory ATPase variant A (RavA), and specifically the LARA domain in RavA, forms amyloids under acidic conditions at elevated temperatures. RavA is involved in modulating the proper assembly of membrane respiratory complexes. LARA contains an N-terminal loop region followed by a β-sandwich-like folded core. Several approaches, including nuclear magnetic resonance spectroscopy and molecular dynamics simulations, were used to determine the mechanism by which LARA switches to an amyloid state. These studies revealed that the folded core of LARA is amyloidogenic and is protected by its N-terminal loop. At low pH and high temperatures, the interaction of the N-terminal loop with the folded core is disrupted, leading to amyloid formation.
Collapse
Affiliation(s)
- Sze Wah Samuel Chan
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Medical Sciences Building, Toronto, ON M5S 1A8, Canada
| | - Jason Yau
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Medical Sciences Building, Toronto, ON M5S 1A8, Canada; Molecular Structure and Function Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Christopher Ing
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Medical Sciences Building, Toronto, ON M5S 1A8, Canada; Molecular Structure and Function Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Kaiyin Liu
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Medical Sciences Building, Toronto, ON M5S 1A8, Canada
| | - Patrick Farber
- Molecular Structure and Function Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Amy Won
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Vaibhav Bhandari
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Medical Sciences Building, Toronto, ON M5S 1A8, Canada
| | - Nareg Kara-Yacoubian
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Medical Sciences Building, Toronto, ON M5S 1A8, Canada
| | - Thiago V Seraphim
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Medical Sciences Building, Toronto, ON M5S 1A8, Canada
| | - Nilmadhab Chakrabarti
- Molecular Structure and Function Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Lewis E Kay
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Medical Sciences Building, Toronto, ON M5S 1A8, Canada; Molecular Structure and Function Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Christopher M Yip
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Medical Sciences Building, Toronto, ON M5S 1A8, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Régis Pomès
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Medical Sciences Building, Toronto, ON M5S 1A8, Canada; Molecular Structure and Function Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Simon Sharpe
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Medical Sciences Building, Toronto, ON M5S 1A8, Canada; Molecular Structure and Function Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.
| | - Walid A Houry
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Medical Sciences Building, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
22
|
Structural insights into the Escherichia coli lysine decarboxylases and molecular determinants of interaction with the AAA+ ATPase RavA. Sci Rep 2016; 6:24601. [PMID: 27080013 PMCID: PMC4832331 DOI: 10.1038/srep24601] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/01/2016] [Indexed: 11/09/2022] Open
Abstract
The inducible lysine decarboxylase LdcI is an important enterobacterial acid stress
response enzyme whereas LdcC is its close paralogue thought to play mainly a
metabolic role. A unique macromolecular cage formed by two decamers of the
Escherichia coli LdcI and five hexamers of the AAA+ ATPase RavA was shown
to counteract acid stress under starvation. Previously, we proposed a pseudoatomic
model of the LdcI-RavA cage based on its cryo-electron microscopy map and crystal
structures of an inactive LdcI decamer and a RavA monomer. We now present
cryo-electron microscopy 3D reconstructions of the E. coli LdcI and LdcC, and
an improved map of the LdcI bound to the LARA domain of RavA, at pH optimal for
their enzymatic activity. Comparison with each other and with available structures
uncovers differences between LdcI and LdcC explaining why only the acid stress
response enzyme is capable of binding RavA. We identify interdomain movements
associated with the pH-dependent enzyme activation and with the RavA binding.
Multiple sequence alignment coupled to a phylogenetic analysis reveals that certain
enterobacteria exert evolutionary pressure on the lysine decarboxylase towards the
cage-like assembly with RavA, implying that this complex may have an important
function under particular stress conditions.
