1
|
Tripathi A, Donkin RW, Miracle JS, Murphy RD, Gentry MS, Patwardhan A, Sinai AP. Dynamics of amylopectin granule accumulation during the course of the chronic Toxoplasma infection is linked to intra-cyst bradyzoite replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.02.610794. [PMID: 39282379 PMCID: PMC11398317 DOI: 10.1101/2024.09.02.610794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The contribution of amylopectin granules (AG), comprised of a branched chain storage homopolymer of glucose, to the maintenance and progression of the chronic Toxoplasma gondii infection has remained undefined. Here we describe the role of AG in the physiology of encysted bradyzoites by using a custom developed imaging-based application AmyloQuant that permitted quantification of relative levels of AG within in vivo derived tissue cysts during the initiation and maturation of the chronic infection. Our findings establish that AG are dynamic entities, exhibiting considerable heterogeneity among tissue cysts at all post infection time points examined. Quantification of relative AG levels within tissue cysts exposes a previously unrecognized temporal cycle defined by distinct phases of AG accumulation and utilization over the first 6 weeks of the chronic phase. This AG cycle is temporally coordinated with overall bradyzoite mitochondrial activity implicating amylopectin in the maintenance and progression of the chronic infection. In addition, the staging of AG accumulation and its rapid utilization within encysted bradyzoites was associated with a burst of coordinated replication. As such our findings suggest that AG levels within individual bradyzoites, and across bradyzoites within tissue cysts may represent a key component in the licensing of bradyzoite replication, intimately linking stored metabolic potential to the course of the chronic infection. This extends the impact of AG beyond the previously assigned role that focused exclusively on parasite transmission. These findings force a fundamental reassessment of the chronic Toxoplasma infection, highlighting the critical need to address the temporal progression of this crucial stage in the parasite life cycle.
Collapse
Affiliation(s)
- Aashutosh Tripathi
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Ryan W. Donkin
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Joy S. Miracle
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Robert D. Murphy
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Matthew S. Gentry
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Abhijit Patwardhan
- F.Joseph Halcomb III, MD. Department of Biomedical Engineering, University of Kentucky College of Engineering, Lexington KY 40506, USA
| | - Anthony P. Sinai
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| |
Collapse
|
2
|
Liu J, Wang X, Guan Z, Wu M, Wang X, Fan R, Zhang F, Yan J, Liu Y, Zhang D, Yin P, Yan J. The LIKE SEX FOUR 1-malate dehydrogenase complex functions as a scaffold to recruit β-amylase to promote starch degradation. THE PLANT CELL 2023; 36:194-212. [PMID: 37804098 PMCID: PMC10734626 DOI: 10.1093/plcell/koad259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/08/2023]
Abstract
In plant leaves, starch is composed of glucan polymers that accumulate in chloroplasts as the products of photosynthesis during the day; starch is mobilized at night to continuously provide sugars to sustain plant growth and development. Efficient starch degradation requires the involvement of several enzymes, including β-amylase and glucan phosphatase. However, how these enzymes cooperate remains largely unclear. Here, we show that the glucan phosphatase LIKE SEX FOUR 1 (LSF1) interacts with plastid NAD-dependent malate dehydrogenase (MDH) to recruit β-amylase (BAM1), thus reconstituting the BAM1-LSF1-MDH complex. The starch hydrolysis activity of BAM1 drastically increased in the presence of LSF1-MDH in vitro. We determined the structure of the BAM1-LSF1-MDH complex by a combination of cryo-electron microscopy, crosslinking mass spectrometry, and molecular docking. The starch-binding domain of the dual-specificity phosphatase and carbohydrate-binding module of LSF1 was docked in proximity to BAM1, thus facilitating BAM1 access to and hydrolysis of the polyglucans of starch, thus revealing the molecular mechanism by which the LSF1-MDH complex improves the starch degradation activity of BAM1. Moreover, LSF1 is phosphatase inactive, and the enzymatic activity of MDH was dispensable for starch degradation, suggesting nonenzymatic scaffold functions for LSF1-MDH in starch degradation. These findings provide important insights into the precise regulation of starch degradation.
Collapse
Affiliation(s)
- Jian Liu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuecui Wang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Zeyuan Guan
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Menglong Wu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinyue Wang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Rong Fan
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Fei Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Junjun Yan
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanjun Liu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Junjie Yan
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
3
|
Saini LK, Bheri M, Pandey GK. Protein phosphatases and their targets: Comprehending the interactions in plant signaling pathways. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 134:307-370. [PMID: 36858740 DOI: 10.1016/bs.apcsb.2022.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Protein phosphorylation is a vital reversible post-translational modification. This process is established by two classes of enzymes: protein kinases and protein phosphatases. Protein kinases phosphorylate proteins while protein phosphatases dephosphorylate phosphorylated proteins, thus, functioning as 'critical regulators' in signaling pathways. The eukaryotic protein phosphatases are classified as phosphoprotein phosphatases (PPP), metallo-dependent protein phosphatases (PPM), protein tyrosine (Tyr) phosphatases (PTP), and aspartate (Asp)-dependent phosphatases. The PPP and PPM families are serine (Ser)/threonine (Thr) specific phosphatases (STPs) that dephosphorylate Ser and Thr residues. The PTP family dephosphorylates Tyr residues while dual-specificity phosphatases (DsPTPs/DSPs) dephosphorylate Ser, Thr, and Tyr residues. The composition of these enzymes as well as their substrate specificity are important determinants of their functional significance in a number of cellular processes and stress responses. Their role in animal systems is well-understood and characterized. The functional characterization of protein phosphatases has been extensively covered in plants, although the comprehension of their mechanistic basis is an ongoing pursuit. The nature of their interactions with other key players in the signaling process is vital to our understanding. The substrates or targets determine their potential as well as magnitude of the impact they have on signaling pathways. In this article, we exclusively overview the various substrates of protein phosphatases in plant signaling pathways, which are a critical determinant of the outcome of various developmental and stress stimuli.
Collapse
Affiliation(s)
- Lokesh K Saini
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | - Malathi Bheri
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India.
| |
Collapse
|
4
|
Frenett ML, Weis K, Cole MJ, Vargas JCC, Ramsay A, Huang J, Gentry MS, Vander Kooi CW, Raththagala M. Differential activity of glucan phosphatase starch EXcess4 orthologs from agronomic crops. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Murphy RD, Chen T, Lin J, He R, Wu L, Pearson CR, Sharma S, Vander Kooi CD, Sinai AP, Zhang ZY, Vander Kooi CW, Gentry MS. The Toxoplasma glucan phosphatase TgLaforin utilizes a distinct functional mechanism that can be exploited by therapeutic inhibitors. J Biol Chem 2022; 298:102089. [PMID: 35640720 PMCID: PMC9254107 DOI: 10.1016/j.jbc.2022.102089] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 01/19/2023] Open
Abstract
Toxoplasma gondii is an intracellular parasite that generates amylopectin granules (AGs), a polysaccharide associated with bradyzoites that define chronic T. gondii infection. AGs are postulated to act as an essential energy storage molecule that enable bradyzoite persistence, transmission, and reactivation. Importantly, reactivation can result in the life-threatening symptoms of toxoplasmosis. T. gondii encodes glucan dikinase and glucan phosphatase enzymes that are homologous to the plant and animal enzymes involved in reversible glucan phosphorylation and which are required for efficient polysaccharide degradation and utilization. However, the structural determinants that regulate reversible glucan phosphorylation in T. gondii are unclear. Herein, we define key functional aspects of the T. gondii glucan phosphatase TgLaforin (TGME49_205290). We demonstrate that TgLaforin possesses an atypical split carbohydrate-binding-module domain. AlphaFold2 modeling combined with hydrogen-deuterium exchange mass spectrometry and differential scanning fluorimetry also demonstrate the unique structural dynamics of TgLaforin with regard to glucan binding. Moreover, we show that TgLaforin forms a dual specificity phosphatase domain-mediated dimer. Finally, the distinct properties of the glucan phosphatase catalytic domain were exploited to identify a small molecule inhibitor of TgLaforin catalytic activity. Together, these studies define a distinct mechanism of TgLaforin activity, opening up a new avenue of T. gondii bradyzoite biology as a therapeutic target.
