1
|
Oz M, Lorke DE, Howarth FC. Transient receptor potential vanilloid 1 (TRPV1)-independent actions of capsaicin on cellular excitability and ion transport. Med Res Rev 2023. [PMID: 36916676 DOI: 10.1002/med.21945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 01/17/2023] [Accepted: 02/26/2023] [Indexed: 03/15/2023]
Abstract
Capsaicin is a naturally occurring alkaloid derived from chili pepper that is responsible for its hot pungent taste. Capsaicin is known to exert multiple pharmacological actions, including analgesia, anticancer, anti-inflammatory, antiobesity, and antioxidant effects. The transient receptor potential vanilloid subfamily member 1 (TRPV1) is the main receptor mediating the majority of the capsaicin effects. However, numerous studies suggest that the TRPV1 receptor is not the only target for capsaicin. An increasing number of studies indicates that capsaicin, at low to mid µM ranges, not only indirectly through TRPV1-mediated Ca2+ increases, but also directly modulates the functions of voltage-gated Na+ , K+ , and Ca2+ channels, as well as ligand-gated ion channels and other ion transporters and enzymes involved in cellular excitability. These TRPV1-independent effects are mediated by alterations of the biophysical properties of the lipid membrane and subsequent modulation of the functional properties of ion channels and by direct binding of capsaicin to the channels. The present study, for the first time, systematically categorizes this diverse range of non-TRPV1 targets and discusses cellular and molecular mechanisms mediating TRPV1-independent effects of capsaicin in excitable, as well as nonexcitable cells.
Collapse
Affiliation(s)
- Murat Oz
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat, Kuwait
| | - Dietrich E Lorke
- Department of Anatomy and Cellular Biology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates.,Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Frank C Howarth
- Department of Physiology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| |
Collapse
|
2
|
Isaev D, Yang KHS, Shabbir W, Howarth FC, Oz M. Capsaicin Inhibits Multiple Voltage-Gated Ion Channels in Rabbit Ventricular Cardiomyocytes in TRPV1-Independent Manner. Pharmaceuticals (Basel) 2022; 15:ph15101187. [PMID: 36297299 PMCID: PMC9611941 DOI: 10.3390/ph15101187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Capsaicin is a naturally occurring alkaloid derived from chili pepper which is responsible for its hot, pungent taste. It exerts multiple pharmacological actions, including pain-relieving, anti-cancer, anti-inflammatory, anti-obesity, and antioxidant effects. Previous studies have shown that capsaicin significantly affects the contractility and automaticity of the heart and alters cardiovascular functions. In this study, the effects of capsaicin were investigated on voltage-gated ion currents in rabbit ventricular myocytes. Capsaicin inhibited rapidly activated (IKr) and slowly activated (IKs) K+ currents and transient outward (Ito) K+ current with IC50 values of 3.4 µM,14.7 µM, and 9.6 µM, respectively. In addition, capsaicin, at higher concentrations, suppressed voltage-gated Na+ and Ca2+ currents and inward rectifier IK1 current with IC50 values of 42.7 µM, 34.9 µM, and 38.8 µM, respectively. Capsaicin inhibitions of INa, IL-Ca, IKr, IKs, Ito, and IK1 were not reversed in the presence of capsazepine (3 µM), a TRPV1 antagonist. The inhibitory effects of capsaicin on these currents developed gradually, reaching steady-state levels within 3 to 6 min, and the recoveries were usually incomplete during washout. In concentration-inhibition curves, apparent Hill coefficients higher than unity suggested multiple interaction sites of capsaicin on these channels. Collectively, these findings indicate that capsaicin affects cardiac electrophysiology by acting on a diverse range of ion channels and suggest that caution should be exercised when capsaicin is administered to carriers of cardiac channelopathies or to individuals with arrhythmia-prone conditions, such as ischemic heart diseases.
Collapse
Affiliation(s)
- Dmytro Isaev
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, 01024 Kiev, Ukraine
| | - Keun-Hang Susan Yang
- Department of Biological Sciences, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA 92866, USA
| | - Waheed Shabbir
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, 01024 Kiev, Ukraine
| | - Frank Christopher Howarth
- Department of Physiology, College of Medicine and Health Sciences, UAE University, Abu Dhabi 15551, United Arab Emirates
| | - Murat Oz
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait
- Correspondence: ; Tel.: +965-99758003
| |
Collapse
|
3
|
Maer AM, Rusinova R, Providence LL, Ingólfsson HI, Collingwood SA, Lundbæk JA, Andersen OS. Regulation of Gramicidin Channel Function Solely by Changes in Lipid Intrinsic Curvature. Front Physiol 2022; 13:836789. [PMID: 35350699 PMCID: PMC8957996 DOI: 10.3389/fphys.2022.836789] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Membrane protein function is regulated by the lipid bilayer composition. In many cases the changes in function correlate with changes in the lipid intrinsic curvature (c 0), and c 0 is considered a determinant of protein function. Yet, water-soluble amphiphiles that cause either negative or positive changes in curvature have similar effects on membrane protein function, showing that changes in lipid bilayer properties other than c 0 are important-and may be dominant. To further investigate the mechanisms underlying the bilayer regulation of protein function, we examined how maneuvers that alter phospholipid head groups effective "size"-and thereby c 0-alter gramicidin (gA) channel function. Using dioleoylphospholipids and planar bilayers, we varied the head groups' physical volume and the