1
|
Zhu C, Iwase M, Li Z, Wang F, Quinet A, Vindigni A, Shao J. Profilin-1 regulates DNA replication forks in a context-dependent fashion by interacting with SNF2H and BOD1L. Nat Commun 2022; 13:6531. [PMID: 36319634 PMCID: PMC9626489 DOI: 10.1038/s41467-022-34310-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 10/21/2022] [Indexed: 12/04/2022] Open
Abstract
DNA replication forks are tightly controlled by a large protein network consisting of well-known core regulators and many accessory factors which remain functionally undefined. In this study, we report previously unknown nuclear functions of the actin-binding factor profilin-1 (PFN1) in DNA replication, which occur in a context-dependent fashion and require its binding to poly-L-proline (PLP)-containing proteins instead of actin. In unperturbed cells, PFN1 increases DNA replication initiation and accelerates fork progression by binding and stimulating the PLP-containing nucleosome remodeler SNF2H. Under replication stress, PFN1/SNF2H increases fork stalling and functionally collaborates with fork reversal enzymes to enable the over-resection of unprotected forks. In addition, PFN1 binds and functionally attenuates the PLP-containing fork protector BODL1 to increase the resection of a subset of stressed forks. Accordingly, raising nuclear PFN1 level decreases genome stability and cell survival during replication stress. Thus, PFN1 is a multi-functional regulator of DNA replication with exploitable anticancer potential.
Collapse
Affiliation(s)
- Cuige Zhu
- Divison of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Mari Iwase
- Divison of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ziqian Li
- Divison of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Faliang Wang
- Divison of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Annabel Quinet
- Divison of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- UMR Genetic Stability Stem Cells and Radiation, University of Paris and University of Paris-Saclay, INSERM, iRCM/IBFJ CEA, Fontenay-aux-Roses, France
| | - Alessandro Vindigni
- Divison of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jieya Shao
- Divison of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
2
|
Niri F, Terpstra A, Lim KRQ, McDermid H. Chromatin remodeling factor CECR2 forms tissue-specific complexes with CCAR2 and LUZP1. Biochem Cell Biol 2021; 99:759-765. [PMID: 34197713 DOI: 10.1139/bcb-2021-0019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chromatin remodeling complexes alter chromatin structure to control access to DNA and therefore control cellular processes such as transcription, DNA replication, and DNA repair. CECR2 is a chromatin remodeling factor that plays an important role in neural tube closure and reproduction. Loss-of-function mutations in Cecr2 result primarily in the perinatal lethal neural tube defect exencephaly, with non-penetrant mice that survive to adulthood exhibiting subfertility. CECR2 forms a complex with ISWI proteins SMARCA5 and/or SMARCA1, but further information on the structure and function of the complex is not known. We therefore have identified candidate components of the CECR2-containing remodeling factor (CERF) complex in embryonic stem (ES) cells through mass spectroscopy. Both SMARCA5 and SMARCA1 were confirmed to be present in CERF complexes in ES cells and testis. However, novel proteins CCAR2 and LUZP1 are CERF components in ES cells but not testis. This tissue specificity in mice suggests these complexes may also have functional differences. Furthermore, LUZP1, loss of which is also associated with exencephaly, appears to play a role in stabilizing the CERF complex in ES cells. Keywords: CECR2, LUZP1, CCAR2, Chromatin remodeling factor, Neural tube defects.