Collapse
Affiliation(s)
- Robert D Murphy
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky, USA; Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Tiantian Chen
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Jianping Lin
- Departments of Medicinal Chemistry and Molecular Pharmacology and of Chemistry, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana, USA
| | - Rongjun He
- Departments of Medicinal Chemistry and Molecular Pharmacology and of Chemistry, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana, USA
| | - Li Wu
- Departments of Medicinal Chemistry and Molecular Pharmacology and of Chemistry, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana, USA
| | - Caden R Pearson
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Savita Sharma
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Carl D Vander Kooi
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Anthony P Sinai
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Zhong-Yin Zhang
- Departments of Medicinal Chemistry and Molecular Pharmacology and of Chemistry, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana, USA.
| | - Craig W Vander Kooi
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky, USA.
| | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky, USA.
| |
Collapse
|
6
|
Mak CA, Weis K, Henao T, Kuchtova A, Chen T, Sharma S, Meekins DA, Thalmann M, Vander Kooi CW, Raththagala M. Cooperative Kinetics of the Glucan Phosphatase Starch Excess4. Biochemistry 2021; 60:2425-2435. [PMID: 34319705 DOI: 10.1021/acs.biochem.1c00307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glucan phosphatases are members of a functionally diverse family of dual-specificity phosphatase (DSP) enzymes. The plant glucan phosphatase Starch Excess4 (SEX4) binds and dephosphorylates glucans, contributing to processive starch degradation in the chloroplast at night. Little is known about the complex kinetics of SEX4 when acting on its complex physiologically relevant glucan substrate. Therefore, we explored the kinetics of SEX4 against both insoluble starch and soluble amylopectin glucan substrates. SEX4 displays robust activity and a unique sigmoidal kinetic response to amylopectin, characterized by a Hill coefficient of 2.77 ± 0.63, a signature feature of cooperativity. We investigated the basis for this positive kinetic cooperativity and determined that the SEX4 carbohydrate-binding module (CBM) dramatically influences the binding cooperativity and substrate transformation rates. These findings provide insights into a previously unknown but important regulatory role for SEX4 in reversible starch phosphorylation and further advances our understanding of atypical kinetic mechanisms.
Collapse
Affiliation(s)
- Claudia A Mak
- Department of Chemistry, Skidmore College, Saratoga Springs, New York 12866, United States
| | - Kenyon Weis
- Department of Chemistry, Skidmore College, Saratoga Springs, New York 12866, United States
| | - Tiffany Henao
- Department of Chemistry, Skidmore College, Saratoga Springs, New York 12866, United States
| | - Andrea Kuchtova
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40506, United States
| | - Tiantian Chen
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40506, United States
| | - Savita Sharma
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40506, United States
| | - David A Meekins
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40506, United States
| | - Matthias Thalmann
- The John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Craig W Vander Kooi
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40506, United States
| | - Madushi Raththagala
- Department of Chemistry, Skidmore College, Saratoga Springs, New York 12866, United States
| |
Collapse
|
7
|
Bheri M, Mahiwal S, Sanyal SK, Pandey GK. Plant protein phosphatases: What do we know about their mechanism of action? FEBS J 2020; 288:756-785. [PMID: 32542989 DOI: 10.1111/febs.15454] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/27/2020] [Accepted: 06/09/2020] [Indexed: 12/30/2022]
Abstract
Protein phosphorylation is a major reversible post-translational modification. Protein phosphatases function as 'critical regulators' in signaling networks through dephosphorylation of proteins, which have been phosphorylated by protein kinases. A large understanding of their working has been sourced from animal systems rather than the plant or the prokaryotic systems. The eukaryotic protein phosphatases include phosphoprotein phosphatases (PPP), metallo-dependent protein phosphatases (PPM), protein tyrosine (Tyr) phosphatases (PTP), and aspartate (Asp)-dependent phosphatases. The PPP and PPM families are serine(Ser)/threonine(Thr)-specific phosphatases (STPs), while PTP family is Tyr specific. Dual-specificity phosphatases (DsPTPs/DSPs) dephosphorylate Ser, Thr, and Tyr residues. PTPs lack sequence homology with STPs, indicating a difference in catalytic mechanisms, while the PPP and PPM families share a similar structural fold indicating a common catalytic mechanism. The catalytic cysteine (Cys) residue in the conserved HCX5 R active site motif of the PTPs acts as a nucleophile during hydrolysis. The PPP members require metal ions, which coordinate the phosphate group of the substrate, followed by a nucleophilic attack by a water molecule and hydrolysis. The variable holoenzyme assembly of protein phosphatase(s) and the overlap with other post-translational modifications like acetylation and ubiquitination add to their complexity. Though their functional characterization is extensively reported in plants, the mechanistic nature of their action is still being explored by researchers. In this review, we exclusively overview the plant protein phosphatases with an emphasis on their mechanistic action as well as structural characteristics.
Collapse
Affiliation(s)
- Malathi Bheri
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Swati Mahiwal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Sibaji K Sanyal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
8
|
Carrillo JB, Torresi F, Morales LL, Ricordi M, Gomez-Casati DF, Busi MV, Martín M. Identification and characterization of ChlreSEX4, a novel glucan phosphatase from Chlamydomonas reinhardtii green alga. Arch Biochem Biophys 2020; 680:108235. [PMID: 31877265 DOI: 10.1016/j.abb.2019.108235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 11/16/2022]
Abstract
Chlamydomonas reinhardtii is the best known unicellular green alga model which has long been used to investigate all kinds of cellular processes, including starch metabolism. Here we identified and characterized a novel enzyme, ChlreSEX4, orthologous to glucan phosphatase SEX4 from Arabidopsis thaliana, that is capable of binding and dephosphorylating amylopectin in vitro. We also reported that cysteine 224 and tryptophan 305 residues are critical for enzyme catalysis and substrate binding. Furthermore, we verified that ChlreSEX4 gene is expressed in vivo and that glucan phosphatase activity is measurable in Chlamydomonas protein extracts. In view of the results presented, we suggest ChlreSEX4 as a functional phosphoglucan phosphatase from C. reinhardtii. Our data obtained so far contribute to understanding the phosphoglucan phosphatases evolutionary process in the green lineage and their role in starch reversible phosphorylation. In addition, this allows to position Chlamydomonas as a potential tool to obtain starches with different degrees of phosphorylation for industrial or biotechnological purposes.
Collapse
Affiliation(s)
- Julieta B Carrillo
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, 2000, Rosario, Santa Fe, Argentina
| | - Florencia Torresi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, 2000, Rosario, Santa Fe, Argentina
| | - Luisina L Morales
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, 2000, Rosario, Santa Fe, Argentina
| | - Micaela Ricordi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, 2000, Rosario, Santa Fe, Argentina
| | - Diego F Gomez-Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, 2000, Rosario, Santa Fe, Argentina
| | - Maria V Busi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, 2000, Rosario, Santa Fe, Argentina.
| | - Mariana Martín
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, 2000, Rosario, Santa Fe, Argentina.
| |
Collapse
|
9
|
Janeček Š, Mareček F, MacGregor EA, Svensson B. Starch-binding domains as CBM families-history, occurrence, structure, function and evolution. Biotechnol Adv 2019; 37:107451. [PMID: 31536775 DOI: 10.1016/j.biotechadv.2019.107451] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/01/2019] [Accepted: 09/15/2019] [Indexed: 01/05/2023]
Abstract
The term "starch-binding domain" (SBD) has been applied to a domain within an amylolytic enzyme that gave the enzyme the ability to bind onto raw, i.e. thermally untreated, granular starch. An SBD is a special case of a carbohydrate-binding domain, which in general, is a structurally and functionally independent protein module exhibiting no enzymatic activity but possessing potential to target the catalytic domain to the carbohydrate substrate to accommodate it and process it at the active site. As so-called families, SBDs together with other carbohydrate-binding modules (CBMs) have become an integral part of the CAZy database (http://www.cazy.org/). The first two well-described SBDs, i.e. the C-terminal Aspergillus-type and the N-terminal Rhizopus-type have been assigned the families CBM20 and CBM21, respectively. Currently, among the 85 established CBM families in CAZy, fifteen can be considered as families having SBD functional characteristics: CBM20, 21, 25, 26, 34, 41, 45, 48, 53, 58, 68, 69, 74, 82 and 83. All known SBDs, with the exception of the extra long CBM74, were recognized as a module consisting of approximately 100 residues, adopting a β-sandwich fold and possessing at least one carbohydrate-binding site. The present review aims to deliver and describe: (i) the SBD identification in different amylolytic and related enzymes (e.g., CAZy GH families) as well as in other relevant enzymes and proteins (e.g., laforin, the β-subunit of AMPK, and others); (ii) information on the position in the polypeptide chain and the number of SBD copies and their CBM family affiliation (if appropriate); (iii) structure/function studies of SBDs with a special focus on solved tertiary structures, in particular, as complexes with α-glucan ligands; and (iv) the evolutionary relationships of SBDs in a tree common to all SBD CBM families (except for the extra long CBM74). Finally, some special cases and novel potential SBDs are also introduced.