electrostatic repulsion among head groups (and thus their effective size). When 1,2-dioleyol-sn-glycero-3-phosphocholine (DOPC), was replaced by 1,2-dioleyol-sn-glycero-3-phosphoethanolamine (DOPE) with a smaller head group (causing a more negative c 0), the channel lifetime (τ) is decreased. When the pH of the solution bathing a 1,2-dioleyol-sn-glycero-3-phosphoserine (DOPS) bilayer is decreased from 7 to 3 (causing decreased head group repulsion and a more negative c 0), τ is decreased. When some DOPS head groups are replaced by zwitterionic head groups, τ is similarly decreased. These effects do not depend on the sign of the change in surface charge. In DOPE:DOPC (3:1) bilayers, pH changes from 5→9 to 5→0 (both increasing head group electrostatic repulsion, thereby causing a less negative c 0) both increase τ. Nor do the effects depend on the use of planar, hydrocarbon-containing bilayers, as similar changes were observed in hydrocarbon-free lipid vesicles. Altering the interactions among phospholipid head groups may alter also other bilayer properties such as thickness or elastic moduli. Such changes could be excluded using capacitance measurements and single channel measurements on gA channels of different lengths. We conclude that changes gA channel function caused by changes in head group effective size can be predicted from the expected changes in c 0.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Olaf S. Andersen
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
4
|
Lipid Specific Membrane Interaction of Aptamers and Cytotoxicity. MEMBRANES 2021; 12:membranes12010037. [PMID: 35054563 PMCID: PMC8780203 DOI: 10.3390/membranes12010037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/21/2021] [Accepted: 12/25/2021] [Indexed: 11/17/2022]
Abstract
We aim to discover diagnostic tools to detect phosphatidylserine (PS) externalization on apoptotic cell surface using PS binding aptamers, AAAGAC and TAAAGA, and hence to understand chemotherapy drug efficacy when inducing apoptosis into cancer cells. The entropic fragment-based approach designed aptamers have been investigated to inspect three aspects: lipid specificity in aptamers' membrane binding and bilayer physical properties-induced regulation of binding mechanisms, the apoptosis-induced cancer cell surface binding of aptamers, and the aptamer-induced cytotoxicity. The liposome binding assays show preferred membrane binding of aptamers due to presence of PS in predominantly phosphatidylcholine-contained liposomes. Two membrane stiffness reducing amphiphiles triton X-100 and capsaicin were found to enhance membrane's aptamer adsorption suggesting that bilayer physical properties influence membrane's adsorption of drugs. Microscopic images of fluorescence-tagged aptamer treated LoVo cells show strong fluorescence intensity only if apoptosis is induced. Aptamers find enhanced PS molecules to bind with on the surface of apoptotic over nonapoptotic cells. In cytotoxicity experiments, TAAAGA (over poor PS binding aptamer CAGAAAAAAAC) was found cytotoxic towards RBL cells due to perhaps binding with nonapoptotic externalized PS randomly and thus slowly breaching plasma membrane integrity. In these three experimental investigations, we found aptamers to act on membranes at comparable concentrations and specifically with PS binding manner. Earlier, we reported the origins of actions through molecular mechanism studies-aptamers interact with lipids using mainly charge-based interactions. Lipids and aptamers hold distinguishable charge properties, and hence, lipid-aptamer association follows distinguishable energetics due to electrostatic and van der Waals interactions. We discover that our PS binding aptamers, due to lipid-specific interactions, appear as diagnostic tools capable of detecting drug-induced apoptosis in cancer cells.
Collapse
|
5
|
Ashrafuzzaman M. Amphiphiles capsaicin and triton X-100 regulate the chemotherapy drug colchicine's membrane adsorption and ion pore formation potency. Saudi J Biol Sci 2021; 28:3100-3109. [PMID: 34025185 PMCID: PMC8117037 DOI: 10.1016/j.sjbs.2021.02.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/07/2021] [Accepted: 02/15/2021] [Indexed: 02/02/2023] Open
Abstract
Chemotherapy drugs (CDs), e.g. colchicine derivative thiocolchicoside (TCC) and taxol, have been found to physically bind with lipid bilayer membrane and induce ion pores. Amphiphiles capsaicin (Cpsn) and triton X-100 (TX100) are known to regulate lipid bilayer physical properties by altering bilayer elasticity and lipid monolayer curvature. Both CDs and amphiphiles are predicted to physically accommodate alongside lipids in membrane to exert their membrane effects. The effects of their binary accommodation in the lipid membrane are yet to be known. Firstly, we have performed experimental studies to inspect whether membrane adsorption of CDs (colchicine or TCC) gets regulated due to any membrane effects of Cpsn or TX100. We find that the aqueous phase presence of these amphiphiles, known to reduce the membrane stiffness, works towards enhancing the membrane adsorption of CDs. Our recently patented technology 'direct detection method' helps address the membrane adsorption mechanisms. Secondly, in electrophysiology records, we measured the amphiphile effects on the potency of ion channel induction due to CDs. We find that amphiphiles increase the CD induced channel induction potency. Specifically, the membrane conductance, apparently due to the ion channel induction by the TCC, increases substantially due to the Cpsn or TX100 induced alterations of the bilayer physical properties. Thus we may conclude that the binary presence of CDs and amphiphiles in lipid membrane may influence considerably in CD's membrane adsorption, as well as the membrane effects, such as ion pore formation.
