1
|
Wu T, Ma T, Xu T, Pan L, Zhang Y, Li Y, Ning D. The De Novo Genome Assembly of Olea europaea subsp. cuspidate, a Widely Distributed Olive Close Relative. Front Genet 2022; 13:868540. [PMID: 36092936 PMCID: PMC9454953 DOI: 10.3389/fgene.2022.868540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
The olive complex, comprising six subspecies, is a valuable plant for global trade, human health, and food safety. However, only one subspecies (Olea europaea subsp. europaea, OE) and its wild relative (Olea europaea subsp. europaea var. sylvestris, OS) have genomic references, hindering our understanding of the evolution of this species. Using a hybrid approach by incorporating Illumina, MGI, Nanopore, and Hi-C technologies, we obtained a 1.20-Gb genome assembly for the olive subspecies, Olea europaea subsp. cuspidate (OC), with contig and scaffold N50 values of 5.33 and 50.46 Mb, respectively. A total of 43,511 protein-coding genes were predicted from the genome. Interestingly, we observed a large region (37.5 Mb) of “gene-desert” also called “LTR-hotspot” on chromosome 17. The gene origination analyses revealed a substantial outburst (19.5%) of gene transposition events in the common ancestor of olive subspecies, suggesting the importance of olive speciation in shaping the new gene evolution of OC subspecies. The divergence time between OC and the last common ancestor of OE and OS was estimated to be 4.39 Mya (95% CI: 2.58–6.23 Mya). The pathways of positively selected genes of OC are related to the metabolism of cofactors and vitamins, indicating the potential medical and economic values of OC for further research and utilization. In summary, we constructed the de novo genome assembly and protein-coding gene pool for Olea europaea subsp. cuspidate (OC) in this study, which may facilitate breeding applications of improved olive varieties from this widely distributed olive close relative.
Collapse
Affiliation(s)
| | | | | | | | | | - Yongjie Li
- *Correspondence: Yongjie Li, ; Delu Ning,
| | - Delu Ning
- *Correspondence: Yongjie Li, ; Delu Ning,
| |
Collapse
|
2
|
Miller D, Chen J, Liang J, Betrán E, Long M, Sharakhov IV. Retrogene Duplication and Expression Patterns Shaped by the Evolution of Sex Chromosomes in Malaria Mosquitoes. Genes (Basel) 2022; 13:genes13060968. [PMID: 35741730 PMCID: PMC9222922 DOI: 10.3390/genes13060968] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 12/19/2022] Open
Abstract
Genes that originate during evolution are an important source of novel biological functions. Retrogenes are functional copies of genes produced by retroduplication and as such are located in different genomic positions. To investigate retroposition patterns and retrogene expression, we computationally identified interchromosomal retroduplication events in nine portions of the phylogenetic history of malaria mosquitoes, making use of species that do or do not have classical sex chromosomes to test the roles of sex-linkage. We found 40 interchromosomal events and a significant excess of retroduplications from the X chromosome to autosomes among a set of young retrogenes. These young retroposition events occurred within the last 100 million years in lineages where all species possessed differentiated sex chromosomes. An analysis of available microarray and RNA-seq expression data for Anopheles gambiae showed that many of the young retrogenes evolved male-biased expression in the reproductive organs. Young autosomal retrogenes with increased meiotic or postmeiotic expression in the testes tend to be male biased. In contrast, older retrogenes, i.e., in lineages with undifferentiated sex chromosomes, do not show this particular chromosomal bias and are enriched for female-biased expression in reproductive organs. Our reverse-transcription PCR data indicates that most of the youngest retrogenes, which originated within the last 47.6 million years in the subgenus Cellia, evolved non-uniform expression patterns across body parts in the males and females of An. coluzzii. Finally, gene annotation revealed that mitochondrial function is a prominent feature of the young autosomal retrogenes. We conclude that mRNA-mediated gene duplication has produced a set of genes that contribute to mosquito reproductive functions and that different biases are revealed after the sex chromosomes evolve. Overall, these results suggest potential roles for the evolution of meiotic sex chromosome inactivation in males and of sexually antagonistic conflict related to mitochondrial energy function as the main selective pressures for X-to-autosome gene reduplication and testis-biased expression in these mosquito lineages.
Collapse
Affiliation(s)
- Duncan Miller
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (D.M.); (J.L.)
| | - Jianhai Chen
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA;
| | - Jiangtao Liang
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (D.M.); (J.L.)
| | - Esther Betrán
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA;
| | - Manyuan Long
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA;
- Correspondence: (M.L.); (I.V.S.)
| | - Igor V. Sharakhov
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (D.M.); (J.L.)
