1
|
Wu Y, Zhu Z, Ji T, Wang J, Zhu H, Peng W, Cong H, Yang J, Chen M, Zhao H. Water-mediated cytosine self-assembly in infrared perspective. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 330:125708. [PMID: 39799807 DOI: 10.1016/j.saa.2025.125708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/31/2024] [Accepted: 01/04/2025] [Indexed: 01/15/2025]
Abstract
Self-assembly plays a crucial role in the formation and allosteric processes of many biomolecules, water molecules can affect these processes. Cytosine (Cyt) has excellent self-assembly ability, forming a flat and ordered structure through hydrogen bonds (HBs) in the presence of water molecules. However, the vibration dynamics and interaction mechanism of water induced Cyt self-assembly are still unclear. In this work, infrared spectroscopy techniques, combined with density functional theory (DFT) theoretical calculations, were employed to investigate the vibrational characteristics and interactions of water molecule mediated self-assembly of Cyt and its reverse process. The results indicate that the induction of Cyt self-assembly by water molecules has differential effects on the various vibrational modes of the Cyt molecule. Multi-view infrared spectroscopy provides a powerful tool for the characterization of biomolecules in situ. This study will contribute to a deeper understanding and application of nucleic acid biological nanostructures.
Collapse
Affiliation(s)
- Yu Wu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 China; Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210 China; University of Chinese Academy of Sciences, Beijing 100049 China
| | - Zhongjie Zhu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210 China.
| | - Te Ji
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210 China
| | - Jie Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210 China
| | - Huachun Zhu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210 China
| | - Weiwei Peng
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210 China
| | - Haixia Cong
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 China
| | - Jianzhong Yang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210 China
| | - Min Chen
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210 China
| | - Hongwei Zhao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 China; Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210 China.
| |
Collapse
|
2
|
Wu Y, Zhu Z, Yang J, Wang J, Ji T, Zhu H, Peng W, Chen M, Zhao H. Insights into the terahertz response of L-glutamic acid and its receptor. Analyst 2024; 149:4605-4614. [PMID: 39037577 DOI: 10.1039/d4an00697f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
L-Glutamic acid (L-Glu) is a basic unit of proteins and also serves as an important neurotransmitter in the central nervous system. Its structural properties are critical for biological functions and selective receptor recognition. Although this molecule has been extensively studied, the low frequency vibrational behavior that is closely related to conformational changes and the intermolecular interactions between L-Glu and its receptors are still unclear. In this study, we acquired the fingerprint spectrum of L-Glu by using air plasma terahertz (THz) time-domain spectroscopy in the 0.5-18 THz range. The low frequency vibrational characteristics of L-Glu were investigated through density functional theory (DFT) calculations. The THz responses of the ligand binding domain of the NMDAR-L-Glu complex were studied by the ONIOM method, with a focus on discussing the normal modes and interactions of ligand L-Glu and water molecules. The results illustrate that THz spectroscopy exhibits a sensitive response to the influence of L-Glu on the structure of the NMDAR. The water molecules in proteins have various strong vibration modes in the THz band, showing specificity, diversity and complexity of vibrational behavior. There is potential for influencing and regulating the structural stability of the NMDAR-L-Glu complex through water molecules.
