1
|
Yuan R, Zhang Z, Wu G, Zhang Y, Sha J, Chen Y, Si W. Unfolding of protein using MoS 2/SnS 2heterostructure for nanopore-based sequencing. NANOTECHNOLOGY 2024; 35:135501. [PMID: 38118165 DOI: 10.1088/1361-6528/ad177f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/20/2023] [Indexed: 12/22/2023]
Abstract
Protein sequencing is crucial for understanding the complex mechanisms driving biological functions. However, proteins are usually folded in their native state and the mechanism of fast protein conformation transitions still remains unclear, which make protein sequencing challenging. Molecular dynamics simulations with accurate force field are now able to observe the entire folding/unfolding process, providing valuable insights into protein folding mechanisms. Given that proteins can be unfolded, nanopore technology shows great potential for protein sequencing. In this study, we proposed to use MoS2/SnS2heterostructures to firstly unfold proteins and then detect them by a nanopore in the heterostructural membrane. All-atom molecular dynamics simulations performed in this work provided rich atomic-level information for a comprehensive understanding of protein unfolding process and mechanism on the MoS2/SnS2heterostructure, it was found that the strong binding of protein to SnS2nanostripe and hydrogen bond breaking were the main reasons for unfolding the protein on the heterostructure. After the protein was fully unfolded, it was restrained on the nanostripe because of the affinity of protein to the SnS2nanostripe. Thus by integrating the proposed unfolding technique with nanopore technology, detection of linear unfolded peptide was realized in this work, allowing for the identification of protein components, which is essential for sequencing proteins in the near future.
Collapse
Affiliation(s)
- Runyi Yuan
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, People's Republic of China
| | - Zhen Zhang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, People's Republic of China
| | - Gensheng Wu
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Yin Zhang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, People's Republic of China
| | - Jingjie Sha
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, People's Republic of China
| | - Yunfei Chen
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, People's Republic of China
| | - Wei Si
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, People's Republic of China
| |
Collapse
|
2
|
Nishimura C, Kikuchi T. Non-Native Structures of Apomyoglobin and Apoleghemoglobin in Folding Intermediates Related to the Protein Misfolding. Molecules 2023; 28:molecules28093970. [PMID: 37175379 PMCID: PMC10179781 DOI: 10.3390/molecules28093970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Protein folding is essential for a polypeptide chain to acquire its proper structure and function. Globins are a superfamily of ubiquitous heme-binding α-helical proteins whose function is principally to regulate oxygen homoeostasis. In this review, we explore the hierarchical helical formation in the globin proteins apomyoglobin and leghemoglobin, and we discuss the existence of non-native and misfolded structures occurring during the course of folding to its native state. This review summarizes the research aimed at characterizing and comparing the equilibrium and kinetic intermediates, as well as delineating the complete folding pathway at a molecular level, in order to answer the following questions: "What is the mechanism of misfolding via a folding intermediate? Does the non-native structure stabilize the contemporary intermediate structure? Does the non-native structure induce slower folding?" The role of the non-native structures in the folding intermediate related to misfolding is also discussed.
