1
|
Ozma MA, Moaddab SR, Hosseini H, Khodadadi E, Ghotaslou R, Asgharzadeh M, Abbasi A, Kamounah FS, Aghebati Maleki L, Ganbarov K, Samadi Kafil H. A critical review of novel antibiotic resistance prevention approaches with a focus on postbiotics. Crit Rev Food Sci Nutr 2024; 64:9637-9655. [PMID: 37203933 DOI: 10.1080/10408398.2023.2214818] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Antibiotic resistance is a significant public health issue, causing illnesses that were once easily treatable with antibiotics to develop into dangerous infections, leading to substantial disability and even death. To help fight this growing threat, scientists are developing new methods and techniques that play a crucial role in treating infections and preventing the inappropriate use of antibiotics. These effective therapeutic methods include phage therapies, quorum-sensing inhibitors, immunotherapeutics, predatory bacteria, antimicrobial adjuvants, haemofiltration, nanoantibiotics, microbiota transplantation, plant-derived antimicrobials, RNA therapy, vaccine development, and probiotics. As a result of the activity of probiotics in the intestine, compounds derived from the structure and metabolism of these bacteria are obtained, called postbiotics, which include multiple agents with various therapeutic applications, especially antimicrobial effects, by using different mechanisms. These compounds have been chosen in particular because they don't promote the spread of antibiotic resistance and don't include substances that can increase antibiotic resistance. This manuscript provides an overview of the novel approaches to preventing antibiotic resistance with emphasis on the various postbiotic metabolites derived from the gut beneficial microbes, their activities, recent related progressions in the food and medical fields, as well as concisely giving an insight into the new concept of postbiotics as "hyperpostbiotic".
Collapse
Affiliation(s)
- Mahdi Asghari Ozma
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyed Reza Moaddab
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsaneh Khodadadi
- Material Science and Engineering, Department of Chemistry and Biochemistry, University of Arkansas-Fayetteville, Fayetteville, AR, USA
| | - Reza Ghotaslou
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fadhil S Kamounah
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | | | - Khudaverdi Ganbarov
- Research Laboratory of Microbiology and Virology, Baku State University, Baku, Republic of Azerbaijan
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Foxall RL, Means J, Marcinkiewicz AL, Schillaci C, DeRosia-Banick K, Xu F, Hall JA, Jones SH, Cooper VS, Whistler CA. Inoviridae prophage and bacterial host dynamics during diversification, succession, and Atlantic invasion of Pacific-native Vibrio parahaemolyticus. mBio 2024; 15:e0285123. [PMID: 38112441 PMCID: PMC10790759 DOI: 10.1128/mbio.02851-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 12/21/2023] Open
Abstract
IMPORTANCE An understanding of the processes that contribute to the emergence of pathogens from environmental reservoirs is critical as changing climate precipitates pathogen evolution and population expansion. Phylogeographic analysis of Vibrio parahaemolyticus hosts combined with the analysis of their Inoviridae phage resolved ambiguities of diversification dynamics which preceded successful Atlantic invasion by the epidemiologically predominant ST36 lineage. It has been established experimentally that filamentous phage can limit host recombination, but here, we show that phage loss is linked to rapid bacterial host diversification during epidemic spread in natural ecosystems alluding to a potential role for ubiquitous inoviruses in the adaptability of pathogens. This work paves the way for functional analyses to define the contribution of inoviruses in the evolutionary dynamics of environmentally transmitted pathogens.
Collapse
Affiliation(s)
- Randi L. Foxall
- Northeast Center for Vibrio Disease and Ecology, University of New Hampshire, Durham, New Hampshire, USA
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | - Jillian Means
- Northeast Center for Vibrio Disease and Ecology, University of New Hampshire, Durham, New Hampshire, USA
- Graduate Program in Microbiology, University of New Hampshire, Durham, New Hampshire, USA
| | - Ashely L. Marcinkiewicz
- Northeast Center for Vibrio Disease and Ecology, University of New Hampshire, Durham, New Hampshire, USA
- Graduate Program in Microbiology, University of New Hampshire, Durham, New Hampshire, USA
| | - Christopher Schillaci
- Northeast Center for Vibrio Disease and Ecology, University of New Hampshire, Durham, New Hampshire, USA
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA
| | - Kristin DeRosia-Banick
- Northeast Center for Vibrio Disease and Ecology, University of New Hampshire, Durham, New Hampshire, USA
| | - Feng Xu
- Northeast Center for Vibrio Disease and Ecology, University of New Hampshire, Durham, New Hampshire, USA
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | - Jeffrey A. Hall
- Northeast Center for Vibrio Disease and Ecology, University of New Hampshire, Durham, New Hampshire, USA
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, New Hampshire, USA
| | - Stephen H. Jones
- Northeast Center for Vibrio Disease and Ecology, University of New Hampshire, Durham, New Hampshire, USA
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA
| | - Vaughn S. Cooper
- Northeast Center for Vibrio Disease and Ecology, University of New Hampshire, Durham, New Hampshire, USA
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Cheryl A. Whistler
- Northeast Center for Vibrio Disease and Ecology, University of New Hampshire, Durham, New Hampshire, USA
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| |
Collapse
|
3
|
Mobile Element Integration Reveals a Chromosome Dimer Resolution System in Legionellales. mBio 2022; 13:e0217122. [PMID: 36314797 PMCID: PMC9765430 DOI: 10.1128/mbio.02171-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In bacteria, the mechanisms used to repair DNA lesions during genome replication include homologous recombination between sister chromosomes. This can lead to the formation of chromosome dimers if an odd number of crossover events occurs. The dimers must be resolved before cell separation to ensure genomic stability and cell viability. Dimer resolution is achieved by the broadly conserved dif/Xer system, which catalyzes one additional crossover event immediately prior to cell separation. While dif/Xer systems have been characterized or predicted in the vast majority of proteobacteria, no homologs to dif or xer have been identified in the order Legionellales. Here, we report the discovery of a distinct single-recombinase dif/Xer system in the intracellular pathogen Legionella pneumophila. The dif site was uncovered by our analysis of Legionella mobile element-1 (LME-1), which harbors a dif site mimic and integrates into the L. pneumophila genome via site-specific recombination. We demonstrate that lpg1867 (here named xerL) encodes a tyrosine recombinase that is necessary and sufficient for catalyzing recombination at the dif site and that deletion of dif or xerL causes filamentation along with extracellular and intracellular growth defects. We show that the dif/XerL system is present throughout Legionellales and that Coxiella burnetii XerL and its cognate dif site can functionally substitute for the native system in L. pneumophila. Finally, we describe an unexpected link between C. burnetii dif/Xer and the maintenance of its virulence plasmids. IMPORTANCE The maintenance of circular chromosomes depends on the ability to resolve aberrant chromosome dimers after they form. In most proteobacteria, broadly conserved Xer recombinases catalyze single crossovers at short, species-specific dif sites located near the replication terminus. Chromosomal dimerization leads to the formation of two copies of dif within the same molecule, leading to rapid site-specific recombination and conversion back into chromosome monomers. The apparent absence of chromosome dimer resolution mechanisms in Legionellales has been a mystery to date. By studying a phage-like mobile genetic element, LME-1, we have identified a previously unknown single-recombinase dif/Xer system that is not only widespread across Legionellales but whose activity is linked to virulence in two important human pathogens.
Collapse
|
4
|
Tang X, Fan C, Zeng G, Zhong L, Li C, Ren X, Song B, Liu X. Phage-host interactions: The neglected part of biological wastewater treatment. WATER RESEARCH 2022; 226:119183. [PMID: 36244146 DOI: 10.1016/j.watres.2022.119183] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/29/2022] [Accepted: 09/29/2022] [Indexed: 05/25/2023]
Abstract
In wastewater treatment plants (WWTPs), the stable operation of biological wastewater treatment is strongly dependent on the stability of associated microbiota. Bacteriophages (phages), viruses that specifically infect bacteria and archaea, are highly abundant and diverse in WWTPs. Although phages do not have known metabolic functions for themselves, they can shape functional microbiota via various phage-host interactions to impact biological wastewater treatment. However, the developments of phage-host interaction in WWTPs and their impact on biological wastewater treatment are overlooked. Here, we review the current knowledge regarding the phage-host interactions in biological wastewater treatment, mainly focusing on the characteristics of different phage populations, the phage-driven changes in functional microbiota, and the potential driving factors of phage-host interactions. We also discuss the efforts required further to understand and manipulate the phage-host interactions in biological wastewater treatment. Overall, this review advocates more attention to the phage dynamics in WWTPs.
Collapse
Affiliation(s)
- Xiang Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Changzheng Fan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Linrui Zhong
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Chao Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China; Nova Skantek (Hunan) Environ Energy Co., Ltd., Changsha 410100, P.R. China
| | - Xiaoya Ren
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Xigui Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| |
Collapse
|
5
|
Greenrod STE, Stoycheva M, Elphinstone J, Friman VP. Global diversity and distribution of prophages are lineage-specific within the Ralstonia solanacearum species complex. BMC Genomics 2022; 23:689. [PMID: 36199029 PMCID: PMC9535894 DOI: 10.1186/s12864-022-08909-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Background Ralstonia solanacearum species complex (RSSC) strains are destructive plant pathogenic bacteria and the causative agents of bacterial wilt disease, infecting over 200 plant species worldwide. In addition to chromosomal genes, their virulence is mediated by mobile genetic elements including integrated DNA of bacteriophages, i.e., prophages, which may carry fitness-associated auxiliary genes or modulate host gene expression. Although experimental studies have characterised several prophages that shape RSSC virulence, the global diversity, distribution, and wider functional gene content of RSSC prophages are unknown. In this study, prophages were identified in a diverse collection of 192 RSSC draft genome assemblies originating from six continents. Results Prophages were identified bioinformatically and their diversity investigated using genetic distance measures, gene content, GC, and total length. Prophage distributions were characterised using metadata on RSSC strain geographic origin and lineage classification (phylotypes), and their functional gene content was assessed by identifying putative prophage-encoded auxiliary genes. In total, 313 intact prophages were identified, forming ten genetically distinct clusters. These included six prophage clusters with similarity to the Inoviridae, Myoviridae, and Siphoviridae phage families, and four uncharacterised clusters, possibly representing novel, previously undescribed phages. The prophages had broad geographical distributions, being present across multiple continents. However, they were generally host phylogenetic lineage-specific, and overall, prophage diversity was proportional to the genetic diversity of their hosts. The prophages contained many auxiliary genes involved in metabolism and virulence of both phage and bacteria. Conclusions Our results show that while RSSC prophages are highly diverse globally, they make lineage-specific contributions to the RSSC accessory genome, which could have resulted from shared coevolutionary history. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08909-7.