Collapse
Affiliation(s)
- Štefan Janeček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, SK-84551 Bratislava, Slovakia; Department of Biology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, Nám. J. Herdu 2, SK-91701 Trnava, Slovakia.
| | - Filip Mareček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, SK-84551 Bratislava, Slovakia; Department of Biology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, Nám. J. Herdu 2, SK-91701 Trnava, Slovakia
| | - E Ann MacGregor
- 2 Nicklaus Green, Livingston EH54 8RX, West Lothian, United Kingdom
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
10
|
Schreier TB, Umhang M, Lee SK, Lue WL, Shen Z, Silver D, Graf A, Müller A, Eicke S, Stadler-Waibel M, Seung D, Bischof S, Briggs SP, Kötting O, Moorhead GBG, Chen J, Zeeman SC. LIKE SEX4 1 Acts as a β-Amylase-Binding Scaffold on Starch Granules during Starch Degradation. THE PLANT CELL 2019; 31:2169-2186. [PMID: 31266901 PMCID: PMC6751131 DOI: 10.1105/tpc.19.00089] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/17/2019] [Accepted: 06/26/2019] [Indexed: 05/23/2023]
Abstract
In Arabidopsis (Arabidopsis thaliana) leaves, starch is synthesized during the day and degraded at night to fuel growth and metabolism. Starch is degraded primarily by β-amylases, liberating maltose, but this activity is preceded by glucan phosphorylation and is accompanied by dephosphorylation. A glucan phosphatase family member, LIKE SEX4 1 (LSF1), binds starch and is required for normal starch degradation, but its exact role is unclear. Here, we show that LSF1 does not dephosphorylate glucans. The recombinant dual specificity phosphatase (DSP) domain of LSF1 had no detectable phosphatase activity. Furthermore, a variant of LSF1 mutated in the catalytic cysteine of the DSP domain complemented the starch-excess phenotype of the lsf1 mutant. By contrast, a variant of LSF1 with mutations in the carbohydrate binding module did not complement lsf1 Thus, glucan binding, but not phosphatase activity, is required for the function of LSF1 in starch degradation. LSF1 interacts with the β-amylases BAM1 and BAM3, and the BAM1-LSF1 complex shows amylolytic but not glucan phosphatase activity. Nighttime maltose levels are reduced in lsf1, and genetic analysis indicated that the starch-excess phenotype of lsf1 is dependent on bam1 and bam3 We propose that LSF1 binds β-amylases at the starch granule surface, thereby promoting starch degradation.
Collapse
Affiliation(s)
- Tina B Schreier
- Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom
| | - Martin Umhang
- Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Sang-Kyu Lee
- Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Wei-Ling Lue
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Zhouxin Shen
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093-0380
| | - Dylan Silver
- University of Calgary, Department of Biological Sciences, Calgary, Alberta T2N 1N4, Canada
| | - Alexander Graf
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Antonia Müller
- Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Simona Eicke
- Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | | | - David Seung
- Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Sylvain Bischof
- Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Steven P Briggs
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093-0380
| | - Oliver Kötting
- Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Greg B G Moorhead
- University of Calgary, Department of Biological Sciences, Calgary, Alberta T2N 1N4, Canada
| | - Jychian Chen
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Samuel C Zeeman
- Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| |
Collapse
|
11
|
Brewer MK, Gentry MS. Brain Glycogen Structure and Its Associated Proteins: Past, Present and Future. ADVANCES IN NEUROBIOLOGY 2019; 23:17-81. [PMID: 31667805 PMCID: PMC7239500 DOI: 10.1007/978-3-030-27480-1_2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This chapter reviews the history of glycogen-related research and discusses in detail the structure, regulation, chemical properties and subcellular distribution of glycogen and its associated proteins, with particular focus on these aspects in brain tissue.
Collapse
Affiliation(s)
- M Kathryn Brewer
- Department of Molecular and Cellular Biochemistry, Epilepsy and Brain Metabolism Center, Lafora Epilepsy Cure Initiative, and Center for Structural Biology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry, Epilepsy and Brain Metabolism Center, Lafora Epilepsy Cure Initiative, and Center for Structural Biology, University of Kentucky College of Medicine, Lexington, KY, USA.
| |
Collapse
|
12
|
Sharma S, Vander Kooi CD, Gentry MS, Vander Kooi CW. Oligomerization and carbohydrate binding of glucan phosphatases. Anal Biochem 2018; 563:51-55. [PMID: 30291838 DOI: 10.1016/j.ab.2018.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/20/2018] [Accepted: 10/02/2018] [Indexed: 11/24/2022]
Abstract
Glucan phosphatases are a unique subset of the phosphatase family that bind to and dephosphorylate carbohydrate substrates. Family members are found in diverse organisms ranging from single-cell red algae to humans. The nature of their functional oligomerization has been a source of considerable debate. We demonstrate that the human laforin protein behaves aberrantly when subjected to Size Exclusion Chromotography (SEC) analysis due to interaction with the carbohydrate-based matrix. This interaction complicates the analysis of laforin human disease mutations. Herein, we show that SEC with Multi-Angle static Light Scattering (SEC-MALS) provides a method to robustly define the oligomerization state of laforin and laforin variants. We further analyzed glucan phosphatases from photosynthetic organisms to define if this interaction was characteristic of all glucan phosphatases. Starch EXcess-four (SEX4) from green plants was found to lack significant interaction with the matrix and instead exists as a monomer. Conversely, Cm-laforin, from red algae, exists as a monomer in solution while still exhibiting significant interaction with the matrix. These data demonstrate a range of oligomerization behaviors of members of the glucan phosphatase family, and establish SEC-MALS as a robust methodology to quantify and compare oligomerization states between different proteins and protein variants in this family.
Collapse
Affiliation(s)
- Savita Sharma
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Carl D Vander Kooi
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Craig W Vander Kooi
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA; Center for Structural Biology, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
13
|
Kuchtová A, Gentry MS, Janeček Š. The unique evolution of the carbohydrate-binding module CBM20 in laforin. FEBS Lett 2018; 592:586-598. [PMID: 29389008 DOI: 10.1002/1873-3468.12994] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/20/2018] [Accepted: 01/23/2018] [Indexed: 12/30/2022]
Abstract
Laforin catalyses glycogen dephosphorylation. Mutations in its gene result in Lafora disease, a fatal progressive myoclonus epilepsy, the hallmark being water-insoluble, hyperphosphorylated carbohydrate inclusions called Lafora bodies. Human laforin consists of an N-terminal carbohydrate-binding module (CBM) from family CBM20 and a C-terminal dual-specificity phosphatase domain. Laforin is conserved in all vertebrates, some basal metazoans and a small group of protozoans. The present in silico study defines the evolutionary relationships among the CBM20s of laforin with an emphasis on newly identified laforin orthologues. The study reveals putative laforin orthologues in Trichinella, a parasitic nematode, and identifies two sequence inserts in the CBM20 of laforin from parasitic coccidia. Finally, we identify that the putative laforin orthologues from some protozoa and algae possess more than one CBM20.
Collapse
Affiliation(s)
- Andrea Kuchtová
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia.,Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Štefan Janeček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia.,Department of Biology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, Trnava, Slovakia
| |
Collapse
|
14
|
Carrillo JB, Gomez-Casati DF, Martín M, Busi MV. Identification and analysis of OsttaDSP, a phosphoglucan phosphatase from Ostreococcus tauri. PLoS One 2018; 13:e0191621. [PMID: 29360855 PMCID: PMC5779698 DOI: 10.1371/journal.pone.0191621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/08/2018] [Indexed: 11/18/2022] Open
Abstract
Ostreococcus tauri, the smallest free-living (non-symbiotic) eukaryote yet described, is a unicellular green alga of the Prasinophyceae family. It has a very simple cellular organization and presents a unique starch granule and chloroplast. However, its starch metabolism exhibits a complexity comparable to higher plants, with multiple enzyme forms for each metabolic reaction. Glucan phosphatases, a family of enzymes functionally conserved in animals and plants, are essential for normal starch or glycogen degradation in plants and mammals, respectively. Despite the importance of O. tauri microalgae in evolution, there is no information available concerning the enzymes involved in reversible phosphorylation of starch. Here, we report the molecular cloning and heterologous expression of the gene coding for a dual specific phosphatase from O. tauri (OsttaDSP), homologous to Arabidopsis thaliana LSF2. The recombinant enzyme was purified to electrophoretic homogeneity to characterize its oligomeric and kinetic properties accurately. OsttaDSP is a homodimer of 54.5 kDa that binds and dephosphorylates amylopectin. Also, we also determined that residue C162 is involved in catalysis and possibly also in structural stability of the enzyme. Our results could contribute to better understand the role of glucan phosphatases in the metabolism of starch in green algae.