Collapse
|
23
|
Ezraty B, Barras F. The ‘liaisons dangereuses’ between iron and antibiotics. FEMS Microbiol Rev 2016; 40:418-35. [DOI: 10.1093/femsre/fuw004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2016] [Indexed: 12/15/2022] Open
|
24
|
Interaction of Mycobacterium tuberculosis Virulence Factor RipA with Chaperone MoxR1 Is Required for Transport through the TAT Secretion System. mBio 2016; 7:e02259. [PMID: 26933057 PMCID: PMC4810496 DOI: 10.1128/mbio.02259-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis is a leading cause of death worldwide. The M. tuberculosis TAT (twin-arginine translocation) protein secretion system is present at the cytoplasmic membrane of mycobacteria and is known to transport folded proteins. The TAT secretion system is reported to be essential for many important bacterial processes that include cell wall biosynthesis. The M. tuberculosis secretion and invasion protein RipA has endopeptidase activity and interacts with one of the resuscitation antigens (RpfB) that are expressed during pathogen reactivation. MoxR1, a member of the ATPase family that is associated with various cellular activities, was predicted to interact with RipA based on in silico analyses. A bimolecular fluorescence complementation (BiFC) assay confirmed the interaction of these two proteins in HEK293T cells. The overexpression of RipA in Mycobacterium smegmatis and copurification with MoxR1 further validated their interaction in vivo. Recombinant MoxR1 protein, expressed in Escherichia coli, displays ATP-enhanced chaperone activity. Secretion of recombinant RipA (rRipA) protein into the E. coli culture filtrate was not observed in the absence of RipA-MoxR interaction. Inhibition of this export system in M. tuberculosis, including the key players, will prevent localization of peptidoglycan hydrolase and result in sensitivity to existing β-lactam antibiotics, opening up new candidates for drug repurposing. The virulence mechanism of mycobacteria is very complex. Broadly, the virulence factors can be classified as secretion factors, cell surface components, enzymes involved in cellular metabolism, and transcriptional regulators. The mycobacteria have evolved several mechanisms to secrete its proteins. Here, we have identified one of the virulence proteins of Mycobacterium tuberculosis, RipA, possessing peptidoglycan hydrolase activities secreted by the TAT secretion pathway. We also identified MoxR1 as a protein-protein interaction partner of RipA and demonstrated chaperone activity of this protein. We show that MoxR1-mediated folding is critical for the secretion of RipA within the TAT system. Inhibition of this export system in M. tuberculosis will prevent localization of peptidoglycan hydrolase and result in sensitivity to existing β-lactam antibiotics, opening up new candidates for drug repurposing.
Collapse
|
25
|
Friedrich T, Dekovic DK, Burschel S. Assembly of the Escherichia coli NADH:ubiquinone oxidoreductase (respiratory complex I). BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:214-23. [PMID: 26682761 DOI: 10.1016/j.bbabio.2015.12.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 12/13/2022]
Abstract
Energy-converting NADH:ubiquinone oxidoreductase, respiratory complex I, couples the electron transfer from NADH to ubiquinone with the translocation of four protons across the membrane. The Escherichia coli complex I is made up of 13 different subunits encoded by the so-called nuo-genes. The electron transfer is catalyzed by nine cofactors, a flavin mononucleotide and eight iron-sulfur (Fe/S)-clusters. The individual subunits and the cofactors have to be assembled together in a coordinated way to guarantee the biogenesis of the active holoenzyme. Only little is known about the assembly of the bacterial complex compared to the mitochondrial one. Due to the presence of so many Fe/S-clusters the assembly of complex I is intimately connected with the systems responsible for the biogenesis of these clusters. In addition, a few other proteins have been reported to be required for an effective assembly of the complex in other bacteria. The proposed role of known bacterial assembly factors is discussed and the information from other bacterial species is used in this review to draw an as complete as possible model of bacterial complex I assembly. In addition, the supramolecular organization of the complex in E. coli is briefly described. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Prof. Conrad Mullineaux.