Collapse
Affiliation(s)
- Chiaki Nishimura
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Tokyo 164-8530, Japan
| | - Takeshi Kikuchi
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu 528-8577, Japan
| |
Collapse
|
3
|
Meinhold DW, Felitsky DJ, Dyson HJ, Wright PE. Transient On- and Off-Pathway Protein Folding Intermediate States Characterized with NMR Relaxation Dispersion. J Phys Chem B 2022; 126:9539-9548. [PMID: 36354189 PMCID: PMC9793904 DOI: 10.1021/acs.jpcb.2c05592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The earliest events in the folding of a protein are in general poorly understood. We used NMR R2 relaxation dispersion experiments to study transient local collapse events in the unfolded-state (U) conformational ensemble of apomyoglobin (apoMb). Local residual secondary structure (seen in regions corresponding to the A, D, E, and H helices of the folded protein) is largely unchanged over the pH range of 2.3-2.75, yet a significant pH-dependent increase in the conformational exchange contribution to the R2 relaxation rate (Rex) indicates that transient intramolecular contacts occur on a microsecond to millisecond time scale at pH 2.75. A comparison of 15N and 13CO relaxation dispersion data at pH 2.75 for residues in the A, B, G, and H regions, which participate in the earliest folding intermediates, indicates that chain collapse and secondary structure formation are rapid and concomitant. Increasingly stabilizing conditions (lower temperature, higher pH) result in the observation of a relaxation dispersion in the C, CD, and E regions of the protein, which are known to fold at later stages. Mutation of Trp14 in the A-helix region to Ala eliminates conformational exchange throughout the protein, and the mutation of hydrophobic residues in other regions results in the selective inhibition of conformational exchange in the B, G, or H regions. The R2 dispersion data for WT apoMb at pH 2.75 and 10 °C are best fit to a four-state model ABGH ⇆ AGH ⇆ U ⇆ ABCD that includes on-pathway (AGH and ABGH) and off-pathway (ABCD) transiently folded states, both of which are required to explain the behavior of the mutant proteins. The off-pathway intermediate is destabilized at higher temperatures. Our analysis provides insights into the earliest stages of apoMb folding where the collapsing polypeptide chain samples both productive and nonproductive states with stabilized secondary structure.
Collapse
Affiliation(s)
| | | | - H. Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla CA 92037
| | - Peter E. Wright
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla CA 92037
| |
Collapse
|
4
|
Maffeo C, Chou HY, Aksimentiev A. Single-molecule biophysics experiments in silico: Toward a physical model of a replisome. iScience 2022; 25:104264. [PMID: 35521518 PMCID: PMC9062759 DOI: 10.1016/j.isci.2022.104264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/23/2022] [Accepted: 04/12/2022] [Indexed: 11/25/2022] Open
Abstract
The interpretation of single-molecule experiments is frequently aided by computational modeling of biomolecular dynamics. The growth of computing power and ongoing validation of computational models suggest that it soon may be possible to replace some experiments outright with computational mimics. Here, we offer a blueprint for performing single-molecule studies in silico using a DNA-binding protein as a test bed. We demonstrate how atomistic simulations, typically limited to sub-millisecond durations and zeptoliter volumes, can guide development of a coarse-grained model for use in simulations that mimic single-molecule experiments. We apply the model to recapitulate, in silico, force-extension characterization of protein binding to single-stranded DNA and protein and DNA replacement assays, providing a detailed portrait of the underlying mechanics. Finally, we use the model to simulate the trombone loop of a replication fork, a large complex of proteins and DNA. Coarse-grained model derived from all-atom simulation recapitulates experiments Model reproduces the elastic response to force and exchange dynamics Model reveals structure of intermediate states usually inaccessible to experiment Model applied to viral replisome with trombone loop containing tens of SSB proteins
Collapse
Affiliation(s)
- Christopher Maffeo
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 W Green St, Urbana, 61801 IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Matthews Avenue, Urbana, 61801 IL, USA
| | - Han-Yi Chou
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 W Green St, Urbana, 61801 IL, USA
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 W Green St, Urbana, 61801 IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Matthews Avenue, Urbana, 61801 IL, USA
- Corresponding author
| |
Collapse
|
5
|
Native state fluctuations in a peroxiredoxin active site match motions needed for catalysis. Structure 2022; 30:278-288.e3. [PMID: 34678159 PMCID: PMC8818020 DOI: 10.1016/j.str.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/10/2021] [Accepted: 09/29/2021] [Indexed: 02/05/2023]
Abstract
Peroxiredoxins are ubiquitous enzymes that detoxify peroxides and regulate redox signaling. During catalysis, a "peroxidatic" cysteine (CP) in the conserved active site reduces peroxide while being oxidized to a CP-sulfenate, prompting a local unfolding event that enables formation of a disulfide with a second, "resolving" cysteine. Here, we use nuclear magnetic resonance spectroscopy to probe the dynamics of the CP-thiolate and disulfide forms of Xanthomonas campestris peroxiredoxin Q. Chemical exchange saturation transfer behavior of the resting enzyme reveals 26 residues in and around the active site exchanging at a rate of 72 s-1 with a locally unfolded, high-energy (2.5% of the population) state. This unequivocally establishes that a catalytically relevant local unfolding equilibrium exists in the enzyme's CP-thiolate form. Also, faster motions imply an active site instability that could promote local unfolding and, based on other work, be exacerbated by CP-sulfenate formation so as to direct the enzyme along a functional catalytic trajectory.