Collapse
Affiliation(s)
- Julieta B. Carrillo
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Diego F. Gomez-Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Mariana Martín
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
- * E-mail: (MM); (MVB)
| | - Maria V. Busi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
- * E-mail: (MM); (MVB)
| |
Collapse
|
15
|
Janeček Š, Majzlová K, Svensson B, MacGregor EA. The starch-binding domain family CBM41-Anin silicoanalysis of evolutionary relationships. Proteins 2017; 85:1480-1492. [DOI: 10.1002/prot.25309] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/05/2017] [Accepted: 04/17/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Štefan Janeček
- Institute of Molecular Biology, Slovak Academy of Sciences; Bratislava Slovakia
- Department of Biology; Faculty of Natural Sciences, University of SS. Cyril and Methodius; Trnava Slovakia
| | - Katarína Majzlová
- Institute of Molecular Biology, Slovak Academy of Sciences; Bratislava Slovakia
| | - Birte Svensson
- Department of Biotechnology and Biomedicine; Technical University of Denmark; Kgs. Lyngby Denmark
| | | |
Collapse
|
16
|
Kuchtová A, Janeček Š. Domain evolution in enzymes of the neopullulanase subfamily. Microbiology (Reading) 2016; 162:2099-2115. [DOI: 10.1099/mic.0.000390] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Andrea Kuchtová
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, SK-84551 Bratislava, Slovakia
| | - Štefan Janeček
- Department of Biology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, SK-91701 Trnava, Slovakia
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, SK-84551 Bratislava, Slovakia
| |
Collapse
|
17
|
Gentry MS, Brewer MK, Vander Kooi CW. Structural biology of glucan phosphatases from humans to plants. Curr Opin Struct Biol 2016; 40:62-69. [PMID: 27498086 PMCID: PMC5161650 DOI: 10.1016/j.sbi.2016.07.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 07/11/2016] [Accepted: 07/21/2016] [Indexed: 02/07/2023]
Abstract
Glucan phosphatases are functionally conserved at the enzymatic level, dephosphorylating glycogen in animals and starch in plants. The human glucan phosphatase laforin is the founding member of the family and it is comprised of a carbohydrate binding module (CBM) domain followed by a dual specificity phosphatase (DSP) domain. Plants encode two glucan phosphatases: Starch EXcess4 (SEX4) and Like Sex Four2 (LSF2). SEX4 contains a DSP domain followed by a CBM domain, while LSF2 contains a DSP domain and lacks a CBM. This review demonstrates how glucan phosphatase function is conserved and highlights how each family member employs a unique mechanism to bind and dephosphorylate glucan substrates.
Collapse
Affiliation(s)
- Matthew S Gentry
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, KY 40536, United States.
| | - M Kathryn Brewer
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, KY 40536, United States
| | - Craig W Vander Kooi
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, KY 40536, United States.
| |
Collapse
|
18
|
Janeček Š, Gabriško M. Remarkable evolutionary relatedness among the enzymes and proteins from the α-amylase family. Cell Mol Life Sci 2016; 73:2707-25. [PMID: 27154042 PMCID: PMC11108405 DOI: 10.1007/s00018-016-2246-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/17/2022]
Abstract
The α-amylase is a ubiquitous starch hydrolase catalyzing the cleavage of the α-1,4-glucosidic bonds in an endo-fashion. Various α-amylases originating from different taxonomic sources may differ from each other significantly in their exact substrate preference and product profile. Moreover, it also seems to be clear that at least two different amino acid sequences utilizing two different catalytic machineries have evolved to execute the same α-amylolytic specificity. The two have been classified in the Cabohydrate-Active enZyme database, the CAZy, in the glycoside hydrolase (GH) families GH13 and GH57. While the former and the larger α-amylase family GH13 evidently forms the clan GH-H with the families GH70 and GH77, the latter and the smaller α-amylase family GH57 has only been predicted to maybe define a future clan with the family GH119. Sequences and several tens of enzyme specificities found throughout all three kingdoms in many taxa provide an interesting material for evolutionarily oriented studies that have demonstrated remarkable observations. This review emphasizes just the three of them: (1) a close relatedness between the plant and archaeal α-amylases from the family GH13; (2) a common ancestry in the family GH13 of animal heavy chains of heteromeric amino acid transporter rBAT and 4F2 with the microbial α-glucosidases; and (3) the unique sequence features in the primary structures of amylomaltases from the genus Borrelia from the family GH77. Although the three examples cannot represent an exhaustive list of exceptional topics worth to be interested in, they may demonstrate the importance these enzymes possess in the overall scientific context.
Collapse
Affiliation(s)
- Štefan Janeček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551, Bratislava, Slovakia.
- Department of Biology, Faculty of Natural Sciences, University of SS. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 91701, Trnava, Slovakia.
| | - Marek Gabriško
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551, Bratislava, Slovakia
| |
Collapse
|
19
|
Emanuelle S, Brewer MK, Meekins DA, Gentry MS. Unique carbohydrate binding platforms employed by the glucan phosphatases. Cell Mol Life Sci 2016; 73:2765-2778. [PMID: 27147465 PMCID: PMC4920694 DOI: 10.1007/s00018-016-2249-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/19/2022]
Abstract
Glucan phosphatases are a family of enzymes that are functionally conserved at the enzymatic level in animals and plants. These enzymes bind and dephosphorylate glycogen in animals and starch in plants. While the enzymatic function is conserved, the glucan phosphatases employ distinct mechanisms to bind and dephosphorylate glycogen or starch. The founding member of the family is a bimodular human protein called laforin that is comprised of a carbohydrate binding module 20 (CBM20) followed by a dual specificity phosphatase domain. Plants contain two glucan phosphatases: Starch EXcess4 (SEX4) and Like Sex Four2 (LSF2). SEX4 contains a chloroplast targeting peptide, dual specificity phosphatase (DSP) domain, a CBM45, and a carboxy-terminal motif. LSF2 is comprised of simply a chloroplast targeting peptide, DSP domain, and carboxy-terminal motif. SEX4 employs an integrated DSP-CBM glucan-binding platform to engage and dephosphorylate starch. LSF2 lacks a CBM and instead utilizes two surface binding sites to bind and dephosphorylate starch. Laforin is a dimeric protein in solution and it utilizes a tetramodular architecture and cooperativity to bind and dephosphorylate glycogen. This chapter describes the biological role of glucan phosphatases in glycogen and starch metabolism and compares and contrasts their ability to bind and dephosphorylate glucans.
Collapse
Affiliation(s)
- Shane Emanuelle
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, KY 40536 USA
| | - M. Kathryn Brewer
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, KY 40536 USA
| | - David A. Meekins
- Division of Biology, Kansas State University, Manhattan, KS 66506 USA
| | - Matthew S. Gentry
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, KY 40536 USA
| |
Collapse
|
20
|
Meekins DA, Vander Kooi CW, Gentry MS. Structural mechanisms of plant glucan phosphatases in starch metabolism. FEBS J 2016; 283:2427-47. [PMID: 26934589 DOI: 10.1111/febs.13703] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 01/31/2016] [Accepted: 02/29/2016] [Indexed: 01/12/2023]
Abstract
Glucan phosphatases are a recently discovered class of enzymes that dephosphorylate starch and glycogen, thereby regulating energy metabolism. Plant genomes encode two glucan phosphatases, called Starch EXcess4 (SEX4) and Like Sex Four2 (LSF2), that regulate starch metabolism by selectively dephosphorylating glucose moieties within starch glucan chains. Recently, the structures of both SEX4 and LSF2 were determined, with and without phosphoglucan products bound, revealing the mechanism for their unique activities. This review explores the structural and enzymatic features of the plant glucan phosphatases, and outlines how they are uniquely adapted to perform their cellular functions. We outline the physical mechanisms used by SEX4 and LSF2 to interact with starch glucans: SEX4 binds glucan chains via a continuous glucan-binding platform comprising its dual-specificity phosphatase domain and carbohydrate-binding module, while LSF2 utilizes surface binding sites. SEX4 and LSF2 both contain a unique network of aromatic residues in their catalytic dual-specificity phosphatase domains that serve as glucan engagement platforms and are unique to the glucan phosphatases. We also discuss the phosphoglucan substrate specificities inherent to SEX4 and LSF2, and outline structural features within the active site that govern glucan orientation. This review defines the structural mechanism of the plant glucan phosphatases with respect to phosphatases, starch metabolism and protein-glucan interaction, thereby providing a framework for their application in both agricultural and industrial settings.