Collapse
Affiliation(s)
- Md. Ashrafuzzaman
- Biochemistry Department, Science College, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
Ashrafuzzaman M. The Antimicrobial Peptide Gramicidin S Enhances Membrane Adsorption and Ion Pore Formation Potency of Chemotherapy Drugs in Lipid Bilayers. MEMBRANES 2021; 11:247. [PMID: 33808204 PMCID: PMC8067072 DOI: 10.3390/membranes11040247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/06/2021] [Accepted: 02/17/2021] [Indexed: 01/25/2023]
Abstract
We recently published two novel findings where we found the chemotherapy drugs (CDs) thiocolchicoside (TCC) and taxol to induce toroidal type ion pores and the antimicrobial peptide gramicidin S (GS) to induce transient defects in model membranes. Both CD pores and GS defects were induced under the influence of an applied transmembrane potential (≈100 mV), which was inspected using the electrophysiology record of membrane currents (ERMCs). In this article, I address the regulation of the membrane adsorption and pore formation of CDs due to GS-induced possible alterations of lipid bilayer physical properties. In ERMCs, low micromolar (≥1 μM) GS concentrations in the aqueous phase were found to cause an induction of defects in lipid bilayers, but nanomolar (nM) concentration GS did nothing. For the binary presence of CDs and GS in the membrane-bathing aqueous phase, the TCC pore formation potency is found to increase considerably due to nM concentration GS in buffer. This novel result resembles our recently reported finding that due to the binary aqueous presence of two AMPs (gramicidin A or alamethicin and GS), the pore or defect-forming potency of either AMP increases considerably. To reveal the underlying molecular mechanisms, the influence of GS (0-400 nM) on the quantitative liposome (membrane) adsorption of CD molecules, colchicine and TCC, was tested. I used the recently patented direct detection method, which helps detect the membrane active agents directly at the membrane in the mole fraction relative to its concentrations in aqueous phase. We find that GS, at concentrations known to do nothing to the lipid bilayer electrical barrier properties in ERMCs, increases the membrane adsorption (membrane uptake) of CDs considerably. This phenomenological finding along with the GS effects on CD-induced membrane conductance increase helps predict an important conclusion. The binary presence of AMPs alongside CDs in the lipid membrane vicinity may work toward enhancing the physical adsorption and pore formation potency of CDs in lipid bilayers. This may help understand why CDs cause considerable cytotoxicity.
Collapse
Affiliation(s)
- Md Ashrafuzzaman
- Biochemistry Department, Science College, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
7
|
Lietha D, Izard T. Roles of Membrane Domains in Integrin-Mediated Cell Adhesion. Int J Mol Sci 2020; 21:ijms21155531. [PMID: 32752284 PMCID: PMC7432473 DOI: 10.3390/ijms21155531] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022] Open
Abstract
The composition and organization of the plasma membrane play important functional and regulatory roles in integrin signaling, which direct many physiological and pathological processes, such as development, wound healing, immunity, thrombosis, and cancer metastasis. Membranes are comprised of regions that are thick or thin owing to spontaneous partitioning of long-chain saturated lipids from short-chain polyunsaturated lipids into domains defined as ordered and liquid-disorder domains, respectively. Liquid-ordered domains are typically 100 nm in diameter and sometimes referred to as lipid rafts. We posit that integrin β senses membrane thickness and that mechanical force on the membrane regulates integrin activation through membrane thinning. This review examines what we know about the nature and mechanism of the interaction of integrins with the plasma membrane and its effects on regulating integrins and its binding partners.
Collapse
Affiliation(s)
- Daniel Lietha
- Cell Signaling and Adhesion Group, Structural and Chemical Biology, Margarita Salas Center for Biological Research (CIB-CSIC), E-28040 Madrid, Spain;
| | - Tina Izard
- Cell Adhesion Laboratory, Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
- Correspondence:
| |
Collapse
|
8
|
Sun D, Peyear TA, Bennett WFD, Andersen OS, Lightstone FC, Ingólfsson HI. Molecular Mechanism for Gramicidin Dimerization and Dissociation in Bilayers of Different Thickness. Biophys J 2019; 117:1831-1844. [PMID: 31676135 PMCID: PMC7018991 DOI: 10.1016/j.bpj.2019.09.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/01/2019] [Accepted: 09/04/2019] [Indexed: 01/01/2023] Open
Abstract
Membrane protein functions can be altered by subtle changes in the host lipid bilayer physical properties. Gramicidin channels have emerged as a powerful system for elucidating the underlying mechanisms of membrane protein function regulation through changes in bilayer properties, which are reflected in the thermodynamic equilibrium distribution between nonconducting gramicidin monomers and conducting bilayer-spanning dimers. To improve our understanding of how subtle changes in bilayer thickness alter the gramicidin monomer and dimer distributions, we performed extensive atomistic molecular dynamics simulations and fluorescence-quenching experiments on gramicidin A (gA). The free-energy calculations predicted a nonlinear coupling between the bilayer thickness and channel formation. The energetic barrier inhibiting gA channel formation was sharply increased in the thickest bilayer (1,2-dierucoyl-sn-glycero-3-phosphocholine). This prediction was corroborated by experimental results on gramicidin channel activity in bilayers of different thickness. To further explore the mechanism of channel formation, we performed extensive unbiased molecular dynamics simulations, which allowed us to observe spontaneous gA dimer formation in lipid bilayers. The simulations revealed structural rearrangements in the gA subunits and changes in lipid packing, as well as water reorganization, that occur during the dimerization process. Together, the simulations and experiments provide new, to our knowledge, insights into the process and mechanism of gramicidin channel formation, as a prototypical example of the bilayer regulation of membrane protein function.
Collapse
Affiliation(s)
- Delin Sun
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California
| | - Thasin A Peyear
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - W F Drew Bennett
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California
| | - Olaf S Andersen
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - Felice C Lightstone
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California
| | - Helgi I Ingólfsson
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California.
| |
Collapse
|
9
|
Time-resolved measurements of an ion channel conformational change driven by a membrane phase transition. Proc Natl Acad Sci U S A 2017; 114:10840-10845. [PMID: 28973859 DOI: 10.1073/pnas.1708070114] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Using temperature-jump infrared spectroscopy, we are able to trigger a gel-to-fluid phase transition in lipid vesicles and monitor in real time how a membrane protein responds to structural changes in the membrane. The melting of lipid domains in 1,2-dimyristoyl-sn-glycero-3-phosphocholine vesicles is observed to occur in as fast as 50 ns, with a temperature dependence characteristic of critical slowing. Gramicidin D (gD) added to the membrane responds primarily to the change in thickness of the membrane on a timescale coincident with the membrane melting. Using structure-based spectral modeling, we assign the conformational changes to compression and rotation of a partially dissociated gD dimer. Free energy calculations indicate that the high rate is a result of near-barrierless diffusion on a protein energy landscape that is radically reshaped by membrane thinning. The structural changes associated with the phase transition are similar to the fluctuation modes of fluid phase membranes, highlighting the importance of understanding the dynamic nature of the membrane environment around proteins.