Collapse
Affiliation(s)
- Thorsten Friedrich
- Albert-Ludwigs-Universität Freiburg, Institut für Biochemie, 79104 Freiburg i. Br., Germany; Spemann Graduate School of Biology and Medicine, Albertstr. 19A, 79104 Freiburg i. Br., Germany.
| | - Doris Kreuzer Dekovic
- Albert-Ludwigs-Universität Freiburg, Institut für Biochemie, 79104 Freiburg i. Br., Germany; Spemann Graduate School of Biology and Medicine, Albertstr. 19A, 79104 Freiburg i. Br., Germany
| | - Sabrina Burschel
- Albert-Ludwigs-Universität Freiburg, Institut für Biochemie, 79104 Freiburg i. Br., Germany
| |
Collapse
|
26
|
Tsai YCC, Lapina MC, Bhushan S, Mueller-Cajar O. Identification and characterization of multiple rubisco activases in chemoautotrophic bacteria. Nat Commun 2015; 6:8883. [PMID: 26567524 PMCID: PMC4660213 DOI: 10.1038/ncomms9883] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/13/2015] [Indexed: 12/20/2022] Open
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) is responsible for almost all biological CO2 assimilation, but forms inhibited complexes with its substrate ribulose-1,5-bisphosphate (RuBP) and other sugar phosphates. The distantly related AAA+ proteins rubisco activase and CbbX remodel inhibited rubisco complexes to effect inhibitor release in plants and α-proteobacteria, respectively. Here we characterize a third class of rubisco activase in the chemolithoautotroph Acidithiobacillus ferrooxidans. Two sets of isoforms of CbbQ and CbbO form hetero-oligomers that function as specific activases for two structurally diverse rubisco forms. Mutational analysis supports a model wherein the AAA+ protein CbbQ functions as motor and CbbO is a substrate adaptor that binds rubisco via a von Willebrand factor A domain. Understanding the mechanisms employed by nature to overcome rubisco's shortcomings will increase our toolbox for engineering photosynthetic carbon dioxide fixation. The CO2-fixing enzyme rubisco requires motor proteins known as rubisco activases to remove inhibitors bound to its active site. Here the authors describe a new class of rubisco activase present in chemoautotrophic bacteria that belongs to the MoxR family of AAA+ ATPases.
Collapse
Affiliation(s)
- Yi-Chin Candace Tsai
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551. Singapore
| | - Maria Claribel Lapina
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551. Singapore
| | - Shashi Bhushan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551. Singapore
| | - Oliver Mueller-Cajar
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551. Singapore
| |
Collapse
|
27
|
Jiang HB, Song WY, Cheng HM, Qiu BS. The hypothetical protein Ycf46 is involved in regulation of CO2 utilization in the cyanobacterium Synechocystis sp. PCC 6803. PLANTA 2015; 241:145-155. [PMID: 25230699 DOI: 10.1007/s00425-014-2169-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/08/2014] [Indexed: 06/03/2023]
Abstract
The Ycf46 mutant of Synechocystis showed growth inhibition under low dissolved CO 2 conditions, suggesting a role for the Ycf46 protein in the process of photosynthetic CO 2 uptake and utilization. Hypothetical chloroplast open reading frame Ycf46 proteins are highly conserved in all cyanobacterial lineages and most algal chloroplast genomes, but their exact function is still unknown. In the cyanobacterium Synechocystis sp. PCC 6803, the Ycf46 encoding gene slr0374 is part of an operon (with slr0373 and slr0376) and responds to many environmental stresses. Transcript levels of the slr0373, slr0374 and slr0376 genes were increased under a low concentration of dissolved inorganic carbon (Ci). Compared with the wild type, the mutant lacking slr0374 showed growth arrest under Ci-deficient conditions but not under iron-deficient or low-light conditions. In addition, the mutant grew more slowly than the wild type under pH 6.0 conditions in which CO2 was the dominant Ci source, indicating the mutant cells had weak CO2 uptake and/or utilization ability. Supplying a high concentration of CO2 (5 %, v/v) to the mutant restored its phenotype to the wild type level. The photosynthetic activity of the mutant was inhibited to a lesser extent by a carbonic anhydrase inhibitor than that of the wild type, which specifically blocked CO2 uptake. Inactivation of slr0374 decreased expression of the ecaB gene and reduced carbonic anhydrase activity. A subcellular localization assay indicated that the Ycf46 protein was soluble. By co-immunoprecipitation assay using Slr0374 as a bait-protein, potential interacting proteins in the size range of 30 kDa were identified. These results suggest that the Ycf46 protein plays a role in the regulation of photosynthesis in cyanobacteria, especially in CO2 uptake and utilization.
