1
|
Casazza KM, Williams GM, Johengen L, Twoey G, Surtees JA. Msh2-Msh3 DNA-binding is not sufficient to promote trinucleotide repeat expansions in Saccharomyces cerevisiae. Genetics 2025; 229:iyae222. [PMID: 39790027 PMCID: PMC11912836 DOI: 10.1093/genetics/iyae222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/25/2024] [Indexed: 01/12/2025] Open
Abstract
Mismatch repair (MMR) is a highly conserved DNA repair pathway that recognizes mispairs that occur spontaneously during DNA replication and coordinates their repair. In Saccharomyces cerevisiae, Msh2-Msh3 and Msh2-Msh6 initiate MMR by recognizing and binding insertion or deletion (in/del) loops up to ∼17 nucleotides (nt.) and base-base mispairs, respectively; the 2 complexes have overlapping specificity for small (1-2 nt.) in/dels. The DNA-binding specificity for the 2 complexes resides in their respective mispair binding domains (MBDs) and has distinct DNA-binding modes. Msh2-Msh3 also plays a role in promoting CAG/CTG trinucleotide repeat (TNR) expansions, which underlie many neurodegenerative diseases such as Huntington's disease and myotonic dystrophy type 1. Models for Msh2-Msh3's role in promoting TNR tract expansion have invoked its specific DNA-binding activity and predict that the TNR structure alters its DNA binding and downstream activities to block repair. Using a chimeric Msh complex that replaces the MBD of Msh6 with the Msh3 MBD, we demonstrate that Msh2-Msh3 DNA-binding activity is not sufficient to promote TNR expansions. We propose a model for Msh2-Msh3-mediated TNR expansions that requires a fully functional Msh2-Msh3 including DNA binding, coordinated ATP binding, and hydrolysis activities and interactions with Mlh complexes that are analogous to those required for MMR.
Collapse
Affiliation(s)
- Katherine M Casazza
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Gregory M Williams
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
- Curia Global, Inc., Buffalo, NY 14203, USA
| | - Lauren Johengen
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Gavin Twoey
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Jennifer A Surtees
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
2
|
Pan F, Xu P, Roland C, Sagui C, Weninger K. Structural and Dynamical Properties of Nucleic Acid Hairpins Implicated in Trinucleotide Repeat Expansion Diseases. Biomolecules 2024; 14:1278. [PMID: 39456210 PMCID: PMC11505666 DOI: 10.3390/biom14101278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/26/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Dynamic mutations in some human genes containing trinucleotide repeats are associated with severe neurodegenerative and neuromuscular disorders-known as Trinucleotide (or Triplet) Repeat Expansion Diseases (TREDs)-which arise when the repeat number of triplets expands beyond a critical threshold. While the mechanisms causing the DNA triplet expansion are complex and remain largely unknown, it is now recognized that the expandable repeats lead to the formation of nucleotide configurations with atypical structural characteristics that play a crucial role in TREDs. These nonstandard nucleic acid forms include single-stranded hairpins, Z-DNA, triplex structures, G-quartets and slipped-stranded duplexes. Of these, hairpin structures are the most prolific and are associated with the largest number of TREDs and have therefore been the focus of recent single-molecule FRET experiments and molecular dynamics investigations. Here, we review the structural and dynamical properties of nucleic acid hairpins that have emerged from these studies and the implications for repeat expansion mechanisms. The focus will be on CAG, GAC, CTG and GTC hairpins and their stems, their atomistic structures, their stability, and the important role played by structural interrupts.
Collapse
Affiliation(s)
- Feng Pan
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA; (F.P.); (C.R.)
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | - Pengning Xu
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA; (F.P.); (C.R.)
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Christopher Roland
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA; (F.P.); (C.R.)
| | - Celeste Sagui
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA; (F.P.); (C.R.)
| | - Keith Weninger
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA; (F.P.); (C.R.)
| |
Collapse
|
3
|
Ferguson R, Goold R, Coupland L, Flower M, Tabrizi SJ. Therapeutic validation of MMR-associated genetic modifiers in a human ex vivo model of Huntington disease. Am J Hum Genet 2024; 111:1165-1183. [PMID: 38749429 PMCID: PMC11179424 DOI: 10.1016/j.ajhg.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 06/09/2024] Open
Abstract
The pathological huntingtin (HTT) trinucleotide repeat underlying Huntington disease (HD) continues to expand throughout life. Repeat length correlates both with earlier age at onset (AaO) and faster progression, making slowing its expansion an attractive therapeutic approach. Genome-wide association studies have identified candidate variants associated with altered AaO and progression, with many found in DNA mismatch repair (MMR)-associated genes. We examine whether lowering expression of these genes affects the rate of repeat expansion in human ex vivo models using HD iPSCs and HD iPSC-derived striatal medium spiny neuron-enriched cultures. We have generated a stable CRISPR interference HD iPSC line in which we can specifically and efficiently lower gene expression from a donor carrying over 125 CAG repeats. Lowering expression of each member of the MMR complexes MutS (MSH2, MSH3, and MSH6), MutL (MLH1, PMS1, PMS2, and MLH3), and LIG1 resulted in characteristic MMR deficiencies. Reduced MSH2, MSH3, and MLH1 slowed repeat expansion to the largest degree, while lowering either PMS1, PMS2, or MLH3 slowed it to a lesser degree. These effects were recapitulated in iPSC-derived striatal cultures where MutL factor expression was lowered. CRISPRi-mediated lowering of key MMR factor expression to levels feasibly achievable by current therapeutic approaches was able to effectively slow the expansion of the HTT CAG tract. We highlight members of the MutL family as potential targets to slow pathogenic repeat expansion with the aim to delay onset and progression of HD and potentially other repeat expansion disorders exhibiting somatic instability.
Collapse
Affiliation(s)
- Ross Ferguson
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; Dementia Research Institute at UCL, London WC1N 3BG, UK
| | - Robert Goold
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; Dementia Research Institute at UCL, London WC1N 3BG, UK
| | - Lucy Coupland
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; Dementia Research Institute at UCL, London WC1N 3BG, UK
| | - Michael Flower
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; Dementia Research Institute at UCL, London WC1N 3BG, UK
| | - Sarah J Tabrizi
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; Dementia Research Institute at UCL, London WC1N 3BG, UK.
| |
Collapse
|
4
|
Li J, Wang H, Yang W. Tandem MutSβ binding to long extruded DNA trinucleotide repeats underpins pathogenic expansions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.571350. [PMID: 38168405 PMCID: PMC10760016 DOI: 10.1101/2023.12.12.571350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Expansion of trinucleotide repeats causes Huntington's disease, Fragile X syndrome and over twenty other monogenic disorders1. How mismatch repair protein MutSβ and large repeats of CNG (N=A, T, C or G) cooperate to drive the expansion is poorly understood. Contrary to expectations, we find that MutSβ prefers to bind the stem of an extruded (CNG) hairpin rather than the hairpin end or hairpin-duplex junction. Structural analyses reveal that in the presence of MutSβ, CNG repeats with N:N mismatches adopt a B form-like pseudo-duplex, with one or two CNG repeats slipped out forming uneven bubbles that partly mimic insertion-deletion loops of mismatched DNA2. When the extruded hairpin exceeds 40-45 repeats, it can be bound by three or more MutSβ molecules, which are resistant to ATP-dependent dissociation. We envision that such MutSβ-CNG complexes recruit MutLγ endonuclease to nick DNA and initiate the repeat expansion process3,4. To develop drugs against the expansion diseases, we have identified lead compounds that prevent MutSβ binding to CNG repeats but not to mismatched DNA.
Collapse
Affiliation(s)
- Jun Li
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892
| | - Huaibin Wang
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892
| | - Wei Yang
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
5
|
Medina-Rivera M, Phelps S, Sridharan M, Becker J, Lamb N, Kumar C, Sutton M, Bielinsky A, Balakrishnan L, Surtees J. Elevated MSH2 MSH3 expression interferes with DNA metabolism in vivo. Nucleic Acids Res 2023; 51:12185-12206. [PMID: 37930834 PMCID: PMC10711559 DOI: 10.1093/nar/gkad934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/30/2023] [Accepted: 10/10/2023] [Indexed: 11/08/2023] Open
Abstract
The Msh2-Msh3 mismatch repair (MMR) complex in Saccharomyces cerevisiae recognizes and directs repair of insertion/deletion loops (IDLs) up to ∼17 nucleotides. Msh2-Msh3 also recognizes and binds distinct looped and branched DNA structures with varying affinities, thereby contributing to genome stability outside post-replicative MMR through homologous recombination, double-strand break repair (DSBR) and the DNA damage response. In contrast, Msh2-Msh3 promotes genome instability through trinucleotide repeat (TNR) expansions, presumably by binding structures that form from single-stranded (ss) TNR sequences. We previously demonstrated that Msh2-Msh3 binding to 5' ssDNA flap structures interfered with Rad27 (Fen1 in humans)-mediated Okazaki fragment maturation (OFM) in vitro. Here we demonstrate that elevated Msh2-Msh3 levels interfere with DNA replication and base excision repair in vivo. Elevated Msh2-Msh3 also induced a cell cycle arrest that was dependent on RAD9 and ELG1 and led to PCNA modification. These phenotypes also required Msh2-Msh3 ATPase activity and downstream MMR proteins, indicating an active mechanism that is not simply a result of Msh2-Msh3 DNA-binding activity. This study provides new mechanistic details regarding how excess Msh2-Msh3 can disrupt DNA replication and repair and highlights the role of Msh2-Msh3 protein abundance in Msh2-Msh3-mediated genomic instability.
Collapse
Affiliation(s)
- Melisa Medina-Rivera
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, 14203, USA
| | - Samantha Phelps
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, 14203, USA
| | - Madhumita Sridharan
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Jordan Becker
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Natalie A Lamb
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, 14203, USA
| | - Charanya Kumar
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, 14203, USA
| | - Mark D Sutton
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, 14203, USA
| | - Anja Bielinsky
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Lata Balakrishnan
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Jennifer A Surtees
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, 14203, USA
| |
Collapse
|
6
|
Kang Y, An S, Min D, Lee JY. Single-molecule fluorescence imaging techniques reveal molecular mechanisms underlying deoxyribonucleic acid damage repair. Front Bioeng Biotechnol 2022; 10:973314. [PMID: 36185427 PMCID: PMC9520083 DOI: 10.3389/fbioe.2022.973314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Advances in single-molecule techniques have uncovered numerous biological secrets that cannot be disclosed by traditional methods. Among a variety of single-molecule methods, single-molecule fluorescence imaging techniques enable real-time visualization of biomolecular interactions and have allowed the accumulation of convincing evidence. These techniques have been broadly utilized for studying DNA metabolic events such as replication, transcription, and DNA repair, which are fundamental biological reactions. In particular, DNA repair has received much attention because it maintains genomic integrity and is associated with diverse human diseases. In this review, we introduce representative single-molecule fluorescence imaging techniques and survey how each technique has been employed for investigating the detailed mechanisms underlying DNA repair pathways. In addition, we briefly show how live-cell imaging at the single-molecule level contributes to understanding DNA repair processes inside cells.