Collapse
Affiliation(s)
- Yu Wu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongjie Zhu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
| | - Jinrong Yang
- East China Normal University, Shanghai 200241, China
| | - Jie Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
| | - Te Ji
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
| | - Huachun Zhu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
| | - Weiwei Peng
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
| | - Min Chen
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
| | - Hongwei Zhao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
| |
Collapse
|
3
|
Khanal M, Acharya A, Maharjan R, Gyawali K, Adhikari R, Mulmi DD, Lamichhane TR, Lamichhane HP. Identification of potent inhibitors of HDAC2 from herbal products for the treatment of colon cancer: Molecular docking, molecular dynamics simulation, MM/GBSA calculations, DFT studies, and pharmacokinetic analysis. PLoS One 2024; 19:e0307501. [PMID: 39037973 PMCID: PMC11262678 DOI: 10.1371/journal.pone.0307501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/06/2024] [Indexed: 07/24/2024] Open
Abstract
The histone deacetylase 2 (HDAC2), an enzyme involved in gene regulation, is a potent drug target for the treatment of colon cancer. Phytocompounds having anticancer properties show the ability to interact with HDAC2 enzyme. Among the compounds, docking scores of caffeic acid (CA) and p-coumaric acid (pCA) with HDAC2 showed good binding efficacy of -5.46 kcal/mol and -5.16 kcal/mol, respectively, with small inhibition constants. The higher binding efficacy of CA compared to pCA can be credited to the presence of an extra oxygen atom in the CA molecule, which forms an additional hydrogen bond with Tyr297. The HDAC2 in complex with these molecules was found to be stable by analyzing RMSD, RMSF, Rg, and SASA values obtained through MD simulations. Furthermore, CA and pCA exhibited low MM/GBSA free energies of -16.32 ± 2.62 kcal/mol and -17.01 ± 2.87 kcal/mol, respectively. The HOMO and LUMO energy gaps, dipole moments, global reactivity descriptor values, and MEP surfaces showed the reactivity of the molecules. The favourable physicochemical and pharmacokinetic properties, along with absence of toxicity of the molecules determined using ADMET analysis, suggested both the acids to be regarded as effective drugs in the treatment of colon cancer.
Collapse
Affiliation(s)
- Madan Khanal
- Central Department of Physics, Tribhuvan University, Kathmandu, Nepal
| | - Arjun Acharya
- Central Department of Physics, Tribhuvan University, Kathmandu, Nepal
| | - Rajesh Maharjan
- Central Department of Physics, Tribhuvan University, Kathmandu, Nepal
| | - Kalpana Gyawali
- Central Department of Physics, Tribhuvan University, Kathmandu, Nepal
| | - Rameshwar Adhikari
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal
- Research Center for Applied Science and Technology (RECAST), Tribhuvan University, Kathmandu, Nepal
| | - Deependra Das Mulmi
- Nanomaterials Research Laboratory, Nepal Academy of Science and Technology (NAST), Lalitpur, Nepal
| | | | | |
Collapse
|
4
|
Rohani L, Lamichhane HP, Hastings G. Calculated vibrational properties of pigments in protein binding sites 2: Semiquinones in photosynthetic proteins. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 295:122518. [PMID: 36996613 DOI: 10.1016/j.saa.2023.122518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/03/2023] [Accepted: 02/15/2023] [Indexed: 06/19/2023]
Abstract
[QA- - QA] Fourier transform infrared difference spectra have previously been obtained using purple bacterial reaction centers from Rhodobacter sphaeroides with unlabeled, 18O and 13C isotope labeled phylloquinone (PhQ, also known as vitamin K1) incorporated into the QA protein binding site (Breton, (1997), Proc. Natl. Acad. Sci. USA94 11318-11323). The nature of the bands in these spectra and the isotope induced band shifts are poorly understood, especially for the phyllosemiquinone anion (PhQ-) state. To aid in the interpretation of the bands in these experimental spectra, ONIOM type QM/MM vibrational frequency calculations were undertaken. Calculations were also undertaken for PhQ- in solution. Surprisingly, both sets of calculated spectra are similar and agree well with the experimental spectra. This similarity suggests pigment-protein interactions do not perturb the electronic structure of the semiquinone in the QA binding site. This is not found to be the case for the neutral PhQ species in the same protein binding site. PhQ also occupies the A1 protein binding site in photosystem I, and the vibrational properties of PhQ- in the QA and A1 binding sites are compared and shown to exhibit considerable differences. These differences probably arise because of changes in the degree of asymmetry of hydrogen bonding of PhQ- in the A1 and QA binding sites.