Collapse
Affiliation(s)
| | | | - John Elphinstone
- Fera Science Ltd, National Agri-Food Innovation Campus, Sand Hutton, York, UK
| | | |
Collapse
|
6
|
Miele S, Provan JI, Vergne J, Possoz C, Ochsenbein F, Barre FX. The Xer activation factor of TLCΦ expands the possibilities for Xer recombination. Nucleic Acids Res 2022; 50:6368-6383. [PMID: 35657090 PMCID: PMC9226527 DOI: 10.1093/nar/gkac429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 05/03/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
The chromosome dimer resolution machinery of bacteria is generally composed of two tyrosine recombinases, XerC and XerD. They resolve chromosome dimers by adding a crossover between sister copies of a specific site, dif. The reaction depends on a cell division protein, FtsK, which activates XerD by protein-protein interactions. The toxin-linked cryptic satellite phage (TLCΦ) of Vibrio cholerae, which participates in the emergence of cholera epidemic strains, carries a dif-like attachment site (attP). TLCΦ exploits the Xer machinery to integrate into the dif site of its host chromosomes. The TLCΦ integration reaction escapes the control of FtsK because TLCΦ encodes for its own XerD-activation factor, XafT. Additionally, TLCΦ attP is a poor substrate for XerD binding, in apparent contradiction with the high integration efficiency of the phage. Here, we present a sequencing-based methodology to analyse the integration and excision efficiency of thousands of synthetic mini-TLCΦ plasmids with differing attP sites in vivo. This methodology is applicable to the fine-grained analyses of DNA transactions on a wider scale. In addition, we compared the efficiency with which XafT and the XerD-activation domain of FtsK drive recombination reactions in vitro. Our results suggest that XafT not only activates XerD-catalysis but also helps form and/or stabilize synaptic complexes between imperfect Xer recombination sites.
Collapse
Affiliation(s)
- Solange Miele
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - James Iain Provan
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Justine Vergne
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Christophe Possoz
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Françoise Ochsenbein
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - François-Xavier Barre
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| |
Collapse
|
7
|
Makky S, Dawoud A, Safwat A, Abdelsattar AS, Rezk N, El-Shibiny A. The bacteriophage decides own tracks: When they are with or against the bacteria. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100050. [PMID: 34841341 PMCID: PMC8610337 DOI: 10.1016/j.crmicr.2021.100050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 11/18/2022] Open
Abstract
Bacteriophages, bacteria-infecting viruses, are considered by many researchers a promising solution for antimicrobial resistance. On the other hand, some phages have shown contribution to bacterial resistance phenomenon by transducing antimicrobial resistance genes to their bacterial hosts. Contradictory consequences of infections are correlated to different phage lifecycles. Out of four known lifecycles, lysogenic and lytic pathways have been riddles since the uncontrolled conversion between them could negatively affect the intended use of phages. However, phages still can be engineered for applications against bacterial and viral infections to ensure high efficiency. This review highlights two main aspects: (1) the different lifecycles as well as the different factors that affect lytic-lysogenic switch are discussed, including the intracellular and molecular factors control this decision. In addition, different models which describe the effect of phages on the ecosystem are compared, besides the approaches to study the switch. (2) An overview on the contribution of the phage in the evolution of the bacteria, instead of eating them, as a consequence of different mode of actions. As well, how phage display has helped in restricting phage cheating and how it could open new gates for immunization and pandemics control will be tacked.
Collapse
Affiliation(s)
- Salsabil Makky
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt
| | - Alyaa Dawoud
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt
- Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo, 16482, Egypt
| | - Anan Safwat
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt
| | - Abdallah S. Abdelsattar
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt
- Center for X-Ray and Determination of Structure of Matter, Zewail City of Science and Technology, October Gardens, 6th of October, Giza, 12578, Egypt
| | - Nouran Rezk
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt
| |
Collapse
|
8
|
Mäntynen S, Laanto E, Oksanen HM, Poranen MM, Díaz-Muñoz SL. Black box of phage-bacterium interactions: exploring alternative phage infection strategies. Open Biol 2021; 11:210188. [PMID: 34520699 PMCID: PMC8440029 DOI: 10.1098/rsob.210188] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The canonical lytic-lysogenic binary has been challenged in recent years, as more evidence has emerged on alternative bacteriophage infection strategies. These infection modes are little studied, and yet they appear to be more abundant and ubiquitous in nature than previously recognized, and can play a significant role in the ecology and evolution of their bacterial hosts. In this review, we discuss the extent, causes and consequences of alternative phage lifestyles, and clarify conceptual and terminological confusion to facilitate research progress. We propose distinct definitions for the terms 'pseudolysogeny' and 'productive or non-productive chronic infection', and distinguish them from the carrier state life cycle, which describes a population-level phenomenon. Our review also finds that phages may change their infection modes in response to environmental conditions or the physiological state of the host cell. We outline known molecular mechanisms underlying the alternative phage-host interactions, including specific genetic pathways and their considerable biotechnological potential. Moreover, we discuss potential implications of the alternative phage lifestyles for microbial biology and ecosystem functioning, as well as applied topics such as phage therapy.
Collapse
Affiliation(s)
- Sari Mäntynen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland,Department of Microbiology and Molecular Genetics, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Elina Laanto
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland,Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, Survontie 9, 40014 Jyväskylä, Finland
| | - Hanna M. Oksanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland
| | - Minna M. Poranen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland
| | - Samuel L. Díaz-Muñoz
- Department of Microbiology and Molecular Genetics, University of California, One Shields Avenue, Davis, CA 95616, USA,Genome Center, University of California, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
9
|
Balalovski P, Grainge I. Mobilization of p
dif
modules in
Acinetobacter
: A novel mechanism for antibiotic resistance gene shuffling? Mol Microbiol 2020; 114:699-709. [DOI: 10.1111/mmi.14563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 06/18/2020] [Accepted: 06/18/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Phillip Balalovski
- Biological Sciences School of Environmental and Life Sciences University of Newcastle Callaghan NSW Australia
| | - Ian Grainge
- Biological Sciences School of Environmental and Life Sciences University of Newcastle Callaghan NSW Australia
| |
Collapse
|
10
|
Mauritzen JJ, Castillo D, Tan D, Svenningsen SL, Middelboe M. Beyond Cholera: Characterization of zot-Encoding Filamentous Phages in the Marine Fish Pathogen Vibrio anguillarum. Viruses 2020; 12:v12070730. [PMID: 32640584 PMCID: PMC7412436 DOI: 10.3390/v12070730] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 12/22/2022] Open
Abstract
Zonula occludens toxin (Zot) is a conserved protein in filamentous vibriophages and has been reported as a putative toxin in Vibrio cholerae. Recently, widespread distribution of zot-encoding prophages was found among marine Vibrio species, including environmental isolates. However, little is known about the dynamics of these prophages beyond V. cholerae. In this study, we characterized and quantified the zot-encoding filamentous phage VAIϕ, spontaneously induced from the fish pathogen V. anguillarum. VAIϕ contained 6117 bp encoding 11 ORFs, including ORF8pVAI, exhibiting 27%–73% amino acid identity to Inovirus Zot-like proteins. A qPCR method revealed an average of four VAIϕ genomes per host genome during host exponential growth phase, and PCR demonstrated dissemination of induced VAIϕ to other V. anguillarum strains through re-integration in non-lysogens. VAIϕ integrated into both chromosomes of V. anguillarum by recombination, causing changes in a putative ORF in the phage genome. Phylogenetic analysis of the V. anguillarumInoviridae elements revealed mosaic genome structures related to mainly V. cholerae. Altogether, this study contributes to the understanding of Inovirus infection dynamics and mobilization of zot-like genes beyond human pathogenic vibrios, and discusses their potential role in the evolution of the fish pathogen V. anguillarum.
Collapse
Affiliation(s)
- Jesper Juel Mauritzen
- Marine Biological Section, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark; (J.J.M.); (D.C.)
| | - Daniel Castillo
- Marine Biological Section, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark; (J.J.M.); (D.C.)
| | - Demeng Tan
- Section for Biomolecular Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200 København N, Denmark; (D.T.); (S.L.S.)
| | - Sine Lo Svenningsen
- Section for Biomolecular Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200 København N, Denmark; (D.T.); (S.L.S.)
| | - Mathias Middelboe
- Marine Biological Section, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark; (J.J.M.); (D.C.)
