1
|
Naudé M, Faller P, Lebrun V. A Closer Look at Type I Left-Handed β-Helices Provides a Better Understanding in Their Sequence-Structure Relationship: Toward Their Rational Design. Proteins 2024; 92:1318-1328. [PMID: 38980225 DOI: 10.1002/prot.26726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/17/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024]
Abstract
Understanding the sequence-structure relationship in protein is of fundamental interest, but has practical applications such as the rational design of peptides and proteins. This relationship in the Type I left-handed β-helix containing proteins is updated and revisited in this study. Analyzing the available experimental structures in the Protein Data Bank, we could describe, further in detail, the structural features that are important for the stability of this fold, as well as its nucleation and termination. This study is meant to complete previous work, as it provides a separate analysis of the N-terminal and C-terminal rungs of the helix. Particular sequence motifs of these rungs are described along with the structural element they form.
Collapse
Affiliation(s)
- Maxime Naudé
- Institute of Chemistry of Strasbourg (UMR 7177), University of Strasbourg-CNRS, Strasbourg, France
| | - Peter Faller
- Institute of Chemistry of Strasbourg (UMR 7177), University of Strasbourg-CNRS, Strasbourg, France
| | - Vincent Lebrun
- Institute of Chemistry of Strasbourg (UMR 7177), University of Strasbourg-CNRS, Strasbourg, France
| |
Collapse
|
2
|
Gupta AB, Seedorf H. Structural and functional insights from the sequences and complex domain architecture of adhesin-like proteins from Methanobrevibacter smithii and Methanosphaera stadtmanae. Front Microbiol 2024; 15:1463715. [PMID: 39498127 PMCID: PMC11532034 DOI: 10.3389/fmicb.2024.1463715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/03/2024] [Indexed: 11/07/2024] Open
Abstract
Methanogenic archaea, or methanogens, are crucial in guts and rumens, consuming hydrogen, carbon dioxide, and other fermentation products. While their molecular interactions with other microorganisms are not fully understood, genomic sequences provide information. The first genome sequences of human gut methanogens, Methanosphaera stadtmanae and Methanobrevibacter smithii, revealed genes encoding adhesin-like proteins (ALPs). These proteins were also found in other gut and rumen methanogens, but their characteristics and functions remain largely unknown. This study analyzes the ALP repertoire of M. stadtmanae and M. smithii using AI-guided protein structure predictions of unique ALP domains. Both genomes encode more than 40 ALPs each, comprising over 10% of their genomes. ALPs contain repetitive sequences, many of which are unmatched in protein domain databases. We present unique sequence signatures of conserved ABD repeats in ALPs and propose a classification based on domain architecture. Our study offers insights into ALP features and how methanogens may interact with other microorganisms.
Collapse
Affiliation(s)
- Anjali Bansal Gupta
- Temasek Life Sciences Laboratory Limited, 1 Research Link National University of Singapore, Singapore, Singapore
| | - Henning Seedorf
- Temasek Life Sciences Laboratory Limited, 1 Research Link National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
3
|
Pang YT, Hazel AJ, Gumbart JC. Uncovering the folding mechanism of pertactin: A comparative study of isolated and vectorial folding. Biophys J 2023; 122:2988-2995. [PMID: 36960532 PMCID: PMC10398254 DOI: 10.1016/j.bpj.2023.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/25/2023] Open
Abstract
Autotransporters are a large family of virulence factors found in Gram-negative bacteria that play important roles in their pathogenesis. The passenger domain of autotransporters is almost always composed of a large β-helix, with only a small portion of it being relevant to its virulence function. This has led to the hypothesis that the folding of the β-helical structure aids the secretion of the passenger domain across the Gram-negative outer membrane. In this study, we used molecular dynamics simulations and enhanced sampling methods to investigate the stability and folding of the passenger domain of pertactin, an autotransporter from Bordetella pertussis. Specifically, we employed steered molecular dynamics to simulate the unfolding of the entire passenger domain as well as self-learning adaptive umbrella sampling to compare the energetics of folding rungs of the β-helix independently ("isolated folding") versus folding rungs on top of a previously folded rung ("vectorial folding"). Our results showed that vectorial folding is highly favorable compared with isolated folding; moreover, our simulations showed that the C-terminal rung of the β-helix is the most resistant to unfolding, in agreement with previous studies that found the C-terminal half of the passenger domain to be more stable than the N-terminal one. Overall, this study provides new insights into the folding process of an autotransporter passenger domain and its potential role in secretion across the outer membrane.
Collapse
Affiliation(s)
- Yui Tik Pang
- School of Physics, Georgia Institute of Technology, Atlanta, GA
| | - Anthony J Hazel
- School of Physics, Georgia Institute of Technology, Atlanta, GA
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA.
| |
Collapse
|
4
|
Esmaili M, Eldeeb M. Cellular toxicity of scrapie prions in prion diseases; a biochemical and molecular overview. Mol Biol Rep 2023; 50:1743-1752. [PMID: 36446981 DOI: 10.1007/s11033-022-07806-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 12/03/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs) or prion diseases consist of a broad range of fatal neurological disorders affecting humans and animals. Contrary to Watson and Crick's 'central dogma', prion diseases are caused by a protein, devoid of DNA involvement. Herein, we briefly review various cellular and biological aspects of prions and prion pathogenesis focusing mainly on historical milestones, biosynthesis, degradation, structure-function of cellular and scrapie forms of prions .
Collapse
Affiliation(s)
- Mansoore Esmaili
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| | - Mohamed Eldeeb
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
5
|
Water-organizing motif continuity is critical for potent ice nucleation protein activity. Nat Commun 2022; 13:5019. [PMID: 36028506 PMCID: PMC9418140 DOI: 10.1038/s41467-022-32469-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/29/2022] [Indexed: 12/02/2022] Open
Abstract
Bacterial ice nucleation proteins (INPs) can cause frost damage to plants by nucleating ice formation at high sub-zero temperatures. Modeling of Pseudomonas borealis INP by AlphaFold suggests that the central domain of 65 tandem sixteen-residue repeats forms a beta-solenoid with arrays of outward-pointing threonines and tyrosines, which may organize water molecules into an ice-like pattern. Here we report that mutating some of these residues in a central segment of P. borealis INP, expressed in Escherichia coli, decreases ice nucleation activity more than the section’s deletion. Insertion of a bulky domain has the same effect, indicating that the continuity of the water-organizing repeats is critical for optimal activity. The ~10 C-terminal coils differ from the other 55 coils in being more basic and lacking water-organizing motifs; deletion of this region eliminates INP activity. We show through sequence modifications how arrays of conserved motifs form the large ice-nucleating surface required for potency. Ice nucleation proteins have the same tandemly arrayed water-organizing motifs seen in some antifreeze proteins, but on a larger scale. The authors show that mutation, interruption, and truncation of these arrays reduce ice nucleation activity indicating that the two protein types share a common mechanism.