Collapse
Affiliation(s)
- Leyla Rohani
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, USA
| | - Hari P Lamichhane
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, USA
| | - Gary Hastings
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
5
|
Kabir MP, Orozco-Gonzalez Y, Hastings G, Gozem S. The effect of hydrogen-bonding on flavin's infrared absorption spectrum. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 262:120110. [PMID: 34224983 DOI: 10.1016/j.saa.2021.120110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Cluster and continuum solvation computational models are employed to model the effect of hydrogen bonding interactions on the vibrational modes of lumiflavin. Calculated spectra were compared to experimental Fourier-transform infrared (FTIR) spectra in the diagnostic 1450-1800 cm-1 range, where intense νC=C, νC=N, [Formula: see text] , and [Formula: see text] stretching modes of flavin's isoalloxazine ring are found. Local mode analysis is used to describe the strength of hydrogen-bonding in cluster models. The computations indicate that νC=C and νC=N mode frequencies are relatively insensitive to intermolecular interactions while the [Formula: see text] and [Formula: see text] modes are sensitive to direct (and also indirect for [Formula: see text] ) hydrogen-bonding interactions. Although flavin is neutral, basis sets without the diffuse functions provide incorrect relative frequencies and intensities. The 6-31+G* basis set is found to be adequate for this system, and there is limited benefit to considering larger basis sets. Calculated vibrational mode frequencies agree with experimentally determined frequencies in solution when cluster models with multiple water molecules are used. Accurate simulation of relative FTIR band intensities, on the other hand, requires a continuum (or possibly quantum mechanical/molecular mechanical) model that accounts for long-range electrostatic effects. Finally, an experimental peak at ca. 1624 cm-1 that is typically assigned to the [Formula: see text] vibrational stretching mode has a complicated shape that suggests multiple underlying contributions. Our calculations show that this band has contributions from both the C6-C7 and C2 = O stretching vibrations.
Collapse
Affiliation(s)
- Mohammad Pabel Kabir
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, United States
| | | | - Gary Hastings
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30302, United States; Center for Nano-Optics, Georgia State University, Atlanta, GA 30302, United States.
| | - Samer Gozem
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, United States.
| |
Collapse
|
6
|
Assessment of the orientation and conformation of pigments in protein binding sites from infrared difference spectra. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148366. [PMID: 33385342 DOI: 10.1016/j.bbabio.2020.148366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 01/01/2023]
Abstract
Time resolved FTIR difference spectroscopy (DS) has been used to study photosystem I (PSI) with the disubstituted 1,4-naphthoquinones acequinocyl (AcQ) and lapachol (Lpc) incorporated into the A1 binding site. AcQ is a 2-acetoxy-3-dodecyl-1,4-naphthoquinone, Lpc is a 2-hydroxy-3-(3-methyl-2-butenyl)-1,4-naphthoquinone. To assess whether the experimental spectra are specific to different orientations of the quinone and their substitutions ONIOM-type QM/MM vibrational frequency calculations were undertaken for various orientations of the pigments and side-chain conformations in the A1 binding site. Comparison of calculated and experimental spectra for the reduced species (semiquinone anion) suggests that the orientation for the naphthoquinone ring in the binding site and specific side-chain conformations can be identified based on the spectra. In native PSI phylloquinone (PhQ) in the A1 binding site binds with its phytyl chain ortho to the hydrogen bonded carbonyl group. This is not found to be the case for the hydrocarbon tail of AcQ, which is meta to the H-bonded carbonyl group. In contrast, Lpc in PSI binds with its hydrocarbon tail also ortho to the H-bonded carbonyl group. Furthermore, comparison of calculated and experimental spectra indicates which conformations the acetoxy group of AcQ and the hydroxy group of Lpc adopt in the A1 binding site.