- Correspondence: ; Tel.: +45-35-32-19-91
| |
Collapse
|
11
|
Yeh TY. XerD-dependent integration of a novel filamentous phage Cf2 into the Xanthomonas citri genome. Virology 2020; 548:160-167. [PMID: 32838937 DOI: 10.1016/j.virol.2020.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 11/27/2022]
Abstract
Filamentous Inoviridae phages integrate into the chromosome of plant pathogens Xanthomonas as prophages, but their diversity and integrative mechanism are not completely understood. A proviral Cf2 sequence of 6454 bases from Xanthomonas citri genome was revived as infectious virions able to lysogenize its host. Unlike other Xanthomonas phages (Cf1c, φLf, Xf109, XacF1), Cf2 phage has RstA/RstB replication protein, and its attP has XerD binding arm and dif central region but lacks XerC binding arm. XerC+/Xf109 and XerD+/Cf2 attPs are in the opposite direction in phage genomes. Moreover, XerCD binding and XerD catalysis for strand exchange are necessary for site-specific integration of XerD+/Cf2 and XerC+/Xf109 attPs. Taken together, these results provide a new insight into the mechanism of XerCD-mediated recombination at XerD + attP.
Collapse
Affiliation(s)
- Ting-Yu Yeh
- Agricultural Biotechnology Laboratory, Auxergen Inc., Columbus Center, Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, 21202, USA.
| |
Collapse
|
12
|
Kirchberger PC, Ochman H. Resurrection of a global, metagenomically defined gokushovirus. eLife 2020; 9:e51599. [PMID: 32101162 PMCID: PMC7062461 DOI: 10.7554/elife.51599] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/25/2020] [Indexed: 12/16/2022] Open
Abstract
Gokushoviruses are single-stranded, circular DNA bacteriophages found in metagenomic datasets from diverse ecosystems worldwide, including human gut microbiomes. Despite their ubiquity and abundance, little is known about their biology or host range: Isolates are exceedingly rare, known only from three obligate intracellular bacterial genera. By synthesizing circularized phage genomes from prophages embedded in diverse enteric bacteria, we produced gokushoviruses in an experimentally tractable model system, allowing us to investigate their features and biology. We demonstrate that virions can reliably infect and lysogenize hosts by hijacking a conserved chromosome-dimer resolution system. Sequence motifs required for lysogeny are detectable in other metagenomically defined gokushoviruses; however, we show that even partial motifs enable phages to persist cytoplasmically without leading to collapse of their host culture. This ability to employ multiple, disparate survival strategies is likely key to the long-term persistence and global distribution of Gokushovirinae.
Collapse
Affiliation(s)
- Paul C Kirchberger
- Department of Integrative Biology University of TexasAustinUnited States
| | - Howard Ochman
- Department of Integrative Biology University of TexasAustinUnited States
| |
Collapse
|
13
|
Das B, Verma J, Kumar P, Ghosh A, Ramamurthy T. Antibiotic resistance in Vibrio cholerae: Understanding the ecology of resistance genes and mechanisms. Vaccine 2020; 38 Suppl 1:A83-A92. [DOI: 10.1016/j.vaccine.2019.06.031] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/11/2019] [Accepted: 06/04/2019] [Indexed: 11/29/2022]
|
14
|
Midonet C, Miele S, Paly E, Guerois R, Barre FX. The TLCΦ satellite phage harbors a Xer recombination activation factor. Proc Natl Acad Sci U S A 2019; 116:18391-18396. [PMID: 31420511 PMCID: PMC6744903 DOI: 10.1073/pnas.1902905116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The circular chromosomes of bacteria can be concatenated into dimers by homologous recombination. Dimers are solved by the addition of a cross-over at a specific chromosomal site, dif, by 2 related tyrosine recombinases, XerC and XerD. Each enzyme catalyzes the exchange of a specific pair of strands. Some plasmids exploit the Xer machinery for concatemer resolution. Other mobile elements exploit it to integrate into the genome of their host. Chromosome dimer resolution is initiated by XerD. The reaction is under the control of a cell-division protein, FtsK, which activates XerD by a direct contact. Most mobile elements exploit FtsK-independent Xer recombination reactions initiated by XerC. The only notable exception is the toxin-linked cryptic satellite phage of Vibrio cholerae, TLCΦ, which integrates into and excises from the dif site of the primary chromosome of its host by a reaction initiated by XerD. However, the reaction remains independent of FtsK. Here, we show that TLCΦ carries a Xer recombination activation factor, XafT. We demonstrate in vitro that XafT activates XerD catalysis. Correspondingly, we found that XafT specifically interacts with XerD. We further show that integrative mobile elements exploiting Xer (IMEXs) encoding a XafT-like protein are widespread in gamma- and beta-proteobacteria, including human, animal, and plant pathogens.
Collapse
Affiliation(s)
- Caroline Midonet
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Université Paris Sud, 91198 Gif sur Yvette, France
| | - Solange Miele
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Université Paris Sud, 91198 Gif sur Yvette, France
| | - Evelyne Paly
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Université Paris Sud, 91198 Gif sur Yvette, France
| | - Raphaël Guerois
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Université Paris Sud, 91198 Gif sur Yvette, France
| | - François-Xavier Barre
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Université Paris Sud, 91198 Gif sur Yvette, France
| |
Collapse
|
15
|
Insights into TLCΦ lysogeny: A twist in the mechanism of IMEX integration. Proc Natl Acad Sci U S A 2019; 116:18159-18161. [PMID: 31439815 DOI: 10.1073/pnas.1912633116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
16
|
CTX phage of Vibrio cholerae: Genomics and applications. Vaccine 2019; 38 Suppl 1:A7-A12. [PMID: 31272871 DOI: 10.1016/j.vaccine.2019.06.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/22/2019] [Accepted: 06/11/2019] [Indexed: 01/03/2023]
Abstract
The bipartite genome of Vibrio cholerae is divided into two circular non-homologous chromosomes, which harbor several genetic elements like phages, plasmids, transposons, integrative conjugative elements, and pathogenic islands that encode functions responsible for disease development, antimicrobial resistance, and subsistence in hostile environments. These elements are highly heterogeneous, mobile in nature, and encode their own mobility functions or exploit host-encoded enzymes for intra- and inter-cellular movements. The key toxin of V. cholerae responsible for the life-threatening diarrheal disease cholera, the cholera toxin, is coded by part of the genome of a filamentous phage, CTXϕ. The replicative genome of CTXϕ is divided into two distinct modular structures and has adopted a unique strategy for its irreversible integration into the V. cholerae chromosomes. CTXϕ exploits two host-encoded tyrosine recombinases, XerC and XerD, for its integration in the highly conserved dimer resolution site (dif) of V. cholerae chromosomes. CTXϕ can replicate only in the limited number of Vibrio species. In contrast, the phage integration into the bacterial chromosome does not rely on its replication and could integrate to the dif site of large numbers of gram-negative bacteria. Recent pangenomic analysis revealed that like CTXϕ, the bacterial dif site is the integration spot for several other mobile genetic elements such as plasmids and genomic islands. In this review we discuss about current molecular insights into CTXϕ genomics and its replication and integration mechanisms into hosts. Particular emphasis has been given on the exploitation of CTXϕ genomics knowledge in developing genetic tools and designing environmentally safe recombinant live oral cholera vaccine strains.
Collapse
|
17
|
Hay ID, Lithgow T. Filamentous phages: masters of a microbial sharing economy. EMBO Rep 2019; 20:e47427. [PMID: 30952693 PMCID: PMC6549030 DOI: 10.15252/embr.201847427] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/30/2019] [Accepted: 03/19/2019] [Indexed: 12/11/2022] Open
Abstract
Bacteriophage ("bacteria eaters") or phage is the collective term for viruses that infect bacteria. While most phages are pathogens that kill their bacterial hosts, the filamentous phages of the sub-class Inoviridae live in cooperative relationships with their bacterial hosts, akin to the principal behaviours found in the modern-day sharing economy: peer-to-peer support, to offset any burden. Filamentous phages impose very little burden on bacteria and offset this by providing service to help build better biofilms, or provision of toxins and other factors that increase virulence, or modified behaviours that provide novel motile activity to their bacterial hosts. Past, present and future biotechnology applications have been built on this phage-host cooperativity, including DNA sequencing technology, tools for genetic engineering and molecular analysis of gene expression and protein production, and phage-display technologies for screening protein-ligand and protein-protein interactions. With the explosion of genome and metagenome sequencing surveys around the world, we are coming to realize that our knowledge of filamentous phage diversity remains at a tip-of-the-iceberg stage, promising that new biology and biotechnology are soon to come.
Collapse
Affiliation(s)
- Iain D Hay
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Trevor Lithgow
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Vic., Australia
| |
Collapse
|
18
|
Li Y, Liu X, Tang K, Wang P, Zeng Z, Guo Y, Wang X. Excisionase in Pf filamentous prophage controls lysis-lysogeny decision-making in Pseudomonas aeruginosa. Mol Microbiol 2018; 111:495-513. [PMID: 30475408 PMCID: PMC7379572 DOI: 10.1111/mmi.14170] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2018] [Indexed: 12/15/2022]
Abstract
Pf filamentous prophages are prevalent among clinical and environmental Pseudomonasaeruginosa isolates. Pf4 and Pf5 prophages are integrated into the host genomes of PAO1 and PA14, respectively, and play an important role in biofilm development. However, the genetic factors that directly control the lysis‐lysogeny switch in Pf prophages remain unclear. Here, we identified and characterized the excisionase genes in Pf4 and Pf5 (named xisF4 and xisF5, respectively). XisF4 and XisF5 represent two major subfamilies of functional excisionases and are commonly found in Pf prophages. While both of them can significantly promote prophage excision, only XisF5 is essential for Pf5 excision. XisF4 activates Pf4 phage replication by upregulating the phage initiator gene (PA0727). In addition, xisF4 and the neighboring phage repressor c gene pf4r are transcribed divergently and their 5′‐untranslated regions overlap. XisF4 and Pf4r not only auto‐activate their own expression but also repress each other. Furthermore, two H‐NS family proteins, MvaT and MvaU, coordinately repress Pf4 production by directly repressing xisF4. Collectively, we reveal that Pf prophage excisionases cooperate in controlling lysogeny and phage production.
