1
|
Cruz MA, Frederick TE, Mallimadugula UL, Singh S, Vithani N, Zimmerman MI, Porter JR, Moeder KE, Amarasinghe GK, Bowman GR. A cryptic pocket in Ebola VP35 allosterically controls RNA binding. Nat Commun 2022; 13:2269. [PMID: 35477718 PMCID: PMC9046395 DOI: 10.1038/s41467-022-29927-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/07/2022] [Indexed: 11/08/2022] Open
Abstract
Protein-protein and protein-nucleic acid interactions are often considered difficult drug targets because the surfaces involved lack obvious druggable pockets. Cryptic pockets could present opportunities for targeting these interactions, but identifying and exploiting these pockets remains challenging. Here, we apply a general pipeline for identifying cryptic pockets to the interferon inhibitory domain (IID) of Ebola virus viral protein 35 (VP35). VP35 plays multiple essential roles in Ebola's replication cycle but lacks pockets that present obvious utility for drug design. Using adaptive sampling simulations and machine learning algorithms, we predict VP35 harbors a cryptic pocket that is allosterically coupled to a key dsRNA-binding interface. Thiol labeling experiments corroborate the predicted pocket and mutating the predicted allosteric network supports our model of allostery. Finally, covalent modifications that mimic drug binding allosterically disrupt dsRNA binding that is essential for immune evasion. Based on these results, we expect this pipeline will be applicable to other proteins.
Collapse
Affiliation(s)
- Matthew A Cruz
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Thomas E Frederick
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Upasana L Mallimadugula
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Sukrit Singh
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Neha Vithani
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Maxwell I Zimmerman
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Justin R Porter
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Katelyn E Moeder
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Gaya K Amarasinghe
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Gregory R Bowman
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Center for the Science and Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| |
Collapse
|
2
|
The native state conformational heterogeneity in the energy landscape of protein folding. Biophys Chem 2022; 283:106761. [DOI: 10.1016/j.bpc.2022.106761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 11/18/2022]
|
3
|
Mishra P, Jha SK. Slow Motion Protein Dance Visualized Using Red-Edge Excitation Shift of a Buried Fluorophore. J Phys Chem B 2019; 123:1256-1264. [PMID: 30640479 DOI: 10.1021/acs.jpcb.8b11151] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It has been extremely challenging to detect protein structures with a dynamic core, such as dry molten globules, that remain in equilibrium with the tightly packed native (N) state and that are important for a myriad of entropy-driven protein functions. Here, we detect the higher entropy conformations of a human serum protein, using red-edge excitation shift experiments. We covalently introduced a fluorophore inside the protein core and observed that in a subset of native population, the side chains of the polar and buried residues have different spatial arrangements than the mean population and that they solvate the fluorophore on a timescale much slower than the nanosecond timescale of fluorescence. Our results provide direct evidence for the dense fluidity of protein core and show that alternate side-chain packing arrangements exist in the core that might be important for multiple binding functions of this protein.
Collapse
Affiliation(s)
- Prajna Mishra
- Physical and Materials Chemistry Division, Academy of Scientific and Innovative Research (AcSIR) , CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road , Pune 411008 , Maharashtra , India
| | - Santosh Kumar Jha
- Physical and Materials Chemistry Division, Academy of Scientific and Innovative Research (AcSIR) , CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road , Pune 411008 , Maharashtra , India
| |
Collapse
|
4
|
Jethva PN, Udgaonkar JB. Modulation of the Extent of Cooperative Structural Change During Protein Folding by Chemical Denaturant. J Phys Chem B 2017; 121:8263-8275. [DOI: 10.1021/acs.jpcb.7b04473] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Prashant N. Jethva
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Jayant B. Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| |
Collapse
|
5
|
Malhotra P, Udgaonkar JB. Tuning Cooperativity on the Free Energy Landscape of Protein Folding. Biochemistry 2015; 54:3431-41. [DOI: 10.1021/acs.biochem.5b00247] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pooja Malhotra
- National Centre for Biological
Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Jayant B. Udgaonkar
- National Centre for Biological
Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| |
Collapse
|
6
|
Discovery of multiple hidden allosteric sites by combining Markov state models and experiments. Proc Natl Acad Sci U S A 2015; 112:2734-9. [PMID: 25730859 DOI: 10.1073/pnas.1417811112] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The discovery of drug-like molecules that bind pockets in proteins that are not present in crystallographic structures yet exert allosteric control over activity has generated great interest in designing pharmaceuticals that exploit allosteric effects. However, there have only been a small number of successes, so the therapeutic potential of these pockets--called hidden allosteric sites--remains unclear. One challenge for assessing their utility is that rational drug design approaches require foreknowledge of the target site, but most hidden allosteric sites are only discovered when a small molecule is found to stabilize them. We present a means of decoupling the identification of hidden allosteric sites from the discovery of drugs that bind them by drawing on new developments in Markov state modeling that provide unprecedented access to microsecond- to millisecond-timescale fluctuations of a protein's structure. Visualizing these fluctuations allows us to identify potential hidden allosteric sites, which we then test via thiol labeling experiments. Application of these methods reveals multiple hidden allosteric sites in an important antibiotic target--TEM-1 β-lactamase. This result supports the hypothesis that there are many as yet undiscovered hidden allosteric sites and suggests our methodology can identify such sites, providing a starting point for future drug design efforts. More generally, our results demonstrate the power of using Markov state models to guide experiments.