Collapse
|
6
|
Kancherla AK, Marincin KA, Mishra SH, Frueh DP. Minimizing Pervasive Artifacts in 4D Covariance Maps for Protein Side Chain NMR Assignments. J Phys Chem A 2021; 125:8313-8323. [PMID: 34510900 PMCID: PMC8480538 DOI: 10.1021/acs.jpca.1c05507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/24/2021] [Indexed: 01/23/2023]
Abstract
Nuclear magnetic resonance (NMR) is a mainstay of biophysical studies that provides atomic level readouts to formulate molecular mechanisms. Side chains are particularly important to derive mechanisms involving proteins as they carry functional groups, but NMR studies of side chains are often limited by challenges in assigning their signals. Here, we designed a novel computational method that combines spectral derivatives and matrix square-rooting to produce reliable 4D covariance maps from routinely acquired 3D spectra and facilitates side chain resonance assignments. Thus, we generate two 4D maps from 3D-HcccoNH and 3D-HCcH-TOCSY spectra that each help overcome signal overlap or sensitivity losses. These 4D maps feature HC-HSQCs of individual side chains that can be paired to assigned backbone amide resonances of individual aliphatic signals, and both are obtained from a single modified covariance calculation. Further, we present 4D maps produced using conventional triple resonance experiments to easily assign asparagine side chain amide resonances. The 4D covariance maps encapsulate the lengthy manual pattern recognition used in traditional assignment methods and distill the information as correlations that can be easily visualized. We showcase the utility of the 4D covariance maps with a 10 kDa peptidyl carrier protein and a 52 kDa cyclization domain from a nonribosomal peptide synthetase.
Collapse
Affiliation(s)
- Aswani K. Kancherla
- Department
of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Room 701 Hunterian, Baltimore, Maryland 21205, United States
| | - Kenneth A. Marincin
- Department
of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Room 701 Hunterian, Baltimore, Maryland 21205, United States
| | - Subrata H. Mishra
- Department
of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Room 701 Hunterian, Baltimore, Maryland 21205, United States
| | - Dominique P. Frueh
- Department
of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Room 701 Hunterian, Baltimore, Maryland 21205, United States
| |
Collapse
|
7
|
Henry L, Panman MR, Isaksson L, Claesson E, Kosheleva I, Henning R, Westenhoff S, Berntsson O. Real-time tracking of protein unfolding with time-resolved x-ray solution scattering. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2020; 7:054702. [PMID: 32984436 PMCID: PMC7511240 DOI: 10.1063/4.0000013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 08/17/2020] [Indexed: 05/14/2023]
Abstract
The correct folding of proteins is of paramount importance for their function, and protein misfolding is believed to be the primary cause of a wide range of diseases. Protein folding has been investigated with time-averaged methods and time-resolved spectroscopy, but observing the structural dynamics of the unfolding process in real-time is challenging. Here, we demonstrate an approach to directly reveal the structural changes in the unfolding reaction. We use nano- to millisecond time-resolved x-ray solution scattering to probe the unfolding of apomyoglobin. The unfolding reaction was triggered using a temperature jump, which was induced by a nanosecond laser pulse. We demonstrate a new strategy to interpret time-resolved x-ray solution scattering data, which evaluates ensembles of structures obtained from molecular dynamics simulations. We find that apomyoglobin passes three states when unfolding, which we characterize as native, molten globule, and unfolded. The molten globule dominates the population under the conditions investigated herein, whereas native and unfolded structures primarily contribute before the laser jump and 30 μs after it, respectively. The molten globule retains much of the native structure but shows a dynamic pattern of inter-residue contacts. Our study demonstrates a new strategy to directly observe structural changes over the cause of the unfolding reaction, providing time- and spatially resolved atomic details of the folding mechanism of globular proteins.