Collapse
Affiliation(s)
- Hai-Bo Jiang
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Luoyu Road 152, 430079, Wuhan, Hubei, People's Republic of China
| | | | | | | |
Collapse
|
28
|
Malet H, Liu K, El Bakkouri M, Chan SWS, Effantin G, Bacia M, Houry WA, Gutsche I. Assembly principles of a unique cage formed by hexameric and decameric E. coli proteins. eLife 2014; 3:e03653. [PMID: 25097238 PMCID: PMC4145799 DOI: 10.7554/elife.03653] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A 3.3 MDa macromolecular cage between two Escherichia coli proteins with seemingly incompatible symmetries-the hexameric AAA+ ATPase RavA and the decameric inducible lysine decarboxylase LdcI-is reconstructed by cryo-electron microscopy to 11 Å resolution. Combined with a 7.5 Å resolution reconstruction of the minimal complex between LdcI and the LdcI-binding domain of RavA, and the previously solved crystal structures of the individual components, this work enables to build a reliable pseudoatomic model of this unusual architecture and to identify conformational rearrangements and specific elements essential for complex formation. The design of the cage created via lateral interactions between five RavA rings is unique for the diverse AAA+ ATPase superfamily.
Collapse
Affiliation(s)
- Hélène Malet
- European Molecular Biology Laboratory, Grenoble, France Unit for Virus Host-Cell Interactions, Université Grenoble Alpes, Grenoble, France Unit for Virus Host-Cell Interactions, CNRS, Grenoble, France
| | - Kaiyin Liu
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | | | | | - Gregory Effantin
- Unit for Virus Host-Cell Interactions, Université Grenoble Alpes, Grenoble, France Unit for Virus Host-Cell Interactions, CNRS, Grenoble, France
| | - Maria Bacia
- Université Grenoble Alpes, Institut de Biologie Structurale, Grenoble, France Institut de Biologie Structurale, CNRS, Grenoble, France Institut de Biologie Structurale, CEA, Grenoble, France
| | - Walid A Houry
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Irina Gutsche
- Unit for Virus Host-Cell Interactions, Université Grenoble Alpes, Grenoble, France Unit for Virus Host-Cell Interactions, CNRS, Grenoble, France
| |
Collapse
|
29
|
Happonen LJ, Erdmann S, Garrett RA, Butcher SJ. Adenosine triphosphatases of thermophilic archaeal double-stranded DNA viruses. Cell Biosci 2014; 4:37. [PMID: 25105011 PMCID: PMC4124505 DOI: 10.1186/2045-3701-4-37] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 06/13/2014] [Indexed: 12/02/2022] Open
Abstract
Adenosine triphosphatases (ATPases) of double-stranded (ds) DNA archaeal viruses are structurally related to the AAA+ hexameric helicases and translocases. These ATPases have been implicated in viral life cycle functions such as DNA entry into the host, and viral genome packaging into preformed procapsids. We summarize bioinformatical analyses of a wide range of archaeal ATPases, and review the biochemical and structural properties of those archaeal ATPases that have measurable ATPase activity. We discuss their potential roles in genome delivery into the host, virus assembly and genome packaging in comparison to hexameric helicases and packaging motors from bacteriophages.