Collapse
Affiliation(s)
- Yujin Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Soyeong An
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Duyoung Min
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Ja Yil Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
- Center for Genomic Integrity, Institute of Basic Sciences, Ulsan, South Korea
- *Correspondence: Ja Yil Lee,
| |
Collapse
|
7
|
Heterogeneous migration routes of DNA triplet repeat slip-outs. BIOPHYSICAL REPORTS 2022; 2:None. [PMID: 36299495 PMCID: PMC9586884 DOI: 10.1016/j.bpr.2022.100070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/08/2022] [Indexed: 12/02/2022]
Abstract
It is unclear how the length of a repetitive DNA tract determines the onset and progression of repeat expansion diseases, but the dynamics of secondary DNA structures formed by repeat sequences are believed to play an important role. It was recently shown that three-way DNA junctions containing slip-out hairpins of CAG or CTG repeats and contiguous triplet repeats in the adjacent duplex displayed single-molecule FRET (smFRET) dynamics that were ascribed to both local conformational motions and longer-range branch migration. Here we explore these so-called "mobile" slip-out structures through a detailed kinetic analysis of smFRET trajectories and coarse-grained modeling. Despite the apparent structural simplicity, with six FRET states resolvable, most smFRET states displayed biexponential dwell-time distributions, attributed to structural heterogeneity and overlapping FRET states. Coarse-grained modeling for a (GAC)10 repeat slip-out included trajectories that corresponded to a complete round of branch migration; the structured free energy landscape between slippage events supports the dynamical complexity observed by smFRET. A hairpin slip-out with 40 CAG repeats, which is above the repeat length required for disease in several triplet repeat disorders, displayed smFRET dwell times that were on average double those of 3WJs with 10 repeats. The rate of secondary-structure rearrangement via branch migration, relative to particular DNA processing pathways, may be an important factor in the expansion of triplet repeat expansion diseases.
Collapse
|
8
|
Mas-Ponte D, McCullough M, Supek F. Spectrum of DNA mismatch repair failures viewed through the lens of cancer genomics and implications for therapy. Clin Sci (Lond) 2022; 136:383-404. [PMID: 35274136 PMCID: PMC8919091 DOI: 10.1042/cs20210682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/02/2022] [Accepted: 02/28/2022] [Indexed: 12/15/2022]
Abstract
Genome sequencing can be used to detect DNA repair failures in tumors and learn about underlying mechanisms. Here, we synthesize findings from genomic studies that examined deficiencies of the DNA mismatch repair (MMR) pathway. The impairment of MMR results in genome-wide hypermutation and in the 'microsatellite instability' (MSI) phenotype-occurrence of indel mutations at short tandem repeat (microsatellite) loci. The MSI status of tumors was traditionally assessed by molecular testing of a selected set of MS loci or by measuring MMR protein expression levels. Today, genomic data can provide a more complete picture of the consequences on genomic instability. Multiple computational studies examined somatic mutation distributions that result from failed DNA repair pathways in tumors. These include analyzing the commonly studied trinucleotide mutational spectra of single-nucleotide variants (SNVs), as well as of other features such as indels, structural variants, mutation clusters and regional mutation rate redistribution. The identified mutation patterns can be used to rigorously measure prevalence of MMR failures across cancer types, and potentially to subcategorize the MMR deficiencies. Diverse data sources, genomic and pre-genomic, from human and from experimental models, suggest there are different ways in which MMR can fail, and/or that the cell-type or genetic background may result in different types of MMR mutational patterns. The spectrum of MMR failures may direct cancer evolution, generating particular sets of driver mutations. Moreover, MMR affects outcomes of therapy by DNA damaging drugs, antimetabolites, nonsense-mediated mRNA decay (NMD) inhibitors, and immunotherapy by promoting either resistance or sensitivity, depending on the type of therapy.
Collapse
Affiliation(s)
- David Mas-Ponte
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute for Science and Technology, Baldiri Reixac 10, Barcelona 08028, Spain
| | - Marcel McCullough
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute for Science and Technology, Baldiri Reixac 10, Barcelona 08028, Spain
| | - Fran Supek
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute for Science and Technology, Baldiri Reixac 10, Barcelona 08028, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Pg Lluís Companys, 23, Barcelona 08010, Spain
| |
Collapse
|
9
|
Abstract
At fifteen different genomic locations, the expansion of a CAG/CTG repeat causes a neurodegenerative or neuromuscular disease, the most common being Huntington's disease and myotonic dystrophy type 1. These disorders are characterized by germline and somatic instability of the causative CAG/CTG repeat mutations. Repeat lengthening, or expansion, in the germline leads to an earlier age of onset or more severe symptoms in the next generation. In somatic cells, repeat expansion is thought to precipitate the rate of disease. The mechanisms underlying repeat instability are not well understood. Here we review the mammalian model systems that have been used to study CAG/CTG repeat instability, and the modifiers identified in these systems. Mouse models have demonstrated prominent roles for proteins in the mismatch repair pathway as critical drivers of CAG/CTG instability, which is also suggested by recent genome-wide association studies in humans. We draw attention to a network of connections between modifiers identified across several systems that might indicate pathway crosstalk in the context of repeat instability, and which could provide hypotheses for further validation or discovery. Overall, the data indicate that repeat dynamics might be modulated by altering the levels of DNA metabolic proteins, their regulation, their interaction with chromatin, or by direct perturbation of the repeat tract. Applying novel methodologies and technologies to this exciting area of research will be needed to gain deeper mechanistic insight that can be harnessed for therapies aimed at preventing repeat expansion or promoting repeat contraction.
Collapse
Affiliation(s)
- Vanessa C. Wheeler
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA,Department of Neurology, Harvard Medical School, Boston, MA, USA,Correspondence to: Vanessa C. Wheeler, Center for Genomic Medicine, Massachusetts Hospital, Boston MAA 02115, USA. E-mail: . and Vincent Dion, UK Dementia Research Institute at Cardiff University, Hadyn Ellis Building, Maindy Road, CF24 4HQ Cardiff, UK. E-mail:
| | - Vincent Dion
- UK Dementia Research Institute at Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, UK,Correspondence to: Vanessa C. Wheeler, Center for Genomic Medicine, Massachusetts Hospital, Boston MAA 02115, USA. E-mail: . and Vincent Dion, UK Dementia Research Institute at Cardiff University, Hadyn Ellis Building, Maindy Road, CF24 4HQ Cardiff, UK. E-mail:
| |
Collapse
|
10
|
Ajjugal Y, Rathinavelan T. Conformational distortions induced by periodically recurring A…A in d(CAG).d(CAG) provide stereochemical rationale for the trapping of MSH2.MSH3 in polyQ disorders. Comput Struct Biotechnol J 2021; 19:4447-4455. [PMID: 34471491 PMCID: PMC8379282 DOI: 10.1016/j.csbj.2021.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 11/25/2022] Open
Abstract
CAG repeat instability causes a number of neurodegenerative disorders. The unusual hairpin stem structure formed by the CAG repeats in DNA traps the human mismatch repair MSH2.MSH3 (Mutsβ) complex. To understand the mechanism behind the abnormal binding of Mutsβ with the imperfect hairpin stem structure formed by CAG repeats, molecular dynamics simulations have been carried out for Mutsβ-d(CAG)2(CAG)(CAG)2.d(CTG)2(CAG)(CTG)2 (1 A…A mismatch) and Mutsβ-d(CAG)5.d(CAG)5 (5 mismatches, wherein, A…A occurs periodically) complexes. The interaction of MSH3 residue Tyr245 at the minor groove side of A…A, an essential interaction responsible for the recognition by Mutsβ, are retained in both the cases. Nevertheless, the periodic unwinding caused by the nonisostericity of A…A with the flanking canonical base pairs in d(CAG)5.d(CAG)5 distorts the regular B-form geometry. Such an unwinding exposes one of the A…A mismatches (that interacts with Tyr245) at the major groove side and also facilitates the on and off hydrogen bonding interaction with Lys546 sidechain (MSH2-domain-IV). In contrast, kinking of the DNA towards the major groove in Mutsβ-d(CAG)2(CAG)(CAG)2.d(CTG)2(CAG)(CTG)2 doesn’t facilitate such an exposure of the bases at the major groove. Further, the unwinding of the helix in d(CAG)5.d(CAG)5 enhances the tighter binding between MSH2-domain-I and d(CAG)5.d(CAG)5 at the major groove side as well as between MSH3-domain-I and MSH3-domain-IV. Markedly, such enhanced interactions are absent in Mutsβ-d(CAG)2(CAG)(CAG)2.d(CTG)2(CAG)(CTG)2 that has a single A…A mismatch. Thus, the above-mentioned enhancement in intra- and inter- molecular interactions in Mutsβ-d(CAG)5.d(CAG)5 provide the stereochemical rationale for the trapping of Mutsβ in CAG repeat expansion disorders.
Collapse
Affiliation(s)
- Yogeeshwar Ajjugal
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana State 502285, India
| | | |
Collapse
|
11
|
Abstract
DNA mismatch repair (MMR) is a highly conserved genome stabilizing pathway that corrects DNA replication errors, limits chromosomal rearrangements, and mediates the cellular response to many types of DNA damage. Counterintuitively, MMR is also involved in the generation of mutations, as evidenced by its role in causing somatic triplet repeat expansion in Huntington’s disease (HD) and other neurodegenerative disorders. In this review, we discuss the current state of mechanistic knowledge of MMR and review the roles of key enzymes in this pathway. We also present the evidence for mutagenic function of MMR in CAG repeat expansion and consider mechanistic hypotheses that have been proposed. Understanding the role of MMR in CAG expansion may shed light on potential avenues for therapeutic intervention in HD.