Collapse
Affiliation(s)
- L. Henry
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - M. R. Panman
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - L. Isaksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - E. Claesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - I. Kosheleva
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, USA
| | - R. Henning
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, USA
| | - S. Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | | |
Collapse
|
8
|
Rance M, Palmer AG. Compact expressions for R 1ρ relaxation for N-site chemical exchange using Schur decomposition. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 313:106705. [PMID: 32209492 PMCID: PMC7455919 DOI: 10.1016/j.jmr.2020.106705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
The rotating-frame spin relaxation rate constant, R1ρ, is a powerful probe of macromolecular chemical and conformational dynamics in relaxation dispersion, CEST, and DEST NMR experiments. The R1ρ relaxation rate constant is given by the absolute value of the largest (least negative) eigenvalue of the Bloch-McConnell evolution matrix; however, estimation of this eigenvalue require inversion of 3 N × 3 N dimensional matrices, in which N is the number of interconverting sites or states for a given nuclear spin in a molecule. The Schur complement is used to reduce the problem of calculating the characteristic polynomial of a 3 N × 3 N matrix to that of calculating the characteristic polynomial of a 3 × 3 matrix. The resulting expressions for N-site chemical exchange are more numerically tractable, because the largest matrix inversion also is of dimension 3 × 3. In addition, the simplifications offered by the Schurr complement conveniently illustrate the effects of fast or slow kinetic steps within an N-site kinetic topology.
Collapse
Affiliation(s)
- Mark Rance
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Arthur G Palmer
- Department of Biochemistry and Molecular Biophysics, Columbia University, 630 West 168th Street, New York, NY 10032, United States
| |
Collapse
|
9
|
Yang K, Arai M, Wright PE. Determining Binding Kinetics of Intrinsically Disordered Proteins by NMR Spectroscopy. Methods Mol Biol 2020; 2141:663-681. [PMID: 32696383 PMCID: PMC7605514 DOI: 10.1007/978-1-0716-0524-0_34] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The unique structural flexibility of intrinsically disordered proteins (IDPs) is central to their diverse functions in cellular processes. Protein-protein interactions involving IDPs are frequently transient and dynamic in nature. Nuclear magnetic resonance (NMR) spectroscopy is an especially powerful tool for characterizing the structural propensities, dynamics, and interactions of IDPs. Here we describe applications of the Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion experiment in combination with NMR titrations to characterize the kinetics and mechanisms of interactions between intrinsically disordered proteins and their targets. We illustrate the method with reference to interactions between the activation domain of the human T-cell leukemia virus type-I (HTLV-1) basic leucine zipper protein (HBZ) and its cellular binding partner, the KIX domain of the transcriptional coactivator CBP.
Collapse
Affiliation(s)
- Ke Yang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Munehito Arai
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
10
|
Walinda E, Morimoto D, Sugase K. Overview of Relaxation Dispersion NMR Spectroscopy to Study Protein Dynamics and Protein-Ligand Interactions. ACTA ACUST UNITED AC 2019; 92:e57. [PMID: 30040207 DOI: 10.1002/cpps.57] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteins and nucleic acids are central to all biological processes. NMR spectroscopy has proven to be excellent for studying the dynamics of these macromolecules over various timescales. Relaxation rates and heteronuclear nuclear Overhauser-effect values can resolve motion on pico- to nanosecond timescales, residual dipolar couplings provide information on submicro- to millisecond timescales, and even slower dynamics over seconds to hours can be resolved by hydrogen-exchange experiments. Relaxation dispersion experiments are especially valuable because they resolve motion on micro- to millisecond timescales, encompassing biomolecular motions associated with ligand binding, enzymatic catalysis, and domain-domain opening. These experiments provide structural, kinetic, and thermodynamic information on "invisible" excited conformational states. Relaxation dispersion can be applied not only to single biomolecules but also to protein-ligand complexes to study the kinetics and thermodynamics of association and dissociation. We review recent developments in relaxation dispersion methodology, outline the R1ρ relaxation dispersion experiment, and discuss application to biomolecular interactions. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Erik Walinda
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-Ku, Kyoto, Japan