- Department of Genetics and Cell Biology, Tomsk State University, 634050 Tomsk, Russia
- Correspondence: (M.L.); (I.V.S.)
| |
Collapse
|
3
|
Gao RF, Wang JY, Liu KW, Wang ZW, Zhang D, Zhao X, Zhong WY, Tsai WC, Liu ZJ, Zhang GM. Comparative analysis of Phytophthora genomes data. Data Brief 2021; 39:107663. [PMID: 34926741 PMCID: PMC8649214 DOI: 10.1016/j.dib.2021.107663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 12/05/2022] Open
Abstract
The data presented here are related to the article entitled “Comparative analysis of Phytophthora genomes reveals oomycete pathogenesis in crops” [1]. These data contain the description of genomic structure of the two plant pathogens, P. fragariae and P. rubi and characterize several gene families associated with pathogenicity of them: P450, ACX gene families, CAZymes and effector. This data presents the relevant results of two newly sequenced P. fragariae and P. rubi, so as to provide data for further studies by researchers.
Collapse
Affiliation(s)
- Rui-Fang Gao
- Animal & Plant Inspection and Quarantine Technology Center of Shenzhen Customs District P.R. China, Shenzhen 518045, China.,Shenzhen Key Laboratory for Research & Development on Detection Technology of Alien Pests, Shenzhen Academy of Inspection and Quarantine, Shenzhen 518045, China
| | - Jie-Yu Wang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Ke-Wei Liu
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Center for Biotechnology and Biomedicine, Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, State Key Laboratory of Health Sciences and Technology, Institute of Biopharmaceutical and Health Engineering (iBHE), Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhi-Wen Wang
- PubBio-Tech Services Corporation, Wuhan 430070, China
| | - Diyang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiang Zhao
- PubBio-Tech Services Corporation, Wuhan 430070, China
| | | | - Wen-Chieh Tsai
- Orchid Research and Development Center, National Cheng Kung University, Tainan 701, Taiwan.,Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan.,Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan 701, Taiwan
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Institute of Vegetable and Flowers, Shandong Academy of Agricultural Sciences, 250100, Jinan, China.,Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China
| | - Gui-Ming Zhang
- Animal & Plant Inspection and Quarantine Technology Center of Shenzhen Customs District P.R. China, Shenzhen 518045, China.,Shenzhen Key Laboratory for Research & Development on Detection Technology of Alien Pests, Shenzhen Academy of Inspection and Quarantine, Shenzhen 518045, China
| |
Collapse
|
4
|
Machuka EM, Muigai AWT, Amimo JO, Domelevo Entfellner JB, Lekolool I, Abworo EO, Pelle R. Comparative Analysis of SLA-1, SLA-2, and DQB1 Genetic Diversity in Locally-Adapted Kenyan Pigs and Their Wild Relatives, Warthogs. Vet Sci 2021; 8:180. [PMID: 34564574 PMCID: PMC8473215 DOI: 10.3390/vetsci8090180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
Swine leukocyte antigen (SLA) plays a central role in controlling the immune response by discriminating self and foreign antigens and initiating an immune response. Studies on SLA polymorphism have demonstrated associations between SLA allelic variants, immune response, and disease resistance. The SLA polymorphism is due to host-pathogen co-evolution resulting in improved adaptation to diverse environments making SLA a crucial genomic region for comparative diversity studies. Although locally-adapted African pigs have small body sizes, they possess increased resilience under harsh environmental conditions and robust immune systems with reported tolerance to some diseases, including African swine fever. However, data on the SLA diversity in these pigs are not available. We characterized the SLA of unrelated locally-adapted domestic pigs from Homa Bay, Kenya, alongside exotic pigs and warthogs. We undertook SLA comparative diversity of the functionally expressed SLA class I (SLA-1, SLA-2) and II (DQB1) repertoires in these three suids using the reverse transcription polymerase chain reaction (RT-PCR) sequence-based typing (SBT) method. Our data revealed higher genetic diversity in the locally-adapted pigs and warthogs compared to the exotic pigs. The nucleotide substitution rates were higher in the peptide-binding regions of the SLA-1, SLA-2, and DQB1 loci, indicative of adaptive evolution. We obtained high allele frequencies in the three SLA loci, including some breed-specific private alleles, which could guide breeders to increase their frequency through selection if confirmed to be associated with enhanced resilience. Our study contributes to the growing body of knowledge on genetic diversity in free-ranging animal populations in their natural environment, availing the first DQB1 gene data from locally-adapted Kenyan pigs.