Collapse
Affiliation(s)
- David A Meekins
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, KY, USA.,Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Craig W Vander Kooi
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, KY, USA
| | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
21
|
Wilkens C, Auger KD, Anderson NT, Meekins DA, Raththagala M, Abou Hachem M, Payne CM, Gentry MS, Svensson B. Plant α‐glucan phosphatases SEX4 and LSF2 display different affinity for amylopectin and amylose. FEBS Lett 2016; 590:118-28. [DOI: 10.1002/1873-3468.12027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 11/23/2015] [Accepted: 11/23/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Casper Wilkens
- Enzyme and Protein Chemistry Department of Systems Biology Technical University of Denmark Kongens Lyngby Denmark
| | - Kyle D. Auger
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology University of Kentucky Lexington KY USA
| | - Nolan T. Anderson
- Department of Chemical and Materials Engineering University of Kentucky Lexington KY USA
| | - David A. Meekins
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology University of Kentucky Lexington KY USA
| | - Madushi Raththagala
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology University of Kentucky Lexington KY USA
| | - Maher Abou Hachem
- Enzyme and Protein Chemistry Department of Systems Biology Technical University of Denmark Kongens Lyngby Denmark
| | - Christina M. Payne
- Department of Chemical and Materials Engineering University of Kentucky Lexington KY USA
| | - Matthew S. Gentry
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology University of Kentucky Lexington KY USA
| | - Birte Svensson
- Enzyme and Protein Chemistry Department of Systems Biology Technical University of Denmark Kongens Lyngby Denmark
| |
Collapse
|
22
|
Shankar A, Agrawal N, Sharma M, Pandey A, Pandey GK. Role of Protein Tyrosine Phosphatases in Plants. Curr Genomics 2015; 16:224-36. [PMID: 26962298 PMCID: PMC4765517 DOI: 10.2174/1389202916666150424234300] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/19/2015] [Accepted: 04/24/2015] [Indexed: 01/01/2023] Open
Abstract
Reversible protein phosphorylation is a crucial regulatory mechanism that controls many biological processes in eukaryotes. In plants, phosphorylation events primarily occur on serine (Ser) and threonine (Thr) residues, while in certain cases, it was also discovered on tyrosine (Tyr) residues. In contrary to plants, extensive reports on Tyr phosphorylation regulating a large numbers of biological processes exist in animals. Despite of such prodigious function in animals, Tyr phosphorylation is a least studied mechanism of protein regulation in plants. Recently, various chemical analytical procedures have strengthened the view that Tyr phosphorylation is equally prevalent in plants as in animals. However, regardless of Tyr phosphorylation events occuring in plants, no evidence could be found for the existence of gene encoding for Tyr phosphorylation i.e. the typical Tyr kinases. Various methodologies have suggested that plant responses to stress signals and developmental processes involved modifications in protein Tyr phosphorylation. Correspondingly, various reports have established the role of PTPs (Protein Tyrosine Phosphatases) in the dephosphorylation and inactivation of mitogen activated protein kinases (MAPKs) hence, in the regulation of MAPK signaling cascade. Besides this, many dual specificity protein phosphatases (DSPs) are also known to bind starch and regulate starch metabolism through reversible phosphorylation. Here, we are emphasizing the significant progress on protein Tyr phosphatases to understand the role of these enzymes in the regulation of post-translational modification in plant physiology and development.
Collapse
Affiliation(s)
| | | | | | | | - Girdhar K. Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi-110021, India
| |
Collapse
|
23
|
Meekins DA, Raththagala M, Auger KD, Turner BD, Santelia D, Kötting O, Gentry MS, Vander Kooi CW. Mechanistic Insights into Glucan Phosphatase Activity against Polyglucan Substrates. J Biol Chem 2015; 290:23361-70. [PMID: 26231210 DOI: 10.1074/jbc.m115.658203] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Indexed: 01/11/2023] Open
Abstract
Glucan phosphatases are central to the regulation of starch and glycogen metabolism. Plants contain two known glucan phosphatases, Starch EXcess4 (SEX4) and Like Sex Four2 (LSF2), which dephosphorylate starch. Starch is water-insoluble and reversible phosphorylation solubilizes its outer surface allowing processive degradation. Vertebrates contain a single known glucan phosphatase, laforin, that dephosphorylates glycogen. In the absence of laforin, water-soluble glycogen becomes insoluble, leading to the neurodegenerative disorder Lafora Disease. Because of their essential role in starch and glycogen metabolism glucan phosphatases are of significant interest, yet a comparative analysis of their activities against diverse glucan substrates has not been established. We identify active site residues required for specific glucan dephosphorylation, defining a glucan phosphatase signature motif (CζAGΨGR) in the active site loop. We further explore the basis for phosphate position-specific activity of these enzymes and determine that their diverse phosphate position-specific activity is governed by the phosphatase domain. In addition, we find key differences in glucan phosphatase activity toward soluble and insoluble polyglucan substrates, resulting from the participation of ancillary glucan-binding domains. Together, these data provide fundamental insights into the specific activity of glucan phosphatases against diverse polyglucan substrates.
Collapse
Affiliation(s)
- David A Meekins
- From the Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536
| | - Madushi Raththagala
- From the Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536
| | - Kyle D Auger
- From the Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536
| | - Benjamin D Turner
- From the Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536
| | - Diana Santelia
- Institute of Plant Biology, University of Zürich, CH-8008, Zürich, Switzerland, and
| | - Oliver Kötting
- Institute of Agricultural Sciences, Eidgenössische Technische Hochschule (ETH) Zürich, CH-8092, Zürich, Switzerland
| | - Matthew S Gentry
- From the Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536,
| | - Craig W Vander Kooi
- From the Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536,
| |
Collapse
|
24
|
|
25
|
Structural mechanism of laforin function in glycogen dephosphorylation and lafora disease. Mol Cell 2014; 57:261-72. [PMID: 25544560 DOI: 10.1016/j.molcel.2014.11.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/13/2014] [Accepted: 11/18/2014] [Indexed: 01/30/2023]
Abstract
Glycogen is the major mammalian glucose storage cache and is critical for energy homeostasis. Glycogen synthesis in neurons must be tightly controlled due to neuronal sensitivity to perturbations in glycogen metabolism. Lafora disease (LD) is a fatal, congenital, neurodegenerative epilepsy. Mutations in the gene encoding the glycogen phosphatase laforin result in hyperphosphorylated glycogen that forms water-insoluble inclusions called Lafora bodies (LBs). LBs induce neuronal apoptosis and are the causative agent of LD. The mechanism of glycogen dephosphorylation by laforin and dysfunction in LD is unknown. We report the crystal structure of laforin bound to phosphoglucan product, revealing its unique integrated tertiary and quaternary structure. Structure-guided mutagenesis combined with biophysical and biochemical analyses reveal the basis for normal function of laforin in glycogen metabolism. Analyses of LD patient mutations define the mechanism by which subsets of mutations disrupt laforin function. These data provide fundamental insights connecting glycogen metabolism to neurodegenerative disease.
Collapse
|
26
|
Ma J, Jiang QT, Wei L, Yang Q, Zhang XW, Peng YY, Chen GY, Wei YM, Liu C, Zheng YL. Conserved structure and varied expression reveal key roles of phosphoglucan phosphatase gene starch excess 4 in barley. PLANTA 2014; 240:1179-90. [PMID: 25100144 DOI: 10.1007/s00425-014-2140-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 07/30/2014] [Indexed: 05/14/2023]
Abstract
As one of the phosphoglucan phosphatases, starch excess 4 (SEX4) encoded by SEX4 gene has recently been intensively studied because of its vital role in the degradation of leaf starch. In this study, we isolated and chromosomally mapped barley SEX4, characterized its gene and protein structure, predicted the cis-elements of its promoter, and analysed its expression based on real-time quantitative PCR and publically available microarray data. The full length of barely SEX4 (HvSEX4) was 4,598 bp and it was mapped on the long arm of chromosome 4H (4HL). This gene contained 14 exons and 13 introns in all but two of the species analysed, Arabidopsis (13 exons and 12 introns) and Oryza brachyantha (12 exons and 11 introns). An exon-intron junction composed of intron 4 to intron 7 and exon 5 to exon 8 was highly conserved among the analysed species. SEX4 is characterized with conserved functional domains (dual specificity phosphatase domain and carbohydrate-binding module 48) and varied chloroplast transit peptide and C-terminal. Expression analyses indicated that: (1) SEX4 was mainly expressed in anthers of barley, young leaf and anthers of rice, and leaf of Arabidopsis; (2) it exhibited a diurnal pattern in barley, rice and Arabidopsis; (3) significant difference in the expression of SEX4 was not detected for either barley or rice under any of the investigated stresses; and (4) it was significantly down-regulated at middle stage and up-regulated at late stage under cold treatment, down-regulated at early stage under heat treatment, and up-regulated at late stage under salt treatment in Arabidopsis. The strong relationships detected in the current study between SEX4 and glucan, water dikinases (GWD) or phosphoglucan, water dikinases (PWD) were discussed. Collectively, our results provide insights into genetic manipulation of SEX4, especially in monocotyledon and uncovering the possible roles of SEX4 in plant development.
Collapse
Affiliation(s)
- Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Silver DM, Kötting O, Moorhead GBG. Phosphoglucan phosphatase function sheds light on starch degradation. TRENDS IN PLANT SCIENCE 2014; 19:471-8. [PMID: 24534096 DOI: 10.1016/j.tplants.2014.01.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/09/2014] [Accepted: 01/14/2014] [Indexed: 05/07/2023]
Abstract
Phosphoglucan phosphatases are novel enzymes that remove phosphates from complex carbohydrates. In plants, these proteins are vital components in the remobilization of leaf starch at night. Breakdown of starch is initiated through reversible glucan phosphorylation to disrupt the semi-crystalline starch structure at the granule surface. The phosphoglucan phosphatases starch excess 4 (SEX4) and like-SEX4 2 (LSF2) dephosphorylate glucans to provide access for amylases that release maltose and glucose from starch. Another phosphatase, LSF1, is a putative inactive scaffold protein that may act as regulator of starch degradative enzymes at the granule surface. Absence of these phosphatases disrupts starch breakdown, resulting in plants accumulating excess starch. Here, we describe recent advances in understanding the biochemical and structural properties of each of these starch phosphatases.