Collapse
|
6
|
Juurakko CL, diCenzo GC, Walker VK. Brachypodium Antifreeze Protein Gene Products Inhibit Ice Recrystallisation, Attenuate Ice Nucleation, and Reduce Immune Response. PLANTS (BASEL, SWITZERLAND) 2022; 11:1475. [PMID: 35684248 PMCID: PMC9182837 DOI: 10.3390/plants11111475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022]
Abstract
Antifreeze proteins (AFPs) from the model crop, Brachypodium distachyon, allow freeze survival and attenuate pathogen-mediated ice nucleation. Intriguingly, Brachypodium AFP genes encode two proteins, an autonomous AFP and a leucine-rich repeat (LRR). We present structural models which indicate that ice-binding motifs on the ~13 kDa AFPs can "spoil" nucleating arrays on the ~120 kDa bacterial ice nucleating proteins used to form ice at high sub-zero temperatures. These models are consistent with the experimentally demonstrated decreases in ice nucleating activity by lysates from wildtype compared to transgenic Brachypodium lines. Additionally, the expression of Brachypodium LRRs in transgenic Arabidopsis inhibited an immune response to pathogen flagella peptides (flg22). Structural models suggested that this was due to the affinity of the LRR domains to flg22. Overall, it is remarkable that the Brachypodium genes play multiple distinctive roles in connecting freeze survival and anti-pathogenic systems via their encoded proteins' ability to adsorb to ice as well as to attenuate bacterial ice nucleation and the host immune response.
Collapse
Affiliation(s)
- Collin L. Juurakko
- Department of Biology, Queen’s University, Kingston, ON K7L 3N6, Canada; (G.C.d.); (V.K.W.)
| | - George C. diCenzo
- Department of Biology, Queen’s University, Kingston, ON K7L 3N6, Canada; (G.C.d.); (V.K.W.)
| | - Virginia K. Walker
- Department of Biology, Queen’s University, Kingston, ON K7L 3N6, Canada; (G.C.d.); (V.K.W.)
- Department of Biomedical and Molecular Sciences, School of Environmental Studies, Queen’s University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
7
|
Qi Y, Zhou D, Kessler JL, Qiu R, Yu SM, Li G, Qin Z, Li Y. Terminal repeats impact collagen triple-helix stability through hydrogen bonding. Chem Sci 2022; 13:12567-12576. [PMID: 36382282 PMCID: PMC9629113 DOI: 10.1039/d2sc03666e] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/10/2022] [Indexed: 11/22/2022] Open
Abstract
Nearly 30% of human proteins have tandem repeating sequences. Structural understanding of the terminal repeats is well-established for many repeat proteins with the common α-helix and β-sheet foldings. By contrast, the sequence–structure interplay of the terminal repeats of the collagen triple-helix remains to be fully explored. As the most abundant human repeat protein and the most prevalent structural component of the extracellular matrix, collagen features a hallmark triple-helix formed by three supercoiled polypeptide chains of long repeating sequences of the Gly–X–Y triplets. Here, with CD characterization of 28 collagen-mimetic peptides (CMPs) featuring various terminal motifs, as well as DSC measurements, crystal structure analysis, and computational simulations, we show that CMPs only differing in terminal repeat may have distinct end structures and stabilities. We reveal that the cross-chain hydrogen bonding mediated by the terminal repeat is key to maintaining the triple-helix's end structure, and that disruption of it with a single amide to carboxylate substitution can lead to destabilization as drastic as 19 °C. We further demonstrate that the terminal repeat also impacts how strong the CMP strands form hybrid triple-helices with unfolded natural collagen chains in tissue. Our findings provide a spatial profile of hydrogen bonding within the CMP triple-helix, marking a critical guideline for future crystallographic or NMR studies of collagen, and algorithms for predicting triple-helix stability, as well as peptide-based collagen assemblies and materials. This study will also inspire new understanding of the sequence–structure relationship of many other complex structural proteins with repeating sequences. Collagen mimetic peptides (CMPs) only differing in terminal repeat have distinct stabilities and end structures due to a spatial hydrogen bonding profile that is useful for future crystallography, algorithm prediction, and materials of collagen.![]()
Collapse
Affiliation(s)
- Yingying Qi
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
- Cardiac Surgery and Structural Heart Disease Unit of Cardiovascular Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
- Department of Radiology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Daoning Zhou
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Julian L. Kessler
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, USA
| | - Rongmao Qiu
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - S. Michael Yu
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, USA
| | - Gang Li
- Cardiac Surgery and Structural Heart Disease Unit of Cardiovascular Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Zhao Qin
- Department of Civil & Environmental Engineering, College of Engineering & Computer Science, Syracuse University, Syracuse, New York 13244, USA
| | - Yang Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| |
Collapse
|
8
|
The Right-Handed Parallel β-Helix Topology of Erwinia chrysanthemi Pectin Methylesterase Is Intimately Associated with Both Sequential Folding and Resistance to High Pressure. Biomolecules 2021; 11:biom11081083. [PMID: 34439750 PMCID: PMC8392785 DOI: 10.3390/biom11081083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 11/30/2022] Open
Abstract
The complex topologies of large multi-domain globular proteins make the study of their folding and assembly particularly demanding. It is often characterized by complex kinetics and undesired side reactions, such as aggregation. The structural simplicity of tandem-repeat proteins, which are characterized by the repetition of a basic structural motif and are stabilized exclusively by sequentially localized contacts, has provided opportunities for dissecting their folding landscapes. In this study, we focus on the Erwinia chrysanthemi pectin methylesterase (342 residues), an all-β pectinolytic enzyme with a right-handed parallel β-helix structure. Chemicals and pressure were chosen as denaturants and a variety of optical techniques were used in conjunction with stopped-flow equipment to investigate the folding mechanism of the enzyme at 25 °C. Under equilibrium conditions, both chemical- and pressure-induced unfolding show two-state transitions, with average conformational stability (ΔG° = 35 ± 5 kJ·mol−1) but exceptionally high resistance to pressure (Pm = 800 ± 7 MPa). Stopped-flow kinetic experiments revealed a very rapid (τ < 1 ms) hydrophobic collapse accompanied by the formation of an extended secondary structure but did not reveal stable tertiary contacts. This is followed by three distinct cooperative phases and the significant population of two intermediate species. The kinetics followed by intrinsic fluorescence shows a lag phase, strongly indicating that these intermediates are productive species on a sequential folding pathway, for which we propose a plausible model. These combined data demonstrate that even a large repeat protein can fold in a highly cooperative manner.
Collapse
|
9
|
Li Q, Zheng L, Guo Z, Tang T, Zhu B. Alginate degrading enzymes: an updated comprehensive review of the structure, catalytic mechanism, modification method and applications of alginate lyases. Crit Rev Biotechnol 2021; 41:953-968. [PMID: 34015998 DOI: 10.1080/07388551.2021.1898330] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Alginate, a kind of linear acidic polysaccharide, consists of α-L-guluronate (G) and β-D-mannuronate (M). Both alginate and its degradation products (alginate oligosaccharides) possess abundant biological activities such as antioxidant activity, antitumor activity, and antimicrobial activity. Therefore, alginate and alginate oligosaccharides have great value in food, pharmaceutical, and agricultural fields. Alginate lyase can degrade alginate into alginate oligosaccharides via the β-elimination reaction. It plays an important role in marine carbon recycling and the deep utilization of brown algae. Elucidating the structural features of alginate lyase can improve our knowledge of its catalytic mechanisms. With the development of structural analysis techniques, increasing numbers of alginate lyases have been characterized at the structural level. Hence, it is essential and helpful to summarize and discuss the up-to-date findings. In this review, we have summarized progress on the structural features and the catalytic mechanisms of alginate lyases. Furthermore, the molecular modification strategies and the applications of alginate lyases have also been discussed. This comprehensive information should be helpful to expand the applications of alginate lyases.