Collapse
Affiliation(s)
- Yangmei Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxiao Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
| | - Pengxia Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
| | - Zhenshun Zeng
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
| | - Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
19
|
Ahmad AA, Kawabe M, Askora A, Kawasaki T, Fujie M, Yamada T. Dynamic integration and excision of filamentous phage XacF1 in Xanthomonas citri pv. citri, the causative agent of citrus canker disease. FEBS Open Bio 2017; 7:1715-1721. [PMID: 29123980 PMCID: PMC5666396 DOI: 10.1002/2211-5463.12312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/26/2017] [Accepted: 08/30/2017] [Indexed: 11/11/2022] Open
Abstract
Inovirus XacF1 (7325 nucleotides) is integrated into the genome of Xanthomonas citri pv. citri (Xcc) strains at the host dif site (attB) by the host XerC/D recombination system. The XacF1 attP sequence is located within the coding region of ORF12, a possible phage regulator. After integration, this open reading frame (ORF) is split into two pieces on the host genome. We examined dynamic integration/excision of XacF1 in Xcc strain MAFF 301080 and found that the integration started at 4 h postinfection (p.i.) and peaked at 12 h p.i. Thereafter, the ratio of integrated to free forms remained constant, suggesting equilibrium of integration and excision of XacF1 in the host genome. However, the integrated state became very unstable following a 5′‐deletion of ORF12 in XacF1, suggesting that ORF12 plays a key role in the integration cycle of XacF1 in Xcc strains.
Collapse
Affiliation(s)
- Abdelmonim A Ahmad
- Department of Molecular Biotechnology Graduate School of Advanced Science of Matter Hiroshima University Higashi-Hiroshima Japan.,Department of Plant Pathology Faculty of Agriculture Minia University El-minia Egypt.,Floral and Nursery Plants Research Unit US National Arboretum USDA/ARS, BARC-West Beltsville MD USA
| | - Makoto Kawabe
- Department of Molecular Biotechnology Graduate School of Advanced Science of Matter Hiroshima University Higashi-Hiroshima Japan
| | - Ahmed Askora
- Department of Molecular Biotechnology Graduate School of Advanced Science of Matter Hiroshima University Higashi-Hiroshima Japan.,Department of Microbiology Faculty of Science Zagazig University Zagazig Egypt
| | - Takeru Kawasaki
- Department of Molecular Biotechnology Graduate School of Advanced Science of Matter Hiroshima University Higashi-Hiroshima Japan
| | - Makoto Fujie
- Department of Molecular Biotechnology Graduate School of Advanced Science of Matter Hiroshima University Higashi-Hiroshima Japan
| | - Takashi Yamada
- Department of Molecular Biotechnology Graduate School of Advanced Science of Matter Hiroshima University Higashi-Hiroshima Japan
| |
Collapse
|
20
|
Galli E, Midonet C, Paly E, Barre FX. Fast growth conditions uncouple the final stages of chromosome segregation and cell division in Escherichia coli. PLoS Genet 2017; 13:e1006702. [PMID: 28358835 PMCID: PMC5391129 DOI: 10.1371/journal.pgen.1006702] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 04/13/2017] [Accepted: 03/16/2017] [Indexed: 11/21/2022] Open
Abstract
Homologous recombination between the circular chromosomes of bacteria can generate chromosome dimers. They are resolved by a recombination event at a specific site in the replication terminus of chromosomes, dif, by dedicated tyrosine recombinases. The reaction is under the control of a cell division protein, FtsK, which assembles into active DNA pumps at mid-cell during septum formation. Previous studies suggested that activation of Xer recombination at dif was restricted to chromosome dimers in Escherichia coli but not in Vibrio cholerae, suggesting that FtsK mainly acted on chromosome dimers in E. coli but frequently processed monomeric chromosomes in V. cholerae. However, recent microscopic studies suggested that E. coli FtsK served to release the MatP-mediated cohesion and/or cell division apparatus-interaction of sister copies of the dif region independently of chromosome dimer formation. Here, we show that these apparently paradoxical observations are not linked to any difference in the dimer resolution machineries of E. coli and V. cholerae but to differences in the timing of segregation of their chromosomes. V. cholerae harbours two circular chromosomes, chr1 and chr2. We found that whatever the growth conditions, sister copies of the V. cholerae chr1 dif region remain together at mid-cell until the onset of constriction, which permits their processing by FtsK and the activation of dif-recombination. Likewise, sister copies of the dif region of the E. coli chromosome only separate after the onset of constriction in slow growth conditions. However, under fast growth conditions the dif sites separate before constriction, which restricts XerCD-dif activity to resolving chromosome dimers.
Collapse
Affiliation(s)
- Elisa Galli
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris Sud, Gif sur Yvette, France
| | - Caroline Midonet
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris Sud, Gif sur Yvette, France
| | - Evelyne Paly
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris Sud, Gif sur Yvette, France
| | - François-Xavier Barre
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris Sud, Gif sur Yvette, France
| |
Collapse
|
21
|
Yeh TY. Complete nucleotide sequence of a new filamentous phage, Xf109, which integrates its genome into the chromosomal DNA of Xanthomonas oryzae. Arch Virol 2016; 162:567-572. [PMID: 27743252 DOI: 10.1007/s00705-016-3105-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 10/02/2016] [Indexed: 12/13/2022]
Abstract
Unlike Ff-like coliphages, certain filamentous Inoviridae phages integrate their genomes into the host chromosome and enter a prophage state in their infectious cycle. This lysogenic life cycle was first reported for Xanthomonas citri Cf phage. However, except for the X. citri phages Cf and XacF1, complete genome sequence information about lysogenic Xanthomonas phages is not available to date. A proviral sequence of Xf109 phage was identified in the genome of Xanthomonas oryzae, the rice bacterial blight pathogen, and revived as infectious virions to lysogenize its host de novo. The genome of Xf109 phage is 7190 nucleotides in size and contains 12 predicted open reading frames in an organization similar to that of the Cf phage genome. Seven of the Xf109 proteins show significant sequence similarity to Cf and XacF1 phage proteins, while its ORF4 shares 92 % identity with the major coat protein of X. phage oryzae Xf. Integration of Xf109 phage DNA into the host genome is site-specific, and the attP/attB sequence contains the dif core sequence 5'-TATACATTATGCGAA-3', which is identical to that of Cf, XacF1, and Xanthomonas campestris phage ϕLf. To my knowledge, this is the first complete genome sequence of a filamentous bacteriophage that infects X. oryzae.
Collapse
Affiliation(s)
- Ting Y Yeh
- Agricultural Biotechnology Laboratory, Plant Health Division, Auxergen Inc., 1100 Wicomico Street, Suite 700, Baltimore, MD, 21230, USA. .,Atom Health Corporation, Hsinchu Biomedical Science Park, 2F, No. 6-1, Section 2, Shengyi Road, Zhubei, Hsinchu, 30261, Taiwan.
| |
Collapse
|
22
|
|
23
|
|
24
|
FtsK translocation permits discrimination between an endogenous and an imported Xer/dif recombination complex. Proc Natl Acad Sci U S A 2016; 113:7882-7. [PMID: 27317749 DOI: 10.1073/pnas.1523178113] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In bacteria, the FtsK/Xer/dif (chromosome dimer resolution site) system is essential for faithful vertical genetic transmission, ensuring the resolution of chromosome dimers during their segregation to daughter cells. This system is also targeted by mobile genetic elements that integrate into chromosomal dif sites. A central question is thus how Xer/dif recombination is tuned to both act in chromosome segregation and stably maintain mobile elements. To explore this question, we focused on pathogenic Neisseria species harboring a genomic island in their dif sites. We show that the FtsK DNA translocase acts differentially at the recombination sites flanking the genomic island. It stops at one Xer/dif complex, activating recombination, but it does not stop on the other site, thus dismantling it. FtsK translocation thus permits cis discrimination between an endogenous and an imported Xer/dif recombination complex.
Collapse
|
25
|
Xer Site-Specific Recombination: Promoting Vertical and Horizontal Transmission of Genetic Information. Microbiol Spectr 2016; 2. [PMID: 26104463 DOI: 10.1128/microbiolspec.mdna3-0056-2014] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Two related tyrosine recombinases, XerC and XerD, are encoded in the genome of most bacteria where they serve to resolve dimers of circular chromosomes by the addition of a crossover at a specific site, dif. From a structural and biochemical point of view they belong to the Cre resolvase family of tyrosine recombinases. Correspondingly, they are exploited for the resolution of multimers of numerous plasmids. In addition, they are exploited by mobile DNA elements to integrate into the genome of their host. Exploitation of Xer is likely to be advantageous to mobile elements because the conservation of the Xer recombinases and of the sequence of their chromosomal target should permit a quite easy extension of their host range. However, it requires means to overcome the cellular mechanisms that normally restrict recombination to dif sites harbored by a chromosome dimer and, in the case of integrative mobile elements, to convert dedicated tyrosine resolvases into integrases.
Collapse
|
26
|
Abstract
One of the disadvantages of circular plasmids and chromosomes is their high sensitivity to rearrangements caused by homologous recombination. Odd numbers of crossing-over occurring during or after replication of a circular replicon result in the formation of a dimeric molecule in which the two copies of the replicon are fused. If they are not converted back to monomers, the dimers of replicons may fail to correctly segregate at the time of cell division. Resolution of multimeric forms of circular plasmids and chromosomes is mediated by site-specific recombination, and the enzymes that catalyze this type of reaction fall into two families of proteins: the serine and tyrosine recombinase families. Here we give an overview of the variety of site-specific resolution systems found on circular plasmids and chromosomes.