Collapse
Affiliation(s)
- Dylan M Silver
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Oliver Kötting
- Institute for Agricultural Sciences, ETH Zürich, Zürich, Switzerland
| | - Greg B G Moorhead
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
29
|
Phosphoglucan-bound structure of starch phosphatase Starch Excess4 reveals the mechanism for C6 specificity. Proc Natl Acad Sci U S A 2014; 111:7272-7. [PMID: 24799671 DOI: 10.1073/pnas.1400757111] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Plants use the insoluble polyglucan starch as their primary glucose storage molecule. Reversible phosphorylation, at the C6 and C3 positions of glucose moieties, is the only known natural modification of starch and is the key regulatory mechanism controlling its diurnal breakdown in plant leaves. The glucan phosphatase Starch Excess4 (SEX4) is a position-specific starch phosphatase that is essential for reversible starch phosphorylation; its absence leads to a dramatic accumulation of starch in Arabidopsis, but the basis for its function is unknown. Here we describe the crystal structure of SEX4 bound to maltoheptaose and phosphate to a resolution of 1.65 Å. SEX4 binds maltoheptaose via a continuous binding pocket and active site that spans both the carbohydrate-binding module (CBM) and the dual-specificity phosphatase (DSP) domain. This extended interface is composed of aromatic and hydrophilic residues that form a specific glucan-interacting platform. SEX4 contains a uniquely adapted DSP active site that accommodates a glucan polymer and is responsible for positioning maltoheptaose in a C6-specific orientation. We identified two DSP domain residues that are responsible for SEX4 site-specific activity and, using these insights, we engineered a SEX4 double mutant that completely reversed specificity from the C6 to the C3 position. Our data demonstrate that the two domains act in consort, with the CBM primarily responsible for engaging glucan chains, whereas the DSP integrates them in the catalytic site for position-specific dephosphorylation. These data provide important insights into the structural basis of glucan phosphatase site-specific activity and open new avenues for their biotechnological utilization.
Collapse
|
30
|
Brewer MK, Husodo S, Dukhande VV, Johnson MB, Gentry MS. Expression, purification and characterization of soluble red rooster laforin as a fusion protein in Escherichia coli. BMC BIOCHEMISTRY 2014; 15:8. [PMID: 24690255 PMCID: PMC4234410 DOI: 10.1186/1471-2091-15-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 03/27/2014] [Indexed: 01/20/2023]
Abstract
Background The gene that encodes laforin, a dual-specificity phosphatase with a carbohydrate-binding module, is mutated in Lafora disease (LD). LD is an autosomal recessive, fatal progressive myoclonus epilepsy characterized by the intracellular buildup of insoluble, hyperphosphorylated glycogen-like particles, called Lafora bodies. Laforin dephosphorylates glycogen and other glucans in vitro, but the structural basis of its activity remains unknown. Recombinant human laforin when expressed in and purified from E. coli is largely insoluble and prone to aggregation and precipitation. Identification of a laforin ortholog that is more soluble and stable in vitro would circumvent this issue. Results In this study, we cloned multiple laforin orthologs, established a purification scheme for each, and tested their solubility and stability. Gallus gallus (Gg) laforin is more stable in vitro than human laforin, Gg-laforin is largely monomeric, and it possesses carbohydrate binding and phosphatase activity similar to human laforin. Conclusions Gg-laforin is more soluble and stable than human laforin in vitro, and possesses similar activity as a glucan phosphatase. Therefore, it can be used to model human laforin in structure-function studies. We have established a protocol for purifying recombinant Gg-laforin in sufficient quantity for crystallographic and other biophysical analyses, in order to better understand the function of laforin and define the molecular mechanisms of Lafora disease.
Collapse
Affiliation(s)
| | | | | | | | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, College of Medicine, University of Kentucky, 741 S, Limestone, Lexington, Kentucky 40536-0509, USA.
| |
Collapse
|
31
|
Busi MV, Gomez-Casati DF, Martín M, Barchiesi J, Grisolía MJ, Hedín N, Carrillo JB. Starch Metabolism in Green Plants. POLYSACCHARIDES 2014. [DOI: 10.1007/978-3-319-03751-6_78-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
32
|
Sherwood AR, Johnson MB, Delgado-Escueta AV, Gentry MS. A bioassay for Lafora disease and laforin glucan phosphatase activity. Clin Biochem 2013; 46:1869-76. [PMID: 24012855 DOI: 10.1016/j.clinbiochem.2013.08.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/21/2013] [Accepted: 08/28/2013] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Lafora disease is a rare yet invariably fatal form of progressive neurodegenerative epilepsy resulting from mutations in the phosphatase laforin. Several therapeutic options for Lafora disease patients are currently being explored, and these therapies would benefit from a biochemical means of assessing functional laforin activity following treatment. To date, only clinical outcomes such as decreases in seizure frequency and severity have been used to indicate success of epilepsy treatment. However, these qualitative measures exhibit variability and must be assessed over long periods of time. In this work, we detail a simple and sensitive bioassay that can be used for the detection of functional endogenous laforin from human and mouse tissue. DESIGN AND METHODS We generated antibodies capable of detecting and immunoprecipitating endogenous laforin. Following laforin immunoprecipitation, laforin activity was assessed via phosphatase assays using para-nitrophenylphosphate (pNPP) and a malachite green-based assay specific for glucan phosphatase activity. RESULTS We found that antibody binding to laforin does not impede laforin activity. Furthermore, the malachite green-based glucan phosphatase assay used in conjunction with a rabbit polyclonal laforin antibody was capable of detecting endogenous laforin activity from human and mouse tissues. Importantly, this assay discriminated between laforin activity and other phosphatases. CONCLUSIONS The bioassay that we have developed utilizing laforin antibodies and an assay specific for glucan phosphatase activity could prove valuable in the rapid detection of functional laforin in patients to which novel Lafora disease therapies have been administered.
Collapse
Affiliation(s)
- Amanda R Sherwood
- Department of Molecular and Cellular Biochemistry, Center for Structural Biology, University of Kentucky, Lexington, KY 405036-0001, USA
| | | | | | | |
Collapse
|
33
|
Dimerization of the glucan phosphatase laforin requires the participation of cysteine 329. PLoS One 2013; 8:e69523. [PMID: 23922729 PMCID: PMC3724922 DOI: 10.1371/journal.pone.0069523] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 06/11/2013] [Indexed: 01/08/2023] Open
Abstract
Laforin, encoded by a gene that is mutated in Lafora Disease (LD, OMIM 254780), is a modular protein composed of a carbohydrate-binding module and a dual-specificity phosphatase domain. Laforin is the founding member of the glucan-phosphatase family and regulates the levels of phosphate present in glycogen. Multiple reports have described the capability of laforin to form dimers, although the function of these dimers and their relationship with LD remains unclear. Recent evidence suggests that laforin dimerization depends on redox conditions, suggesting that disulfide bonds are involved in laforin dimerization. Using site-directed mutagenesis we constructed laforin mutants in which individual cysteine residues were replaced by serine and then tested the ability of each protein to dimerize using recombinant protein as well as a mammalian cell culture assay. Laforin-Cys329Ser was the only Cys/Ser mutant unable to form dimers in both assays. We also generated a laforin truncation lacking the last three amino acids, laforin-Cys329X, and this truncation also failed to dimerize. Interestingly, laforin-Cys329Ser and laforin-Cys329X were able to bind glucans, and maintained wild type phosphatase activity against both exogenous and biologically relevant substrates. Furthermore, laforin-Cys329Ser was fully capable of participating in the ubiquitination process driven by a laforin-malin complex. These results suggest that dimerization is not required for laforin phosphatase activity, glucan binding, or for the formation of a functional laforin-malin complex. Cumulatively, these results suggest that cysteine 329 is specifically involved in the dimerization process of laforin. Therefore, the C329S mutant constitutes a valuable tool to analyze the physiological implications of laforin’s oligomerization.
Collapse
|
34
|
Ramon M, Ruelens P, Li Y, Sheen J, Geuten K, Rolland F. The hybrid four-CBS-domain KINβγ subunit functions as the canonical γ subunit of the plant energy sensor SnRK1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:11-25. [PMID: 23551663 PMCID: PMC6599549 DOI: 10.1111/tpj.12192] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 03/15/2013] [Accepted: 03/26/2013] [Indexed: 05/17/2023]
Abstract
The AMPK/SNF1/SnRK1 protein kinases are a family of ancient and highly conserved eukaryotic energy sensors that function as heterotrimeric complexes. These typically comprise catalytic α subunits and regulatory β and γ subunits, the latter function as the energy-sensing modules of animal AMPK through adenosine nucleotide binding. The ability to monitor accurately and adapt to changing environmental conditions and energy supply is essential for optimal plant growth and survival, but mechanistic insight in the plant SnRK1 function is still limited. In addition to a family of γ-like proteins, plants also encode a hybrid βγ protein that combines the Four-Cystathionine β-synthase (CBS)-domain (FCD) structure in γ subunits with a glycogen-binding domain (GBD), typically found in β subunits. We used integrated functional analyses by ectopic SnRK1 complex reconstitution, yeast mutant complementation, in-depth phylogenetic reconstruction, and a seedling starvation assay to show that only the hybrid KINβγ protein that recruited the GBD around the emergence of the green chloroplast-containing plants, acts as the canonical γ subunit required for heterotrimeric complex formation. Mutagenesis and truncation analysis further show that complex interaction in plant cells and γ subunit function in yeast depend on both a highly conserved FCD and a pre-CBS domain, but not the GBD. In addition to novel insight into canonical AMPK/SNF/SnRK1 γ subunit function, regulation and evolution, we provide a new classification of plant FCD genes as a convenient and reliable tool to predict regulatory partners for the SnRK1 energy sensor and novel FCD gene functions.