Collapse
|
10
|
Sodt AJ, Beaven AH, Andersen OS, Im W, Pastor RW. Gramicidin A Channel Formation Induces Local Lipid Redistribution II: A 3D Continuum Elastic Model. Biophys J 2017; 112:1198-1213. [PMID: 28355547 DOI: 10.1016/j.bpj.2017.01.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/11/2017] [Accepted: 01/30/2017] [Indexed: 12/20/2022] Open
Abstract
To change conformation, a protein must deform the surrounding bilayer. In this work, a three-dimensional continuum elastic model for gramicidin A in a lipid bilayer is shown to describe the sensitivity to thickness, curvature stress, and the mechanical properties of the lipid bilayer. A method is demonstrated to extract the gramicidin-lipid boundary condition from all-atom simulations that can be used in the three-dimensional continuum model. The boundary condition affects the deformation dramatically, potentially much more than typical variations in the material stiffness do as lipid composition is changed. Moreover, it directly controls the sensitivity to curvature stress. The curvature stress and hydrophobic surfaces of the all-atom and continuum models are found to be in excellent agreement. The continuum model is applied to estimate the enrichment of hydrophobically matched lipids near the channel in a mixture, and the results agree with single-channel experiments and extended molecular dynamics simulations from the companion article by Beaven et al. in this issue of Biophysical Journal.
Collapse
Affiliation(s)
- Alexander J Sodt
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland.
| | - Andrew H Beaven
- Department of Chemistry, The University of Kansas, Lawrence, Kansas
| | - Olaf S Andersen
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York
| | - Wonpil Im
- Department of Biological Sciences and Bioengineering Program, Lehigh University, Bethlehem, Pennsylvania
| | - Richard W Pastor
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
11
|
Kara S, Afonin S, Babii O, Tkachenko AN, Komarov IV, Ulrich AS. Diphytanoyl lipids as model systems for studying membrane-active peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1828-1837. [PMID: 28587828 DOI: 10.1016/j.bbamem.2017.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 01/28/2023]
Abstract
The branched chains in diphytanoyl lipids provide membranes with unique properties, such as high chemical/physical stability, low water permeability, and no gel-to-fluid phase transition at ambient temperature. Synthetic diphytanoyl phospholipids are often used as model membranes for electrophysiological experiments. To evaluate whether these sturdy lipids are also suitable for solid-state NMR, we have examined their interactions with a typical amphiphilic peptide in comparison with straight-chain lipids. First, their phase properties were monitored using 31P NMR, and the structural behaviour of the antimicrobial peptide PGLa was studied by 19F NMR and circular dichroism in oriented membrane samples. Only lipids with choline headgroups (DPhPC) were found to form stable lipid bilayers in oriented samples, while DPhPG, DPhPE and DPhPS display non-lamellar structures. Hence, the experimental temperature and hydration are crucial factors when using supported diphytanoyl lipids, as both parameters must be maintained in an appropriate range to avoid the formation of non-bilayer structures. For the same reason, a high content of other diphytanoyl lipids besides DPhPC in mixed lipid systems is not favourable. Unlike the situation in straight-chain membranes, we found that the α-helical PGLa was not able to insert into the tightly packed fluid bilayer of DPhPC but remained in a surface-bound state even at very high peptide concentration. This behaviour can be explained by the high cohesivity and the negative spontaneous curvature of the diphytanoyl lipids. These characteristic features must therefore be taken into consideration, both, in electrophysiological studies, and when interpreting the structural behaviour of membrane-active peptides in such lipid environment.
Collapse
Affiliation(s)
- Sezgin Kara
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Sergii Afonin
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, P.O.B. 3640, 76021 Karlsruhe, Germany
| | - Oleg Babii
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany; Institute of Biology and Medicine (IBM), Taras Shevchenko National University of Kyiv, vul. Volodymyrska 60, 01601 Kyiv, Ukraine
| | - Anton N Tkachenko
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany; Institute of Biology and Medicine (IBM), Taras Shevchenko National University of Kyiv, vul. Volodymyrska 60, 01601 Kyiv, Ukraine
| | - Igor V Komarov
- Enamine Ltd., vul. Chervonotkatska 78, 02094 Kyiv, Ukraine; Institute of High Technologies (IHT), Taras Shevchenko National University of Kyiv, vul. Volodymyrska 60, 01601 Kyiv, Ukraine
| | - Anne S Ulrich
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany; Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, P.O.B. 3640, 76021 Karlsruhe, Germany.
| |
Collapse
|
12
|
Medeiros D, Silva-Gonçalves LDC, da Silva AMB, Dos Santos Cabrera MP, Arcisio-Miranda M. Membrane-mediated action of the endocannabinoid anandamide on membrane proteins: implications for understanding the receptor-independent mechanism. Sci Rep 2017; 7:41362. [PMID: 28128290 PMCID: PMC5269673 DOI: 10.1038/srep41362] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 12/20/2016] [Indexed: 12/31/2022] Open
Abstract
Endocannabinoids are amphiphilic molecules that play crucial neurophysiological functions acting as lipid messengers. Antagonists and knockdown of the classical CB1 and CB2 cannabinoid receptors do not completely abolish many endocannabinoid activities, supporting the idea of a mechanism independent of receptors whose mode of action remains unclear. Here we combine gramicidin A (gA) single channel recordings and membrane capacitance measurements to investigate the lipid bilayer-modifying activity of endocannabinoids. Single channel recordings show that the incorporation of endocannabinoids into lipid bilayers reduces the free energy necessary for gramicidin channels to transit from the monomeric to the dimeric conformation. Membrane capacitance demonstrates that the endocannabinoid anandamide has limited effects on the overall structure of the lipid bilayers. Our results associated with the theory of membrane elastic deformation reveal that the action of endocannabinoids on membrane proteins can involve local adjustments of the lipid/protein hydrophobic interface. The current findings shed new light on the receptor-independent mode of action of endocannabinoids on membrane proteins, with important implications towards their neurobiological function.