Collapse
Affiliation(s)
- Farshad Niri
- University of Alberta, 3158, Edmonton, Alberta, Canada, T6G 2R3.,Edmonton, Alberta, Canada, T6E 1V3;
| | | | | | | |
Collapse
|
3
|
Deveshwar P, Sharma S, Prusty A, Sinha N, Zargar SM, Karwal D, Parashar V, Singh S, Tyagi AK. Analysis of rice nuclear-localized seed-expressed proteins and their database (RSNP-DB). Sci Rep 2020; 10:15116. [PMID: 32934280 PMCID: PMC7492263 DOI: 10.1038/s41598-020-70713-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/03/2020] [Indexed: 01/16/2023] Open
Abstract
Nuclear proteins are primarily regulatory factors governing gene expression. Multiple factors determine the localization of a protein in the nucleus. An upright identification of nuclear proteins is way far from accuracy. We have attempted to combine information from subcellular prediction tools, experimental evidence, and nuclear proteome data to identify a reliable list of seed-expressed nuclear proteins in rice. Depending upon the number of prediction tools calling a protein nuclear, we could sort 19,441 seed expressed proteins into five categories. Of which, half of the seed-expressed proteins were called nuclear by at least one out of four prediction tools. Further, gene ontology (GO) enrichment and transcription factor composition analysis showed that 6116 seed-expressed proteins could be called nuclear with a greater assertion. Localization evidence from experimental data was available for 1360 proteins. Their analysis showed that a 92.04% accuracy of a nuclear call is valid for proteins predicted nuclear by at least three tools. Distribution of nuclear localization signals and nuclear export signals showed that the majority of category four members were nuclear resident proteins, whereas other categories have a low fraction of nuclear resident proteins and significantly higher constitution of shuttling proteins. We compiled all the above information for the seed-expressed genes in the form of a searchable database named Rice Seed Nuclear Protein DataBase (RSNP-DB) https://pmb.du.ac.in/rsnpdb. This information will be useful for comprehending the role of seed nuclear proteome in rice.
Collapse
Affiliation(s)
- Priyanka Deveshwar
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, India
| | - Shivam Sharma
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, India
| | - Ankita Prusty
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, India
| | - Neha Sinha
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, India
| | - Sajad Majeed Zargar
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, India.,Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shalimar, Srinagar, Jammu & Kashmir, India
| | - Divya Karwal
- Institute of Informatics and Communications, University of Delhi, South Campus, New Delhi, India
| | - Vishal Parashar
- Institute of Informatics and Communications, University of Delhi, South Campus, New Delhi, India
| | - Sanjeev Singh
- Institute of Informatics and Communications, University of Delhi, South Campus, New Delhi, India
| | - Akhilesh Kumar Tyagi
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, India.
| |
Collapse
|
4
|
Soto-Cerda BJ, Cloutier S. Outlier Loci and Selection Signatures of Simple Sequence Repeats (SSRs) in Flax ( Linum usitatissimum L.). PLANT MOLECULAR BIOLOGY REPORTER 2013; 31:978-990. [PMID: 24415843 PMCID: PMC3881565 DOI: 10.1007/s11105-013-0568-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Genomic microsatellites (gSSRs) and expressed sequence tag-derived SSRs (EST-SSRs) have gained wide application for elucidating genetic diversity and population structure in plants. Both marker systems are assumed to be selectively neutral when making demographic inferences, but this assumption is rarely tested. In this study, three neutrality tests were assessed for identifying outlier loci among 150 SSRs (85 gSSRs and 65 EST-SSRs) that likely influence estimates of population structure in three differentiated flax sub-populations (FST = 0.19). Moreover, the utility of gSSRs, EST-SSRs, and the combined sets of SSRs was also evaluated in assessing genetic diversity and population structure in flax. Six outlier loci were identified by at least two neutrality tests showing footprints of balancing selection. After removing the outlier loci, the STRUCTURE analysis and the dendrogram topology of EST-SSRs improved. Conversely, gSSRs and combined SSRs results did not change significantly, possibly as a consequence of the higher number of neutral loci assessed. Taken together, the genetic structure analyses established the superiority of gSSRs to determine the genetic relationships among flax accessions, although the combined SSRs produced the best results. Genetic diversity parameters did not differ statistically (P > 0.05) between gSSRs and EST-SSRs, an observation partially explained by the similar number of repeat motifs. Our study provides new insights into the ability of gSSRs and EST-SSRs to measure genetic diversity and structure in flax and confirms the importance of testing for the occurrence of outlier loci to properly assess natural and breeding populations, particularly in studies considering only few loci.
Collapse
Affiliation(s)
- Braulio J. Soto-Cerda
- Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Rd, Winnipeg, MB Canada R3T 2M9
- Agriaquaculture Nutritional Genomic Center, Genomics and Bioinformatics Unit, CGNA, Km 10 Camino Cajón-Vilcún, INIA, Temuco, Chile
| | - Sylvie Cloutier
- Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Rd, Winnipeg, MB Canada R3T 2M9
| |
Collapse
|