| | - Daichi Morimoto
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-Ku, Kyoto, Japan
| | - Kenji Sugase
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-Ku, Kyoto, Japan
| |
Collapse
|
11
|
Řezáčová V, Conte P, Komendová R, Novák F, Repková M, Kučerík J. Factors influencing structural heat-induced structural relaxation of dissolved organic matter. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 167:422-428. [PMID: 30368135 DOI: 10.1016/j.ecoenv.2018.10.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/07/2018] [Accepted: 10/09/2018] [Indexed: 06/08/2023]
Abstract
Physical and chemical structure affect properties of dissolved organic matter (DOM). Recent observations revealed that heating and cooling cycles at higher temperature amplitude lead to a change in DOM physical conformation assumingly followed by a slow structural relaxation. In this study, changes at lower temperature amplitudes and their relation to DOM composition were investigated using simultaneous measurements of density and ultrasonic velocity in order to evaluate the adiabatic compressibility, which is sensitive indicator of DOM structural microelasticity. Six fulvic acids (FAs) having various origins were analyzed at concentrations of 0.12, 0.6 and 1.2 g L-1 and at different temperature amplitudes. First, we validated that the used technique is sensitive to distinguish conclusively the structural changes upon heating and cooling of DOM with heating/cooling amplitude of ± 3 °C and higher. This amplitude was then applied to observe the relationship between change in adiabatic compressibility and chemical composition of FA. No correlation was observed with elemental composition and aromatic structures. Positive correlations were observed with content of alkyl moieties, carboxylic and carbonyl carbons and biological activity. Based on literature data, it was concluded that alkyl moieties undergo (re)crystalization during thermal fluctuation and their structural relaxation back is very slow (if occurs). The polar moieties form a flexible hydrogel responding to thermal fluctuation by moderate dissolution and re-aggregation. Negative correlation was observed in relation to the amount of peptide and O-alkyl systems, which can be attributed to very fast structural relaxation of proteinaceous materials, i.e. their larger content leads to lower difference between original and heat-induced compressibility. Last, the increase of the heating/cooling amplitude from ± 3 to ± 15 °C resulted in an increase of the change of the adiabatic compressibility and in the extension of the relaxation time needed for DOM structure to return to the equilibrium. We conclude that this increase is caused by the increase in inner energy, and DOM conformation can reach a cascade of energy minima, which may influence DOM reactivity and biodegradability.
Collapse
Affiliation(s)
- Veronika Řezáčová
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200 Brno, Czech Republic
| | - Pellegrino Conte
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, v.le delle Scienze edificio 4, 90128 Palermo, Italy
| | - Renata Komendová
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200 Brno, Czech Republic
| | - František Novák
- Technopark Kralupy, University of Chemistry and Technology Prague, Technická 1905, 166 28 Prague 6, Czech Republic
| | - Martina Repková
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200 Brno, Czech Republic
| | - Jiří Kučerík
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200 Brno, Czech Republic.
| |
Collapse
|
12
|
Abstract
The phenomenon of chemical or conformational exchange in NMR spectroscopy has enabled detailed characterization of time-dependent aspects of biomolecular function, including folding, molecular recognition, allostery, and catalysis, on timescales from microsecond to second. Importantly, NMR methods based on a variety of spin relaxation parameters have been developed that provide quantitative information on interconversion kinetics, thermodynamic properties, and structural features of molecular states populated to a fraction of a percent at equilibrium and otherwise unobservable by other NMR approaches. The ongoing development of more sophisticated experimental techniques and the necessity to apply these methods to larger and more complex molecular systems engenders a corresponding need for theoretical advances describing such techniques and facilitating data analysis in applications. This review surveys current aspects of the theory of chemical exchange, as utilized in ZZ-exchange; Hahn and Carr-Purcell-Meiboom-Gill (CPMG) spin-echo; and R1ρ, chemical exchange saturation transfer (CEST), and dark state saturation transfer (DEST) spin-locking experiments. The review emphasizes theoretical results for kinetic topologies with more than two interconverting states, both to obtain compact analytical forms suitable for data analysis and to establish conditions for distinguishability between alternative kinetic schemes.