Collapse
Affiliation(s)
- Eunice Magoma Machuka
- Biosciences Eastern and Central Africa, International Livestock Research Institute (BecA-ILRI) Hub, Nairobi P.O. Box 30709-00100, Kenya;
- Institute for Basic Sciences Technology and Innovation (PAUSTI), Pan African University, Nairobi P.O. Box 62000-00200, Kenya
| | - Anne W. Thairu Muigai
- Botany Department, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-00200, Kenya;
| | - Joshua Oluoch Amimo
- Center for Food Animal Health, Department of Animal Sciences, 1680 Madison Avenue, The Ohio State University, Wooster, OH 44691, USA;
| | - Jean-Baka Domelevo Entfellner
- Biosciences Eastern and Central Africa, International Livestock Research Institute (BecA-ILRI) Hub, Nairobi P.O. Box 30709-00100, Kenya;
| | - Isaac Lekolool
- Kenya Wildlife Services, Nairobi P.O. Box 40241-00100, Kenya;
| | - Edward Okoth Abworo
- Animal and Human Health Program, International Livestock Research Institute, Nairobi P.O. Box 30709-00100, Kenya;
| | - Roger Pelle
- Biosciences Eastern and Central Africa, International Livestock Research Institute (BecA-ILRI) Hub, Nairobi P.O. Box 30709-00100, Kenya;
| |
Collapse
|
5
|
The new chimeric chiron genes evolved essential roles in zebrafish embryonic development by regulating NAD + levels. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1929-1948. [PMID: 33521859 DOI: 10.1007/s11427-020-1851-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/16/2020] [Indexed: 10/22/2022]
Abstract
The origination of new genes is important for generating genetic novelties for adaptive evolution and biological diversity. However, their potential roles in embryonic development, evolutionary processes into ancient networks, and contributions to adaptive evolution remain poorly investigated. Here, we identified a novel chimeric gene family, the chiron family, and explored its genetic basis and functional evolution underlying the adaptive evolution of Danioninae fishes. The ancestral chiron gene originated through retroposition of nampt in Danioninae 48-54 million years ago (Mya) and expanded into five duplicates (chiron1-5) in zebrafish 1-4 Mya. The chiron genes (chirons) likely originated in embryonic development and gradually extended their expression in the testis. Functional experiments showed that chirons were essential for zebrafish embryo development. By integrating into the NAD+ synthesis pathway, chirons could directly catalyze the NAD+ rate-limiting reaction and probably impact two energy metabolism genes (nmnat1 and naprt) to be under positive selection in Danioninae fishes. Together, these results mainly demonstrated that the origin of new chimeric chiron genes may be involved in adaptive evolution by integrating and impacting the NAD+ biosynthetic pathway. This coevolution may contribute to the physiological adaptation of Danioninae fishes to widespread and varied biomes in Southeast Asian.
Collapse
|
6
|
Zhou Y, Zhang C. Evolutionary patterns of chimeric retrogenes in Oryza species. Sci Rep 2019; 9:17733. [PMID: 31776387 PMCID: PMC6881317 DOI: 10.1038/s41598-019-54085-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 10/30/2019] [Indexed: 11/23/2022] Open
Abstract
Chimeric retroposition is a process by which RNA is reverse transcribed and the resulting cDNA is integrated into the genome along with flanking sequences. This process plays essential roles and drives genome evolution. Although the origination rates of chimeric retrogenes are high in plant genomes, the evolutionary patterns of the retrogenes and their parental genes are relatively uncharacterised in the rice genome. In this study, we evaluated the substitution ratio of 24 retrogenes and their parental genes to clarify their evolutionary patterns. The results indicated that seven gene pairs were under positive selection. Additionally, soon after new chimeric retrogenes were formed, they rapidly evolved. However, an unexpected pattern was also revealed. Specifically, after an undefined period following the formation of new chimeric retrogenes, the parental genes, rather than the new chimeric retrogenes, rapidly evolved under positive selection. We also observed that one retro chimeric gene (RCG3) was highly expressed in infected calli, whereas its parental gene was not. Finally, a comparison of our Ka/Ks analysis with that of other species indicated that the proportion of genes under positive selection is greater for chimeric retrogenes than for non-chimeric retrogenes in the rice genome.