Collapse
Affiliation(s)
- Djalma Medeiros
- Laboratório de Neurobiologia Estrutural e Funcional (LaNEF), Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil.,Curso de Filosofia, Faculdade de São Bento, São Paulo, SP, Brasil
| | - Laíz da Costa Silva-Gonçalves
- Laboratório de Neurobiologia Estrutural e Funcional (LaNEF), Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - Annielle Mendes Brito da Silva
- Laboratório de Neurobiologia Estrutural e Funcional (LaNEF), Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | | | - Manoel Arcisio-Miranda
- Laboratório de Neurobiologia Estrutural e Funcional (LaNEF), Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
13
|
Kahraman O, Koch PD, Klug WS, Haselwandter CA. Bilayer-thickness-mediated interactions between integral membrane proteins. Phys Rev E 2016; 93:042410. [PMID: 27176332 DOI: 10.1103/physreve.93.042410] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Indexed: 12/14/2022]
Abstract
Hydrophobic thickness mismatch between integral membrane proteins and the surrounding lipid bilayer can produce lipid bilayer thickness deformations. Experiment and theory have shown that protein-induced lipid bilayer thickness deformations can yield energetically favorable bilayer-mediated interactions between integral membrane proteins, and large-scale organization of integral membrane proteins into protein clusters in cell membranes. Within the continuum elasticity theory of membranes, the energy cost of protein-induced bilayer thickness deformations can be captured by considering compression and expansion of the bilayer hydrophobic core, membrane tension, and bilayer bending, resulting in biharmonic equilibrium equations describing the shape of lipid bilayers for a given set of bilayer-protein boundary conditions. Here we develop a combined analytic and numerical methodology for the solution of the equilibrium elastic equations associated with protein-induced lipid bilayer deformations. Our methodology allows accurate prediction of thickness-mediated protein interactions for arbitrary protein symmetries at arbitrary protein separations and relative orientations. We provide exact analytic solutions for cylindrical integral membrane proteins with constant and varying hydrophobic thickness, and develop perturbative analytic solutions for noncylindrical protein shapes. We complement these analytic solutions, and assess their accuracy, by developing both finite element and finite difference numerical solution schemes. We provide error estimates of our numerical solution schemes and systematically assess their convergence properties. Taken together, the work presented here puts into place an analytic and numerical framework which allows calculation of bilayer-mediated elastic interactions between integral membrane proteins for the complicated protein shapes suggested by structural biology and at the small protein separations most relevant for the crowded membrane environments provided by living cells.
Collapse
Affiliation(s)
- Osman Kahraman
- Department of Physics & Astronomy and Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| | - Peter D Koch
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - William S Klug
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90095, USA
| | - Christoph A Haselwandter
- Department of Physics & Astronomy and Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
14
|
Sychev SV, Sukhanov SV, Telezhinskaya IN, Ovchinnikova TV. Effective lipid-detergent system for study of membrane active peptides in fluid liposomes. J Pept Sci 2016; 22:98-105. [PMID: 26751806 DOI: 10.1002/psc.2845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/16/2015] [Accepted: 11/20/2015] [Indexed: 11/12/2022]
Abstract
The structure of peptide antibiotic gramicidin A (gA) was studied in phosphatidylcholin liposomes modified by nonionic detergent Triton X-100. First, the detergent : lipid ratio at which the saturation of lipid membrane by Triton X-100 occurs (Re (sat)), was determined by light scattering. Measurements of steady-state fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene at sublytic concentrations of detergent showed that after saturation of the membrane by Triton X-100 microviscosity of lipid bilayer is reduced by 20%. The equilibrium conformational state of gA in phosphatidylcholine liposomes at Re (sat) was studied by CD spectroscopy. It was found that the conformational state of this channel-forming peptide changed crucially when Triton X-100 induced transition to more fluid membranes. The gA single-channel measurements were made with Triton X-100 containing bilayers. Tentative assignment of the channel type and gA structures was made by correlation of CD data with conductance histograms. Lipid-detergent system with variable viscosity developed in this work can be used to study the structure and folding of other membrane-active peptides.