Collapse
|
27
|
Effect of LexA on Chromosomal Integration of CTXϕ in Vibrio cholerae. J Bacteriol 2015; 198:268-75. [PMID: 26503849 DOI: 10.1128/jb.00674-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/12/2015] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED The genesis of toxigenic Vibrio cholerae involves acquisition of CTXϕ, a single-stranded DNA (ssDNA) filamentous phage that encodes cholera toxin (CT). The phage exploits host-encoded tyrosine recombinases (XerC and XerD) for chromosomal integration and lysogenic conversion. The replicative genome of CTXϕ produces ssDNA by rolling-circle replication, which may be used either for virion production or for integration into host chromosome. Fine-tuning of different ssDNA binding protein (Ssb) levels in the host cell is crucial for cellular functioning and important for CTXϕ integration. In this study, we mutated the master regulator gene of SOS induction, lexA, of V. cholerae because of its known role in controlling levels of Ssb proteins in other bacteria. CTXϕ integration decreased in cells with a ΔlexA mutation and increased in cells with an SOS-noninducing mutation, lexA (Ind(-)). We also observed that overexpression of host-encoded Ssb (VC0397) decreased integration of CTXϕ. We propose that LexA helps CTXϕ integration, possibly by fine-tuning levels of host- and phage-encoded Ssbs. IMPORTANCE Cholera toxin is the principal virulence factor responsible for the acute diarrheal disease cholera. CT is encoded in the genome of a lysogenic filamentous phage, CTXϕ. Vibrio cholerae has a bipartite genome and harbors single or multiple copies of CTXϕ prophage in one or both chromosomes. Two host-encoded tyrosine recombinases (XerC and XerD) recognize the folded ssDNA genome of CTXϕ and catalyze its integration at the dimer resolution site of either one or both chromosomes. Fine-tuning of ssDNA binding proteins in host cells is crucial for CTXϕ integration. We engineered the V. cholerae genome and created several reporter strains carrying ΔlexA or lexA (Ind(-)) alleles. Using the reporter strains, the importance of LexA control of Ssb expression in the integration efficiency of CTXϕ was demonstrated.
Collapse
|
28
|
Martínez E, Paly E, Barre FX. CTXφ Replication Depends on the Histone-Like HU Protein and the UvrD Helicase. PLoS Genet 2015; 11:e1005256. [PMID: 25992634 PMCID: PMC4439123 DOI: 10.1371/journal.pgen.1005256] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/29/2015] [Indexed: 02/06/2023] Open
Abstract
The Vibrio cholerae bacterium is the agent of cholera. The capacity to produce the cholera toxin, which is responsible for the deadly diarrhea associated with cholera epidemics, is encoded in the genome of a filamentous phage, CTXφ. Rolling-circle replication (RCR) is central to the life cycle of CTXφ because amplification of the phage genome permits its efficient integration into the genome and its packaging into new viral particles. A single phage-encoded HUH endonuclease initiates RCR of the proto-typical filamentous phages of enterobacteriaceae by introducing a nick at a specific position of the double stranded DNA form of the phage genome. The rest of the process is driven by host factors that are either essential or crucial for the replication of the host genome, such as the Rep SF1 helicase. In contrast, we show here that the histone-like HU protein of V. cholerae is necessary for the introduction of a nick by the HUH endonuclease of CTXφ. We further show that CTXφ RCR depends on a SF1 helicase normally implicated in DNA repair, UvrD, rather than Rep. In addition to CTXφ, we show that VGJφ, a representative member of a second family of vibrio integrative filamentous phages, requires UvrD and HU for RCR while TLCφ, a satellite phage, depends on Rep and is independent from HU. One of the major strategies to prevent Cholera epidemics is the development of oral vaccines based on live attenuated Vibrio cholerae strains. The most promising vaccine strains have been obtained by deletion of the cholera toxin genes, which are harboured in the genome of an integrated phage, CTXϕ. However, they can re-acquire the cholera toxin genes when re-infected by CTXϕ or by hybrid phages between CTXϕ and other vibrio phages, which raised safety concerns about their use. Here, we developed a screening strategy to identify non-essential host factors implicated in CTXϕ replication. We show that the histone-like HU protein and the UvrD helicase are both absolutely required for its replication. We further show that they are essential for the replication of VGJϕ, a representative member of a family of phages that can form hybrids with CTXϕ. Accordingly, we demonstrate that the disruption of the two subunits of HU and/or of UvrD prevents infection of the V. cholerae by CTXϕ and VGJϕ. In addition, we show that it limits CTXϕ horizontal transmission. Taken together, these results indicate that HU- and/or UvrD- cells are promising candidates for the development of safer live attenuated cholera vaccine.
Collapse
Affiliation(s)
- Eriel Martínez
- Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Université Paris Sud, Gif sur Yvette, France
| | - Evelyne Paly
- Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Université Paris Sud, Gif sur Yvette, France
| | - François-Xavier Barre
- Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Université Paris Sud, Gif sur Yvette, France
- * E-mail:
| |
Collapse
|
29
|
Krupovic M, Forterre P. Single-stranded DNA viruses employ a variety of mechanisms for integration into host genomes. Ann N Y Acad Sci 2015; 1341:41-53. [PMID: 25675979 DOI: 10.1111/nyas.12675] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Single-stranded DNA (ssDNA) viruses are widespread in the environment and include economically, medically, and ecologically important pathogens. Recently, it has been discovered that ssDNA virus genomes are also prevalent in the chromosomes of their bacterial, archaeal, and eukaryotic hosts. Sequences originating from viruses of the families Parvoviridae, Circoviridae, and Geminiviridae are particularly widespread in the genomes of eukaryotes, where they are often fossilized as endogenous viral elements. ssDNA viruses have evolved diverse mechanisms to invade cellular genomes, and these principally vary between viruses infecting bacteria/archaea and eukaryotes. Filamentous bacteriophages (Inoviridae) use at least three major mechanisms of integration. Some of these phages encode integrases of serine or tyrosine recombinase superfamilies, while others utilize DDE transposases of the IS3, IS30, or IS110/IS492 families, whereas some inoviruses, and possibly certain members of the Microviridae, hijack the host XerCD recombination machinery. By contrast, eukaryotic viruses for integration rely on the endonuclease activity of their rolling-circle replication-initiation proteins, mimicking the mechanisms used by some bacterial transposons. Certain bacterial and eukaryotic ssDNA viruses have embraced a transposon-like means of propagation, with occasionally dramatic effects on host genome evolution. Here, we review the diversity of experimentally verified and hypothetical mechanisms of genome integration employed by ssDNA viruses, and consider the evolutionary implications of these processes, particularly in the emergence of novel virus groups.
Collapse
Affiliation(s)
- Mart Krupovic
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Paris, France
| | | |
Collapse
|
30
|
Mai-Prochnow A, Hui JGK, Kjelleberg S, Rakonjac J, McDougald D, Rice SA. 'Big things in small packages: the genetics of filamentous phage and effects on fitness of their host'. FEMS Microbiol Rev 2015; 39:465-87. [PMID: 25670735 DOI: 10.1093/femsre/fuu007] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 12/17/2014] [Indexed: 01/01/2023] Open
Abstract
This review synthesizes recent and past observations on filamentous phages and describes how these phages contribute to host phentoypes. For example, the CTXφ phage of Vibrio cholerae encodes the cholera toxin genes, responsible for causing the epidemic disease, cholera. The CTXφ phage can transduce non-toxigenic strains, converting them into toxigenic strains, contributing to the emergence of new pathogenic strains. Other effects of filamentous phage include horizontal gene transfer, biofilm development, motility, metal resistance and the formation of host morphotypic variants, important for the biofilm stress resistance. These phages infect a wide range of Gram-negative bacteria, including deep-sea, pressure-adapted bacteria. Many filamentous phages integrate into the host genome as prophage. In some cases, filamentous phages encode their own integrase genes to facilitate this process, while others rely on host-encoded genes. These differences are mediated by different sets of 'core' and 'accessory' genes, with the latter group accounting for some of the mechanisms that alter the host behaviours in unique ways. It is increasingly clear that despite their relatively small genomes, these phages exert signficant influence on their hosts and ultimately alter the fitness and other behaviours of their hosts.