Collapse
Affiliation(s)
- Ravi R Iyer
- CHDI Management/CHDI Foundation, Princeton, NJ, USA
| | - Anna Pluciennik
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
12
|
Conformational and migrational dynamics of slipped-strand DNA three-way junctions containing trinucleotide repeats. Nat Commun 2021; 12:204. [PMID: 33420051 PMCID: PMC7794359 DOI: 10.1038/s41467-020-20426-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022] Open
Abstract
Expansions of CAG/CTG trinucleotide repeats in DNA are the cause of at least 17 degenerative human disorders, including Huntington’s Disease. Repeat instability is thought to occur via the formation of intrastrand hairpins during replication, repair, recombination, and transcription though relatively little is known about their structure and dynamics. We use single-molecule Förster resonance energy transfer to study DNA three-way junctions (3WJs) containing slip-outs composed of CAG or CTG repeats. 3WJs that only have repeats in the slip-out show two-state behavior, which we attribute to conformational flexibility at the 3WJ branchpoint. When the triplet repeats extend into the adjacent duplex, additional dynamics are observed, which we assign to interconversion of positional isomers. We propose a branchpoint migration model that involves conformational rearrangement, strand exchange, and bulge-loop movement. This migration has implications for how repeat slip-outs are processed by the cellular machinery, disease progression, and their development as drug targets. DNA three-way junctions are branched structures formed during replication, repair, and recombination, and are involved in models of repeat expansion. Here the authors use single-molecule Förster resonance energy transfer to reveal the dynamics of DNA three-way junctions containing slip-outs composed of CAG or CTG repeats.
Collapse
|
13
|
New developments in Huntington's disease and other triplet repeat diseases: DNA repair turns to the dark side. Neuronal Signal 2020; 4:NS20200010. [PMID: 33224521 PMCID: PMC7672267 DOI: 10.1042/ns20200010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 02/08/2023] Open
Abstract
Huntington’s disease (HD) is a fatal, inherited neurodegenerative disease that causes neuronal death, particularly in medium spiny neurons. HD leads to serious and progressive motor, cognitive and psychiatric symptoms. Its genetic basis is an expansion of the CAG triplet repeat in the HTT gene, leading to extra glutamines in the huntingtin protein. HD is one of nine genetic diseases in this polyglutamine (polyQ) category, that also includes a number of inherited spinocerebellar ataxias (SCAs). Traditionally it has been assumed that HD age of onset and disease progression were solely the outcome of age-dependent exposure of neurons to toxic effects of the inherited mutant huntingtin protein. However, recent genome-wide association studies (GWAS) have revealed significant effects of genetic variants outside of HTT. Surprisingly, these variants turn out to be mostly in genes encoding DNA repair factors, suggesting that at least some disease modulation occurs at the level of the HTT DNA itself. These DNA repair proteins are known from model systems to promote ongoing somatic CAG repeat expansions in tissues affected by HD. Thus, for triplet repeats, some DNA repair proteins seem to abandon their normal genoprotective roles and, instead, drive expansions and accelerate disease. One attractive hypothesis—still to be proven rigorously—is that somatic HTT expansions augment the disease burden of the inherited allele. If so, therapeutic approaches that lower levels of huntingtin protein may need blending with additional therapies that reduce levels of somatic CAG repeat expansions to achieve maximal effect.
Collapse
|
14
|
Balzano E, Pelliccia F, Giunta S. Genome (in)stability at tandem repeats. Semin Cell Dev Biol 2020; 113:97-112. [PMID: 33109442 DOI: 10.1016/j.semcdb.2020.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/26/2020] [Accepted: 10/10/2020] [Indexed: 12/12/2022]
Abstract
Repeat sequences account for over half of the human genome and represent a significant source of variation that underlies physiological and pathological states. Yet, their study has been hindered due to limitations in short-reads sequencing technology and difficulties in assembly. A important category of repetitive DNA in the human genome is comprised of tandem repeats (TRs), where repetitive units are arranged in a head-to-tail pattern. Compared to other regions of the genome, TRs carry between 10 and 10,000 fold higher mutation rate. There are several mutagenic mechanisms that can give rise to this propensity toward instability, but their precise contribution remains speculative. Given the high degree of homology between these sequences and their arrangement in tandem, once damaged, TRs have an intrinsic propensity to undergo aberrant recombination with non-allelic exchange and generate harmful rearrangements that may undermine the stability of the entire genome. The dynamic mutagenesis at TRs has been found to underlie individual polymorphism associated with neurodegenerative and neuromuscular disorders, as well as complex genetic diseases like cancer and diabetes. Here, we review our current understanding of the surveillance and repair mechanisms operating within these regions, and we describe how alterations in these protective processes can readily trigger mutational signatures found at TRs, ultimately resulting in the pathological correlation between TRs instability and human diseases. Finally, we provide a viewpoint to counter the detrimental effects that TRs pose in light of their selection and conservation, as important drivers of human evolution.
Collapse
Affiliation(s)
- Elisa Balzano
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, 00185 Roma, Italy
| | - Franca Pelliccia
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, 00185 Roma, Italy
| | - Simona Giunta
- The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, 00185 Roma, Italy.
| |
Collapse
|
15
|
Young SJ, Sebald M, Shah Punatar R, Larin M, Masino L, Rodrigo-Brenni MC, Liang CC, West SC. MutSβ Stimulates Holliday Junction Resolution by the SMX Complex. Cell Rep 2020; 33:108289. [PMID: 33086055 DOI: 10.1016/j.celrep.2020.108289] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/02/2020] [Accepted: 09/29/2020] [Indexed: 12/20/2022] Open
Abstract
MutSα and MutSβ play important roles in DNA mismatch repair and are linked to inheritable cancers and degenerative disorders. Here, we show that MSH2 and MSH3, the two components of MutSβ, bind SLX4 protein, a scaffold for the assembly of the SLX1-SLX4-MUS81-EME1-XPF-ERCC1 (SMX) trinuclease complex. SMX promotes the resolution of Holliday junctions (HJs), which are intermediates in homologous recombinational repair. We find that MutSβ binds HJs and stimulates their resolution by SLX1-SLX4 or SMX in reactions dependent upon direct interactions between MutSβ and SLX4. In contrast, MutSα does not stimulate HJ resolution. MSH3-depleted cells exhibit reduced sister chromatid exchanges and elevated levels of homologous recombination ultrafine bridges (HR-UFBs) at mitosis, consistent with defects in the processing of recombination intermediates. These results demonstrate a role for MutSβ in addition to its established role in the pathogenic expansion of CAG/CTG trinucleotide repeats, which is causative of myotonic dystrophy and Huntington's disease.
Collapse
Affiliation(s)
- Sarah J Young
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Marie Sebald
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Meghan Larin
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Laura Masino
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Chih-Chao Liang
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Stephen C West
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
16
|
Mitchell ML, Leveille MP, Solecki RS, Tran T, Cannon B. Sequence-Dependent Effects of Monovalent Cations on the Structural Dynamics of Trinucleotide-Repeat DNA Hairpins. J Phys Chem B 2018; 122:11841-11851. [PMID: 30441902 DOI: 10.1021/acs.jpcb.8b07994] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Repetitive trinucleotide DNA sequences at specific genetic loci are associated with numerous hereditary, neurodegenerative diseases. The propensity of single-stranded domains containing these sequences to form secondary structure via extensive self-complementarity disrupts normal DNA processing to create genetic instabilities. To investigate these intrastrand structural dynamics, a DNA hairpin system was devised for single-molecule fluorescence study of the folding kinetics and energetics for secondary structure formation between two interacting, repetitive domains with specific numbers of the same trinucleotide motif (CXG), where X = T or A. Single-molecule fluorescence resonance energy transfer (smFRET) data show discrete conformational transitions between unstructured and closed hairpin states. The lifetimes of the closed hairpin states correlate with the number of repeats, with (CTG) N/(CTG) N domains maintaining longer-lived, closed states than equivalent-sized (CAG) N/(CAG) N domains. NaCl promotes similar degree of stabilization for the closed hairpin states of both repeat sequences. Temperature-based, smFRET experiments reveal that NaCl favors hairpin closing for (CAG) N/(CAG) N by preordering single-stranded repeat domains to accelerate the closing transition. In contrast, NaCl slows the opening transition of CTG hairpins; however, it promotes misfolded conformations that require unfolding. Energy diagrams illustrate the distinct folding pathways of (CTG) N and (CAG) N repeat domains and identify features that may contribute to their gene-destabilizing effects.
Collapse
Affiliation(s)
- Marisa L Mitchell
- Department of Physics , Loyola University Chicago , Chicago , Illinois 60660 , United States
| | - Michael P Leveille
- Department of Physics , Loyola University Chicago , Chicago , Illinois 60660 , United States
| | - Roman S Solecki
- Department of Physics , Loyola University Chicago , Chicago , Illinois 60660 , United States
| | - Thao Tran
- Department of Physics , Loyola University Chicago , Chicago , Illinois 60660 , United States
| | - Brian Cannon
- Department of Physics , Loyola University Chicago , Chicago , Illinois 60660 , United States
| |
Collapse
|
17
|
Keogh N, Chan KY, Li GM, Lahue RS. MutSβ abundance and Msh3 ATP hydrolysis activity are important drivers of CTG•CAG repeat expansions. Nucleic Acids Res 2017; 45:10068-10078. [PMID: 28973443 PMCID: PMC5622409 DOI: 10.1093/nar/gkx650] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/14/2017] [Indexed: 01/01/2023] Open
Abstract
CTG•CAG repeat expansions cause at least twelve inherited neurological diseases. Expansions require the presence, not the absence, of the mismatch repair protein MutSβ (Msh2-Msh3 heterodimer). To evaluate properties of MutSβ that drive expansions, previous studies have tested under-expression, ATPase function or polymorphic variants of Msh2 and Msh3, but in disparate experimental systems. Additionally, some variants destabilize MutSβ, potentially masking the effects of biochemical alterations of the variations. Here, human Msh3 was mutated to selectively inactivate MutSβ. Msh3-/- cells are severely defective for CTG•CAG repeat expansions but show full activity on contractions. Msh3-/- cells provide a single, isogenic system to add back Msh3 and test key biochemical features of MutSβ on expansions. Msh3 overexpression led to high expansion activity and elevated levels of MutSβ complex, indicating that MutSβ abundance drives expansions. An ATPase-defective Msh3 expressed at normal levels was as defective in expansions as Msh3-/- cells, indicating that Msh3 ATPase function is critical for expansions. Expression of two Msh3 polymorphic variants at normal levels showed no detectable change in expansions, suggesting these polymorphisms primarily affect Msh3 protein stability, not activity. In summary, CTG•CAG expansions are limited by the abundance of MutSβ and rely heavily on Msh3 ATPase function.