Collapse
Affiliation(s)
- Lotta J Happonen
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, SE-221 84 Lund, Sweden
| | - Susanne Erdmann
- Archaea Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Roger A Garrett
- Archaea Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Sarah J Butcher
- Institute of Biotechnology, University of Helsinki, (Viikinkaari 1), P.O. Box 65, FI-00014 Helsinki, Finland
| |
Collapse
|
30
|
Gleave ES, Schmidt H, Carter AP. A structural analysis of the AAA+ domains in Saccharomyces cerevisiae cytoplasmic dynein. J Struct Biol 2014; 186:367-75. [PMID: 24680784 PMCID: PMC4047620 DOI: 10.1016/j.jsb.2014.03.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/21/2014] [Accepted: 03/22/2014] [Indexed: 11/05/2022]
Abstract
Dyneins are large protein complexes that act as microtubule based molecular motors. The dynein heavy chain contains a motor domain which is a member of the AAA+ protein family (ATPases Associated with diverse cellular Activities). Proteins of the AAA+ family show a diverse range of functionalities, but share a related core AAA+ domain, which often assembles into hexameric rings. Dynein is unusual because it has all six AAA+ domains linked together, in one long polypeptide. The dynein motor domain generates movement by coupling ATP driven conformational changes in the AAA+ ring to the swing of a motile element called the linker. Dynein binds to its microtubule track via a long antiparallel coiled-coil stalk that emanates from the AAA+ ring. Recently the first high resolution structures of the dynein motor domain were published. Here we provide a detailed structural analysis of the six AAA+ domains using our Saccharomycescerevisiae crystal structure. We describe how structural similarities in the dynein AAA+ domains suggest they share a common evolutionary origin. We analyse how the different AAA+ domains have diverged from each other. We discuss how this is related to the function of dynein as a motor protein and how the AAA+ domains of dynein compare to those of other AAA+ proteins.
Collapse
Affiliation(s)
- Emma S Gleave
- MRC Laboratory of Molecular Biology, Francis Crick Ave, Cambridge CB2 0QH, UK
| | - Helgo Schmidt
- MRC Laboratory of Molecular Biology, Francis Crick Ave, Cambridge CB2 0QH, UK
| | - Andrew P Carter
- MRC Laboratory of Molecular Biology, Francis Crick Ave, Cambridge CB2 0QH, UK.
| |
Collapse
|
31
|
Pham BP, Lee S, Jia B, Kwak JM, Cheong GW. Architecture and characterization of a thermostable MoxR family AAA(+) ATPase from Thermococcus kodakarensis KOD1. Extremophiles 2014; 18:537-44. [PMID: 24638259 DOI: 10.1007/s00792-014-0639-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 03/02/2014] [Indexed: 10/25/2022]
Abstract
AAA(+) ATPases are ubiquitous enzymes that can function as molecular chaperones, employing the energy obtained from ATP hydrolysis to remodel macromolecules. In this report, the MoxR enzyme from Thermococcus kodakarensis KOD1 (TkMoxR) was shown to have two native forms: a two-stack hexameric ring and a hexameric structure, under physiological conditions and cold stress, respectively. TkMoxR was altered to a microtubule-like form in the presence of ATP and tightly interacted with dsDNA molecules of various lengths. In addition, the two-stack hexameric protein catalyzed dsDNA decomposition to form and then release ssDNA, whereas the hexamer TkMoxR structure interacted with but did not release dsDNA. These results suggest that TkMoxR has DNA helicase activity involved in gene expression control.
Collapse
Affiliation(s)
- Bang Phuong Pham
- Division of Applied Life Sciences, Gyeongsang National University, Jinju, 660-701, Korea
| | | | | | | | | |
Collapse
|
32
|
Wong KS, Snider JD, Graham C, Greenblatt JF, Emili A, Babu M, Houry WA. The MoxR ATPase RavA and its cofactor ViaA interact with the NADH:ubiquinone oxidoreductase I in Escherichia coli. PLoS One 2014; 9:e85529. [PMID: 24454883 PMCID: PMC3893208 DOI: 10.1371/journal.pone.0085529] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 11/27/2013] [Indexed: 12/26/2022] Open
Abstract
MoxR ATPases are widespread throughout bacteria and archaea. The experimental evidence to date suggests that these proteins have chaperone-like roles in facilitating the maturation of dedicated protein complexes that are functionally diverse. In Escherichia coli, the MoxR ATPase RavA and its putative cofactor ViaA are found to exist in early stationary-phase cells at 37 °C at low levels of about 350 and 90 molecules per cell, respectively. Both proteins are predominantly localized to the cytoplasm, but ViaA was also unexpectedly found to localize to the cell membrane. Whole genome microarrays and synthetic lethality studies both indicated that RavA-ViaA are genetically linked to Fe-S cluster assembly and specific respiratory pathways. Systematic analysis of mutant strains of ravA and viaA indicated that RavA-ViaA sensitizes cells to sublethal concentrations of aminoglycosides. Furthermore, this effect was dependent on RavA's ATPase activity, and on the presence of specific subunits of NADH:ubiquinone oxidoreductase I (Nuo Complex, or Complex I). Importantly, both RavA and ViaA were found to physically interact with specific Nuo subunits. We propose that RavA-ViaA facilitate the maturation of the Nuo complex.