Collapse
|
7
|
Evidence for close side-chain packing in an early protein folding intermediate previously assumed to be a molten globule. Proc Natl Acad Sci U S A 2014; 111:14746-51. [PMID: 25258414 DOI: 10.1073/pnas.1410630111] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The molten globule, a conformational ensemble with significant secondary structure but only loosely packed tertiary structure, has been suggested to be a ubiquitous intermediate in protein folding. However, it is difficult to assess the tertiary packing of transiently populated species to evaluate this hypothesis. Escherichia coli RNase H is known to populate an intermediate before the rate-limiting barrier to folding that has long been thought to be a molten globule. We investigated this hypothesis by making mimics of the intermediate that are the ground-state conformation at equilibrium, using two approaches: a truncation to generate a fragment mimic of the intermediate, and selective destabilization of the native state using point mutations. Spectroscopic characterization and the response of the mimics to further mutation are consistent with studies on the transient kinetic intermediate, indicating that they model the early intermediate. Both mimics fold cooperatively and exhibit NMR spectra indicative of a closely packed conformation, in contrast to the hypothesis of molten tertiary packing. This result is important for understanding the nature of the subsequent rate-limiting barrier to folding and has implications for the assumption that many other proteins populate molten globule folding intermediates.
Collapse
|
8
|
Yasin UM, Sashi P, Bhuyan AK. Free Energy Landscape of Lysozyme: Multiple Near-Native Conformational States and Rollover in the Urea Dependence of Folding Energy. J Phys Chem B 2014; 118:6662-9. [DOI: 10.1021/jp501879s] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- U. Mahammad Yasin
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Pulikallu Sashi
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Abani K. Bhuyan
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| |
Collapse
|
9
|
Malhotra P, Udgaonkar JB. High-Energy Intermediates in Protein Unfolding Characterized by Thiol Labeling under Nativelike Conditions. Biochemistry 2014; 53:3608-20. [DOI: 10.1021/bi401493t] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pooja Malhotra
- National Centre for Biological
Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Jayant B. Udgaonkar
- National Centre for Biological
Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| |
Collapse
|
10
|
Narayan A, Naganathan AN. Evidence for the sequential folding mechanism in RNase H from an ensemble-based model. J Phys Chem B 2014; 118:5050-8. [PMID: 24762044 DOI: 10.1021/jp500934f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The number of distinct protein folding pathways starting from an unfolded ensemble, and hence, the folding mechanism is an intricate function of protein size, sequence complexity, and stability conditions. This has traditionally been a contentious issue particularly because of the ensemble nature of conventional experiments that can mask the complexity of the underlying folding landscape. Recent hydrogen-exchange experiments combined with mass spectrometry (HX-MS) reveal that the folding of RNase H proceeds in a hierarchical fashion with distinct intermediates and following a single discrete path. In our current work, we provide computational evidence for this unique folding mechanism by employing a structure-based statistical mechanical model. Upon calibrating the energetic terms of the model with equilibrium measurements, we predict multiple intermediate states in the folding of RNase H that closely resemble experimental observations. Remarkably, a simplified landscape representation adequately captures the folding complexity and predicts the possibility of a well-defined sequence of folding events. We supplement the statistical model study with both explicit solvent molecular simulations of the helical units and electrostatic calculations to provide structural and energetic insights into the early and late stages of RNase H folding that hint at the frustrated nature of its folding landscape.
Collapse
Affiliation(s)
- Abhishek Narayan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras , Chennai 600036, India
| | | |
Collapse
|
11
|
Jha SK, Marqusee S. Kinetic evidence for a two-stage mechanism of protein denaturation by guanidinium chloride. Proc Natl Acad Sci U S A 2014; 111:4856-61. [PMID: 24639503 PMCID: PMC3977270 DOI: 10.1073/pnas.1315453111] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dry molten globular (DMG) intermediates, an expanded form of the native protein with a dry core, have been observed during denaturant-induced unfolding of many proteins. These observations are counterintuitive because traditional models of chemical denaturation rely on changes in solvent-accessible surface area, and there is no notable change in solvent-accessible surface area during the formation of the DMG. Here we show, using multisite fluorescence resonance energy transfer, far-UV CD, and kinetic thiol-labeling experiments, that the guanidinium chloride (GdmCl)-induced unfolding of RNase H also begins with the formation of the DMG. Population of the DMG occurs within the 5-ms dead time of our measurements. We observe that the size and/or population of the DMG is linearly dependent on [GdmCl], although not as strongly as the second and major step of unfolding, which is accompanied by core solvation and global unfolding. This rapid GdmCl-dependent population of the DMG indicates that GdmCl can interact with the protein before disrupting the hydrophobic core. These results imply that the effect of chemical denaturants cannot be interpreted solely as a disruption of the hydrophobic effect and strongly support recent computational studies, which hypothesize that chemical denaturants first interact directly with the protein surface before completely unfolding the protein in the second step (direct interaction mechanism).