Collapse
|
7
|
Calculated vibrational properties of semiquinones in the A1 binding site in photosystem I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:699-707. [DOI: 10.1016/j.bbabio.2019.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 06/03/2019] [Accepted: 07/10/2019] [Indexed: 11/17/2022]
|
8
|
Makita H, Hastings G. Time-resolved step-scan FTIR difference spectroscopy for the study of photosystem I with different benzoquinones incorporated into the A1 binding site. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:1199-1206. [DOI: 10.1016/j.bbabio.2018.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/16/2018] [Accepted: 08/21/2018] [Indexed: 11/28/2022]
|
9
|
Tiwari V, Jonas DM. Electronic energy transfer through non-adiabatic vibrational-electronic resonance. II. 1D spectra for a dimer. J Chem Phys 2018; 148:084308. [DOI: 10.1063/1.5003193] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Vivek Tiwari
- Department of Chemistry and Biochemistry, University of Colorado, 215 UCB, Boulder, Colorado 80309, USA
| | - David M. Jonas
- Department of Chemistry and Biochemistry, University of Colorado, 215 UCB, Boulder, Colorado 80309, USA
| |
Collapse
|
10
|
Elucidation of Single Hydrogen Bonds in GTPases via Experimental and Theoretical Infrared Spectroscopy. Biophys J 2017; 112:66-77. [PMID: 28076817 PMCID: PMC5232353 DOI: 10.1016/j.bpj.2016.11.3195] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/04/2016] [Accepted: 11/28/2016] [Indexed: 11/28/2022] Open
Abstract
Time-resolved Fourier transform infrared (FTIR) spectroscopy is a powerful tool to elucidate label-free the reaction mechanisms of proteins. After assignment of the absorption bands to individual groups of the protein, the order of events during the reaction mechanism can be monitored and rate constants can be obtained. Additionally, structural information is encoded into infrared spectra and can be decoded by combining the experimental data with biomolecular simulations. We have determined recently the infrared vibrations of GTP and guanosine diphosphate (GDP) bound to Gαi1, a ubiquitous GTPase. These vibrations are highly sensitive for the environment of the phosphate groups and thereby for the binding mode the GTPase adopts to enable fast hydrolysis of GTP. In this study we calculated these infrared vibrations from biomolecular simulations to transfer the spectral information into a computational model that provides structural information far beyond crystal structure resolution. Conformational ensembles were generated using 15 snapshots of several 100 ns molecular-mechanics/molecular-dynamics (MM-MD) simulations, followed by quantum-mechanics/molecular-mechanics (QM/MM) minimization and normal mode analysis. In comparison with other approaches, no time-consuming QM/MM-MD simulation was necessary. We carefully benchmarked the simulation systems by deletion of single hydrogen bonds between the GTPase and GTP through several Gαi1 point mutants. The missing hydrogen bonds lead to blue-shifts of the corresponding absorption bands. These band shifts for α-GTP (Gαi1-T48A), γ-GTP (Gαi1-R178S), and for both β-GTP/γ-GTP (Gαi1-K46A, Gαi1-D200E) were found in agreement in the experimental and the theoretical spectra. We applied our approach to open questions regarding Gαi1: we show that the GDP state of Gαi1 carries a Mg2+, which is not found in x-ray structures. Further, the catalytic role of K46, a central residue of the P-loop, and the protonation state of the GTP are elucidated.
Collapse
|
11
|
Kottke T, Lórenz-Fonfría VA, Heberle J. The Grateful Infrared: Sequential Protein Structural Changes Resolved by Infrared Difference Spectroscopy. J Phys Chem B 2016; 121:335-350. [PMID: 28100053 DOI: 10.1021/acs.jpcb.6b09222] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The catalytic activity of proteins is a function of structural changes. Very often these are as minute as protonation changes, hydrogen bonding changes, and amino acid side chain reorientations. To resolve these, a methodology is afforded that not only provides the molecular sensitivity but allows for tracing the sequence of these hierarchical reactions at the same time. This feature article showcases results from time-resolved IR spectroscopy on channelrhodopsin (ChR), light-oxygen-voltage (LOV) domain protein, and cryptochrome (CRY). All three proteins are activated by blue light, but their biological role is drastically different. Channelrhodopsin is a transmembrane retinylidene protein which represents the first light-activated ion channel of its kind and which is involved in primitive vision (phototaxis) of algae. LOV and CRY are flavin-binding proteins acting as photoreceptors in a variety of signal transduction mechanisms in all kingdoms of life. Beyond their biological relevance, these proteins are employed in exciting optogenetic applications. We show here how IR difference absorption resolves crucial structural changes of the protein after photonic activation of the chromophore. Time-resolved techniques are introduced that cover the time range from nanoseconds to minutes along with some technical considerations. Finally, we provide an outlook toward novel experimental approaches that are currently developed in our laboratories or are just in our minds ("Gedankenexperimente"). We believe that some of them have the potential to provide new science.