Collapse
Affiliation(s)
- Keith S. Wong
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Jamie D. Snider
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Chris Graham
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Saskatchewan, Canada
| | - Jack F. Greenblatt
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Andrew Emili
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Mohan Babu
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Saskatchewan, Canada
| | - Walid A. Houry
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
33
|
Novel structural and functional insights into the MoxR family of AAA+ ATPases. J Struct Biol 2012; 179:211-21. [PMID: 22491058 DOI: 10.1016/j.jsb.2012.03.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/21/2012] [Accepted: 03/25/2012] [Indexed: 11/23/2022]
Abstract
The MoxR family of AAA+ ATPases is widespread among bacteria and archaea, although their cellular functions are not well characterized. Based on recent studies, MoxR ATPases are proposed to have chaperone-like function for the maturation of specific protein complexes or for the insertion of cofactors into proteins. MoxR proteins have been found to be important modulators of multiple stress response pathways in different organisms. For example, the respective MoxR proteins have been found to play important roles in the cell envelope stress response in Rhizobium leguminosarum, in the oxidative stress, acid stress, and heat stress responses in Francisella tularensis, in the acid stress and stringent responses in Escherichia coli, in viral tail formation in the crenarchaeal Acidianus two-tailed virus, and in the utilization of carbon monoxide as the sole carbon source by the Gram-negative chemolithoautotrophe Oligotropha carboxidovorans. Recent structural studies on the MoxR proteins from E. coli and Cytophaga hutchinsonii show the unique spatial arrangement of the αβα and all-α subdomains of the AAA+ domain in these proteins compared to the typical arrangement found in canonical AAA+ proteins such as HslU. The spatial organization of the subdomains in the AAA+ domain of MoxR proteins is similar to that found in the ATPase component of the magnesium chelatase complexes, possibly suggesting a similar mechanism of function. In this review, we provide an overview of the newly identified functions and the newly obtained structures of MoxR AAA+ ATPases.
Collapse
|
34
|
Chaperone role for proteins p618 and p892 in the extracellular tail development of Acidianus two-tailed virus. J Virol 2011; 85:4812-21. [PMID: 21367903 DOI: 10.1128/jvi.00072-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The crenarchaeal Acidianus two-tailed virus (ATV) undergoes a remarkable morphological development, extracellularly and independently of host cells, by growing long tails at each end of a spindle-shaped virus particle. Initial work suggested that an intermediate filament-like protein, p800, is involved in this process. We propose that an additional chaperone system is required, consisting of a MoxR-type AAA ATPase (p618) and a von Willebrand domain A (VWA)-containing cochaperone, p892. Both proteins are absent from the other known bicaudavirus, STSV1, which develops a single tail intracellularly. p618 exhibits ATPase activity and forms a hexameric ring complex that closely resembles the oligomeric complex of the MoxR-like protein RavA (YieN). ATV proteins p387, p653, p800, and p892 interact with p618, and with the exception of p800, all bind to DNA. A model is proposed to rationalize the interactions observed between the different protein and DNA components and to explain their possible structural and functional roles in extracellular tail development.
Collapse
|