Collapse
Affiliation(s)
- Sergei V Sychev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya, str, Moscow, Russia
| | - Stanislav V Sukhanov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya, str, Moscow, Russia
| | - Irina N Telezhinskaya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya, str, Moscow, Russia
| | - Tatiana V Ovchinnikova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya, str, Moscow, Russia
| |
Collapse
|
15
|
Rusinova R, Koeppe RE, Andersen OS. A general mechanism for drug promiscuity: Studies with amiodarone and other antiarrhythmics. ACTA ACUST UNITED AC 2015; 146:463-75. [PMID: 26573624 PMCID: PMC4664825 DOI: 10.1085/jgp.201511470] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/13/2015] [Indexed: 01/14/2023]
Abstract
Amiodarone is a widely prescribed antiarrhythmic drug used to treat the most prevalent type of arrhythmia, atrial fibrillation (AF). At therapeutic concentrations, amiodarone alters the function of many diverse membrane proteins, which results in complex therapeutic and toxicity profiles. Other antiarrhythmics, such as dronedarone, similarly alter the function of multiple membrane proteins, suggesting that a multipronged mechanism may be beneficial for treating AF, but raising questions about how these antiarrhythmics regulate a diverse range of membrane proteins at similar concentrations. One possible mechanism is that these molecules regulate membrane protein function by altering the common environment provided by the host lipid bilayer. We took advantage of the gramicidin (gA) channels' sensitivity to changes in bilayer properties to determine whether commonly used antiarrhythmics--amiodarone, dronedarone, propranolol, and pindolol, whose pharmacological modes of action range from multi-target to specific--perturb lipid bilayer properties at therapeutic concentrations. Using a gA-based fluorescence assay, we found that amiodarone and dronedarone are potent bilayer modifiers at therapeutic concentrations; propranolol alters bilayer properties only at supratherapeutic concentration, and pindolol has little effect. Using single-channel electrophysiology, we found that amiodarone and dronedarone, but not propranolol or pindolol, increase bilayer elasticity. The overlap between therapeutic and bilayer-altering concentrations, which is observed also using plasma membrane-like lipid mixtures, underscores the need to explore the role of the bilayer in therapeutic as well as toxic effects of antiarrhythmic agents.
Collapse
Affiliation(s)
- Radda Rusinova
- Department of Physiology and Biophysics and Department of Anesthesiology, Weill Cornell Medical College, New York, NY 10065 Department of Physiology and Biophysics and Department of Anesthesiology, Weill Cornell Medical College, New York, NY 10065
| | - Roger E Koeppe
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701
| | - Olaf S Andersen
- Department of Physiology and Biophysics and Department of Anesthesiology, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
16
|
Ashrafuzzaman M. Phenomenology and energetics of diffusion across cell phase states. Saudi J Biol Sci 2015; 22:666-73. [PMID: 26586991 PMCID: PMC4625124 DOI: 10.1016/j.sjbs.2015.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/05/2015] [Indexed: 02/06/2023] Open
Abstract
Cell based transport properties have been mathematically addressed. Cell contained cross boundary diffusion of materials has been explained using valid formalisms and related analytical expressions have been developed. Various distinguishable physical structures and their properties raise different general structure specific diffusion mechanisms and controlled transport related parameters. Some of these parameters play phenomenological roles and some cause regulatory effects. The cell based compartments may be divided into three major physical phase states namely liquid, plasma and solid phase states. Transport of ions, nutrients, small molecules like proteins, etc. across inter phase states and intraphase states follows general transport related formalisms. Creation of some localized permanent and/or temporary structures e.g., ion channels, clustering of constituents, etc. and the transitions between such structures appear as regulators of the transport mechanisms. In this article, I have developed mainly a theoretical analysis of the commonly observed cell transport phenomena. I have attempted to develop formalisms on general cell based diffusion followed by a few numerical computations to address the analytical expression phenomenologically. I have then extended the analysis to adopting with the local structure originated energetics. Independent or correlated molecular transport naturally relies on some general parameters that define the nature of local cell environment as well as on some occasionally raised or transiently active stochastic resonance due to localized interactions. Short and long range interaction energies play crucial roles in this regard. Physical classification of cellular compartments has led us developing analytical expressions on both biologically observed diffusion mechanisms and the diffusions’s occasional stochasticity causing energetics. These analytical expressions help us address the diffusion phenomena generally considering the physical properties of the biostructures across the diffusion pathways. A specific example case of single molecule transport and localized interaction energetics in a specific cell phase has been utilized to address the diffusion quite clearly. This article helps to address the mechanisms of cell based diffusion and nutrient movements and thus helps develop strategic templates to manipulate the diffusion mechanisms. Application of the theoretical knowledge into designing or discovering drugs or small molecule inhibitors targeting cell based structures may open up new avenues in biomedical sciences.
Collapse
|
17
|
Balleza D, Garcia-Arribas AB, Sot J, Ruiz-Mirazo K, Goñi FM. Ether- versus ester-linked phospholipid bilayers containing either linear or branched apolar chains. Biophys J 2015; 107:1364-74. [PMID: 25229144 DOI: 10.1016/j.bpj.2014.07.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/03/2014] [Accepted: 07/15/2014] [Indexed: 10/24/2022] Open
Abstract
We studied the properties of bilayers formed by ether-and ester-containing phospholipids, whose hydrocarbon chains can be either linear or branched, using sn-1,2 dipalmitoyl, dihexadecyl, diphytanoyl, and diphytanyl phosphatidylcholines (DPPC, DHPC, DPhoPC, and DPhPC, respectively) either pure or in binary mixtures. Differential scanning calorimetry and confocal fluorescence microscopy of giant unilamellar vesicles concurred in showing that equimolar mixtures of linear and branched lipids gave rise to gel/fluid phase coexistence at room temperature. Mixtures containing DHPC evolved in time (0.5 h) from initial reticulated domains to extended solid ones when an equilibrium was achieved. The nanomechanical properties of supported planar bilayers formed by each of the four lipids studied by atomic force microscopy revealed average breakdown forces Fb decreasing in the order DHPC ≥ DPPC > DPhoPC >> DPhPC. Moreover, except for DPPC, two different Fb values were found for each lipid. Atomic force microscopy imaging of DHPC was peculiar in showing two coexisting phases of different heights, probably corresponding to an interdigitated gel phase that gradually transformed, over a period of 0.5 h, into a regular tilted gel phase. Permeability to nonelectrolytes showed that linear-chain phospholipids allowed a higher rate of solute + water diffusion than branched-chain phospholipids, yet the former supported a smaller extent of swelling of the corresponding vesicles. Ether or ester bonds appeared to have only a minor effect on permeability.