Collapse
Affiliation(s)
- Tilman Kottke
- Department of Chemistry, Physical and Biophysical Chemistry, Bielefeld University , Universitätsstraße 25, 33615 Bielefeld, Germany
| | | | - Joachim Heberle
- Experimental Molecular Biophysics, Freie Universität Berlin , Arnimalle 14, 14195 Berlin, Germany
| |
Collapse
|
12
|
Chung LW, Sameera WMC, Ramozzi R, Page AJ, Hatanaka M, Petrova GP, Harris TV, Li X, Ke Z, Liu F, Li HB, Ding L, Morokuma K. The ONIOM Method and Its Applications. Chem Rev 2015; 115:5678-796. [PMID: 25853797 DOI: 10.1021/cr5004419] [Citation(s) in RCA: 791] [Impact Index Per Article: 79.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Lung Wa Chung
- †Department of Chemistry, South University of Science and Technology of China, Shenzhen 518055, China
| | - W M C Sameera
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| | - Romain Ramozzi
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| | - Alister J Page
- §Newcastle Institute for Energy and Resources, The University of Newcastle, Callaghan 2308, Australia
| | - Miho Hatanaka
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| | - Galina P Petrova
- ∥Faculty of Chemistry and Pharmacy, University of Sofia, Bulgaria Boulevard James Bourchier 1, 1164 Sofia, Bulgaria
| | - Travis V Harris
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan.,⊥Department of Chemistry, State University of New York at Oswego, Oswego, New York 13126, United States
| | - Xin Li
- #State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhuofeng Ke
- ∇School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Fengyi Liu
- ○Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Hai-Bei Li
- ■School of Ocean, Shandong University, Weihai 264209, China
| | - Lina Ding
- ▲School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Keiji Morokuma
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| |
Collapse
|
13
|
Hastings G. Vibrational spectroscopy of photosystem I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:55-68. [PMID: 25086273 DOI: 10.1016/j.bbabio.2014.07.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/01/2014] [Accepted: 07/21/2014] [Indexed: 11/28/2022]
Abstract
Fourier transform infrared difference spectroscopy (FTIR DS) has been widely used to study the structural details of electron transfer cofactors (and their binding sites) in many types of photosynthetic protein complexes. This review focuses in particular on work that has been done to investigate the A₁cofactor in photosystem I photosynthetic reaction centers. A review of this subject area last appeared in 2006 [1], so only work undertaken since then will be covered here. Following light excitation of intact photosystem I particles the P700⁺A⁻(1) secondary radical pair state is formed within 100ps. This state decays within 300ns at room temperature, or 300μs at 77K. Given the short-lived nature of this state, it is not easily studied using "static" photo-accumulation FTIR difference techniques at either temperature. Time-resolved techniques are required. This article focuses on the use of time-resolved step-scan FTIR DS for the study of the P700⁺A⁻(1) state in intact photosystem I. Up until now, only our group has undertaken studies in this area. So, in this article, recent work undertaken in our lab is described, where we have used low-temperature (77K), microsecond time-resolved step-scan FTIR DS to study the P700⁺A⁻(1) state in photosystem I. In photosystem I a phylloquinone molecule occupies the A₁binding site. However, different quinones can be incorporated into the A1 binding site, and here work is described for photosystem I particles with plastoquinone-9, 2-phytyl naphthoquinone and 2-methyl naphthoquinone incorporated into the A₁binding site. Studies in which ¹⁸O isotope labeled phylloquinone has been incorporated into the A1 binding site are also discussed. To fully characterize PSI particles with different quinones incorporated into the A1 binding site nanosecond to millisecond visible absorption spectroscopy has been shown to be of considerable value, especially so when undertaken using identical samples under identical conditions to that used in time-resolved step-scan FTIR measurements. In this article the latest work that has been undertaken using both visible and infrared time resolved spectroscopies on the same sample will be described. Finally, vibrational spectroscopic data that has been obtained for phylloquinone in the A1 binding site in photosystem I is compared to corresponding data for ubiquinone in the QA binding site in purple bacterial reaction centers. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems.