Collapse
Affiliation(s)
- Qian Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Ling Zheng
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Zilong Guo
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Tiancheng Tang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| |
Collapse
|
10
|
Wang B, Dong S, Li FL, Ma XQ. Structural basis for the exolytic activity of polysaccharide lyase family 6 alginate lyase BcAlyPL6 from human gut microbe Bacteroides clarus. Biochem Biophys Res Commun 2021; 547:111-117. [PMID: 33610038 DOI: 10.1016/j.bbrc.2021.02.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 01/08/2023]
Abstract
Alginate is the structural polysaccharide of the cell wall of brown algae, which is an important carbon source for marine life. The depolymerization of alginate is dependent on alginate lyases. Recent studies showed that the alginate utilization ability had been obtained by human gut microbes. In contrast to the great number of studies on alginate lyases from marine/soil organisms, studies on alginate lyases from gut microbes are still limited. Here, the structure of a polysaccharide lyase family 6 (PL6) alginate lyase from human gut microbe Bacteroides clarus was solved by X-ray crystallography, which represents the cluster of two-domain PL6 alginate lyases from Bacteroidetes. Similar with the two-domain alginate lyase AlyGC originated from marine bacterium, both the N terminal domain (NTD) and C terminal domain (CTD) of BcAlyPL6 show right-handed parallel β-helix fold. However, unlike AlyGC, which forms a homodimer, BcAlyPL6 functions as a monomer. Biochemical analysis indicates that the substrate binding affinity is mainly contributed by the NTD while the CTD of BcAlyPL6 is involved in the formation of -1 subsite, which is essential for substrate turnover rate. Furthermore, CTD is involved in shaping a closed catalytic pocket, and deletion of it leads to increased activity towards highly polymerized substrate. Structure comparison of PL6 family alginate lyases implies that the linkers of two-domain alginate lyases might have evolutionary relationship with the N/C terminal extension of single-domain lyases.
Collapse
Affiliation(s)
- Bing Wang
- Shandong Provincial Key Laboratory of Energy Genetics, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China
| | - Sheng Dong
- Shandong Provincial Key Laboratory of Energy Genetics, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China
| | - Fu-Li Li
- Shandong Provincial Key Laboratory of Energy Genetics, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China
| | - Xiao-Qing Ma
- Shandong Provincial Key Laboratory of Energy Genetics, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China.
| |
Collapse
|
11
|
Exolysin (ExlA) from Pseudomonas aeruginosa Punctures Holes into Target Membranes Using a Molten Globule Domain. J Mol Biol 2020; 432:4466-4480. [DOI: 10.1016/j.jmb.2020.05.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 12/19/2022]
|
12
|
Computational prediction and redesign of aberrant protein oligomerization. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 169:43-83. [DOI: 10.1016/bs.pmbts.2019.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Stender EGP, Dybdahl Andersen C, Fredslund F, Holck J, Solberg A, Teze D, Peters GHJ, Christensen BE, Aachmann FL, Welner DH, Svensson B. Structural and functional aspects of mannuronic acid-specific PL6 alginate lyase from the human gut microbe Bacteroides cellulosilyticus. J Biol Chem 2019; 294:17915-17930. [PMID: 31530640 PMCID: PMC6879350 DOI: 10.1074/jbc.ra119.010206] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/16/2019] [Indexed: 01/28/2023] Open
Abstract
Alginate is a linear polysaccharide from brown algae consisting of 1,4-linked β-d-mannuronic acid (M) and α-l-guluronic acid (G) arranged in M, G, and mixed MG blocks. Alginate was assumed to be indigestible in humans, but bacteria isolated from fecal samples can utilize alginate. Moreover, genomes of some human gut microbiome-associated bacteria encode putative alginate-degrading enzymes. Here, we genome-mined a polysaccharide lyase family 6 alginate lyase from the gut bacterium Bacteroides cellulosilyticus (BcelPL6). The structure of recombinant BcelPL6 was solved by X-ray crystallography to 1.3 Å resolution, revealing a single-domain, monomeric parallel β-helix containing a 10-step asparagine ladder characteristic of alginate-converting parallel β-helix enzymes. Substitutions of the conserved catalytic site residues Lys-249, Arg-270, and His-271 resulted in activity loss. However, imidazole restored the activity of BcelPL6-H271N to 2.5% that of the native enzyme. Molecular docking oriented tetra-mannuronic acid for syn attack correlated with M specificity. Using biochemical analyses, we found that BcelPL6 initially releases unsaturated oligosaccharides of a degree of polymerization of 2-7 from alginate and polyM, which were further degraded to di- and trisaccharides. Unlike other PL6 members, BcelPL6 had low activity on polyMG and none on polyG. Surprisingly, polyG increased BcelPL6 activity on alginate 7-fold. LC-electrospray ionization-MS quantification of products and lack of activity on NaBH4-reduced octa-mannuronic acid indicated that BcelPL6 is an endolyase that further degrades the oligosaccharide products with an intact reducing end. We anticipate that our results advance predictions of the specificity and mode of action of PL6 enzymes.
Collapse
Affiliation(s)
- Emil G P Stender
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Christian Dybdahl Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Folmer Fredslund
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Jesper Holck
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Amalie Solberg
- Department of Biotechnology and Food Science, NTNU, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - David Teze
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Günther H J Peters
- Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Bjørn E Christensen
- Department of Biotechnology and Food Science, NTNU, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Finn L Aachmann
- Department of Biotechnology and Food Science, NTNU, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Ditte H Welner
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Birte Svensson
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
14
|
Guo S, Vance TD, Stevens CA, Voets I, Davies PL. RTX Adhesins are Key Bacterial Surface Megaproteins in the Formation of Biofilms. Trends Microbiol 2019; 27:453-467. [DOI: 10.1016/j.tim.2018.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/13/2018] [Accepted: 12/12/2018] [Indexed: 12/20/2022]
|
15
|
Vance TDR, Bayer-Giraldi M, Davies PL, Mangiagalli M. Ice-binding proteins and the 'domain of unknown function' 3494 family. FEBS J 2019; 286:855-873. [PMID: 30680879 DOI: 10.1111/febs.14764] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/03/2019] [Accepted: 01/22/2019] [Indexed: 02/03/2023]
Abstract
Ice-binding proteins (IBPs) control the growth and shape of ice crystals to cope with subzero temperatures in psychrophilic and freeze-tolerant organisms. Recently, numerous proteins containing the domain of unknown function (DUF) 3494 were found to bind ice crystals and, hence, are classified as IBPs. DUF3494 IBPs constitute today the most widespread of the known IBP families. They can be found in different organisms including bacteria, yeasts and microalgae, supporting the hypothesis of horizontal transfer of its gene. Although the 3D structure is always a discontinuous β-solenoid with a triangular cross-section and an adjacent alpha-helix, DUF3494 IBPs present very diverse activities in terms of the magnitude of their thermal hysteresis and inhibition of ice recrystallization. The proteins are secreted into the environments around the host cells or are anchored on their cell membranes. This review covers several aspects of this new class of IBPs, which promise to leave their mark on several research fields including structural biology, protein biochemistry and cryobiology.