Collapse
Affiliation(s)
- Anne Mai-Prochnow
- The Centre for Marine Bio-Innovation and the School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney NSW 2052, Australia
| | - Janice Gee Kay Hui
- The Centre for Marine Bio-Innovation and the School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney NSW 2052, Australia
| | - Staffan Kjelleberg
- The Centre for Marine Bio-Innovation and the School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney NSW 2052, Australia The Singapore Centre on Environmental Life Sciences Engineering and the School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Jasna Rakonjac
- Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Diane McDougald
- The Centre for Marine Bio-Innovation and the School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney NSW 2052, Australia The Singapore Centre on Environmental Life Sciences Engineering and the School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Scott A Rice
- The Centre for Marine Bio-Innovation and the School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney NSW 2052, Australia The Singapore Centre on Environmental Life Sciences Engineering and the School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| |
Collapse
|
31
|
Das B. Mechanistic insights into filamentous phage integration in Vibrio cholerae. Front Microbiol 2014; 5:650. [PMID: 25506341 PMCID: PMC4246890 DOI: 10.3389/fmicb.2014.00650] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 11/10/2014] [Indexed: 02/03/2023] Open
Abstract
Vibrio cholerae, the etiological agent of acute diarrhoeal disease cholera, harbors large numbers of lysogenic filamentous phages, contribute significantly to the host pathogenesis and provide fitness factors to the pathogen that help the bacterium to survive in natural environment. Most of the vibriophage genomes are not equipped with integrase and thus exploit two host-encoded tyrosine recombinases, XerC and XerD, for lysogenic conversion. Integration is site-specific and it occurs at dimer resolution site (dif) of either one or both chromosomes of V. cholerae. Each dif sequence contains two recombinase-binding sequences flanking a central region. The integration follows a sequential strand exchanges between dif and attP sites within a DNA-protein complex consisting of one pair of each recombinase and two DNA fragments. During entire process of recombination, both the DNA components and recombinases of the synaptic complex keep transiently interconnected. Within the context of synaptic complex, both of the actuated enzymes mediate cleavage of phosphodiester bonds. First cleavage generates a phosphotyrosyl-linked recombinase-DNA complex at the recombinase binding sequence and free 5′-hydroxyl end at the first base of the central region. Following the cleavage, the exposed bases with 5′-hydroxyl ends of the central region of dif and attP sites melt from their complementary strands and react with the recombinase-DNA phosphotyrosyl linkage of their recombining partner. Subsequent ligation between dif and attP strands requires complementary base pair interactions at the site of phosphodiester bond formation. Integration mechanism is mostly influenced by the compatibility of dif and attP sequences. dif sites are highly conserved across bacterial phyla. Different phage genomes have different attP sequences; therefore they rely on different mechanisms for integration. Here, I review our current understanding of integration mechanisms used by the vibriophages.
Collapse
Affiliation(s)
- Bhabatosh Das
- Centre for Human Microbial Ecology, Translational Health Science and Technology Institute Gurgaon, India
| |
Collapse
|
32
|
XerD-mediated FtsK-independent integration of TLCϕ into the Vibrio cholerae genome. Proc Natl Acad Sci U S A 2014; 111:16848-53. [PMID: 25385643 DOI: 10.1073/pnas.1404047111] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
As in most bacteria, topological problems arising from the circularity of the two Vibrio cholerae chromosomes, chrI and chrII, are resolved by the addition of a crossover at a specific site of each chromosome, dif, by two tyrosine recombinases, XerC and XerD. The reaction is under the control of a cell division protein, FtsK, which activates the formation of a Holliday Junction (HJ) intermediate by XerD catalysis that is resolved into product by XerC catalysis. Many plasmids and phages exploit Xer recombination for dimer resolution and for integration, respectively. In all cases so far described, they rely on an alternative recombination pathway in which XerC catalyzes the formation of a HJ independently of FtsK. This is notably the case for CTXϕ, the cholera toxin phage. Here, we show that in contrast, integration of TLCϕ, a toxin-linked cryptic satellite phage that is almost always found integrated at the chrI dif site before CTXϕ, depends on the formation of a HJ by XerD catalysis, which is then resolved by XerC catalysis. The reaction nevertheless escapes the normal cellular control exerted by FtsK on XerD. In addition, we show that the same reaction promotes the excision of TLCϕ, along with any CTXϕ copy present between dif and its left attachment site, providing a plausible mechanism for how chrI CTXϕ copies can be eliminated, as occurred in the second wave of the current cholera pandemic.
Collapse
|
33
|
Kim EJ, Lee D, Moon SH, Lee CH, Kim SJ, Lee JH, Kim JO, Song M, Das B, Clemens JD, Pape JW, Nair GB, Kim DW. Molecular insights into the evolutionary pathway of Vibrio cholerae O1 atypical El Tor variants. PLoS Pathog 2014; 10:e1004384. [PMID: 25233006 PMCID: PMC4169478 DOI: 10.1371/journal.ppat.1004384] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 08/05/2014] [Indexed: 01/22/2023] Open
Abstract
Pandemic V. cholerae strains in the O1 serogroup have 2 biotypes: classical and El Tor. The classical biotype strains of the sixth pandemic, which encode the classical type cholera toxin (CT), have been replaced by El Tor biotype strains of the seventh pandemic. The prototype El Tor strains that produce biotype-specific cholera toxin are being replaced by atypical El Tor variants that harbor classical cholera toxin. Atypical El Tor strains are categorized into 2 groups, Wave 2 and Wave 3 strains, based on genomic variations and the CTX phage that they harbor. Whole-genome analysis of V. cholerae strains in the seventh cholera pandemic has demonstrated gradual changes in the genome of prototype and atypical El Tor strains, indicating that atypical strains arose from the prototype strains by replacing the CTX phages. We examined the molecular mechanisms that effected the emergence of El Tor strains with classical cholera toxin-carrying phage. We isolated an intermediary V. cholerae strain that carried two different CTX phages that encode El Tor and classical cholera toxin, respectively. We show here that the intermediary strain can be converted into various Wave 2 strains and can act as the source of the novel mosaic CTX phages. These results imply that the Wave 2 and Wave 3 strains may have been generated from such intermediary strains in nature. Prototype El Tor strains can become Wave 3 strains by excision of CTX-1 and re-equipping with the new CTX phages. Our data suggest that inter-chromosomal recombination between 2 types of CTX phages is possible when a host bacterial cell is infected by multiple CTX phages. Our study also provides molecular insights into population changes in V. cholerae in the absence of significant changes to the genome but by replacement of the CTX prophage that they harbor.
Collapse
Affiliation(s)
- Eun Jin Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Korea
- Institute of Pharmacological Research, Hanyang University, Ansan, Korea
| | - Dokyung Lee
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Korea
- Institute of Pharmacological Research, Hanyang University, Ansan, Korea
| | - Se Hoon Moon
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Korea
- Institute of Pharmacological Research, Hanyang University, Ansan, Korea
| | - Chan Hee Lee
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Korea
- Institute of Pharmacological Research, Hanyang University, Ansan, Korea
| | - Sang Jun Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Korea
| | - Jae Hyun Lee
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Korea
| | - Jae Ouk Kim
- Laboratory Science Division, International Vaccine Institute, Seoul, Korea
| | - Manki Song
- Laboratory Science Division, International Vaccine Institute, Seoul, Korea
| | - Bhabatosh Das
- Translational Health Science and Technology Institute, Gurgaon, Haryana, India
| | - John D. Clemens
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
- UCLA Fielding School of Public Health, Los Angeles, California, United States of America
| | - Jean William Pape
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medical College, New York, New York, United States of America
- Les Centres GHESKIO, Port-au-Prince, Haïti
| | - G. Balakrish Nair
- Translational Health Science and Technology Institute, Gurgaon, Haryana, India
| | - Dong Wook Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Korea
- Institute of Pharmacological Research, Hanyang University, Ansan, Korea
- * E-mail:
| |
Collapse
|
34
|
A novel, broad-range, CTXΦ-derived stable integrative expression vector for functional studies. J Bacteriol 2014; 196:4071-80. [PMID: 25225263 DOI: 10.1128/jb.01966-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CTXΦ, a filamentous vibriophage encoding cholera toxin, uses a unique strategy for its lysogeny. The single-stranded phage genome forms intramolecular base-pairing interactions between two inversely oriented XerC and XerD binding sites (XBS) and generates a functional phage attachment site, attP(+), for integration. The attP(+) structure is recognized by the host-encoded tyrosine recombinases XerC and XerD (XerCD), which enables irreversible integration of CTXΦ into the chromosome dimer resolution site (dif) of Vibrio cholerae. The dif site and the XerCD recombinases are widely conserved in bacteria. We took advantage of these conserved attributes to develop a broad-host-range integrative expression vector that could irreversibly integrate into the host chromosome using XerCD recombinases without altering the function of any known open reading frame (ORF). In this study, we engineered two different arabinose-inducible expression vectors, pBD62 and pBD66, using XBS of CTXΦ. pBD62 replicates conditionally and integrates efficiently into the dif of the bacterial chromosome by site-specific recombination using host-encoded XerCD recombinases. The expression level of the gene of interest could be controlled through the PBAD promoter by modulating the functions of the vector-encoded transcriptional factor AraC. We validated the irreversible integration of pBD62 into a wide range of pathogenic and nonpathogenic bacteria, such as V. cholerae, Vibrio fluvialis, Vibrio parahaemolyticus, Escherichia coli, Salmonella enterica, and Klebsiella pneumoniae. Gene expression from the PBAD promoter of integrated vectors was confirmed in V. cholerae using the well-studied reporter genes mCherry, eGFP, and lacZ.
Collapse
|
35
|
Ahmad AA, Askora A, Kawasaki T, Fujie M, Yamada T. The filamentous phage XacF1 causes loss of virulence in Xanthomonas axonopodis pv. citri, the causative agent of citrus canker disease. Front Microbiol 2014; 5:321. [PMID: 25071734 PMCID: PMC4076744 DOI: 10.3389/fmicb.2014.00321] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/11/2014] [Indexed: 12/15/2022] Open
Abstract
In this study, filamentous phage XacF1, which can infect Xanthomonas axonopodis pv. citri (Xac) strains, was isolated and characterized. Electron microscopy showed that XacF1 is a member of the family Inoviridae and is about 600 nm long. The genome of XacF1 is 7325 nucleotides in size, containing 13 predicted open reading frames (ORFs), some of which showed significant homology to Ff-like phage proteins such as ORF1 (pII), ORF2 (pV), ORF6 (pIII), and ORF8 (pVI). XacF1 showed a relatively wide host range, infecting seven out of 11 strains tested in this study. Frequently, XacF1 was found to be integrated into the genome of Xac strains. This integration occurred at the host dif site (attB) and was mediated by the host XerC/D recombination system. The attP sequence was identical to that of Xanthomonas phage Cf1c. Interestingly, infection by XacF1 phage caused several physiological changes to the bacterial host cells, including lower levels of extracellular polysaccharide production, reduced motility, slower growth rate, and a dramatic reduction in virulence. In particular, the reduction in virulence suggested possible utilization of XacF1 as a biological control agent against citrus canker disease.