Collapse
Affiliation(s)
- Daniel Balleza
- Unidad de Biofísica CSIC, UPV/EHU, Universidad del País Vasco, Leioa, Spain; Departamento de Bioquímica, Universidad del País Vasco, Leioa, Spain
| | - Aritz B Garcia-Arribas
- Unidad de Biofísica CSIC, UPV/EHU, Universidad del País Vasco, Leioa, Spain; Departamento de Bioquímica, Universidad del País Vasco, Leioa, Spain
| | - Jesús Sot
- Unidad de Biofísica CSIC, UPV/EHU, Universidad del País Vasco, Leioa, Spain; Departamento de Bioquímica, Universidad del País Vasco, Leioa, Spain
| | - Kepa Ruiz-Mirazo
- Unidad de Biofísica CSIC, UPV/EHU, Universidad del País Vasco, Leioa, Spain; Departamento de Lógica y Filosofía de la Ciencia, UPV/EHU, Donostia-San Sebastián, Spain
| | - Félix M Goñi
- Unidad de Biofísica CSIC, UPV/EHU, Universidad del País Vasco, Leioa, Spain; Departamento de Bioquímica, Universidad del País Vasco, Leioa, Spain.
| |
Collapse
|
18
|
Mueller JK, Tyler WJ. A quantitative overview of biophysical forces impinging on neural function. Phys Biol 2014; 11:051001. [DOI: 10.1088/1478-3975/11/5/051001] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
19
|
Assmann MA, Lenz P. Membrane tension influences the spike propagation between voltage-gated ion channel clusters of excitable membranes. Phys Biol 2014; 11:046006. [PMID: 25051247 DOI: 10.1088/1478-3975/11/4/046006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Ion channels of excitable membranes are known to be sensitive to various kinds of stimuli, but the case of simultaneous occurrence of different stimuli is poorly understood. Here, we theoretically analyze the influence of membrane tension on the dynamics of voltage-gated ion channels of excitable membranes. To do so, we develop a modification of the well-known Hodgkin-Huxley model to study numerically the spike generation and propagation in a single and two coupled excitable cells. We find that these cells can use membrane tension to trigger sub-threshold spike propagation, to suppress spike propagation and to alter the intensity of the signal transmission. These effects indicate that cells could use membrane tension to regulate cell-to-cell communication.
Collapse
Affiliation(s)
- Marcus-Alexander Assmann
- Department of Physics, Philipps-Universität Marburg, D-35032 Marburg, Germany. Center for Synthetic Microbiology, Philipps-Universität Marburg, D-35032 Marburg, Germany
| | | |
Collapse
|
20
|
Rusinova R, Hobart EA, Koeppe RE, Andersen OS. Phosphoinositides alter lipid bilayer properties. ACTA ACUST UNITED AC 2013; 141:673-90. [PMID: 23712549 PMCID: PMC3664701 DOI: 10.1085/jgp.201310960] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Phosphatidylinositol-4,5-bisphosphate (PIP2), which constitutes ∼1% of the plasma membrane phospholipid, plays a key role in membrane-delimited signaling. PIP2 regulates structurally and functionally diverse membrane proteins, including voltage- and ligand-gated ion channels, inwardly rectifying ion channels, transporters, and receptors. In some cases, the regulation is known to involve specific lipid–protein interactions, but the mechanisms by which PIP2 regulates many of its various targets remain to be fully elucidated. Because many PIP2 targets are membrane-spanning proteins, we explored whether the phosphoinositides might alter bilayer physical properties such as curvature and elasticity, which would alter the equilibrium between membrane protein conformational states—and thereby protein function. Taking advantage of the gramicidin A (gA) channels’ sensitivity to changes in lipid bilayer properties, we used gA-based fluorescence quenching and single-channel assays to examine the effects of long-chain PIP2s (brain PIP2, which is predominantly 1-stearyl-2-arachidonyl-PIP2, and dioleoyl-PIP2) on bilayer properties. When premixed with dioleoyl-phosphocholine at 2 mol %, both long-chain PIP2s produced similar changes in gA channel function (bilayer properties); when applied through the aqueous solution, however, brain PIP2 was a more potent modifier than dioleoyl-PIP2. Given the widespread use of short-chain dioctanoyl-phosphoinositides, we also examined the effects of diC8-phosphoinositol (PI), PI(4,5)P2, PI(3,5)P2, PI(3,4)P2, and PI(3,4,5)P3. The diC8 phosphoinositides, except for PI(3,5)P2, altered bilayer properties with potencies that decreased with increasing head group charge. Nonphosphoinositide diC8 phospholipids generally were more potent bilayer modifiers than the polyphosphoinositides. These results show that physiological increases or decreases in plasma membrane PIP2 levels, as a result of activation of PI kinases or phosphatases, are likely to alter lipid bilayer properties, in addition to any other effects they may have. The results further show that exogenous PIP2, as well as structural analogues that differ in acyl chain length or phosphorylation state, alters lipid bilayer properties at the concentrations used in many cell physiological experiments.
Collapse
Affiliation(s)
- Radda Rusinova
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA.