Collapse
Affiliation(s)
- Yanli Zhou
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, No. 132 Lanhei Road, Kunming, 650201, Yunnan, China
| | - Chengjun Zhang
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, No. 132 Lanhei Road, Kunming, 650201, Yunnan, China. .,Haiyan Engineering & Technology Center, Kunming Institute of Botany, Chinese Academy of Science, Jiaxing, 314300, Zhejiang, China.
| |
Collapse
|
7
|
Xia S, Wang Z, Zhang H, Hu K, Zhang Z, Qin M, Dun X, Yi B, Wen J, Ma C, Shen J, Fu T, Tu J. Altered Transcription and Neofunctionalization of Duplicated Genes Rescue the Harmful Effects of a Chimeric Gene in Brassica napus. THE PLANT CELL 2016; 28:2060-2078. [PMID: 27559024 PMCID: PMC5059798 DOI: 10.1105/tpc.16.00281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/19/2016] [Accepted: 08/24/2016] [Indexed: 05/04/2023]
Abstract
Chimeric genes contribute to the evolution of diverse functions in plants and animals. However, new chimeric genes also increase the risk of developmental defects. Here, we show that the chimeric gene Brassica napus male sterile 4 (Bnams4b ) is responsible for genic male sterility in the widely used canola line 7365A (Bnams3 ms3ms4bms4b ). Bnams4b originated via exon shuffling ∼4.6 million years ago. It causes defects in the normal functions of plastids and induces aborted anther formation and/or albino leaves and buds. Evidence of the age of the mutation, its tissue expression pattern, and its sublocalization indicated that it coevolved with BnaC9.Tic40 (BnaMs3). In Arabidopsis thaliana, Bnams4b results in complete male sterility that can be rescued by BnaC9.Tic40, suggesting that BnaC9.Tic40 might restore fertility through effects on protein level. Another suppressor gene, Bnams4a , rescues sterility by reducing the level of transcription of Bnams4b Our results suggest that Brassica plants have coevolved altered transcription patterns and neofunctionalization of duplicated genes that can block developmental defects resulting from detrimental chimeric genes.
Collapse
Affiliation(s)
- Shengqian Xia
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhixin Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Haiyan Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Kaining Hu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiqiang Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Maomao Qin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoling Dun
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
8
|
Sun H, Guo K, Feng S, Zou W, Li Y, Fan C, Peng L. Positive selection drives adaptive diversification of the 4-coumarate: CoA ligase (4CL) gene in angiosperms. Ecol Evol 2015; 5:3413-20. [PMID: 26380674 PMCID: PMC4569036 DOI: 10.1002/ece3.1613] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/25/2015] [Accepted: 06/25/2015] [Indexed: 11/23/2022] Open
Abstract
Lignin and flavonoids play a vital role in the adaption of plants to a terrestrial environment. 4-Coumarate: coenzyme A ligase (4CL) is a key enzyme of general phenylpropanoid metabolism which provides the precursors for both lignin and flavonoids biosynthesis. However, very little is known about how such essential enzymatic functions evolve and diversify. Here, we analyze 4CL sequence variation patterns in a phylogenetic framework to further identify the evolutionary forces that lead to functional divergence. The results reveal that lignin-biosynthetic 4CLs are under positive selection. The majority of the positively selected sites are located in the substrate-binding pocket and the catalytic center, indicating that nonsynonymous substitutions might contribute to the functional evolution of 4CLs for lignin biosynthesis. The evolution of 4CLs involved in flavonoid biosynthesis is constrained by purifying selection and maintains the ancestral role of the protein in response to biotic and abiotic factors. Overall, our results demonstrate that protein sequence evolution via positive selection is an important evolutionary force driving adaptive diversification in 4CL proteins in angiosperms. This diversification is associated with adaption to a terrestrial environment.