Collapse
Affiliation(s)
- Norma Keogh
- Centre for Chromosome Biology, National University of Ireland Galway, Newcastle Road, Galway H91T K33, Ireland
| | - Kara Y Chan
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Guo-Min Li
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA.,Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Robert S Lahue
- Centre for Chromosome Biology, National University of Ireland Galway, Newcastle Road, Galway H91T K33, Ireland.,NCBES Galway Neuroscience Centre, National University of Ireland Galway, Newcastle Road, Galway H91T K33, Ireland
| |
Collapse
|
18
|
Guo J, Chen L, Li GM. DNA mismatch repair in trinucleotide repeat instability. SCIENCE CHINA. LIFE SCIENCES 2017; 60:1087-1092. [PMID: 29075942 DOI: 10.1007/s11427-017-9186-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 09/30/2017] [Indexed: 11/29/2022]
Abstract
Trinucleotide repeat expansions cause over 30 severe neuromuscular and neurodegenerative disorders, including Huntington's disease, myotonic dystrophy type 1, and fragile X syndrome. Although previous studies have substantially advanced the understanding of the disease biology, many key features remain unknown. DNA mismatch repair (MMR) plays a critical role in genome maintenance by removing DNA mismatches generated during DNA replication. However, MMR components, particularly mismatch recognition protein MutSβ and its interacting factors MutLα and MutLγ, have been implicated in trinucleotide repeat instability. In this review, we will discuss the roles of these key MMR proteins in promoting trinucleotide repeat instability.
Collapse
Affiliation(s)
- Jinzhen Guo
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Luping Chen
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, CA, 90033, USA
| | - Guo-Min Li
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
19
|
Polyzos AA, McMurray CT. Close encounters: Moving along bumps, breaks, and bubbles on expanded trinucleotide tracts. DNA Repair (Amst) 2017; 56:144-155. [PMID: 28690053 PMCID: PMC5558859 DOI: 10.1016/j.dnarep.2017.06.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Expansion of simple triplet repeats (TNR) underlies more than 30 severe degenerative diseases. There is a good understanding of the major pathways generating an expansion, and the associated polymerases that operate during gap filling synthesis at these "difficult to copy" sequences. However, the mechanism by which a TNR is repaired depends on the type of lesion, the structural features imposed by the lesion, the assembled replication/repair complex, and the polymerase that encounters it. The relationships among these parameters are exceptionally complex and how they direct pathway choice is poorly understood. In this review, we consider the properties of polymerases, and how encounters with GC-rich or abnormal structures might influence polymerase choice and the success of replication and repair. Insights over the last three years have highlighted new mechanisms that provide interesting choices to consider in protecting genome stability.
Collapse
Affiliation(s)
- Aris A Polyzos
- MBIB Division, Lawrence Berkeley Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, United States
| | - Cynthia T McMurray
- MBIB Division, Lawrence Berkeley Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, United States.
| |
Collapse
|
20
|
Gadgil R, Barthelemy J, Lewis T, Leffak M. Replication stalling and DNA microsatellite instability. Biophys Chem 2016; 225:38-48. [PMID: 27914716 DOI: 10.1016/j.bpc.2016.11.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/05/2016] [Accepted: 11/05/2016] [Indexed: 01/08/2023]
Abstract
Microsatellites are short, tandemly repeated DNA motifs of 1-6 nucleotides, also termed simple sequence repeats (SRSs) or short tandem repeats (STRs). Collectively, these repeats comprise approximately 3% of the human genome Subramanian et al. (2003), Lander and Lander (2001) [1,2], and represent a large reservoir of loci highly prone to mutations Sun et al. (2012), Ellegren (2004) [3,4] that contribute to human evolution and disease. Microsatellites are known to stall and reverse replication forks in model systems Pelletier et al. (2003), Samadashwily et al. (1997), Kerrest et al. (2009) [5-7], and are hotspots of chromosomal double strand breaks (DSBs). We briefly review the relationship of these repeated sequences to replication stalling and genome instability, and present recent data on the impact of replication stress on DNA fragility at microsatellites in vivo.
Collapse
Affiliation(s)
- R Gadgil
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - J Barthelemy
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - T Lewis
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - M Leffak
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA.
| |
Collapse
|
21
|
Wang B, Francis J, Sharma M, Law SM, Predeus AV, Feig M. Long-Range Signaling in MutS and MSH Homologs via Switching of Dynamic Communication Pathways. PLoS Comput Biol 2016; 12:e1005159. [PMID: 27768684 PMCID: PMC5074593 DOI: 10.1371/journal.pcbi.1005159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/21/2016] [Indexed: 11/19/2022] Open
Abstract
Allostery is conformation regulation by propagating a signal from one site to another distal site. This study focuses on the long-range communication in DNA mismatch repair proteins MutS and its homologs where intramolecular signaling has to travel over 70 Å to couple lesion detection to ATPase activity and eventual downstream repair. Using dynamic network analysis based on extensive molecular dynamics simulations, multiple preserved communication pathways were identified that would allow such long-range signaling. The pathways appear to depend on the nucleotides bound to the ATPase domain as well as the type of DNA substrate consistent with previously proposed functional cycles of mismatch recognition and repair initiation by MutS and homologs. A mechanism is proposed where pathways are switched without major conformational rearrangements allowing for efficient long-range signaling and allostery.
Collapse
Affiliation(s)
- Beibei Wang
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Joshua Francis
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Monika Sharma
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Sean M. Law
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Alexander V. Predeus
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Michael Feig
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, United States
- * E-mail:
| |
Collapse
|
22
|
Lai Y, Budworth H, Beaver JM, Chan NLS, Zhang Z, McMurray CT, Liu Y. Crosstalk between MSH2-MSH3 and polβ promotes trinucleotide repeat expansion during base excision repair. Nat Commun 2016; 7:12465. [PMID: 27546332 PMCID: PMC4996945 DOI: 10.1038/ncomms12465] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 07/06/2016] [Indexed: 01/07/2023] Open
Abstract
Studies in knockout mice provide evidence that MSH2-MSH3 and the BER machinery promote trinucleotide repeat (TNR) expansion, yet how these two different repair pathways cause the mutation is unknown. Here we report the first molecular crosstalk mechanism, in which MSH2-MSH3 is used as a component of the BER machinery to cause expansion. On its own, pol β fails to copy TNRs during DNA synthesis, and bypasses them on the template strand to cause deletion. Remarkably, MSH2-MSH3 not only stimulates pol β to copy through the repeats but also enhances formation of the flap precursor for expansion. Our results provide direct evidence that MMR and BER, operating together, form a novel hybrid pathway that changes the outcome of TNR instability from deletion to expansion during the removal of oxidized bases. We propose that cells implement crosstalk strategies and share machinery when a canonical pathway is ineffective in removing a difficult lesion.
Collapse
Affiliation(s)
- Yanhao Lai
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, Florida 33199, USA
| | - Helen Budworth
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, 33R249, Berkeley, California 94720, USA
| | - Jill M. Beaver
- Biochemistry Ph.D. Program, Florida International University, 11200 SW 8th Street, Miami, Florida 33199, USA
| | - Nelson L. S. Chan
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, 33R249, Berkeley, California 94720, USA
| | - Zunzhen Zhang
- Department of Occupational and Environmental Health, Sichuan University West China School of Public Health, 16#, Section 3, Renmin Nan Lu, Chengdu, Sichuan 610041, China
| | - Cynthia T. McMurray
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, 33R249, Berkeley, California 94720, USA
| | - Yuan Liu
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, Florida 33199, USA
- Biochemistry Ph.D. Program, Florida International University, 11200 SW 8th Street, Miami, Florida 33199, USA
- Biomolecular Sciences Institute, School of Integrated Sciences and Humanity, Florida International University, 11200 SW 8th Street, Miami, Florida 33199, USA
| |
Collapse
|
23
|
Guo J, Gu L, Leffak M, Li GM. MutSβ promotes trinucleotide repeat expansion by recruiting DNA polymerase β to nascent (CAG)n or (CTG)n hairpins for error-prone DNA synthesis. Cell Res 2016; 26:775-86. [PMID: 27255792 PMCID: PMC5129881 DOI: 10.1038/cr.2016.66] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/15/2016] [Accepted: 05/17/2016] [Indexed: 12/12/2022] Open
Abstract
Expansion of (CAG)•(CTG) repeats causes a number of familial neurodegenerative disorders. Although the underlying mechanism remains largely unknown, components involved in DNA mismatch repair, particularly mismatch recognition protein MutSβ (a MSH2-MSH3 heterodimer), are implicated in (CAG)•(CTG) repeat expansion. In addition to recognizing small insertion-deletion loop-outs, MutSβ also specifically binds DNA hairpin imperfect heteroduplexes formed within (CAG)n•(CTG)n sequences. However, whether or not and how MutSβ binding triggers expansion of (CAG)•(CTG) repeats remain unknown. We show here that purified recombinant MutSβ physically interacts with DNA polymerase β (Polβ) and stimulates Polβ-catalyzed (CAG)n or (CTG)n hairpin retention. Consistent with these in vitro observations, MutSβ and Polβ interact with each other in vivo, and colocalize at (CAG)•(CTG) repeats during DNA replication. Our data support a model for error-prone processing of (CAG)n or (CTG)n hairpins by MutSβ and Polβ during DNA replication and/or repair: MutSβ recognizes (CAG)n or (CTG)n hairpins formed in the nascent DNA strand, and recruits Polβ to the complex, which then utilizes the hairpin as a primer for extension, leading to (CAG)•(CTG) repeat expansion. This study provides a novel mechanism for trinucleotide repeat expansion in both dividing and non-dividing cells.
Collapse
Affiliation(s)
- Jinzhen Guo
- Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing 100084, China.,Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, 1450 Biggy Street, Los Angeles, CA 90033, USA
| | - Liya Gu
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, 1450 Biggy Street, Los Angeles, CA 90033, USA
| | - Michael Leffak
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Guo-Min Li
- Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing 100084, China.,Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, 1450 Biggy Street, Los Angeles, CA 90033, USA
| |
Collapse
|
24
|
Viterbo D, Michoud G, Mosbach V, Dujon B, Richard GF. Replication stalling and heteroduplex formation within CAG/CTG trinucleotide repeats by mismatch repair. DNA Repair (Amst) 2016; 42:94-106. [DOI: 10.1016/j.dnarep.2016.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/01/2016] [Accepted: 03/11/2016] [Indexed: 10/22/2022]
|
25
|
Jafary F, Salehi M, Sedghi M, Nouri N, Jafary F, Sadeghi F, Motamedi S, Talebi M. Association between mismatch repair gene MSH3 codons 1036 and 222 polymorphisms and sporadic prostate cancer in the Iranian population. Asian Pac J Cancer Prev 2016; 13:6055-7. [PMID: 23464402 DOI: 10.7314/apjcp.2012.13.12.6055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The mismatch repair system (MMR) is a post-replicative DNA repair mechanism whose defects can lead to cancer. The MSH3 protein is an essential component of the system. We postulated that MSH3 gene polymorphisms might therefore be associated with prostate cancer (PC). We studied MSH3 codon 222 and MSH3 codon 1036 polymorphisms in a group of Iranian sporadic PC patients. A total of 60 controls and 18 patients were assessed using the polymerase chain reaction and single strand conformational polymorphism. For comparing the genotype frequencies of patients and controls the chi-square test was applied. The obtained result indicated that there was significantly association between G/A genotype of MSH3 codon 222 and G/G genotype of MSH3 codon 1036 with an increased PC risk (P=0.012 and P=0.02 respectively). Our results demonstrated that MSH3 codon 222 and MSH3 codon 1036 polymorphisms may be risk factors for sporadic prostate cancer in the Iranian population.