Collapse
Affiliation(s)
- Matthew Ramon
- Laboratory of Molecular Plant Biology, KU Leuven Department of Biology, B-3001, Leuven, Belgium
| | - Philip Ruelens
- Laboratory of Molecular Plant Biology, KU Leuven Department of Biology, B-3001, Leuven, Belgium
| | - Yi Li
- Laboratory of Molecular Plant Biology, KU Leuven Department of Biology, B-3001, Leuven, Belgium
| | - Jen Sheen
- Department of Molecular Biology and Center for Computational and Integrative, Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Koen Geuten
- Laboratory of Molecular Plant Biology, KU Leuven Department of Biology, B-3001, Leuven, Belgium
| | - Filip Rolland
- Laboratory of Molecular Plant Biology, KU Leuven Department of Biology, B-3001, Leuven, Belgium
| |
Collapse
|
35
|
Hofmann NR. A new mechanism for starch dephosphorylation: insight from the structure of like sex four2. THE PLANT CELL 2013; 25:1915. [PMID: 23898026 PMCID: PMC3723602 DOI: 10.1105/tpc.113.250614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
|
36
|
Meekins DA, Guo HF, Husodo S, Paasch BC, Bridges TM, Santelia D, Kötting O, Vander Kooi CW, Gentry MS. Structure of the Arabidopsis glucan phosphatase like sex four2 reveals a unique mechanism for starch dephosphorylation. THE PLANT CELL 2013; 25:2302-14. [PMID: 23832589 PMCID: PMC3723627 DOI: 10.1105/tpc.113.112706] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/31/2013] [Accepted: 06/12/2013] [Indexed: 05/20/2023]
Abstract
Starch is a water-insoluble, Glc-based biopolymer that is used for energy storage and is synthesized and degraded in a diurnal manner in plant leaves. Reversible phosphorylation is the only known natural starch modification and is required for starch degradation in planta. Critical to starch energy release is the activity of glucan phosphatases; however, the structural basis of dephosphorylation by glucan phosphatases is unknown. Here, we describe the structure of the Arabidopsis thaliana starch glucan phosphatase like sex four2 (LSF2) both with and without phospho-glucan product bound at 2.3Å and 1.65Å, respectively. LSF2 binds maltohexaose-phosphate using an aromatic channel within an extended phosphatase active site and positions maltohexaose in a C3-specific orientation, which we show is critical for the specific glucan phosphatase activity of LSF2 toward native Arabidopsis starch. However, unlike other starch binding enzymes, LSF2 does not possess a carbohydrate binding module domain. Instead we identify two additional glucan binding sites located within the core LSF2 phosphatase domain. This structure is the first of a glucan-bound glucan phosphatase and provides new insights into the molecular basis of this agriculturally and industrially relevant enzyme family as well as the unique mechanism of LSF2 catalysis, substrate specificity, and interaction with starch granules.
Collapse
Affiliation(s)
- David A. Meekins
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40535-0509
| | - Hou-Fu Guo
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40535-0509
| | - Satrio Husodo
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40535-0509
| | - Bradley C. Paasch
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40535-0509
| | - Travis M. Bridges
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40535-0509
| | - Diana Santelia
- Institute of Plant Biology, University of Zürich, 8092 Zurich, Switzerland
| | - Oliver Kötting
- Institute for Agricultural Sciences, ETH Zürich, 8092 Zurich, Switzerland
| | - Craig W. Vander Kooi
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40535-0509
| | - Matthew S. Gentry
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40535-0509
- Address correspondence to
| |
Collapse
|
37
|
Koveal D, Clarkson MW, Wood TK, Page R, Peti W. Ligand binding reduces conformational flexibility in the active site of tyrosine phosphatase related to biofilm formation A (TpbA) from Pseudomonasaeruginosa. J Mol Biol 2013; 425:2219-31. [PMID: 23524133 DOI: 10.1016/j.jmb.2013.03.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/06/2013] [Accepted: 03/13/2013] [Indexed: 10/27/2022]
Abstract
Tyrosine phosphatase related to biofilm formation A (TpbA) is a periplasmic dual-specificity phosphatase (DUSP) that controls biofilm formation in the pathogenic bacterium Pseudomonas aeruginosa. While DUSPs are known to regulate important cellular functions in both prokaryotes and eukaryotes, very few structures of bacterial DUSPs are available. Here, we present the solution structure of TpbA in the ligand-free open conformation, along with an analysis of the structural and dynamic changes that accompany ligand/phosphate binding. While TpbA adopts a typical DUSP fold, it also possesses distinct structural features that distinguish it from eukaryotic DUSPs. These include additional secondary structural elements, β0 and α6, and unique conformations of the variable insert, the α4-α5 loop and helix α5 that impart TpbA with a flat active-site surface. In the absence of ligand, the protein tyrosine phosphatase loop is disordered and the general acid loop adopts an open conformation, placing the catalytic aspartate, Asp105, more than 11Å away from the active site. Furthermore, the loops surrounding the active site experience motions on multiple timescales, consistent with a combination of conformational heterogeneity and fast (picosecond to nanosecond) timescale dynamics, which are significantly reduced upon ligand binding. Taken together, these data structurally distinguish TpbA and possibly other bacterial DUSPs from eukaryotic DUSPs and provide a rich picture of active-site dynamics in the ligand-free state that are lost upon ligand binding.
Collapse
Affiliation(s)
- Dorothy Koveal
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02903, USA
| | | | | | | | | |
Collapse
|
38
|
Silver DM, Silva LP, Issakidis-Bourguet E, Glaring MA, Schriemer DC, Moorhead GBG. Insight into the redox regulation of the phosphoglucan phosphatase SEX4 involved in starch degradation. FEBS J 2012; 280:538-48. [DOI: 10.1111/j.1742-4658.2012.08546.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
39
|
Jung TY, Li D, Park JT, Yoon SM, Tran PL, Oh BH, Janeček Š, Park SG, Woo EJ, Park KH. Association of novel domain in active site of archaic hyperthermophilic maltogenic amylase from Staphylothermus marinus. J Biol Chem 2012; 287:7979-89. [PMID: 22223643 DOI: 10.1074/jbc.m111.304774] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Staphylothermus marinus maltogenic amylase (SMMA) is a novel extreme thermophile maltogenic amylase with an optimal temperature of 100 °C, which hydrolyzes α-(1-4)-glycosyl linkages in cyclodextrins and in linear malto-oligosaccharides. This enzyme has a long N-terminal extension that is conserved among archaic hyperthermophilic amylases but is not found in other hydrolyzing enzymes from the glycoside hydrolase 13 family. The SMMA crystal structure revealed that the N-terminal extension forms an N' domain that is similar to carbohydrate-binding module 48, with the strand-loop-strand region forming a part of the substrate binding pocket with several aromatic residues, including Phe-95, Phe-96, and Tyr-99. A structural comparison with conventional cyclodextrin-hydrolyzing enzymes revealed a striking resemblance between the SMMA N' domain position and the dimeric N domain position in bacterial enzymes. This result suggests that extremophilic archaea that live at high temperatures may have adopted a novel domain arrangement that combines all of the substrate binding components within a monomeric subunit. The SMMA structure provides a molecular basis for the functional properties that are unique to hyperthermophile maltogenic amylases from archaea and that distinguish SMMA from moderate thermophilic or mesophilic bacterial enzymes.
Collapse
Affiliation(s)
- Tae-Yang Jung
- Department of Biological Sciences, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-701, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Gama Sosa MA, De Gasperi R, Elder GA. Modeling human neurodegenerative diseases in transgenic systems. Hum Genet 2011; 131:535-63. [PMID: 22167414 DOI: 10.1007/s00439-011-1119-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 11/23/2011] [Indexed: 02/07/2023]
Abstract
Transgenic systems are widely used to study the cellular and molecular basis of human neurodegenerative diseases. A wide variety of model organisms have been utilized, including bacteria (Escherichia coli), plants (Arabidopsis thaliana), nematodes (Caenorhabditis elegans), arthropods (Drosophila melanogaster), fish (zebrafish, Danio rerio), rodents (mouse, Mus musculus and rat, Rattus norvegicus) as well as non-human primates (rhesus monkey, Macaca mulatta). These transgenic systems have enormous value for understanding the pathophysiological basis of these disorders and have, in some cases, been instrumental in the development of therapeutic approaches to treat these conditions. In this review, we discuss the most commonly used model organisms and the methodologies available for the preparation of transgenic organisms. Moreover, we provide selected examples of the use of these technologies for the preparation of transgenic animal models of neurodegenerative diseases, including Alzheimer's disease (AD), frontotemporal lobar degeneration (FTLD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD) and Parkinson's disease (PD) and discuss the application of these technologies to AD as an example of how transgenic modeling has affected the study of human neurodegenerative diseases.