Collapse
Affiliation(s)
- Abdelmonim Ali Ahmad
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima UniversityHigashi-Hiroshima, Japan
| | - Ahmed Askora
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima UniversityHigashi-Hiroshima, Japan
- Department of Microbiology, Faculty of Science, Zagazig UniversityZagazig, Sharkia, Egypt
| | - Takeru Kawasaki
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima UniversityHigashi-Hiroshima, Japan
| | - Makoto Fujie
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima UniversityHigashi-Hiroshima, Japan
| | - Takashi Yamada
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima UniversityHigashi-Hiroshima, Japan
| |
Collapse
|
36
|
Das B, Nair GB, Bhadra RK. Acquisition and dissemination mechanisms of CTXΦ in Vibrio cholerae: New paradigm for dif residents. World J Med Genet 2014; 4:27-33. [DOI: 10.5496/wjmg.v4.i2.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 04/10/2014] [Accepted: 05/14/2014] [Indexed: 02/06/2023] Open
Abstract
Vibrio cholerae (V. cholerae) genome is equipped with a number of integrative mobile genetic element (IMGE) like prophages, plasmids, transposons or genomic islands, which provides fitness factors that help the pathogen to survive in changing environmental conditions. Metagenomic analyses of clinical and environmental V. cholerae isolates revealed that dimer resolution sites (dif) harbor several structurally and functionally distinct IMGEs. All IMGEs present in the dif region exploit chromosomally encoded tyrosine recombinases, XerC and XerD, for integration. Integration takes place due to site-specific recombination between two specific DNA sequences; chromosomal sequence is called attB and IMGEs sequence is called attP. Different IMGEs present in the attP region have different attP structure but all of them are recognized by XerC and XerD enzymes and mediate either reversible or irreversible integration. Cholera toxin phage (CTXΦ), a lysogenic filamentous phage carrying the cholera toxin genes ctxAB, deserves special attention because it provides V. cholerae the crucial toxin and is always present in the dif region of all epidemic cholera isolates. Therefore, understanding the mechanisms of integration and dissemination of CTXΦ, genetic and ecological factors which support CTXΦ integration as well as production of virion from chromosomally integrated phage genome and interactions of CTXΦ with other genetic elements present in the genomes of V. cholerae is important for learning more about the biology of cholera pathogen.
Collapse
|
37
|
Falero A, Marrero K, Trigueros S, Fando R. Characterization of the RstB2 protein, the DNA-binding protein of CTXϕ phage from Vibrio cholerae. Virus Genes 2014; 48:518-27. [PMID: 24643345 DOI: 10.1007/s11262-014-1053-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 02/28/2014] [Indexed: 11/25/2022]
Abstract
The low abundant protein RstB2, encoded in the RS2 region of CTXϕ, is essential for prophage formation. However, the only biochemical activity so far described is the single/double-stranded DNA-binding capacity of that protein. In this paper, a recombinant RstB2 (rRstB2) protein was overexpressed in E. coli with a yield of 58.4 mg l(-1) in shaken cultures, LB broth. The protein, purified to homogeneity, showed an identity with rRstB2 by peptide mass fingerprinting. The apparent molecular weight of the RstB2 native protein suggests that occurs mostly as a monomer in solution. The monomers were able of reacting immediately upon exposure to DNA molecules. After a year of storage at -20 °C, the protein remains biologically active. Bioinformatics analysis of the amino acid sequence of RstB2 predicts the C-end of this protein to be disordered and highly flexible, like in many other single-stranded DNA-binding proteins. When compared with the gVp of M13, conserved amino acids are found at structurally or functionally important relative positions. These results pave the way for additional studies of structure and molecular function of RstB2 for the biology of CTXϕ.
Collapse
Affiliation(s)
- Alina Falero
- National Center for Scientific Research, Ave 25 and 158, Cubanacán, Playa, PO Box 6214, Havana, Cuba,
| | | | | | | |
Collapse
|
38
|
Banerjee R, Das B, Balakrish Nair G, Basak S. Dynamics in genome evolution of Vibrio cholerae. INFECTION GENETICS AND EVOLUTION 2014; 23:32-41. [PMID: 24462909 DOI: 10.1016/j.meegid.2014.01.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 01/09/2014] [Accepted: 01/11/2014] [Indexed: 12/31/2022]
Abstract
Vibrio cholerae, the etiological agent of the acute secretary diarrheal disease cholera, is still a major public health concern in developing countries. In former centuries cholera was a permanent threat even to the highly developed populations of Europe, North America, and the northern part of Asia. Extensive studies on the cholera bug over more than a century have made significant advances in our understanding of the disease and ways of treating patients. V. cholerae has more than 200 serogroups, but only few serogroups have caused disease on a worldwide scale. Until the present, the evolutionary relationship of these pandemic causing serogroups was not clear. In the last decades, we have witnessed a shift involving genetically and phenotypically varied pandemic clones of V. cholerae in Asia and Africa. The exponential knowledge on the genome of several representatives V. cholerae strains has been used to identify and analyze the key determinants for rapid evolution of cholera pathogen. Recent comparative genomic studies have identified the presence of various integrative mobile genetic elements (IMGEs) in V. cholerae genome, which can be used as a marker of differentiation of all seventh pandemic clones with very similar core genome. This review attempts to bring together some of the important researches in recent times that have contributed towards understanding the genetics, epidemiology and evolution of toxigenic V. cholerae strains.
Collapse
Affiliation(s)
- Rachana Banerjee
- Department of Bio-Physics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700009, India
| | - Bhabatosh Das
- Centre for Human Microbial Ecology, Translational Health Science and Technology Institute, 496, Phase III, Udyog Vihar, Gurgaon 122016, Haryana, India
| | - G Balakrish Nair
- Centre for Human Microbial Ecology, Translational Health Science and Technology Institute, 496, Phase III, Udyog Vihar, Gurgaon 122016, Haryana, India
| | - Surajit Basak
- Department of Molecular Biology & Bioinformatics, Tripura University, Suryamaninagar 799 022, Tripura, India; Bioinformatics Centre, Tripura University, Suryamaninagar 799 022, Tripura, India.
| |
Collapse
|
39
|
Ma CH, Liu YT, Savva CG, Rowley PA, Cannon B, Fan HF, Russell R, Holzenburg A, Jayaram M. Organization of DNA partners and strand exchange mechanisms during Flp site-specific recombination analyzed by difference topology, single molecule FRET and single molecule TPM. J Mol Biol 2013; 426:793-815. [PMID: 24286749 DOI: 10.1016/j.jmb.2013.11.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/18/2013] [Accepted: 11/18/2013] [Indexed: 10/26/2022]
Abstract
Flp site-specific recombination between two target sites (FRTs) harboring non-homology within the strand exchange region does not yield stable recombinant products. In negatively supercoiled plasmids containing head-to-tail sites, the reaction produces a series of knots with odd-numbered crossings. When the sites are in head-to-head orientation, the knot products contain even-numbered crossings. Both types of knots retain parental DNA configuration. By carrying out Flp recombination after first assembling the topologically well defined Tn3 resolvase synapse, it is possible to determine whether these knots arise by a processive or a dissociative mechanism. The nearly exclusive products from head-to-head and head-to-tail oriented "non-homologous" FRT partners are a 4-noded knot and a 5-noded knot, respectively. The corresponding products from a pair of native (homologous) FRT sites are a 3-noded knot and a 4-noded catenane, respectively. These results are consistent with non-homology-induced two rounds of dissociative recombination by Flp, the first to generate reciprocal recombinants containing non-complementary base pairs and the second to produce parental molecules with restored base pairing. Single molecule fluorescence resonance energy transfer (smFRET) analysis of geometrically restricted FRTs, together with single molecule tethered particle motion (smTPM) assays of unconstrained FRTs, suggests that the sites are preferentially synapsed in an anti-parallel fashion. This selectivity in synapse geometry occurs prior to the chemical steps of recombination, signifying early commitment to a productive reaction path. The cumulative topological, smFRET and smTPM results have implications for the relative orientation of DNA partners and the directionality of strand exchange during recombination mediated by tyrosine site-specific recombinases.
Collapse
Affiliation(s)
- Chien-Hui Ma
- Section of Molecular Genetics and Microbiology, Institute of Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Yen-Ting Liu
- Section of Molecular Genetics and Microbiology, Institute of Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Christos G Savva
- Microscopy and Imaging Center, Department of Biology and Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2257, USA
| | - Paul A Rowley
- Section of Molecular Genetics and Microbiology, Institute of Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Brian Cannon
- Department of Chemistry and Biochemistry, Institute of Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Hsiu-Fang Fan
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | - Rick Russell
- Department of Chemistry and Biochemistry, Institute of Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Andreas Holzenburg
- Microscopy and Imaging Center, Department of Biology and Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2257, USA
| | - Makkuni Jayaram
- Section of Molecular Genetics and Microbiology, Institute of Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
40
|
Das B, Martínez E, Midonet C, Barre FX. Integrative mobile elements exploiting Xer recombination. Trends Microbiol 2012; 21:23-30. [PMID: 23127381 DOI: 10.1016/j.tim.2012.10.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 10/04/2012] [Accepted: 10/05/2012] [Indexed: 12/30/2022]
Abstract
Integrative mobile genetic elements directly participate in the rapid response of bacteria to environmental challenges. They generally encode their own dedicated recombination machineries. CTXφ, a filamentous bacteriophage that harbors the genes encoding cholera toxin in Vibrio cholerae provided the first notable exception to this rule: it hijacks XerC and XerD, two chromosome-encoded tyrosine recombinases for lysogenic conversion. XerC and XerD are highly conserved in bacteria because of their role in the topological maintenance of circular chromosomes and, with the advent of high throughput sequencing, numerous other integrative mobile elements exploiting them have been discovered. Here, we review our understanding of the molecular mechanisms of integration of the different integrative mobile elements exploiting Xer (IMEXs) so far described.