Collapse
Affiliation(s)
- Fariba Jafary
- Young Researcher Club. I.A.U. Falavarjan University, Iran E-mail :
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Morales F, Vásquez M, Santamaría C, Cuenca P, Corrales E, Monckton DG. A polymorphism in the MSH3 mismatch repair gene is associated with the levels of somatic instability of the expanded CTG repeat in the blood DNA of myotonic dystrophy type 1 patients. DNA Repair (Amst) 2016; 40:57-66. [DOI: 10.1016/j.dnarep.2016.01.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 01/28/2016] [Accepted: 01/29/2016] [Indexed: 01/01/2023]
|
27
|
Brown MW, Kim Y, Williams GM, Huck JD, Surtees JA, Finkelstein IJ. Dynamic DNA binding licenses a repair factor to bypass roadblocks in search of DNA lesions. Nat Commun 2016; 7:10607. [PMID: 26837705 PMCID: PMC4742970 DOI: 10.1038/ncomms10607] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 01/04/2016] [Indexed: 12/17/2022] Open
Abstract
DNA-binding proteins search for specific targets via facilitated diffusion along a crowded genome. However, little is known about how crowded DNA modulates facilitated diffusion and target recognition. Here we use DNA curtains and single-molecule fluorescence imaging to investigate how Msh2-Msh3, a eukaryotic mismatch repair complex, navigates on crowded DNA. Msh2-Msh3 hops over nucleosomes and other protein roadblocks, but maintains sufficient contact with DNA to recognize a single lesion. In contrast, Msh2-Msh6 slides without hopping and is largely blocked by protein roadblocks. Remarkably, the Msh3-specific mispair-binding domain (MBD) licences a chimeric Msh2-Msh6(3MBD) to bypass nucleosomes. Our studies contrast how Msh2-Msh3 and Msh2-Msh6 navigate on a crowded genome and suggest how Msh2-Msh3 locates DNA lesions outside of replication-coupled repair. These results also provide insights into how DNA repair factors search for DNA lesions in the context of chromatin.
Collapse
Affiliation(s)
- Maxwell W Brown
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Yoori Kim
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Gregory M Williams
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | - John D Huck
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | - Jennifer A Surtees
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | - Ilya J Finkelstein
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA.,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
28
|
Hingorani MM. Mismatch binding, ADP-ATP exchange and intramolecular signaling during mismatch repair. DNA Repair (Amst) 2016; 38:24-31. [PMID: 26704427 PMCID: PMC4740199 DOI: 10.1016/j.dnarep.2015.11.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 09/08/2015] [Accepted: 11/30/2015] [Indexed: 12/16/2022]
Abstract
The focus of this article is on the DNA binding and ATPase activities of the mismatch repair (MMR) protein, MutS-our current understanding of how this protein uses ATP to fuel its actions on DNA and initiate repair via interactions with MutL, the next protein in the pathway. Structure-function and kinetic studies have yielded detailed views of the MutS mechanism of action in MMR. How MutS and MutL work together after mismatch recognition to enable strand-specific nicking, which leads to strand excision and synthesis, is less clear and remains an active area of investigation.
Collapse
|
29
|
Gerhardt J. Epigenetic modifications in human fragile X pluripotent stem cells; Implications in fragile X syndrome modeling. Brain Res 2015; 1656:55-62. [PMID: 26475977 DOI: 10.1016/j.brainres.2015.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 08/18/2015] [Accepted: 10/02/2015] [Indexed: 12/18/2022]
Abstract
Patients with fragile X syndrome (FXS) exhibit moderate to severe intellectual disabilities. In addition, one-third of FXS patients show characteristics of autism spectrum disorder. FXS is caused by a trinucleotide repeat expansion, which leads to silencing of the fragile X mental retardation (FMR1) gene. The absence of the FMR1 gene product, FMRP, is the reason for the disease symptoms. It has been suggested that repeat instability and transcription of the FMR1 gene occur during early embryonic development, while after cell differentiation repeats become stable and the FMR1 gene is silent. Epigenetic marks, such as DNA methylation, are associated with gene silencing and repeat stability at the FMR1 locus. However, the mechanisms leading to gene silencing and repeat expansion are still ambiguous, because studies at the human genomic locus were limited until now. The FXS pluripotent stem cells, recently derived from FXS adult cells and FXS blastocysts, are new useful tools to examine these mechanisms at the human endogenous FMR1 locus. This review summarizes the epigenetic features and experimental studies of FXS human embryonic and FXS induced pluripotent stem cells, generated so far. This article is part of a Special Issue entitled SI: Exploiting human neurons.
Collapse
Affiliation(s)
- Jeannine Gerhardt
- Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx 10461, USA.
| |
Collapse
|
30
|
Zhao XN, Kumari D, Gupta S, Wu D, Evanitsky M, Yang W, Usdin K. Mutsβ generates both expansions and contractions in a mouse model of the Fragile X-associated disorders. Hum Mol Genet 2015; 24:7087-96. [PMID: 26420841 DOI: 10.1093/hmg/ddv408] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/22/2015] [Indexed: 11/13/2022] Open
Abstract
Fragile X-associated disorders are Repeat Expansion Diseases that result from expansion of a CGG/CCG-repeat in the FMR1 gene. Contractions of the repeat tract also occur, albeit at lower frequency. However, these contractions can potentially modulate disease symptoms or generate an allele with repeat numbers in the normal range. Little is known about the expansion mechanism and even less about contractions. We have previously demonstrated that the mismatch repair (MMR) protein MSH2 is required for expansions in a mouse model of these disorders. Here, we show that MSH3, the MSH2-binding partner in the MutSβ complex, is required for 98% of germ line expansions and all somatic expansions in this model. In addition, we provide evidence for two different contraction mechanisms that operate in the mouse model, a MutSβ-independent one that generates small contractions and a MutSβ-dependent one that generates larger ones. We also show that MutSβ complexes formed with the repeats have altered kinetics of ATP hydrolysis relative to complexes with bona fide MMR substrates and that MutSβ increases the stability of the CCG-hairpins at physiological temperatures. These data may have important implications for our understanding of the mechanism(s) of repeat instability and for the role of MMR proteins in this process.
Collapse
Affiliation(s)
- Xiao-Nan Zhao
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology
| | - Daman Kumari
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology
| | - Shikha Gupta
- Section on Structure and Mechanisms of DNA repair, replication and recombination, Laboratory of Molecular Biology and
| | - Di Wu
- Section on Physical Biochemistry, Laboratory of Biochemistry and Genetics, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA
| | - Maya Evanitsky
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology
| | - Wei Yang
- Section on Structure and Mechanisms of DNA repair, replication and recombination, Laboratory of Molecular Biology and
| | - Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology,
| |
Collapse
|
31
|
Williams GM, Surtees JA. MSH3 Promotes Dynamic Behavior of Trinucleotide Repeat Tracts In Vivo. Genetics 2015; 200:737-54. [PMID: 25969461 PMCID: PMC4512540 DOI: 10.1534/genetics.115.177303] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/04/2015] [Indexed: 11/18/2022] Open
Abstract
Trinucleotide repeat (TNR) expansions are the underlying cause of more than 40 neurodegenerative and neuromuscular diseases, including myotonic dystrophy and Huntington's disease, yet the pathway to expansion remains poorly understood. An important step in expansion is the shift from a stable TNR sequence to an unstable, expanding tract, which is thought to occur once a TNR attains a threshold length. Modeling of human data has indicated that TNR tracts are increasingly likely to expand as they increase in size and to do so in increments that are smaller than the repeat itself, but this has not been tested experimentally. Genetic work has implicated the mismatch repair factor MSH3 in promoting expansions. Using Saccharomyces cerevisiae as a model for CAG and CTG tract dynamics, we examined individual threshold-length TNR tracts in vivo over time in MSH3 and msh3Δ backgrounds. We demonstrate, for the first time, that these TNR tracts are highly dynamic. Furthermore, we establish that once such a tract has expanded by even a few repeat units, it is significantly more likely to expand again. Finally, we show that threshold- length TNR sequences readily accumulate net incremental expansions over time through a series of small expansion and contraction events. Importantly, the tracts were substantially stabilized in the msh3Δ background, with a bias toward contractions, indicating that Msh2-Msh3 plays an important role in shifting the expansion-contraction equilibrium toward expansion in the early stages of TNR tract expansion.
Collapse
Affiliation(s)
- Gregory M Williams
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, New York 14214
| | - Jennifer A Surtees
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, New York 14214 Genetics, Genomics and Bioinformatics Program, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, New York 14214
| |
Collapse
|
32
|
Abstract
DNA repair normally protects the genome against mutations that threaten genome integrity and thus cell viability. However, growing evidence suggests that in the case of the Repeat Expansion Diseases, disorders that result from an increase in the size of a disease-specific microsatellite, the disease-causing mutation is actually the result of aberrant DNA repair. A variety of proteins from different DNA repair pathways have thus far been implicated in this process. This review will summarize recent findings from patients and from mouse models of these diseases that shed light on how these pathways may interact to cause repeat expansion.
Collapse
Affiliation(s)
- Xiao-Nan Zhao
- Section on Genomic Structure and Function Laboratory of Cell and Molecular Biology National Institute of Diabetes, Digestive and Kidney Diseases National Institutes of Health, Bethesda, MD 20892-0830, USA
| | - Karen Usdin
- Section on Genomic Structure and Function Laboratory of Cell and Molecular Biology National Institute of Diabetes, Digestive and Kidney Diseases National Institutes of Health, Bethesda, MD 20892-0830, USA.
| |
Collapse
|
33
|
Reyes GX, Schmidt TT, Kolodner RD, Hombauer H. New insights into the mechanism of DNA mismatch repair. Chromosoma 2015; 124:443-62. [PMID: 25862369 DOI: 10.1007/s00412-015-0514-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 03/23/2015] [Accepted: 03/23/2015] [Indexed: 12/20/2022]
Abstract
The genome of all organisms is constantly being challenged by endogenous and exogenous sources of DNA damage. Errors like base:base mismatches or small insertions and deletions, primarily introduced by DNA polymerases during DNA replication are repaired by an evolutionary conserved DNA mismatch repair (MMR) system. The MMR system, together with the DNA replication machinery, promote repair by an excision and resynthesis mechanism during or after DNA replication, increasing replication fidelity by up-to-three orders of magnitude. Consequently, inactivation of MMR genes results in elevated mutation rates that can lead to increased cancer susceptibility in humans. In this review, we summarize our current understanding of MMR with a focus on the different MMR protein complexes, their function and structure. We also discuss how recent findings have provided new insights in the spatio-temporal regulation and mechanism of MMR.