Collapse
Affiliation(s)
- Miguel A Gama Sosa
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY 10468, USA.
| | | | | |
Collapse
|
41
|
Santelia D, Kötting O, Seung D, Schubert M, Thalmann M, Bischof S, Meekins DA, Lutz A, Patron N, Gentry MS, Allain FHT, Zeeman SC. The phosphoglucan phosphatase like sex Four2 dephosphorylates starch at the C3-position in Arabidopsis. THE PLANT CELL 2011; 23:4096-111. [PMID: 22100529 PMCID: PMC3246334 DOI: 10.1105/tpc.111.092155] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 09/28/2011] [Accepted: 10/27/2011] [Indexed: 05/18/2023]
Abstract
Starch contains phosphate covalently bound to the C6-position (70 to 80% of total bound phosphate) and the C3-position (20 to 30%) of the glucosyl residues of the amylopectin fraction. In plants, the transient phosphorylation of starch renders the granule surface more accessible to glucan hydrolyzing enzymes and is required for proper starch degradation. Phosphate also confers desired properties to starch-derived pastes for industrial applications. In Arabidopsis thaliana, the removal of phosphate by the glucan phosphatase Starch Excess4 (SEX4) is essential for starch breakdown. We identified a homolog of SEX4, LSF2 (Like Sex Four2), as a novel enzyme involved in starch metabolism in Arabidopsis chloroplasts. Unlike SEX4, LSF2 does not have a carbohydrate binding module. Nevertheless, it binds to starch and specifically hydrolyzes phosphate from the C3-position. As a consequence, lsf2 mutant starch has elevated levels of C3-bound phosphate. SEX4 can release phosphate from both the C6- and the C3-positions, resulting in partial functional overlap with LSF2. However, compared with sex4 single mutants, the lsf2 sex4 double mutants have a more severe starch-excess phenotype, impaired growth, and a further change in the proportion of C3- and C6-bound phosphate. These findings significantly advance our understanding of the metabolism of phosphate in starch and provide innovative options for tailoring novel starches with improved functionality for industry.
Collapse
Affiliation(s)
- Diana Santelia
- Institute for Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Berrocal-Lobo M, Ibañez C, Acebo P, Ramos A, Perez-Solis E, Collada C, Casado R, Aragoncillo C, Allona I. Identification of a homolog of Arabidopsis DSP4 (SEX4) in chestnut: its induction and accumulation in stem amyloplasts during winter or in response to the cold. PLANT, CELL & ENVIRONMENT 2011; 34:1693-704. [PMID: 21631532 DOI: 10.1111/j.1365-3040.2011.02365.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Oligosaccharide synthesis is an important cryoprotection strategy used by woody plants during winter dormancy. At the onset of autumn, starch stored in the stem and buds is broken down in response to the shorter days and lower temperatures resulting in the buildup of oligosaccharides. Given that the enzyme DSP4 is necessary for diurnal starch degradation in Arabidopsis leaves, this study was designed to address the role of DSP4 in this seasonal process in Castanea sativa Mill. The expression pattern of the CsDSP4 gene in cells of the chestnut stem was found to parallel starch catabolism. In this organ, DSP4 protein levels started to rise at the start of autumn and elevated levels persisted until the onset of spring. In addition, exposure of chestnut plantlets to 4 °C induced the expression of the CsDSP4 gene. In dormant trees or cold-stressed plantlets, the CsDSP4 protein was immunolocalized both in the amyloplast stroma and nucleus of stem cells, whereas in the conditions of vegetative growth, immunofluorescence was only detected in the nucleus. The studies indicate a potential role for DSP4 in starch degradation and cold acclimation following low temperature exposure during activity-dormancy transition.
Collapse
Affiliation(s)
- Marta Berrocal-Lobo
- Centro de Biotecnología y Genómica de Plantas UPM/INIA, Departamento de Biotecnología, E. T. S. Ingenieros de Montes, Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, E-28223 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Janeček Š, Svensson B, MacGregor EA. Structural and evolutionary aspects of two families of non-catalytic domains present in starch and glycogen binding proteins from microbes, plants and animals. Enzyme Microb Technol 2011; 49:429-40. [DOI: 10.1016/j.enzmictec.2011.07.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 07/04/2011] [Accepted: 07/06/2011] [Indexed: 10/18/2022]
|
44
|
Dukhande VV, Rogers DM, Romá-Mateo C, Donderis J, Marina A, Taylor AO, Sanz P, Gentry MS. Laforin, a dual specificity phosphatase involved in Lafora disease, is present mainly as monomeric form with full phosphatase activity. PLoS One 2011; 6:e24040. [PMID: 21887368 PMCID: PMC3162602 DOI: 10.1371/journal.pone.0024040] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 08/02/2011] [Indexed: 11/18/2022] Open
Abstract
Lafora Disease (LD) is a fatal neurodegenerative epileptic disorder that presents as a neurological deterioration with the accumulation of insoluble, intracellular, hyperphosphorylated carbohydrates called Lafora bodies (LBs). LD is caused by mutations in either the gene encoding laforin or malin. Laforin contains a dual specificity phosphatase domain and a carbohydrate-binding module, and is a member of the recently described family of glucan phosphatases. In the current study, we investigated the functional and physiological relevance of laforin dimerization. We purified recombinant human laforin and subjected the monomer and dimer fractions to denaturing gel electrophoresis, mass spectrometry, phosphatase assays, protein-protein interaction assays, and glucan binding assays. Our results demonstrate that laforin prevalently exists as a monomer with a small dimer fraction both in vitro and in vivo. Of mechanistic importance, laforin monomer and dimer possess equal phosphatase activity, and they both associate with malin and bind glucans to a similar extent. However, we found differences between the two states' ability to interact simultaneously with malin and carbohydrates. Furthermore, we tested other members of the glucan phosphatase family. Cumulatively, our data suggest that laforin monomer is the dominant form of the protein and that it contains phosphatase activity.
Collapse
Affiliation(s)
- Vikas V. Dukhande
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Devin M. Rogers
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Carlos Romá-Mateo
- Instituto de Biomedicina de Valencia, CSIC and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Jordi Donderis
- Instituto de Biomedicina de Valencia, CSIC and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Alberto Marina
- Instituto de Biomedicina de Valencia, CSIC and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Adam O. Taylor
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Pascual Sanz
- Instituto de Biomedicina de Valencia, CSIC and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
- * E-mail: (PS); (MG)
| | - Matthew S. Gentry
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail: (PS); (MG)
| |
Collapse
|
45
|
Glaring MA, Baumann MJ, Abou Hachem M, Nakai H, Nakai N, Santelia D, Sigurskjold BW, Zeeman SC, Blennow A, Svensson B. Starch-binding domains in the CBM45 family--low-affinity domains from glucan, water dikinase and α-amylase involved in plastidial starch metabolism. FEBS J 2011; 278:1175-85. [PMID: 21294843 DOI: 10.1111/j.1742-4658.2011.08043.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Starch-binding domains are noncatalytic carbohydrate-binding modules that mediate binding to granular starch. The starch-binding domains from the carbohydrate-binding module family 45 (CBM45, http://www.cazy.org) are found as N-terminal tandem repeats in a small number of enzymes, primarily from photosynthesizing organisms. Isolated domains from representatives of each of the two classes of enzyme carrying CBM45-type domains, the Solanum tuberosumα-glucan, water dikinase and the Arabidopsis thaliana plastidial α-amylase 3, were expressed as recombinant proteins and characterized. Differential scanning calorimetry was used to verify the conformational integrity of an isolated CBM45 domain, revealing a surprisingly high thermal stability (T(m) of 84.8 °C). The functionality of CBM45 was demonstrated in planta by yellow/green fluorescent protein fusions and transient expression in tobacco leaves. Affinities for starch and soluble cyclodextrin starch mimics were measured by adsorption assays, surface plasmon resonance and isothermal titration calorimetry analyses. The data indicate that CBM45 binds with an affinity of about two orders of magnitude lower than the classical starch-binding domains from extracellular microbial amylolytic enzymes. This suggests that low-affinity starch-binding domains are a recurring feature in plastidial starch metabolism, and supports the hypothesis that reversible binding, effectuated through low-affinity interaction with starch granules, facilitates dynamic regulation of enzyme activities and, hence, of starch metabolism.
Collapse
Affiliation(s)
- Mikkel A Glaring
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Insights into the mechanism of polysaccharide dephosphorylation by a glucan phosphatase. Proc Natl Acad Sci U S A 2010; 107:15312-3. [PMID: 20724661 DOI: 10.1073/pnas.1010573107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|