Collapse
Affiliation(s)
- Haiyan Sun
- School of Biology and Food Engineering, Changshu Institute of Technology Changshu, 215500, China ; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University Wuhan, 430070, China ; Biomass and Bioenergy Research Centre, Huazhong Agricultural University Wuhan, 430070, China ; College of Life Science and Technology, Huazhong Agricultural University Wuhan, 430070, China
| | - Kai Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University Wuhan, 430070, China ; Biomass and Bioenergy Research Centre, Huazhong Agricultural University Wuhan, 430070, China ; College of Life Science and Technology, Huazhong Agricultural University Wuhan, 430070, China
| | - Shengqiu Feng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University Wuhan, 430070, China ; Biomass and Bioenergy Research Centre, Huazhong Agricultural University Wuhan, 430070, China ; College of Plant Science and Technology, Huazhong Agricultural University Wuhan, 430070, China
| | - Weihua Zou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University Wuhan, 430070, China ; Biomass and Bioenergy Research Centre, Huazhong Agricultural University Wuhan, 430070, China ; College of Plant Science and Technology, Huazhong Agricultural University Wuhan, 430070, China
| | - Ying Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University Wuhan, 430070, China ; Biomass and Bioenergy Research Centre, Huazhong Agricultural University Wuhan, 430070, China ; College of Plant Science and Technology, Huazhong Agricultural University Wuhan, 430070, China
| | - Chunfen Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University Wuhan, 430070, China ; Biomass and Bioenergy Research Centre, Huazhong Agricultural University Wuhan, 430070, China ; College of Plant Science and Technology, Huazhong Agricultural University Wuhan, 430070, China
| | - Liangcai Peng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University Wuhan, 430070, China ; Biomass and Bioenergy Research Centre, Huazhong Agricultural University Wuhan, 430070, China ; College of Life Science and Technology, Huazhong Agricultural University Wuhan, 430070, China ; College of Plant Science and Technology, Huazhong Agricultural University Wuhan, 430070, China
| |
Collapse
|
9
|
Zhang Q, Su B. Evolutionary origin and human-specific expansion of a cancer/testis antigen gene family. Mol Biol Evol 2014; 31:2365-75. [PMID: 24916032 DOI: 10.1093/molbev/msu188] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cancer/testis (CT) antigens are encoded by germline genes and are aberrantly expressed in a number of human cancers. Interestingly, CT antigens are frequently involved in gene families that are highly expressed in germ cells. Here, we presented an evolutionary analysis of the CTAGE (cutaneous T-cell-lymphoma-associated antigen) gene family to delineate its molecular history and functional significance during primate evolution. Comparisons among human, chimpanzee, gorilla, orangutan, macaque, marmoset, and other mammals show a rapid and primate specific expansion of CTAGE family, which starts with an ancestral retroposition in the haplorhini ancestor. Subsequent DNA-based duplications lead to the prosperity of single-exon CTAGE copies in catarrhines, especially in humans. Positive selection was identified on the single-exon copies in comparison with functional constraint on the multiexon copies. Further sequence analysis suggests that the newly derived CTAGE genes may obtain regulatory elements from long terminal repeats. Our result indicates the dynamic evolution of primate genomes, and the recent expansion of this CT antigen family in humans may confer advantageous phenotypic traits during early human evolution.
Collapse
Affiliation(s)
- Qu Zhang
- Department of Human Evolutionary Biology, Graduate School of Art and Science, Harvard University
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
10
|
Ren LL, Liu YJ, Liu HJ, Qian TT, Qi LW, Wang XR, Zeng QY. Subcellular Relocalization and Positive Selection Play Key Roles in the Retention of Duplicate Genes of Populus Class III Peroxidase Family. THE PLANT CELL 2014; 26:2404-2419. [PMID: 24934172 PMCID: PMC4114941 DOI: 10.1105/tpc.114.124750] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/18/2014] [Accepted: 05/24/2014] [Indexed: 05/20/2023]
Abstract
Gene duplication is the primary source of new genes and novel functions. Over the course of evolution, many duplicate genes lose their function and are eventually removed by deletion. However, some duplicates have persisted and evolved diverse functions. A particular challenge is to understand how this diversity arises and whether positive selection plays a role. In this study, we reconstructed the evolutionary history of the class III peroxidase (PRX) genes from the Populus trichocarpa genome. PRXs are plant-specific enzymes that play important roles in cell wall metabolism and in response to biotic and abiotic stresses. We found that two large tandem-arrayed clusters of PRXs evolved from an ancestral cell wall type PRX to vacuole type, followed by tandem duplications and subsequent functional specification. Substitution models identified seven positively selected sites in the vacuole PRXs. These positively selected sites showed significant effects on the biochemical functions of the enzymes. We also found that positive selection acts more frequently on residues adjacent to, rather than directly at, a critical active site of the enzyme, and on flexible regions rather than on rigid structural elements of the protein. Our study provides new insights into the adaptive molecular evolution of plant enzyme families.