Collapse
Affiliation(s)
- Gloria X Reyes
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Tobias T Schmidt
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Richard D Kolodner
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, Moores-UCSD Cancer Center and Institute of Genomic Medicine, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92093-0669, USA
| | - Hans Hombauer
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.
| |
Collapse
|
34
|
EMAST is a Form of Microsatellite Instability That is Initiated by Inflammation and Modulates Colorectal Cancer Progression. Genes (Basel) 2015; 6:185-205. [PMID: 25836926 PMCID: PMC4488660 DOI: 10.3390/genes6020185] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 03/19/2015] [Accepted: 03/23/2015] [Indexed: 12/12/2022] Open
Abstract
DNA mismatch repair (MMR) function is critical for correcting errors coincident with polymerase-driven DNA replication, and its proteins are frequent targets for inactivation (germline or somatic), generating a hypermutable tumor that drives cancer progression. The biomarker for defective DNA MMR is microsatellite instability-high (MSI-H), observed in ~15% of colorectal cancers, and defined by mono- and dinucleotide microsatellite frameshift mutations. MSI-H is highly correlated with loss of MMR protein expression, is commonly diploid, is often located in the right side of the colon, prognosticates good patient outcome, and predicts poor efficacy with 5-fluorouracil treatment. Elevated microsatellite alterations at selected tetranucleotide repeats (EMAST) is another form of MSI at tetranucleotide repeats that has been observed in multiple cancers, but its etiology and clinical relevance to patient care has only been recently illuminated. Specifically, EMAST is an acquired somatic defect observed in up to 60% of colorectal cancers and caused by unique dysfunction of the DNA MMR protein MSH3 (and its DNA MMR complex MutSβ, a heterodimer of MSH2-MSH3), and in particular a loss-of-function phenotype due to a reversible shift from its normal nuclear location into the cytosol in response to oxidative stress and the pro-inflammatory cytokine interleukin-6. Tumor hypoxia may also be a contributor. Patients with EMAST colorectal cancers show diminished prognosis compared to patients without the presence of EMAST in their cancer. In addition to defective DNA MMR recognized by tetranucleotide (and di- and tri-nucleotide) frameshifts, loss of MSH3 also contributes to homologous recombination-mediated repair of DNA double stranded breaks, indicating the MSH3 dysfunction is a complex defect for cancer cells that generates not only EMAST but also may contribute to chromosomal instability and aneuploidy. Areas for future investigation for this most common DNA MMR defect among colorectal cancers include relationships between EMAST and chemotherapy response, patient outcome with aneuploid changes in colorectal cancers, target gene mutation analysis, and mechanisms related to inflammation-induced compartmentalization and inactivation for MSH3.
Collapse
|
35
|
Usdin K, House NCM, Freudenreich CH. Repeat instability during DNA repair: Insights from model systems. Crit Rev Biochem Mol Biol 2015; 50:142-67. [PMID: 25608779 DOI: 10.3109/10409238.2014.999192] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The expansion of repeated sequences is the cause of over 30 inherited genetic diseases, including Huntington disease, myotonic dystrophy (types 1 and 2), fragile X syndrome, many spinocerebellar ataxias, and some cases of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Repeat expansions are dynamic, and disease inheritance and progression are influenced by the size and the rate of expansion. Thus, an understanding of the various cellular mechanisms that cooperate to control or promote repeat expansions is of interest to human health. In addition, the study of repeat expansion and contraction mechanisms has provided insight into how repair pathways operate in the context of structure-forming DNA, as well as insights into non-canonical roles for repair proteins. Here we review the mechanisms of repeat instability, with a special emphasis on the knowledge gained from the various model systems that have been developed to study this topic. We cover the repair pathways and proteins that operate to maintain genome stability, or in some cases cause instability, and the cross-talk and interactions between them.
Collapse
Affiliation(s)
- Karen Usdin
- Laboratory of Cell and Molecular Biology, NIDDK, NIH , Bethesda, MD , USA
| | | | | |
Collapse
|
36
|
Abstract
DNA mismatch repair is a conserved antimutagenic pathway that maintains genomic stability through rectification of DNA replication errors and attenuation of chromosomal rearrangements. Paradoxically, mutagenic action of mismatch repair has been implicated as a cause of triplet repeat expansions that cause neurological diseases such as Huntington disease and myotonic dystrophy. This mutagenic process requires the mismatch recognition factor MutSβ and the MutLα (and/or possibly MutLγ) endonuclease, and is thought to be triggered by the transient formation of unusual DNA structures within the expanded triplet repeat element. This review summarizes the current knowledge of DNA mismatch repair involvement in triplet repeat expansion, which encompasses in vitro biochemical findings, cellular studies, and various in vivo transgenic animal model experiments. We present current mechanistic hypotheses regarding mismatch repair protein function in mediating triplet repeat expansions and discuss potential therapeutic approaches targeting the mismatch repair pathway.
Collapse
Affiliation(s)
- Ravi R Iyer
- Teva Branded Pharmaceutical Products R&D, Inc., West Chester, Pennsylvania 19380;
| | | | | | | |
Collapse
|
37
|
Xu M, Lai Y, Jiang Z, Terzidis MA, Masi A, Chatgilialoglu C, Liu Y. A 5', 8-cyclo-2'-deoxypurine lesion induces trinucleotide repeat deletion via a unique lesion bypass by DNA polymerase β. Nucleic Acids Res 2014; 42:13749-63. [PMID: 25428354 PMCID: PMC4267656 DOI: 10.1093/nar/gku1239] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
5',8-cyclo-2'-deoxypurines (cdPus) are common forms of oxidized DNA lesions resulting from endogenous and environmental oxidative stress such as ionizing radiation. The lesions can only be repaired by nucleotide excision repair with a low efficiency. This results in their accumulation in the genome that leads to stalling of the replication DNA polymerases and poor lesion bypass by translesion DNA polymerases. Trinucleotide repeats (TNRs) consist of tandem repeats of Gs and As and therefore are hotspots of cdPus. In this study, we provided the first evidence that both (5'R)- and (5'S)-5',8-cyclo-2'-deoxyadenosine (cdA) in a CAG repeat tract caused CTG repeat deletion exclusively during DNA lagging strand maturation and base excision repair. We found that a cdA induced the formation of a CAG loop in the template strand, which was skipped over by DNA polymerase β (pol β) lesion bypass synthesis. This subsequently resulted in the formation of a long flap that was efficiently cleaved by flap endonuclease 1, thereby leading to repeat deletion. Our study indicates that accumulation of cdPus in the human genome can lead to TNR instability via a unique lesion bypass by pol β.
Collapse
Affiliation(s)
- Meng Xu
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW, 8th Street, Miami, FL 33199, USA
| | - Yanhao Lai
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW, 8th Street, Miami, FL 33199, USA
| | - Zhongliang Jiang
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW, 8th Street, Miami, FL 33199, USA
| | - Michael A Terzidis
- ISOF, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Annalisa Masi
- ISOF, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Chryssostomos Chatgilialoglu
- ISOF, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy Institute of Nanoscience and Nanotechnology, N.C.S.R. 'Demokritos', 15341 Agia, Paraskevi, Athens, Greece
| | - Yuan Liu
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW, 8th Street, Miami, FL 33199, USA Biomolecular Sciences Institute, School of Integrated Sciences and Humanities, Florida International University, 11200 SW, 8th Street, Miami, FL 33199, USA
| |
Collapse
|
38
|
Bak ST, Sakellariou D, Pena-Diaz J. The dual nature of mismatch repair as antimutator and mutator: for better or for worse. Front Genet 2014; 5:287. [PMID: 25191341 PMCID: PMC4139959 DOI: 10.3389/fgene.2014.00287] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/04/2014] [Indexed: 01/19/2023] Open
Abstract
DNA is constantly under attack by a number of both exogenous and endogenous agents that challenge its integrity. Among the mechanisms that have evolved to counteract this deleterious action, mismatch repair (MMR) has specialized in removing DNA biosynthetic errors that occur when replicating the genome. Malfunction or inactivation of this system results in an increase in spontaneous mutability and a strong predisposition to tumor development. Besides this key corrective role, MMR proteins are involved in other pathways of DNA metabolism such as mitotic and meiotic recombination and processing of oxidative damage. Surprisingly, MMR is also required for certain mutagenic processes. The mutagenic MMR has beneficial consequences contributing to the generation of a vast repertoire of antibodies through class switch recombination and somatic hypermutation processes. However, this non-canonical mutagenic MMR also has detrimental effects; it promotes repeat expansions associated with neuromuscular and neurodegenerative diseases and may contribute to cancer/disease-related aberrant mutations and translocations. The reaction responsible for replication error correction has been the most thoroughly studied and it is the subject to numerous reviews. This review describes briefly the biochemistry of MMR and focuses primarily on the non-canonical MMR activities described in mammals as well as emerging research implicating interplay of MMR and chromatin.
Collapse
Affiliation(s)
- Sara Thornby Bak
- Department of Neuroscience and Pharmacology and Center for Healthy Aging, University of Copenhagen Copenhagen, Denmark
| | - Despoina Sakellariou
- Department of Neuroscience and Pharmacology and Center for Healthy Aging, University of Copenhagen Copenhagen, Denmark
| | - Javier Pena-Diaz
- Department of Neuroscience and Pharmacology and Center for Healthy Aging, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|
39
|
Usdin K, Hayward BE, Kumari D, Lokanga RA, Sciascia N, Zhao XN. Repeat-mediated genetic and epigenetic changes at the FMR1 locus in the Fragile X-related disorders. Front Genet 2014; 5:226. [PMID: 25101111 PMCID: PMC4101883 DOI: 10.3389/fgene.2014.00226] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 06/29/2014] [Indexed: 01/01/2023] Open
Abstract
The Fragile X-related disorders are a group of genetic conditions that include the neurodegenerative disorder, Fragile X-associated tremor/ataxia syndrome (FXTAS), the fertility disorder, Fragile X-associated primary ovarian insufficiency (FXPOI) and the intellectual disability, Fragile X syndrome (FXS). The pathology in all these diseases is related to the number of CGG/CCG-repeats in the 5′ UTR of the Fragile X mental retardation 1 (FMR1) gene. The repeats are prone to continuous expansion and the increase in repeat number has paradoxical effects on gene expression increasing transcription on mid-sized alleles and decreasing it on longer ones. In some cases the repeats can simultaneously both increase FMR1 mRNA production and decrease the levels of the FMR1 gene product, Fragile X mental retardation 1 protein (FMRP). Since FXTAS and FXPOI result from the deleterious consequences of the expression of elevated levels of FMR1 mRNA and FXS is caused by an FMRP deficiency, the clinical picture is turning out to be more complex than once appreciated. Added complications result from the fact that increasing repeat numbers make the alleles somatically unstable. Thus many individuals have a complex mixture of different sized alleles in different cells. Furthermore, it has become apparent that the eponymous fragile site, once thought to be no more than a useful diagnostic criterion, may have clinical consequences for females who inherit chromosomes that express this site. This review will cover what is currently known about the mechanisms responsible for repeat instability, for the repeat-mediated epigenetic changes that affect expression of the FMR1 gene, and for chromosome fragility. It will also touch on what current and future options are for ameliorating some of these effects.