Collapse
Affiliation(s)
- Tyler D R Vance
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Maddalena Bayer-Giraldi
- Department of Glaciology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Peter L Davies
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Marco Mangiagalli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Italy
| |
Collapse
|
16
|
Notari L, Martínez-Carranza M, Farías-Rico JA, Stenmark P, von Heijne G. Cotranslational Folding of a Pentarepeat β-Helix Protein. J Mol Biol 2018; 430:5196-5206. [PMID: 30539762 DOI: 10.1016/j.jmb.2018.10.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 02/07/2023]
Abstract
It is becoming increasingly clear that many proteins start to fold cotranslationally before the entire polypeptide chain has been synthesized on the ribosome. One class of proteins that a priori would seem particularly prone to cotranslational folding is repeat proteins, that is, proteins that are built from an array of nearly identical sequence repeats. However, while the folding of repeat proteins has been studied extensively in vitro with purified proteins, only a handful of studies have addressed the issue of cotranslational folding of repeat proteins. Here, we have determined the structure and studied the cotranslational folding of a β-helix pentarepeat protein from the human pathogen Clostridium botulinum-a homolog of the fluoroquinolone resistance protein MfpA-using an assay in which the SecM translational arrest peptide serves as a force sensor to detect folding events. We find that cotranslational folding of a segment corresponding to the first four of the eight β-helix coils in the protein produces enough force to release ribosome stalling and that folding starts when this unit is ~35 residues away from the P-site, near the distal end of the ribosome exit tunnel. An additional folding transition is seen when the whole PENT moiety emerges from the exit tunnel. The early cotranslational formation of a folded unit may be important to avoid misfolding events in vivo and may reflect the minimal size of a stable β-helix since it is structurally homologous to the smallest known β-helix protein, a four-coil protein that is stable in solution.
Collapse
Affiliation(s)
- Luigi Notari
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden.
| | - Gunnar von Heijne
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden; Science for Life Laboratory Stockholm University, Box 1031, SE-171 21 Solna, Sweden.
| |
Collapse
|
17
|
Flores-Fernández JM, Rathod V, Wille H. Comparing the Folds of Prions and Other Pathogenic Amyloids. Pathogens 2018; 7:E50. [PMID: 29734684 PMCID: PMC6027354 DOI: 10.3390/pathogens7020050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 04/29/2018] [Accepted: 05/02/2018] [Indexed: 01/13/2023] Open
Abstract
Pathogenic amyloids are the main feature of several neurodegenerative disorders, such as Creutzfeldt⁻Jakob disease, Alzheimer’s disease, and Parkinson’s disease. High resolution structures of tau paired helical filaments (PHFs), amyloid-β(1-42) (Aβ(1-42)) fibrils, and α-synuclein fibrils were recently reported using cryo-electron microscopy. A high-resolution structure for the infectious prion protein, PrPSc, is not yet available due to its insolubility and its propensity to aggregate, but cryo-electron microscopy, X-ray fiber diffraction, and other approaches have defined the overall architecture of PrPSc as a 4-rung β-solenoid. Thus, the structure of PrPSc must have a high similarity to that of the fungal prion HET-s, which is part of the fungal heterokaryon incompatibility system and contains a 2-rung β-solenoid. This review compares the structures of tau PHFs, Aβ(1-42), and α-synuclein fibrils, where the β-strands of each molecule stack on top of each other in a parallel in-register arrangement, with the β-solenoid folds of HET-s and PrPSc.
Collapse
Affiliation(s)
- José Miguel Flores-Fernández
- Department of Biochemistry & Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB T6G 2M8, Canada.
| | - Vineet Rathod
- Department of Biochemistry & Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB T6G 2M8, Canada.
| | - Holger Wille
- Department of Biochemistry & Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB T6G 2M8, Canada.
| |
Collapse
|
18
|
Vance TDR, Graham LA, Davies PL. An ice-binding and tandem beta-sandwich domain-containing protein in Shewanella frigidimarina is a potential new type of ice adhesin. FEBS J 2018; 285:1511-1527. [PMID: 29498209 DOI: 10.1111/febs.14424] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/16/2018] [Accepted: 02/23/2018] [Indexed: 11/29/2022]
Abstract
Out of the dozen different ice-binding protein (IBP) structures known, the DUF3494 domain is the most widespread, having been passed many times between prokaryotic and eukaryotic microorganisms by horizontal gene transfer. This ~25-kDa β-solenoid domain with an adjacent parallel α-helix is most commonly associated with an N-terminal secretory signal peptide. However, examples of the DUF3494 domain preceded by tandem Bacterial Immunoglobulin-like (BIg) domains are sometimes found, though uncharacterized. Here, we present one such protein (SfIBP_1) from the Antarctic bacterium Shewanella frigidimarina. We have confirmed and characterized the ice-binding activity of its ice-binding domain using thermal hysteresis measurements, fluorescent ice plane affinity analysis, and ice recrystallization inhibition assays. X-ray crystallography was used to solve the structure of the SfIBP_1 ice-binding domain, to further characterize its ice-binding surface and unique method of stabilizing or 'capping' the ends of the solenoid structure. The latter is formed from the interaction of two loops mediated by a combination of tandem prolines and electrostatic interactions. Furthermore, given their domain architecture and membrane association, we propose that these BIg-containing DUF3494 IBPs serve as ice-binding adhesion proteins that are capable of adsorbing their host bacterium onto ice. DATABASE Submitted new structure to the Protein Data Bank (PDB: 6BG8).
Collapse
Affiliation(s)
- Tyler D R Vance
- Department of Biomedical and Molecular Science, Queen's University, Kingston, Canada
| | - Laurie A Graham
- Department of Biomedical and Molecular Science, Queen's University, Kingston, Canada
| | - Peter L Davies
- Department of Biomedical and Molecular Science, Queen's University, Kingston, Canada
| |
Collapse
|
19
|
The Structure of PrP Sc Prions. Pathogens 2018; 7:pathogens7010020. [PMID: 29414853 PMCID: PMC5874746 DOI: 10.3390/pathogens7010020] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 01/31/2018] [Accepted: 02/03/2018] [Indexed: 12/14/2022] Open
Abstract
PrPSc (scrapie isoform of the prion protein) prions are the infectious agent behind diseases such as Creutzfeldt–Jakob disease in humans, bovine spongiform encephalopathy in cattle, chronic wasting disease in cervids (deer, elk, moose, and reindeer), as well as goat and sheep scrapie. PrPSc is an alternatively folded variant of the cellular prion protein, PrPC, which is a regular, GPI-anchored protein that is present on the cell surface of neurons and other cell types. While the structure of PrPC is well studied, the structure of PrPSc resisted high-resolution determination due to its general insolubility and propensity to aggregate. Cryo-electron microscopy, X-ray fiber diffraction, and a variety of other approaches defined the structure of PrPSc as a four-rung β-solenoid. A high-resolution structure of PrPSc still remains to be solved, but the four-rung β-solenoid architecture provides a molecular framework for the autocatalytic propagation mechanism that gives rise to the alternative conformation of PrPSc. Here, we summarize the current knowledge regarding the structure of PrPSc and speculate about the molecular conversion mechanisms that leads from PrPC to PrPSc.