Collapse
Affiliation(s)
- Lin-Ling Ren
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan-Jing Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Hai-Jing Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ting-Ting Qian
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Li-Wang Qi
- Laboratory of Cell Biology, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Xiao-Ru Wang
- Department of Ecology and Environmental Science, UPSC, Umeå University, SE-90187 Umeå, Sweden
| | - Qing-Yin Zeng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
11
|
Smith SA, Haig D, Emes RD. Novel ovine polymorphisms and adaptive evolution in mammalian TLR2 suggest existence of multiple pathogen binding regions. Gene 2014; 540:217-25. [PMID: 24582976 DOI: 10.1016/j.gene.2014.02.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/11/2014] [Accepted: 02/17/2014] [Indexed: 12/13/2022]
Abstract
Toll-like receptors initiate inflammatory responses following the recognition of a wide repertoire of pathogens including bacteria, fungi, protozoa and viruses. They are composed of an extracellular leucine-rich repeat domain responsible for detecting pathogen-associated molecular patterns, a membrane spanning region and an intracellular Toll/Interleukin 1 receptor domain which invokes signal transduction. Toll-like receptor 2 is the most diverse of these receptors as it recognises infectious agents from a range of pathogenic groups. Over 1400 breeds of sheep exist worldwide that inhabit a diverse range of environments, which leads to the potential contact with a wide variety of pathogens likely detected by Toll-like receptor 2. In this study, we evaluated the extent of both long term evolutionary changes, across the mammalian phylogeny of the TLR2 gene, and recent divergence of this same gene in sheep breeds. Evolutionary analyses identified positive selective pressure across the mammalian phylogeny, and differential selection pressure within the artiodactyl and primate lineage. Finally, we identified localised positively-selected sites within two regions of the extracellular domain which suggest that multiple binding regions in TLR2 may be involved in pathogen detection. These results are consistent with the hypothesis that competition between host and pathogen is driving adaptation of Toll-like receptor 2 genes.
Collapse
Affiliation(s)
- S A Smith
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, LE12 5RD, UK.
| | - D Haig
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, LE12 5RD, UK.
| | - R D Emes
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, LE12 5RD, UK.
| |
Collapse
|
12
|
Yan W, Liu H, Zhou X, Li Q, Zhang J, Lu L, Liu T, Liu H, Zhang C, Zhang Z, Shen G, Yao W, Chen H, Yu S, Xie W, Xing Y. Natural variation in Ghd7.1 plays an important role in grain yield and adaptation in rice. Cell Res 2013; 23:969-71. [PMID: 23507971 DOI: 10.1038/cr.2013.43] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
13
|
Dutheil JY, Galtier N, Romiguier J, Douzery EJ, Ranwez V, Boussau B. Efficient Selection of Branch-Specific Models of Sequence Evolution. Mol Biol Evol 2012; 29:1861-74. [DOI: 10.1093/molbev/mss059] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
14
|
Zhang YE, Landback P, Vibranovski MD, Long M. Accelerated recruitment of new brain development genes into the human genome. PLoS Biol 2011; 9:e1001179. [PMID: 22028629 PMCID: PMC3196496 DOI: 10.1371/journal.pbio.1001179] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 09/08/2011] [Indexed: 11/24/2022] Open
Abstract
How the human brain evolved has attracted tremendous interests for decades. Motivated by case studies of primate-specific genes implicated in brain function, we examined whether or not the young genes, those emerging genome-wide in the lineages specific to the primates or rodents, showed distinct spatial and temporal patterns of transcription compared to old genes, which had existed before primate and rodent split. We found consistent patterns across different sources of expression data: there is a significantly larger proportion of young genes expressed in the fetal or infant brain of humans than in mouse, and more young genes in humans have expression biased toward early developing brains than old genes. Most of these young genes are expressed in the evolutionarily newest part of human brain, the neocortex. Remarkably, we also identified a number of human-specific genes which are expressed in the prefrontal cortex, which is implicated in complex cognitive behaviors. The young genes upregulated in the early developing human brain play diverse functional roles, with a significant enrichment of transcription factors. Genes originating from different mechanisms show a similar expression bias in the developing brain. Moreover, we found that the young genes upregulated in early brain development showed rapid protein evolution compared to old genes also expressed in the fetal brain. Strikingly, genes expressed in the neocortex arose soon after its morphological origin. These four lines of evidence suggest that positive selection for brain function may have contributed to the origination of young genes expressed in the developing brain. These data demonstrate a striking recruitment of new genes into the early development of the human brain.
Collapse
Affiliation(s)
- Yong E. Zhang
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America
| | - Patrick Landback
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America
| | - Maria D. Vibranovski
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|