Collapse
Affiliation(s)
- Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda MD, USA
| | - Bruce E Hayward
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda MD, USA
| | - Daman Kumari
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda MD, USA
| | - Rachel A Lokanga
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda MD, USA
| | - Nicholas Sciascia
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda MD, USA
| | - Xiao-Nan Zhao
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda MD, USA
| |
Collapse
|
40
|
Gomes-Pereira M, Hilley JD, Morales F, Adam B, James HE, Monckton DG. Disease-associated CAG·CTG triplet repeats expand rapidly in non-dividing mouse cells, but cell cycle arrest is insufficient to drive expansion. Nucleic Acids Res 2014; 42:7047-56. [PMID: 24860168 PMCID: PMC4066746 DOI: 10.1093/nar/gku285] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Genetically unstable expanded CAG·CTG trinucleotide repeats are causal in a number of human disorders, including Huntington disease and myotonic dystrophy type 1. It is still widely assumed that DNA polymerase slippage during replication plays an important role in the accumulation of expansions. Nevertheless, somatic mosaicism correlates poorly with the proliferative capacity of the tissue and rates of cell turnover, suggesting that expansions can occur in the absence of replication. We monitored CAG·CTG repeat instability in transgenic mouse cells arrested by chemical or genetic manipulation of the cell cycle and generated unequivocal evidence for the continuous accumulation of repeat expansions in non-dividing cells. Importantly, the rates of expansion in non-dividing cells were at least as high as those of proliferating cells. These data are consistent with a major role for cell division-independent expansion in generating somatic mosaicism in vivo. Although expansions can accrue in non-dividing cells, we also show that cell cycle arrest is not sufficient to drive instability, implicating other factors as the key regulators of tissue-specific instability. Our data reveal that de novo expansion events are not limited to S-phase and further support a cell division-independent mutational pathway.
Collapse
Affiliation(s)
- Mário Gomes-Pereira
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK Inserm UMR 1163, Laboratory of CTG Repeat Instability and Myotonic Dystrophy Type 1, 75015 Paris, France Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France
| | - James D Hilley
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Fernando Morales
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK Instituto de Investigaciones en Salud y Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica
| | - Berit Adam
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Helen E James
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Darren G Monckton
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
41
|
Erie DA, Weninger KR. Single molecule studies of DNA mismatch repair. DNA Repair (Amst) 2014; 20:71-81. [PMID: 24746644 DOI: 10.1016/j.dnarep.2014.03.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 03/21/2014] [Accepted: 03/22/2014] [Indexed: 11/30/2022]
Abstract
DNA mismatch repair, which involves is a widely conserved set of proteins, is essential to limit genetic drift in all organisms. The same system of proteins plays key roles in many cancer related cellular transactions in humans. Although the basic process has been reconstituted in vitro using purified components, many fundamental aspects of DNA mismatch repair remain hidden due in part to the complexity and transient nature of the interactions between the mismatch repair proteins and DNA substrates. Single molecule methods offer the capability to uncover these transient but complex interactions and allow novel insights into mechanisms that underlie DNA mismatch repair. In this review, we discuss applications of single molecule methodology including electron microscopy, atomic force microscopy, particle tracking, FRET, and optical trapping to studies of DNA mismatch repair. These studies have led to formulation of mechanistic models of how proteins identify single base mismatches in the vast background of matched DNA and signal for their repair.
Collapse
Affiliation(s)
- Dorothy A Erie
- Department of Chemistry and Curriculum in Applied Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| | - Keith R Weninger
- Department of Physics, North Carolina State University, Raleigh, NC 27695, United States
| |
Collapse
|
42
|
Xu M, Lai Y, Torner J, Zhang Y, Zhang Z, Liu Y. Base excision repair of oxidative DNA damage coupled with removal of a CAG repeat hairpin attenuates trinucleotide repeat expansion. Nucleic Acids Res 2014; 42:3675-91. [PMID: 24423876 PMCID: PMC3973345 DOI: 10.1093/nar/gkt1372] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Trinucleotide repeat (TNR) expansion is responsible for numerous human neurodegenerative diseases. However, the underlying mechanisms remain unclear. Recent studies have shown that DNA base excision repair (BER) can mediate TNR expansion and deletion by removing base lesions in different locations of a TNR tract, indicating that BER can promote or prevent TNR expansion in a damage location–dependent manner. In this study, we provide the first evidence that the repair of a DNA base lesion located in the loop region of a CAG repeat hairpin can remove the hairpin, attenuating repeat expansion. We found that an 8-oxoguanine located in the loop region of CAG hairpins of varying sizes was removed by OGG1 leaving an abasic site that was subsequently 5′-incised by AP endonuclease 1, introducing a single-strand breakage in the hairpin loop. This converted the hairpin into a double-flap intermediate with a 5′- and 3′-flap that was cleaved by flap endonuclease 1 and a 3′-5′ endonuclease Mus81/Eme1, resulting in complete or partial removal of the CAG hairpin. This further resulted in prevention and attenuation of repeat expansion. Our results demonstrate that TNR expansion can be prevented via BER in hairpin loops that is coupled with the removal of TNR hairpins.
Collapse
Affiliation(s)
- Meng Xu
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA, Department of Environmental Health, West China School of Public Health, Sichuan University, Chengdu, Sichuan 610041, P. R. China and Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | | | | | | | | | |
Collapse
|
43
|
Völker J, Plum GE, Gindikin V, Klump HH, Breslauer KJ. Impact of bulge loop size on DNA triplet repeat domains: Implications for DNA repair and expansion. Biopolymers 2014; 101:1-12. [PMID: 23494673 PMCID: PMC3920904 DOI: 10.1002/bip.22236] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 03/05/2013] [Indexed: 11/12/2022]
Abstract
Repetitive DNA sequences exhibit complex structural and energy landscapes, populated by metastable, noncanonical states, that favor expansion and deletion events correlated with disease phenotypes. To probe the origins of such genotype-phenotype linkages, we report the impact of sequence and repeat number on properties of (CNG) repeat bulge loops. We find the stability of duplexes with a repeat bulge loop is controlled by two opposing effects; a loop junction-dependent destabilization of the underlying double helix, and a self-structure dependent stabilization of the repeat bulge loop. For small bulge loops, destabilization of the underlying double helix overwhelms any favorable contribution from loop self-structure. As bulge loop size increases, the stabilizing loop structure contribution dominates. The role of sequence on repeat loop stability can be understood in terms of its impact on the opposing influences of junction formation and loop structure. The nature of the bulge loop affects the thermodynamics of these two contributions differently, resulting in unique differences in repeat size-dependent minima in the overall enthalpy, entropy, and free energy changes. Our results define factors that control repeat bulge loop formation; knowledge required to understand how this helix imperfection is linked to DNA expansion, deletion, and disease phenotypes.
Collapse
Affiliation(s)
- Jens Völker
- Department of Chemistry and Chemical Biology, Rutgers, The
State University of New Jersey, 610 Taylor Rd, Piscataway, NJ 08854
| | - G. Eric Plum
- IBET, Inc., 1507 Chambers Road, Suite 301, Columbus, OH
43212
| | - Vera Gindikin
- Department of Chemistry and Chemical Biology, Rutgers, The
State University of New Jersey, 610 Taylor Rd, Piscataway, NJ 08854
| | - Horst H. Klump
- Department of Molecular and Cell Biology,
University of Cape Town, Private Bag, Rondebosch 7800, South Africa
| | - Kenneth J. Breslauer
- Department of Chemistry and Chemical Biology, Rutgers, The
State University of New Jersey, 610 Taylor Rd, Piscataway, NJ 08854
- The Cancer Institute of New Jersey, New Brunswick,
NJ 08901
| |
Collapse
|
44
|
Romanova NV, Crouse GF. Different roles of eukaryotic MutS and MutL complexes in repair of small insertion and deletion loops in yeast. PLoS Genet 2013; 9:e1003920. [PMID: 24204320 PMCID: PMC3814323 DOI: 10.1371/journal.pgen.1003920] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Accepted: 09/11/2013] [Indexed: 11/18/2022] Open
Abstract
DNA mismatch repair greatly increases genome fidelity by recognizing and removing replication errors. In order to understand how this fidelity is maintained, it is important to uncover the relative specificities of the different components of mismatch repair. There are two major mispair recognition complexes in eukaryotes that are homologues of bacterial MutS proteins, MutSα and MutSβ, with MutSα recognizing base-base mismatches and small loop mispairs and MutSβ recognizing larger loop mispairs. Upon recognition of a mispair, the MutS complexes then interact with homologues of the bacterial MutL protein. Loops formed on the primer strand during replication lead to insertion mutations, whereas loops on the template strand lead to deletions. We show here in yeast, using oligonucleotide transformation, that MutSα has a strong bias toward repair of insertion loops, while MutSβ has an even stronger bias toward repair of deletion loops. Our results suggest that this bias in repair is due to the different interactions of the MutS complexes with the MutL complexes. Two mutants of MutLα, pms1-G882E and pms1-H888R, repair deletion mispairs but not insertion mispairs. Moreover, we find that a different MutL complex, MutLγ, is extremely important, but not sufficient, for deletion repair in the presence of either MutLα mutation. MutSβ is present in many eukaryotic organisms, but not in prokaryotes. We suggest that the biased repair of deletion mispairs may reflect a critical eukaryotic function of MutSβ in mismatch repair.