Collapse
|
20
|
Requena JR, Wille H. The Structure of the Infectious Prion Protein and Its Propagation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:341-359. [PMID: 28838667 DOI: 10.1016/bs.pmbts.2017.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The prion diseases, which include Creutzfeldt-Jakob disease in humans, chronic wasting disease in cervids (i.e., deer, elk, moose, and reindeer), bovine spongiform encephalopathy in cattle, as well as sheep and goat scrapie, are caused by the conversion of the cellular prion protein (PrPC) into a disease-causing conformer (PrPSc). PrPC is a regular, GPI-anchored protein that is expressed on the cell surface of neurons and many other cell types. The structure of PrPC is well studied, based on analyses of recombinant PrP, which is thought to mimic the structure of native PrPC. The mature protein contains an N-terminal, unfolded domain and a C-terminal, globular domain that consists of three α-helices and only a small, two-stranded β-sheet. In contrast, PrPSc was found to contain predominantly β-structure and to aggregate into a variety of quaternary structures, such as oligomers, amorphous aggregates, amyloid fibrils, and two-dimensional crystals. The tendency of PrPSc to aggregate into these diverse forms is also responsible for our incomplete knowledge about its molecular structure. Nevertheless, the repeating nature of the more regular PrPSc aggregates has provided informative insights into the structure of the infectious conformer, albeit at limited resolution. These data established a four-rung β-solenoid architecture as the main element of its structure. Moreover, the four-rung β-solenoid architecture provides a molecular framework for an autocatalytic propagation mechanism, which could explain the conversion of PrPC into PrPSc.
Collapse
Affiliation(s)
- Jesús R Requena
- CIMUS Biomedical Research Institute, University of Santiago de Compostela-IDIS, Santiago de Compostela, Spain
| | - Holger Wille
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
21
|
The Structural Architecture of an Infectious Mammalian Prion Using Electron Cryomicroscopy. PLoS Pathog 2016; 12:e1005835. [PMID: 27606840 PMCID: PMC5015997 DOI: 10.1371/journal.ppat.1005835] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 08/01/2016] [Indexed: 12/31/2022] Open
Abstract
The structure of the infectious prion protein (PrPSc), which is responsible for Creutzfeldt-Jakob disease in humans and bovine spongiform encephalopathy, has escaped all attempts at elucidation due to its insolubility and propensity to aggregate. PrPSc replicates by converting the non-infectious, cellular prion protein (PrPC) into the misfolded, infectious conformer through an unknown mechanism. PrPSc and its N-terminally truncated variant, PrP 27–30, aggregate into amorphous aggregates, 2D crystals, and amyloid fibrils. The structure of these infectious conformers is essential to understanding prion replication and the development of structure-based therapeutic interventions. Here we used the repetitive organization inherent to GPI-anchorless PrP 27–30 amyloid fibrils to analyze their structure via electron cryomicroscopy. Fourier-transform analyses of averaged fibril segments indicate a repeating unit of 19.1 Å. 3D reconstructions of these fibrils revealed two distinct protofilaments, and, together with a molecular volume of 18,990 Å3, predicted the height of each PrP 27–30 molecule as ~17.7 Å. Together, the data indicate a four-rung β-solenoid structure as a key feature for the architecture of infectious mammalian prions. Furthermore, they allow to formulate a molecular mechanism for the replication of prions. Knowledge of the prion structure will provide important insights into the self-propagation mechanisms of protein misfolding. The structure of the infectious prion (PrPSc), which is responsible for Creutzfeldt-Jakob disease in humans and bovine spongiform encephalopathy, has escaped all attempts at elucidation due to its propensity to aggregate. Here, we use the repetitive organization inherent in amyloid fibrils to analyze the structure of GPI-anchorless PrP 27–30 via electron cryomicroscopy. Fourier-transform analysis of averaged fibril segments indicates a repeating unit of 19.1 Å. In agreement with this observation, 3D reconstructions reveal that each fibril contains two distinct protofilaments and that the height of each PrP 27–30 molecule in these fibrils is ~17.7 Å. Together the data indicate a four-rung β-solenoid structure as a key feature for the architecture of infectious mammalian prions. The data conflict with all previous models for the structure of PrPSc and allow the formulation of a molecular mechanism for the replication of prions.
Collapse
|
22
|
Louros NN, Bolas GMP, Tsiolaki PL, Hamodrakas SJ, Iconomidou VA. Intrinsic aggregation propensity of the CsgB nucleator protein is crucial for curli fiber formation. J Struct Biol 2016; 195:179-189. [PMID: 27245712 DOI: 10.1016/j.jsb.2016.05.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/26/2016] [Accepted: 05/28/2016] [Indexed: 11/28/2022]
Abstract
Several organisms exploit the extraordinary physical properties of amyloid fibrils forming natural protective amyloids, in an effort to support complex biological functions. Curli amyloid fibers are a major component of mature biofilms, which are produced by many Enterobacteriaceae species and are responsible, among other functions, for the initial adhesion of bacteria to surfaces or cells. The main axis of curli fibers is formed by a major structural subunit, known as CsgA. CsgA self-assembly is promoted by oligomeric nuclei formed by a minor curli subunit, known as the CsgB nucleator protein. Here, by implementing AMYLPRED2, a consensus prediction method for the identification of 'aggregation-prone' regions in protein sequences, developed in our laboratory, we have successfully identified potent amyloidogenic regions of the CsgB subunit. Peptide-analogues corresponding to the predicted 'aggregation-prone' segments of CsgB were chemically synthesized and studied, utilizing several biophysical techniques. Our experimental data indicate that these peptides self-assemble in solution, forming fibrils with characteristic amyloidogenic properties. Using comparative modeling techniques, we have developed three-dimensional models of both CsgA and CsgB subunits. Structural analysis revealed that the identified 'aggregation-prone' segments may promote gradual polymerization of CsgB. Briefly, our results indicate that the intrinsic self-aggregation propensity of the CsgB subunit, most probably has a pivotal role in initiating the formation of curli amyloid fibers by promoting the self-assembly process of the CsgB nucleator protein.