Collapse
Affiliation(s)
- Gary Hastings
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
14
|
Hellwig P. Infrared spectroscopic markers of quinones in proteins from the respiratory chain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:126-33. [PMID: 25026472 DOI: 10.1016/j.bbabio.2014.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/03/2014] [Accepted: 07/07/2014] [Indexed: 01/12/2023]
Abstract
In bioenergetic systems quinones play a central part in the coupling of electron and proton transfer. The specific function of each quinone binding site is based on the protein-quinone interaction that can be described by means of reaction induced FTIR difference spectroscopy, induced for example by light or electrochemically. The identification of sites in enzymes from the respiratory chain is presented together with the analysis of the accommodation of different types of quinones to the same enzyme and the possibility to monitor the interaction with inhibitors. Reaction induced FTIR difference spectroscopy is shown to give an essential information on the general geometry of quinone binding sites, the conformation of the ring and of the substituents as well as essential structural information on the identity of the amino-acid residues lining this site. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems.
Collapse
Affiliation(s)
- Petra Hellwig
- Laboratoire de bioélectrochimie et spectroscopie, UMR 7140, Chimie de la matière complexe, Université de Strasbourg, 1, rue Blaise Pascal, 67008 Strasbourg, France.
| |
Collapse
|
15
|
Ashizawa R, Noguchi T. Effects of hydrogen bonding interactions on the redox potential and molecular vibrations of plastoquinone as studied using density functional theory calculations. Phys Chem Chem Phys 2014; 16:11864-76. [DOI: 10.1039/c3cp54742f] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Zhao N, Lamichhane HP, Hastings G. Comparison of calculated and experimental isotope edited FTIR difference spectra for purple bacterial photosynthetic reaction centers with different quinones incorporated into the QA binding site. FRONTIERS IN PLANT SCIENCE 2013; 4:328. [PMID: 24009618 PMCID: PMC3757576 DOI: 10.3389/fpls.2013.00328] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 08/02/2013] [Indexed: 06/02/2023]
Abstract
Previously we have shown that ONIOM type (QM/MM) calculations can be used to simulate isotope edited FTIR difference spectra for neutral ubiquinone in the QA binding site in Rhodobacter sphaeroides photosynthetic reaction centers. Here we considerably extend upon this previous work by calculating isotope edited FTIR difference spectra for reaction centers with a variety of unlabeled and (18)O labeled foreign quinones incorporated into the QA binding site. Isotope edited spectra were calculated for reaction centers with 2,3-dimethoxy-5,6-dimethyl-1,4-benzoquinone (MQ0), 2,3,5,6-tetramethyl-1, 4-benzoquinone (duroquinone, DQ), and 2,3-dimethyl-l,4-naphthoquinone (DMNQ) incorporated, and compared to corresponding experimental spectra. The calculated and experimental spectra agree well, further demonstrating the utility and applicability of our ONIOM approach for calculating the vibrational properties of pigments in protein binding sites. The normal modes that contribute to the bands in the calculated spectra, their composition, frequency, and intensity, and how these quantities are modified upon (18)O labeling, are presented. This computed information leads to a new and more detailed understanding/interpretation of the experimental FTIR difference spectra. Hydrogen bonding to the carbonyl groups of the incorporated quinones is shown to be relatively weak. It is also shown that there is some asymmetry in hydrogen bonding, accounting for 10-13 cm(-1) separation in the frequencies of the carbonyl vibrational modes of the incorporated quinones. The extent of asymmetry in H-bonding could only be established by considering the spectra for various types of quinones incorporated into the QA binding site. The quinones listed above are "tail-less." Spectra were also calculated for reaction centers with corresponding "tail" containing quinones incorporated, and it is found that replacement of the quinone methyl group by a phytyl or prenyl chain does not alter ONIOM calculated spectra.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Physics and Astronomy, Georgia State University Atlanta, GA, USA
| | | | | |
Collapse
|
17
|
Zhao N, Hastings G. On the Nature of the Hydrogen Bonds to Neutral Ubiquinone in the QA Binding Site in Purple Bacterial Photosynthetic Reaction Centers. J Phys Chem B 2013; 117:8705-13. [DOI: 10.1021/jp403833y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Nan Zhao
- Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303, United States
| | - Gary Hastings
- Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|