Collapse
Affiliation(s)
- Nina V. Romanova
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Gray F. Crouse
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
- Winship Cancer Institute, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
45
|
Mismatch repair genes Mlh1 and Mlh3 modify CAG instability in Huntington's disease mice: genome-wide and candidate approaches. PLoS Genet 2013; 9:e1003930. [PMID: 24204323 PMCID: PMC3814320 DOI: 10.1371/journal.pgen.1003930] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 09/15/2013] [Indexed: 11/19/2022] Open
Abstract
The Huntington's disease gene (HTT) CAG repeat mutation undergoes somatic expansion that correlates with pathogenesis. Modifiers of somatic expansion may therefore provide routes for therapies targeting the underlying mutation, an approach that is likely applicable to other trinucleotide repeat diseases. Huntington's disease HdhQ111 mice exhibit higher levels of somatic HTT CAG expansion on a C57BL/6 genetic background (B6.HdhQ111) than on a 129 background (129.HdhQ111). Linkage mapping in (B6x129).HdhQ111 F2 intercross animals identified a single quantitative trait locus underlying the strain-specific difference in expansion in the striatum, implicating mismatch repair (MMR) gene Mlh1 as the most likely candidate modifier. Crossing B6.HdhQ111 mice onto an Mlh1 null background demonstrated that Mlh1 is essential for somatic CAG expansions and that it is an enhancer of nuclear huntingtin accumulation in striatal neurons. HdhQ111 somatic expansion was also abolished in mice deficient in the Mlh3 gene, implicating MutLγ (MLH1–MLH3) complex as a key driver of somatic expansion. Strikingly, Mlh1 and Mlh3 genes encoding MMR effector proteins were as critical to somatic expansion as Msh2 and Msh3 genes encoding DNA mismatch recognition complex MutSβ (MSH2–MSH3). The Mlh1 locus is highly polymorphic between B6 and 129 strains. While we were unable to detect any difference in base-base mismatch or short slipped-repeat repair activity between B6 and 129 MLH1 variants, repair efficiency was MLH1 dose-dependent. MLH1 mRNA and protein levels were significantly decreased in 129 mice compared to B6 mice, consistent with a dose-sensitive MLH1-dependent DNA repair mechanism underlying the somatic expansion difference between these strains. Together, these data identify Mlh1 and Mlh3 as novel critical genetic modifiers of HTT CAG instability, point to Mlh1 genetic variation as the likely source of the instability difference in B6 and 129 strains and suggest that MLH1 protein levels play an important role in driving of the efficiency of somatic expansions. The expansion of a CAG repeat underlies Huntington's disease (HD), with longer CAG tracts giving rise to earlier onset and more severe disease. In individuals harboring a CAG expansion the repeat undergoes further somatic expansion over time, particularly in brain cells most susceptible to disease pathogenesis. Preventing this repeat lengthening may delay disease onset and/or slow progression. We are using mouse models of HD to identify the factors that modify the somatic expansion of the HD CAG repeat, as these may provide novel targets for therapeutic intervention. To identify genetic modifiers of somatic expansion in HD mouse models we have used both an unbiased genetic mapping approach in inbred mouse strains that exhibit different levels of somatic expansion, as well as targeted gene knockout approaches. Our results demonstrate that: 1) Mlh1 and Mlh3 genes, encoding components of the DNA mismatch repair pathway, are critical for somatic CAG expansion; 2) in the absence of somatic expansion the pathogenic process in the mouse is slowed; 3) MLH1 protein levels are likely to be a driver of the efficiency of somatic expansion. Together, our data provide new insight into the factors underlying the process of somatic expansion of the HD CAG repeat.
Collapse
|
46
|
Comprehensive macromolecular conformations mapped by quantitative SAXS analyses. Nat Methods 2013; 10:453-4. [PMID: 23624664 DOI: 10.1038/nmeth.2453] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Classen S, Hura GL, Holton JM, Rambo RP, Rodic I, McGuire PJ, Dyer K, Hammel M, Meigs G, Frankel KA, Tainer JA. Implementation and performance of SIBYLS: a dual endstation small-angle X-ray scattering and macromolecular crystallography beamline at the Advanced Light Source. J Appl Crystallogr 2013; 46:1-13. [PMID: 23396808 PMCID: PMC3547225 DOI: 10.1107/s0021889812048698] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 11/27/2012] [Indexed: 12/02/2022] Open
Abstract
The SIBYLS beamline (12.3.1) of the Advanced Light Source at Lawrence Berkeley National Laboratory, supported by the US Department of Energy and the National Institutes of Health, is optimized for both small-angle X-ray scattering (SAXS) and macromolecular crystallography (MX), making it unique among the world's mostly SAXS or MX dedicated beamlines. Since SIBYLS was commissioned, assessments of the limitations and advantages of a combined SAXS and MX beamline have suggested new strategies for integration and optimal data collection methods and have led to additional hardware and software enhancements. Features described include a dual mode monochromator [containing both Si(111) crystals and Mo/B(4)C multilayer elements], rapid beamline optics conversion between SAXS and MX modes, active beam stabilization, sample-loading robotics, and mail-in and remote data collection. These features allow users to gain valuable insights from both dynamic solution scattering and high-resolution atomic diffraction experiments performed at a single synchrotron beamline. Key practical issues considered for data collection and analysis include radiation damage, structural ensembles, alternative conformers and flexibility. SIBYLS develops and applies efficient combined MX and SAXS methods that deliver high-impact results by providing robust cost-effective routes to connect structures to biology and by performing experiments that aid beamline designs for next generation light sources.
Collapse
Affiliation(s)
- Scott Classen
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Greg L. Hura
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - James M. Holton
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158-2330, USA
| | - Robert P. Rambo
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ivan Rodic
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Patrick J. McGuire
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kevin Dyer
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Michal Hammel
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - George Meigs
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kenneth A. Frankel
- Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - John A. Tainer
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
48
|
Stevens JR, Lahue EE, Li GM, Lahue RS. Trinucleotide repeat expansions catalyzed by human cell-free extracts. Cell Res 2013; 23:565-72. [PMID: 23337586 PMCID: PMC3616437 DOI: 10.1038/cr.2013.12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Trinucleotide repeat expansions cause 17 heritable human neurological disorders. In some diseases, somatic expansions occur in non-proliferating tissues such as brain where DNA replication is limited. This finding stimulated significant interest in replication-independent expansion mechanisms. Aberrant DNA repair is a likely source, based in part on mouse studies showing that somatic expansions are provoked by the DNA repair protein MutSβ (Msh2-Msh3 complex). Biochemical studies to date used cell-free extracts or purified DNA repair proteins to yield partial reactions at triplet repeats. The findings included expansions on one strand but not the other, or processing of DNA hairpin structures thought to be important intermediates in the expansion process. However, it has been difficult to recapitulate complete expansions in vitro, and the biochemical role of MutSβ remains controversial. Here, we use a novel in vitro assay to show that human cell-free extracts catalyze expansions and contractions of trinucleotide repeats without the requirement for DNA replication. The extract promotes a size range of expansions that is similar to certain diseases, and triplet repeat length and sequence govern expansions in vitro as in vivo. MutSβ stimulates expansions in the extract, consistent with aberrant repair of endogenous DNA damage as a source of expansions. Overall, this biochemical system retains the key characteristics of somatic expansions in humans and mice, suggesting that this important mutagenic process can be restored in the test tube.
Collapse
Affiliation(s)
- Jennifer R Stevens
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Distillery Road, Galway, Ireland
| | | | | | | |
Collapse
|
49
|
Slean MM, Reddy K, Wu B, Nichol Edamura K, Kekis M, Nelissen FHT, Aspers RLEG, Tessari M, Schärer OD, Wijmenga SS, Pearson CE. Interconverting conformations of slipped-DNA junctions formed by trinucleotide repeats affect repair outcome. Biochemistry 2013; 52:773-85. [PMID: 23339280 PMCID: PMC3566650 DOI: 10.1021/bi301369b] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Expansions of (CTG)·(CAG) repeated DNAs are the mutagenic cause of 14 neurological diseases, likely arising through the formation and processing of slipped-strand DNAs. These transient intermediates of repeat length mutations are formed by out-of-register mispairing of repeat units on complementary strands. The three-way slipped-DNA junction, at which the excess repeats slip out from the duplex, is a poorly understood feature common to these mutagenic intermediates. Here, we reveal that slipped junctions can assume a surprising number of interconverting conformations where the strand opposite the slip-out either is fully base paired or has one or two unpaired nucleotides. These unpaired nucleotides can also arise opposite either of the nonslipped junction arms. Junction conformation can affect binding by various structure-specific DNA repair proteins and can also alter correct nick-directed repair levels. Junctions that have the potential to contain unpaired nucleotides are repaired with a significantly higher efficiency than constrained fully paired junctions. Surprisingly, certain junction conformations are aberrantly repaired to expansion mutations: misdirection of repair to the non-nicked strand opposite the slip-out leads to integration of the excess slipped-out repeats rather than their excision. Thus, slipped-junction structure can determine whether repair attempts lead to correction or expansion mutations.
Collapse
Affiliation(s)
- Meghan M Slean
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Coats JE, Lin Y, Rueter E, Maher LJ, Rasnik I. Single-molecule FRET analysis of DNA binding and bending by yeast HMGB protein Nhp6A. Nucleic Acids Res 2013; 41:1372-81. [PMID: 23221634 PMCID: PMC3554232 DOI: 10.1093/nar/gks1208] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 10/02/2012] [Accepted: 10/30/2012] [Indexed: 02/06/2023] Open
Abstract
High-mobility group B (HMGB) proteins bind duplex DNA without sequence specificity, facilitating the formation of compact nucleoprotein structures by increasing the apparent flexibility of DNA through the introduction of DNA kinks. It has remained unclear whether HMGB binding and DNA kinking are simultaneous and whether the induced kink is rigid (static) or flexible. The detailed molecular mechanism of HMGB-induced DNA 'softening' is explored here by single-molecule fluorescence resonance energy transfer studies of single yeast Nhp6A (yNhp6A) proteins binding to short DNA duplexes. We show that the local effect of yNhp6A protein binding to DNA is consistent with formation of a single static kink that is short lived (lifetimes of a few seconds) under physiological buffer conditions. Within the time resolution of our experiments, this static kink occurs at the instant the protein binds to the DNA, and the DNA straightens at the instant the protein dissociates from the DNA. Our observations support a model in which HMGB proteins soften DNA through random dynamic binding and dissociation, accompanied by DNA kinking and straightening, respectively.
Collapse
Affiliation(s)
- Julie E. Coats
- Department of Physics, Emory University, 30322 Atlanta, GA
and Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester,
38105 MN, USA
| | - Yuyen Lin
- Department of Physics, Emory University, 30322 Atlanta, GA
and Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester,
38105 MN, USA
| | - Emily Rueter
- Department of Physics, Emory University, 30322 Atlanta, GA
and Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester,
38105 MN, USA
| | - L. James Maher
- Department of Physics, Emory University, 30322 Atlanta, GA
and Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester,
38105 MN, USA
| | - Ivan Rasnik
- Department of Physics, Emory University, 30322 Atlanta, GA
and Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester,
38105 MN, USA
| |
Collapse
|