Collapse
Affiliation(s)
- Nikolaos N Louros
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 157 01, Greece
| | - Georgios M P Bolas
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 157 01, Greece
| | - Paraskevi L Tsiolaki
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 157 01, Greece
| | - Stavros J Hamodrakas
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 157 01, Greece
| | - Vassiliki A Iconomidou
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 157 01, Greece.
| |
Collapse
|
23
|
Requena JR, Kristensson K, Korth C, Zurzolo C, Simmons M, Aguilar-Calvo P, Aguzzi A, Andreoletti O, Benestad SL, Böhm R, Brown K, Calgua B, del Río JA, Espinosa JC, Girones R, Godsave S, Hoelzle LE, Knittler MR, Kuhn F, Legname G, Laeven P, Mabbott N, Mitrova E, Müller-Schiffmann A, Nuvolone M, Peters PJ, Raeber A, Roth K, Schmitz M, Schroeder B, Sonati T, Stitz L, Taraboulos A, Torres JM, Yan ZX, Zerr I. The Priority position paper: Protecting Europe's food chain from prions. Prion 2016; 10:165-81. [PMID: 27220820 PMCID: PMC4981192 DOI: 10.1080/19336896.2016.1175801] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/28/2016] [Accepted: 04/01/2016] [Indexed: 01/09/2023] Open
Abstract
Bovine spongiform encephalopathy (BSE) created a global European crisis in the 1980s and 90s, with very serious health and economic implications. Classical BSE now appears to be under control, to a great extent as a result of a global research effort that identified the sources of prions in meat and bone meal (MBM) and developed new animal-testing tools that guided policy. Priority ( www.prionpriority.eu ) was a European Union (EU) Framework Program 7 (FP7)-funded project through which 21 European research institutions and small and medium enterprises (SMEs) joined efforts between 2009 and 2014, to conduct coordinated basic and applied research on prions and prion diseases. At the end of the project, the Priority consortium drafted a position paper ( www.prionpriority.eu/Priority position paper) with its main conclusions. In the present opinion paper, we summarize these conclusions. With respect to the issue of re-introducing ruminant protein into the feed-chain, our opinion is that sustaining an absolute ban on feeding ruminant protein to ruminants is essential. In particular, the spread and impact of non-classical forms of scrapie and BSE in ruminants is not fully understood and the risks cannot be estimated. Atypical prion agents will probably continue to represent the dominant form of prion diseases in the near future in Europe. Atypical L-type BSE has clear zoonotic potential, as demonstrated in experimental models. Similarly, there are now data indicating that the atypical scrapie agent can cross various species barriers. More epidemiological data from large cohorts are necessary to reach any conclusion on the impact of its transmissibility on public health. Re-evaluations of safety precautions may become necessary depending on the outcome of these studies. Intensified searching for molecular determinants of the species barrier is recommended, since this barrier is key for important policy areas and risk assessment. Understanding the structural basis for strains and the basis for adaptation of a strain to a new host will require continued fundamental research, also needed to understand mechanisms of prion transmission, replication and how they cause nervous system dysfunction and death. Early detection of prion infection, ideally at a preclinical stage, also remains crucial for development of effective treatment strategies.
Collapse
Affiliation(s)
- Jesús R. Requena
- CIMUS Biomedical Research Institute, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Sue Godsave
- Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | | - Paul Laeven
- University of Maastricht, Maastricht, The Netherlands
| | | | - Eva Mitrova
- Medical University of Slovakia, Bratislava, Slovakia
| | | | | | - Peter J. Peters
- The Maastricht Multimodal Molecular Imaging Institute, University of Maastricht, Maastricht, The Netherlands
| | | | | | | | | | | | - Lothar Stitz
- Friedrich Löffler Institut, Insel Reims, Germany
| | | | | | | | - Inga Zerr
- Universitätmedizin Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| |
Collapse
|
24
|
Basu K, Campbell RL, Guo S, Sun T, Davies PL. Modeling repetitive, non-globular proteins. Protein Sci 2016; 25:946-58. [PMID: 26914323 DOI: 10.1002/pro.2907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 02/10/2016] [Accepted: 02/19/2016] [Indexed: 11/07/2022]
Abstract
While ab initio modeling of protein structures is not routine, certain types of proteins are more straightforward to model than others. Proteins with short repetitive sequences typically exhibit repetitive structures. These repetitive sequences can be more amenable to modeling if some information is known about the predominant secondary structure or other key features of the protein sequence. We have successfully built models of a number of repetitive structures with novel folds using knowledge of the consensus sequence within the sequence repeat and an understanding of the likely secondary structures that these may adopt. Our methods for achieving this success are reviewed here.
Collapse
Affiliation(s)
- Koli Basu
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Robert L Campbell
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Shuaiqi Guo
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Tianjun Sun
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Peter L Davies
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| |
Collapse
|
25
|
Louros NN, Baltoumas FA, Hamodrakas SJ, Iconomidou VA. A β-solenoid model of the Pmel17 repeat domain: insights to the formation of functional amyloid fibrils. J Comput Aided Mol Des 2016; 30:153-64. [PMID: 26754844 DOI: 10.1007/s10822-015-9892-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/21/2015] [Indexed: 10/22/2022]
Abstract
Pmel17 is a multidomain protein involved in biosynthesis of melanin. This process is facilitated by the formation of Pmel17 amyloid fibrils that serve as a scaffold, important for pigment deposition in melanosomes. A specific luminal domain of human Pmel17, containing 10 tandem imperfect repeats, designated as repeat domain (RPT), forms amyloid fibrils in a pH-controlled mechanism in vitro and has been proposed to be essential for the formation of the fibrillar matrix. Currently, no three-dimensional structure has been resolved for the RPT domain of Pmel17. Here, we examine the structure of the RPT domain by performing sequence threading. The resulting model was subjected to energy minimization and validated through extensive molecular dynamics simulations. Structural analysis indicated that the RPT model exhibits several distinct properties of β-solenoid structures, which have been proposed to be polymerizing components of amyloid fibrils. The derived model is stabilized by an extensive network of hydrogen bonds generated by stacking of highly conserved polar residues of the RPT domain. Furthermore, the key role of invariant glutamate residues is proposed, supporting a pH-dependent mechanism for RPT domain assembly. Conclusively, our work attempts to provide structural insights into the RPT domain structure and to elucidate its contribution to Pmel17 amyloid fibril formation.
Collapse
Affiliation(s)
- Nikolaos N Louros
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, 157 01, Athens, Greece
| | - Fotis A Baltoumas
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, 157 01, Athens, Greece
| | - Stavros J Hamodrakas
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, 157 01, Athens, Greece
| | - Vassiliki A Iconomidou
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, 157 01, Athens, Greece.
| |
Collapse
|
26
|
Benoit RM, Frey D, Wieser MM, Thieltges KM, Jaussi R, Capitani G, Kammerer RA. Structure of the BoNT/A1--receptor complex. Toxicon 2015; 107:25-31. [PMID: 26260692 DOI: 10.1016/j.toxicon.2015.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 08/04/2015] [Indexed: 11/16/2022]
Abstract
Botulinum neurotoxin A causes botulism but is also used for medical and cosmetic applications. A detailed molecular understanding of BoNT/A--host receptor interactions is therefore fundamental for improving current clinical applications and for developing new medical strategies targeting human disorders. Towards this end, we recently solved an X-ray crystal structure of BoNT/A1 in complex with its neuronal protein receptor SV2C. Based on our findings, we discuss the potential implications for BoNT/A function.