| | | | | | | |
Collapse
|
21
|
A distinct mechanism for activating uncoupled nicotinic acetylcholine receptors. Nat Chem Biol 2013; 9:701-7. [DOI: 10.1038/nchembio.1338] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 08/06/2013] [Indexed: 01/08/2023]
|
22
|
Haselwandter CA, Phillips R. Connection between oligomeric state and gating characteristics of mechanosensitive ion channels. PLoS Comput Biol 2013; 9:e1003055. [PMID: 23696720 PMCID: PMC3656111 DOI: 10.1371/journal.pcbi.1003055] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 03/08/2013] [Indexed: 01/06/2023] Open
Abstract
The mechanosensitive channel of large conductance (MscL) is capable of transducing mechanical stimuli such as membrane tension into an electrochemical response. MscL provides a widely-studied model system for mechanotransduction and, more generally, for how bilayer mechanical properties regulate protein conformational changes. Much effort has been expended on the detailed experimental characterization of the molecular structure and biological function of MscL. However, despite its central significance, even basic issues such as the physiologically relevant oligomeric states and molecular structures of MscL remain a matter of debate. In particular, tetrameric, pentameric, and hexameric oligomeric states of MscL have been proposed, together with a range of detailed molecular structures of MscL in the closed and open channel states. Previous theoretical work has shown that the basic phenomenology of MscL gating can be understood using an elastic model describing the energetic cost of the thickness deformations induced by MscL in the surrounding lipid bilayer. Here, we generalize this elastic model to account for the proposed oligomeric states and hydrophobic shapes of MscL. We find that the oligomeric state and hydrophobic shape of MscL are reflected in the energetic cost of lipid bilayer deformations. We make quantitative predictions pertaining to the gating characteristics associated with various structural models of MscL and, in particular, show that different oligomeric states and hydrophobic shapes of MscL yield distinct membrane contributions to the gating energy and gating tension. Thus, the functional properties of MscL provide a signature of the oligomeric state and hydrophobic shape of MscL. Our results suggest that, in addition to the hydrophobic mismatch between membrane proteins and the surrounding lipid bilayer, the symmetry and shape of the hydrophobic surfaces of membrane proteins play an important role in the regulation of protein function by bilayer membranes.
Collapse
Affiliation(s)
- Christoph A. Haselwandter
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, United States of America
- Department of Applied Physics, California Institute of Technology, Pasadena, California, United States of America
- * E-mail: (CAH); (RP)
| | - Rob Phillips
- Department of Applied Physics, California Institute of Technology, Pasadena, California, United States of America
- * E-mail: (CAH); (RP)
| |
Collapse
|
23
|
Haselwandter CA, Phillips R. Directional interactions and cooperativity between mechanosensitive membrane proteins. EUROPHYSICS LETTERS 2013; 101:68002p1-68002p6. [PMID: 25309021 PMCID: PMC4193682 DOI: 10.1209/0295-5075/101/68002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
While modern structural biology has provided us with a rich and diverse picture of membrane proteins, the biological function of membrane proteins is often influenced by the mechanical properties of the surrounding lipid bilayer. Here we explore the relation between the shape of membrane proteins and the cooperative function of membrane proteins induced by membrane-mediated elastic interactions. For the experimental model system of mechanosensitive ion channels we find that the sign and strength of elastic interactions depend on the protein shape, yielding distinct cooperative gating curves for distinct protein orientations. Our approach predicts how directional elastic interactions affect the molecular structure, organization, and biological function of proteins in crowded membranes.
Collapse
Affiliation(s)
- Christoph A Haselwandter
- Department of Physics and Astronomy, University of Southern California - Los Angeles, CA 90089, USA ; Department of Applied Physics, California Institute of Technology - Pasadena, CA 91125, USA
| | - Rob Phillips
- Department of Applied Physics, California Institute of Technology - Pasadena, CA 91125, USA
| |
Collapse
|
24
|
Bruno MJ, Rusinova R, Gleason NJ, Koeppe RE, Andersen OS. Interactions of drugs and amphiphiles with membranes: modulation of lipid bilayer elastic properties by changes in acyl chain unsaturation and protonation. Faraday Discuss 2013; 161:461-80; discussion 563-89. [PMID: 23805753 PMCID: PMC3703894 DOI: 10.1039/c2fd20092a] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Poly-unsaturated fatty acids (PUFAs) alter the function of many membrane proteins, whereas monounsatured fatty acids generally are inert. We previously showed that docosahexaenoic acid (DHA) at pH 7 decreases the bilayer stiffness, consistent with an amphiphile-induced increase in elasticity, but not with a negative change in curvature; oleic acid (OA) was inert (Bruno, Koeppe and Andersen, Proc. Natl. Acad. Sci., 2007, 104, 9638-9643). To further explore how PUFAs and other amphiphiles may alter lipid bilayer properties, and thus membrane protein function, we examined how changes in acyl chain unsaturation and head group charge and size alter bilayer properties, as sensed by bilayer-spanning gramicidin A (gA) channels of different lengths. Compared to DHA, the neutral DHA-methyl ester has reduced effects on bilayer properties and 1-palmitoyl-2-docosahexaenoyl-phosphatidylcholine (PDPC) forms bilayers that are softer than dioleoylphosphatidylcholine (DOPC). The changes in channel function are larger for the short gA channels, indicating that changes in elasticity dominate over changes in curvature. We altered the fatty acid protonation by titration: docosahexaenoic acid (DHA) is more potent at pH 9 (relative to pH 7) and is inert at pH 4; OA, which was inert at pH 7, becomes a potent modifier of bilayer properties at pH 9. At both pH 7 and 9, DHA and OA produced larger changes in the lifetimes of the short gA channels, demonstrating that they increase lipid bilayer elasticity when deprotonated--though OA promotes the formation of inverted hexagonal phases at pH 7. The positively charged oleylamine (OAm), which has a small head-group and therefore should be a negative curvature promoter, inhibited gA channel function with similar reductions in the lifetimes of the short and long gA channels, indicating a curvature-dominated effect. Monitoring the single-channel conductance, we find that the negatively charged fatty acids increase the conductance by increasing the local negative charge around the channel, whereas the positively charged OAm has no effect. These results suggest that deprotonated fatty acids increase bilayer elasticity by reversibly adsorbing at the bilayer/solution interface.
Collapse
Affiliation(s)
- Michael J. Bruno
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York 10065, USA
- Department of Chemistry, Guilford College, Greensboro, NC 27410, USA
| | - Radda Rusinova
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York 10065, USA
| | - Nicholas J. Gleason
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Roger E. Koeppe
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Olaf S. Andersen
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York 10065, USA
| |
Collapse
|