Collapse
Affiliation(s)
- Bhabatosh Das
- CNRS, Centre de Génétique Moléculaire, 91198 Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
41
|
Ledón T, Ferrán B, Pérez C, Suzarte E, Vichi J, Marrero K, Oliva R, Fando R. TLP01, an mshA mutant of Vibrio cholerae O139 as vaccine candidate against cholera. Microbes Infect 2012; 14:968-78. [DOI: 10.1016/j.micinf.2012.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/04/2012] [Accepted: 04/05/2012] [Indexed: 01/16/2023]
|
42
|
Holliday junction affinity of the base excision repair factor Endo III contributes to cholera toxin phage integration. EMBO J 2012; 31:3757-67. [PMID: 22863778 PMCID: PMC3442271 DOI: 10.1038/emboj.2012.219] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 07/13/2012] [Indexed: 02/02/2023] Open
Abstract
Integration of toxin-producing phage into the Vibrio cholerae genome co-opts not only bacterial recombinases, but also a host excision repair enzyme, assigning it an unsuspected structural role. Toxigenic conversion of Vibrio cholerae bacteria results from the integration of a filamentous phage, CTXϕ. Integration is driven by the bacterial Xer recombinases, which catalyse the exchange of a single pair of strands between the phage single-stranded DNA and the host double-stranded DNA genomes; replication is thought to convert the resulting pseudo-Holliday junction (HJ) intermediate into the final recombination product. The natural tendency of the Xer recombinases to recycle HJ intermediates back into substrate should thwart this integration strategy, which prompted a search for additional co-factors aiding directionality of the process. Here, we show that Endo III, a ubiquitous base excision repair enzyme, facilitates CTXϕ-integration in vivo. In vitro, we show that it prevents futile Xer recombination cycles by impeding new rounds of strand exchanges once the pseudo-HJ is formed. We further demonstrate that this activity relies on the unexpected ability of Endo III to bind to HJs even in the absence of the recombinases. These results explain how tandem copies of the phage genome can be created, which is crucial for subsequent virion production.
Collapse
|
43
|
Tian DQ, Wang YM, Zheng T. [Progress on XerCD/dif site-specific recombination]. YI CHUAN = HEREDITAS 2012; 34:1003-1008. [PMID: 22917905 DOI: 10.3724/sp.j.1005.2012.01003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In Escherichia coli, 10% to 15% of growing bacteria produce chromosome dimers during DNA replication. These dimers are resolved by XerC and XerD, two chromosome recombinases that target the dif sequence in the replication terminus of chromosome. Phage CTXΦ integrates into vibrio cholerae chromosome in a site-specific manner. However, CTXΦ genome does not encode any recombinase, while recombinase XerC and XerD, which is coded by vibrio cholerae chromosome are required for the integration of CTXΦ into the vibrio cholerae chromosome. The CTXΦ integration site overlaps with the dif site. The wide distribution of XerCD recombinase and dif site among bacteria genome suggests that it may be universal in resolve of chromosome dimers and phage integration. In this article, we reviewed the research progresses on chromosome dimer resolve and phage integration through XerCD/dif site-specific recombination.
Collapse
Affiliation(s)
- De-Qiao Tian
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China.
| | | | | |
Collapse
|
44
|
Small plasmids harboring qnrB19: a model for plasmid evolution mediated by site-specific recombination at oriT and Xer sites. Antimicrob Agents Chemother 2012; 56:1821-7. [PMID: 22290975 DOI: 10.1128/aac.06036-11] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmids pPAB19-1, pPAB19-2, pPAB19-3, and pPAB19-4, isolated from Salmonella and Escherichia coli clinical strains from hospitals in Argentina, were completely sequenced. These plasmids include the qnrB19 gene and are 2,699, 3,082, 2,989, and 2,702 nucleotides long, respectively, and they share extensive homology among themselves and with other previously described small qnrB19-harboring plasmids. The genetic environment of qnrB19 in all four plasmids is identical to that in these other plasmids and in transposons such as Tn2012, Tn5387, and Tn5387-like. Nucleotide sequence comparisons among these and previously described plasmids showed a variable region characterized by being flanked by an oriT locus and a Xer recombination site. We propose that this arrangement could play a role in the evolution of plasmids and present a model for DNA swapping between plasmid molecules mediated by site-specific recombination events at oriT and a Xer target site.
Collapse
|
45
|
Abstract
The role of bacteriophages as natural vectors for some of the most potent bacterial toxins is well recognized and includes classical type I membrane-acting superantigens, type II pore-forming lysins, and type III exotoxins, such as diphtheria and botulinum toxins. Among Gram-negative pathogens, a novel class of bacterial virulence factors called effector proteins (EPs) are phage encoded among pathovars of Escherichia coli, Shigella spp., and Salmonella enterica. This chapter gives an overview of the different types of virulence factors encoded within phage genomes based on their role in bacterial pathogenesis. It also discusses phage-pathogenicity island interactions uncovered from studies of phage-encoded EPs. A detailed examination of the filamentous phage CTXφ that encodes cholera toxin is given as the sole example to date of a single-stranded DNA phage that encodes a bacterial toxin.
Collapse
|
46
|
Phenotypic and genetic analyses of 111 clinical and environmental O1, O139, and non-O1/O139 Vibrio cholerae strains from different geographical areas. Epidemiol Infect 2011; 140:1389-99. [PMID: 22074599 DOI: 10.1017/s0950268811002147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
A total of 111 clinical and environmental O1, O139 and non-O1/O139 Vibrio cholerae strains isolated between 1978 and 2008 from different geographical areas were typed using a combination of methods: antibiotic susceptibility, biochemical test, serogroup, serotype, biotype, sequences containing variable numbers of tandem repeats (VNTRs) and virulence genes ctxA and tcpA amplification. As a result of the performed typing work, the strains were organized into four clusters: cluster A1 included clinical O1 Ogawa and O139 serogroup strains (ctxA(+) and tcpA(+)); cluster A2 included clinical non-O1/O139 strains (ctxA(-) and tcpA(-)), as well as environmental O1 Inaba and non-O1/O139 strains (ctxA(-) and tcpA(-)/tcpA(+)); cluster B1 contained two clinical O1 strains and environmental non-O1/O139 strains (ctxA(-) and tcpA(+)/tcpA(-)); cluster B2 contained clinical O1 Inaba and Ogawa strains (ctxA(+) and tcpA(+)). The results of this work illustrate the advantage of combining several typing methods to discriminate between clinical and environmental V. cholerae strains.
Collapse
|
47
|
Krupovic M, Forterre P. Microviridae goes temperate: microvirus-related proviruses reside in the genomes of Bacteroidetes. PLoS One 2011; 6:e19893. [PMID: 21572966 PMCID: PMC3091885 DOI: 10.1371/journal.pone.0019893] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 04/14/2011] [Indexed: 02/01/2023] Open
Abstract
The Microviridae comprises icosahedral lytic viruses with circular single-stranded DNA genomes. The family is divided into two distinct groups based on genome characteristics and virion structure. Viruses infecting enterobacteria belong to the genus Microvirus, whereas those infecting obligate parasitic bacteria, such as Chlamydia, Spiroplasma and Bdellovibrio, are classified into a subfamily, the Gokushovirinae. Recent metagenomic studies suggest that members of the Microviridae might also play an important role in marine environments. In this study we present the identification and characterization of Microviridae-related prophages integrated in the genomes of species of the Bacteroidetes, a phylum not previously known to be associated with microviruses. Searches against metagenomic databases revealed the presence of highly similar sequences in the human gut. This is the first report indicating that viruses of the Microviridae lysogenize their hosts. Absence of associated integrase-coding genes and apparent recombination with dif-like sequences suggests that Bacteroidetes-associated microviruses are likely to rely on the cellular chromosome dimer resolution machinery. Phylogenetic analysis of the putative major capsid proteins places the identified proviruses into a group separate from the previously characterized microviruses and gokushoviruses, suggesting that the genetic diversity and host range of bacteriophages in the family Microviridae is wider than currently appreciated.
Collapse
Affiliation(s)
- Mart Krupovic
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Department of Microbiology, Institut Pasteur, Paris, France.
| | | |
Collapse
|
48
|
Das B, Bischerour J, Barre FX. Molecular mechanism of acquisition of the cholera toxin genes. Indian J Med Res 2011; 133:195-200. [PMID: 21415494 PMCID: PMC3089051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
One of the major pathogenic determinants of Vibrio cholerae, the cholera toxin, is encoded in the genome of a filamentous phage, CTXφ. CTXφ makes use of the chromosome dimer resolution system of V. cholerae to integrate its single stranded genome into one, the other, or both V. cholerae chromosomes. Here, we review current knowledge about this smart integration process.
Collapse
Affiliation(s)
- Bhabatosh Das
- CNRS, Centre de Génétique Moléculaire, Gif-sur-Yvette & Université Paris-Sud, Orsay, France
| | - Julien Bischerour
- CNRS, Centre de Génétique Moléculaire, Gif-sur-Yvette & Université Paris-Sud, Orsay, France
| | - François-Xavier Barre
- CNRS, Centre de Génétique Moléculaire, Gif-sur-Yvette & Université Paris-Sud, Orsay, France,Reprint requests: Dr François-Xavier Barre, CNRS, Centre de Génétique Moléculaire, 91198 Gif-sur-Yvette, France e-mail:
| |
Collapse
|