Collapse
Affiliation(s)
- Roger M Benoit
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Daniel Frey
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Mara M Wieser
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Katherine M Thieltges
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Rolf Jaussi
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Guido Capitani
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Richard A Kammerer
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland.
| |
Collapse
|
27
|
Zuckerman DM, Boucher LE, Xie K, Engelhardt H, Bosch J, Hoiczyk E. The bactofilin cytoskeleton protein BacM of Myxococcus xanthus forms an extended β-sheet structure likely mediated by hydrophobic interactions. PLoS One 2015; 10:e0121074. [PMID: 25803609 PMCID: PMC4372379 DOI: 10.1371/journal.pone.0121074] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/29/2015] [Indexed: 11/18/2022] Open
Abstract
Bactofilins are novel cytoskeleton proteins that are widespread in Gram-negative bacteria. Myxococcus xanthus, an important predatory soil bacterium, possesses four bactofilins of which one, BacM (Mxan_7475) plays an important role in cell shape maintenance. Electron and fluorescence light microscopy, as well as studies using over-expressed, purified BacM, indicate that this protein polymerizes in vivo and in vitro into ~3 nm wide filaments that further associate into higher ordered fibers of about 10 nm. Here we use a multipronged approach combining secondary structure determination, molecular modeling, biochemistry, and genetics to identify and characterize critical molecular elements that enable BacM to polymerize. Our results indicate that the bactofilin-determining domain DUF583 folds into an extended β-sheet structure, and we hypothesize a left-handed β-helix with polymerization into 3 nm filaments primarily via patches of hydrophobic amino acid residues. These patches form the interface allowing head-to-tail polymerization during filament formation. Biochemical analyses of these processes show that folding and polymerization occur across a wide variety of conditions and even in the presence of chaotropic agents such as one molar urea. Together, these data suggest that bactofilins are comprised of a structure unique to cytoskeleton proteins, which enables robust polymerization.
Collapse
Affiliation(s)
- David M. Zuckerman
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Lauren E. Boucher
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health and Johns Hopkins Malaria Research Institute, Baltimore, Maryland, United States of America
| | - Kefang Xie
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Harald Engelhardt
- Department of Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Germany
| | - Jürgen Bosch
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health and Johns Hopkins Malaria Research Institute, Baltimore, Maryland, United States of America
| | - Egbert Hoiczyk
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
28
|
Drobnak I, Braselmann E, Chaney JL, Leyton DL, Bernstein HD, Lithgow T, Luirink J, Nataro JP, Clark PL. Of linkers and autochaperones: an unambiguous nomenclature to identify common and uncommon themes for autotransporter secretion. Mol Microbiol 2014; 95:1-16. [PMID: 25345653 DOI: 10.1111/mmi.12838] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2014] [Indexed: 01/02/2023]
Abstract
Autotransporter (AT) proteins provide a diverse array of important virulence functions to Gram-negative bacterial pathogens, and have also been adapted for protein surface display applications. The 'autotransporter' moniker refers to early models that depicted these proteins facilitating their own translocation across the bacterial outer membrane. Although translocation is less autonomous than originally proposed, AT protein segments upstream of the C-terminal transmembrane β-barrel have nevertheless consistently been found to contribute to efficient translocation and/or folding of the N-terminal virulence region (the 'passenger'). However, defining the precise secretion functions of these AT regions has been complicated by the use of multiple overlapping and ambiguous terms to define AT sequence, structural, and functional features, including 'autochaperone', 'linker' and 'junction'. Moreover, the precise definitions and boundaries of these features vary among ATs and even among research groups, leading to an overall murky picture of the contributions of specific features to translocation. Here we propose a unified, unambiguous nomenclature for AT structural, functional and conserved sequence features, based on explicit criteria. Applied to 16 well-studied AT proteins, this nomenclature reveals new commonalities for translocation but also highlights that the autochaperone function is less closely associated with a conserved sequence element than previously believed.
Collapse
Affiliation(s)
- Igor Drobnak
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Dao TP, Majumdar A, Barrick D. Capping motifs stabilize the leucine-rich repeat protein PP32 and rigidify adjacent repeats. Protein Sci 2014; 23:801-11. [PMID: 24659532 DOI: 10.1002/pro.2462] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/19/2014] [Accepted: 03/20/2014] [Indexed: 12/23/2022]
Abstract
Capping motifs are found to flank most β-strand-containing repeat proteins. To better understand the roles of these capping motifs in organizing structure and stability, we carried out folding and solution NMR studies on the leucine-rich repeat (LRR) domain of PP32, which is composed of five tandem LRR, capped by α-helical and β-hairpin motifs on the N- and C-termini. We were able to purify PP32 constructs lacking either cap and containing destabilizing substitutions. Removing the C-cap results in complete unfolding of PP32. Removing the N-cap has a much less severe effect, decreasing stability but retaining much of its secondary structure. In contrast, the dynamics and tertiary structure of the first two repeats are significantly perturbed, based on (1)H-(15)N relaxation studies, chemical shift perturbations, and residual dipolar couplings. However, more distal repeats (3 to C-cap) retain their native tertiary structure. In this regard, the N-cap drives the folding of adjacent repeats from what appears to be a molten-globule-like state. This interpretation is supported by extensive analysis using core packing substitutions in the full-length and N-cap-truncated PP32. This work highlights the importance of caps to the stability and structural integrity of β-strand-containing LRR proteins, and emphasizes the different contributions of the N- and C-terminal caps.
Collapse
Affiliation(s)
- Thuy P Dao
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, 21218
| | | | | |
Collapse
|
30
|
Chinisaz M, Ghasemi A, Larijani B, Ebrahim-Habibi A. Amyloid formation and inhibition of an all-beta protein: A study on fungal polygalacturonase. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2013.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Benoit RM, Frey D, Hilbert M, Kevenaar JT, Wieser MM, Stirnimann CU, McMillan D, Ceska T, Lebon F, Jaussi R, Steinmetz MO, Schertler GFX, Hoogenraad CC, Capitani G, Kammerer RA. Structural basis for recognition of synaptic vesicle protein 2C by botulinum neurotoxin A. Nature 2013; 505:108-11. [PMID: 24240280 DOI: 10.1038/nature12732] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 10/03/2013] [Indexed: 01/09/2023]
Abstract
Botulinum neurotoxin A (BoNT/A) belongs to the most dangerous class of bioweapons. Despite this, BoNT/A is used to treat a wide range of common medical conditions such as migraines and a variety of ocular motility and movement disorders. BoNT/A is probably best known for its use as an antiwrinkle agent in cosmetic applications (including Botox and Dysport). BoNT/A application causes long-lasting flaccid paralysis of muscles through inhibiting the release of the neurotransmitter acetylcholine by cleaving synaptosomal-associated protein 25 (SNAP-25) within presynaptic nerve terminals. Two types of BoNT/A receptor have been identified, both of which are required for BoNT/A toxicity and are therefore likely to cooperate with each other: gangliosides and members of the synaptic vesicle glycoprotein 2 (SV2) family, which are putative transporter proteins that are predicted to have 12 transmembrane domains, associate with the receptor-binding domain of the toxin. Recently, fibroblast growth factor receptor 3 (FGFR3) has also been reported to be a potential BoNT/A receptor. In SV2 proteins, the BoNT/A-binding site has been mapped to the luminal domain, but the molecular details of the interaction between BoNT/A and SV2 are unknown. Here we determined the high-resolution crystal structure of the BoNT/A receptor-binding domain (BoNT/A-RBD) in complex with the SV2C luminal domain (SV2C-LD). SV2C-LD consists of a right-handed, quadrilateral β-helix that associates with BoNT/A-RBD mainly through backbone-to-backbone interactions at open β-strand edges, in a manner that resembles the inter-strand interactions in amyloid structures. Competition experiments identified a peptide that inhibits the formation of the complex. Our findings provide a strong platform for the development of novel antitoxin agents and for the rational design of BoNT/A variants with improved therapeutic properties.