Collapse
Affiliation(s)
| | - Susan Marqusee
- California Institute for Quantitative Biosciences and
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3220
| |
Collapse
|
12
|
Abstract
![]()
Basic
principles of statistical mechanics require that proteins
sample an ensemble of conformations at any nonzero temperature. However,
it is still common to treat the crystallographic structure of a protein
as the structure of its native state, largely because
high-resolution structural characterization of protein flexibility
remains a profound challenge. To assess the typical degree of conformational
heterogeneity within folded proteins, we construct Markov state models
describing the thermodynamics and kinetics of proteins ranging from
72 to 263 residues in length. Each of these models is built from hundreds
of microseconds of atomically detailed molecular dynamics simulations.
Examination of the side-chain degrees of freedom reveals that almost
every residue visits at least two rotameric states over this time
frame, with rotamer transition rates spanning a wide range of time
scales (from nanoseconds to tens of microseconds). We also report
substantial backbone dynamics on time scales longer than are typically
addressed by experimental measures of protein flexibility, such as
NMR order parameters. Finally, we demonstrate that these extensive
rearrangements are consistent with NMR and crystallographic data,
which supports the validity of our models. Altogether, these results
depict the interior of proteins not as well-ordered solids, as is
often imagined, but instead as dense fluids, which undergo substantial
structural fluctuations despite their high packing fraction.
Collapse
Affiliation(s)
- Gregory R Bowman
- Departments of Molecular & Cell Biology and ‡Chemistry, University of California , Berkeley, California 94720, United States
| | | |
Collapse
|
13
|
The how’s and why’s of protein folding intermediates. Arch Biochem Biophys 2013; 531:14-23. [DOI: 10.1016/j.abb.2012.10.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 10/05/2012] [Accepted: 10/11/2012] [Indexed: 12/13/2022]
|
14
|
Jaremko M, Jaremko Ł, Kim HY, Cho MK, Schwieters CD, Giller K, Becker S, Zweckstetter M. Cold denaturation of a protein dimer monitored at atomic resolution. Nat Chem Biol 2013; 9:264-70. [PMID: 23396077 DOI: 10.1038/nchembio.1181] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 01/15/2013] [Indexed: 11/09/2022]
Abstract
Protein folding and unfolding are crucial for a range of biological phenomena and human diseases. Defining the structural properties of the involved transient species is therefore of prime interest. Using a combination of cold denaturation with NMR spectroscopy, we reveal detailed insight into the unfolding of the homodimeric repressor protein CylR2. Seven three-dimensional structures of CylR2 at temperatures from 25 °C to -16 °C reveal a progressive dissociation of the dimeric protein into a native-like monomeric intermediate followed by transition into a highly dynamic, partially folded state. The core of the partially folded state seems critical for biological function and misfolding.
Collapse
Affiliation(s)
- Mariusz Jaremko
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Equilibrium fluctuations of a single folded protein reveal a multitude of potential cryptic allosteric sites. Proc Natl Acad Sci U S A 2012; 109:11681-6. [PMID: 22753506 DOI: 10.1073/pnas.1209309109] [Citation(s) in RCA: 201] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cryptic allosteric sites--transient pockets in a folded protein that are invisible to conventional experiments but can alter enzymatic activity via allosteric communication with the active site--are a promising opportunity for facilitating drug design by greatly expanding the repertoire of available drug targets. Unfortunately, identifying these sites is difficult, typically requiring resource-intensive screening of large libraries of small molecules. Here, we demonstrate that Markov state models built from extensive computer simulations (totaling hundreds of microseconds of dynamics) can identify prospective cryptic sites from the equilibrium fluctuations of three medically relevant proteins--β-lactamase, interleukin-2, and RNase H--even in the absence of any ligand. As in previous studies, our methods reveal a surprising variety of conformations--including bound-like configurations--that implies a role for conformational selection in ligand binding. Moreover, our analyses lead to a number of unique insights. First, direct comparison of simulations with and without the ligand reveals that there is still an important role for an induced fit during ligand binding to cryptic sites and suggests new conformations for docking. Second, correlations between amino acid sidechains can convey allosteric signals even in the absence of substantial backbone motions. Most importantly, our extensive sampling reveals a multitude of potential cryptic sites--consisting of transient pockets coupled to the active site--even in a single protein. Based on these observations, we propose that cryptic allosteric sites may be even more ubiquitous than previously thought and that our methods should be a valuable means of guiding the search for such sites.
Collapse
|