Collapse
Affiliation(s)
- Roger M Benoit
- Laboratory of Biomolecular Research, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Daniel Frey
- 1] Laboratory of Biomolecular Research, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland [2]
| | - Manuel Hilbert
- 1] Laboratory of Biomolecular Research, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland [2]
| | - Josta T Kevenaar
- 1] Cell Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands [2]
| | - Mara M Wieser
- Laboratory of Biomolecular Research, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | | | - David McMillan
- UCB Celltech, UCB Pharma, UCB NewMedicines, Slough SL1 4EN, UK
| | - Tom Ceska
- UCB Celltech, UCB Pharma, UCB NewMedicines, Slough SL1 4EN, UK
| | - Florence Lebon
- UCB Pharma, UCB NewMedicines, B-1420 Braine-L'Alleud, Belgium
| | - Rolf Jaussi
- Laboratory of Biomolecular Research, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Gebhard F X Schertler
- 1] Laboratory of Biomolecular Research, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland [2] Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Casper C Hoogenraad
- Cell Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Guido Capitani
- Laboratory of Biomolecular Research, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Richard A Kammerer
- Laboratory of Biomolecular Research, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| |
Collapse
|
32
|
Sequential unfolding of beta helical protein by single-molecule atomic force microscopy. PLoS One 2013; 8:e73572. [PMID: 24009757 PMCID: PMC3756990 DOI: 10.1371/journal.pone.0073572] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 07/25/2013] [Indexed: 12/14/2022] Open
Abstract
The parallel βhelix is a common fold among extracellular proteins, however its mechanical properties remain unexplored. In Gram-negative bacteria, extracellular proteins of diverse functions of the large ‘TpsA’ family all fold into long βhelices. Here, single-molecule atomic force microscopy and steered molecular dynamics simulations were combined to investigate the mechanical properties of a prototypic TpsA protein, FHA, the major adhesin of Bordetella pertussis. Strong extension forces were required to fully unfold this highly repetitive protein, and unfolding occurred along a stepwise, hierarchical process. Our analyses showed that the extremities of the βhelix unfold early, while central regions of the helix are more resistant to mechanical unfolding. In particular, a mechanically resistant subdomain conserved among TpsA proteins and critical for secretion was identified. This nucleus harbors structural elements packed against the βhelix that might contribute to stabilizing the N-terminal region of FHA. Hierarchical unfolding of the βhelix in response to a mechanical stress may maintain β-helical portions that can serve as templates for regaining the native structure after stress. The mechanical properties uncovered here might apply to many proteins with β-helical or related folds, both in prokaryotes and in eukaryotes, and play key roles in their structural integrity and functions.
Collapse
|
33
|
Tandem-repeat proteins: regularity plus modularity equals design-ability. Curr Opin Struct Biol 2013; 23:622-31. [PMID: 23831287 DOI: 10.1016/j.sbi.2013.06.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 12/16/2022]
Abstract
Researchers in the field of rational protein design face a significant challenge, which arises from the two defining and inter-related features of typical globular protein structures, namely topological complexity and cooperativity. In striking contrast to globular proteins, tandem repeat proteins, such as ankyrin, tetratricopeptide and leucine-rich repeats, have regular, modular, linearly arrayed structures which makes it especially straightforward to dissect and redesign their properties. Here we review what we have learnt about the biophysics of natural repeat proteins and recent progress in applying that knowledge to engineer the thermodynamics, folding pathways and molecular recognition properties of tandem repeat proteins, and we discuss the wealth of possibilities presented for the extension of this modular construction process to build new molecules for use in medicine and biotechnology.
Collapse
|
34
|
Hagiwara K, Hara H, Hanada K. Species-barrier phenomenon in prion transmissibility from a viewpoint of protein science. J Biochem 2013; 153:139-45. [PMID: 23284000 DOI: 10.1093/jb/mvs148] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Transmissible spongiform encephalopathies (TSEs), or prion diseases, are fatal infectious neurodegenerative disorders. Their causative agents are prions, which are composed of disease-associated forms of prion protein (PrP(Sc)). Naturally occurring cases of TSEs are found in several mammalian species including humans, sheep, goats, minks, cattle and deer. Prions are also experimentally transmissible to other mammals such as mice, hamsters and monkeys, but interspecies transmission is often inefficient due to the 'species-barrier'. Studies have suggested that the barrier is not only simply determined by differences in amino acid sequences of cellular PrP (PrP(C)) among animal species, but also by prion strains which are closely associated with conformational properties of PrP(Sc) aggregates. Although the conformational properties of PrP(Sc) remain largely unknown, recent investigation of local structures of PrP(C) and, in particular, structural modelling of PrP(Sc) aggregates have provided molecular insight into this field. In this review, we discuss the species-barrier phenomenon in terms of the protein science.
Collapse
Affiliation(s)
- Ken'ichi Hagiwara
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan.
| | | | | |
Collapse
|
35
|
Middleton AJ, Marshall CB, Faucher F, Bar-Dolev M, Braslavsky I, Campbell RL, Walker VK, Davies PL. Antifreeze protein from freeze-tolerant grass has a beta-roll fold with an irregularly structured ice-binding site. J Mol Biol 2012; 416:713-24. [PMID: 22306740 DOI: 10.1016/j.jmb.2012.01.032] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 01/18/2012] [Indexed: 11/16/2022]
Abstract
The grass Lolium perenne produces an ice-binding protein (LpIBP) that helps this perennial tolerate freezing by inhibiting the recrystallization of ice. Ice-binding proteins (IBPs) are also produced by freeze-avoiding organisms to halt the growth of ice and are better known as antifreeze proteins (AFPs). To examine the structural basis for the different roles of these two IBP types, we have solved the first crystal structure of a plant IBP. The 118-residue LpIBP folds as a novel left-handed beta-roll with eight 14- or 15-residue coils and is stabilized by a small hydrophobic core and two internal Asn ladders. The ice-binding site (IBS) is formed by a flat beta-sheet on one surface of the beta-roll. We show that LpIBP binds to both the basal and primary-prism planes of ice, which is the hallmark of hyperactive AFPs. However, the antifreeze activity of LpIBP is less than 10% of that measured for those hyperactive AFPs with convergently evolved beta-solenoid structures. Whereas these hyperactive AFPs have two rows of aligned Thr residues on their IBS, the equivalent arrays in LpIBP are populated by a mixture of Thr, Ser and Val with several side-chain conformations. Substitution of Ser or Val for Thr on the IBS of a hyperactive AFP reduced its antifreeze activity. LpIBP may have evolved an IBS that has low antifreeze activity to avoid damage from rapid ice growth that occurs when temperatures exceed the capacity of AFPs to block ice growth while retaining the ability to inhibit ice recrystallization.
Collapse
Affiliation(s)
- Adam J Middleton
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | | | | | | | | | | | |
Collapse
|