Collapse
Affiliation(s)
- Arthur G Palmer
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States.
| | - Hans Koss
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States
| |
Collapse
|
13
|
Resolving biomolecular motion and interactions by R2 and R1ρ relaxation dispersion NMR. Methods 2018; 148:28-38. [DOI: 10.1016/j.ymeth.2018.04.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 12/16/2022] Open
|
14
|
Papaleo E, Camilloni C, Teilum K, Vendruscolo M, Lindorff-Larsen K. Molecular dynamics ensemble refinement of the heterogeneous native state of NCBD using chemical shifts and NOEs. PeerJ 2018; 6:e5125. [PMID: 30013831 PMCID: PMC6035720 DOI: 10.7717/peerj.5125] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/08/2018] [Indexed: 01/24/2023] Open
Abstract
Many proteins display complex dynamical properties that are often intimately linked to their biological functions. As the native state of a protein is best described as an ensemble of conformations, it is important to be able to generate models of native state ensembles with high accuracy. Due to limitations in sampling efficiency and force field accuracy it is, however, challenging to obtain accurate ensembles of protein conformations by the use of molecular simulations alone. Here we show that dynamic ensemble refinement, which combines an accurate atomistic force field with commonly available nuclear magnetic resonance (NMR) chemical shifts and NOEs, can provide a detailed and accurate description of the conformational ensemble of the native state of a highly dynamic protein. As both NOEs and chemical shifts are averaged on timescales up to milliseconds, the resulting ensembles reflect the structural heterogeneity that goes beyond that probed, e.g., by NMR relaxation order parameters. We selected the small protein domain NCBD as object of our study since this protein, which has been characterized experimentally in substantial detail, displays a rich and complex dynamical behaviour. In particular, the protein has been described as having a molten-globule like structure, but with a relatively rigid core. Our approach allowed us to describe the conformational dynamics of NCBD in solution, and to probe the structural heterogeneity resulting from both short- and long-timescale dynamics by the calculation of order parameters on different time scales. These results illustrate the usefulness of our approach since they show that NCBD is rather rigid on the nanosecond timescale, but interconverts within a broader ensemble on longer timescales, thus enabling the derivation of a coherent set of conclusions from various NMR experiments on this protein, which could otherwise appear in contradiction with each other.
Collapse
Affiliation(s)
- Elena Papaleo
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Current affiliation: Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Carlo Camilloni
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.,Current affiliation: Department of Biosciences, University of Milano, Milano, Italy
| | - Kaare Teilum
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Bychkova VE, Semisotnov GV, Balobanov VA, Finkelstein AV. The Molten Globule Concept: 45 Years Later. BIOCHEMISTRY (MOSCOW) 2018; 83:S33-S47. [DOI: 10.1134/s0006297918140043] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Abstract
Single-molecule studies of protein folding hold keys to unveiling protein folding pathways and elusive intermediate folding states-attractive pharmaceutical targets. Although conventional single-molecule approaches can detect folding intermediates, they presently lack throughput and require elaborate labeling. Here, we theoretically show that measurements of ionic current through a nanopore containing a protein can report on the protein's folding state. Our all-atom molecular dynamics (MD) simulations show that the unfolding of a protein lowers the nanopore ionic current, an effect that originates from the reduction of ion mobility in proximity to a protein. Using a theoretical model, we show that the average change in ionic current produced by a folding-unfolding transition is detectable despite the orientational and conformational heterogeneity of the folded and unfolded states. By analyzing millisecond-long all-atom MD simulations of multiple protein transitions, we show that a nanopore ionic current recording can detect folding-unfolding transitions in real time and report on the structure of folding intermediates.
Collapse
Affiliation(s)
- Wei Si
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments and School of Mechanical Engineering, Southeast University, Nanjing, 210096, China
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- To whom correspondence should be addressed:
| |
Collapse
|
17
|
Zhuravleva A, Korzhnev DM. Protein folding by NMR. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2017; 100:52-77. [PMID: 28552172 DOI: 10.1016/j.pnmrs.2016.10.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 10/17/2016] [Accepted: 10/17/2016] [Indexed: 06/07/2023]
Abstract
Protein folding is a highly complex process proceeding through a number of disordered and partially folded nonnative states with various degrees of structural organization. These transiently and sparsely populated species on the protein folding energy landscape play crucial roles in driving folding toward the native conformation, yet some of these nonnative states may also serve as precursors for protein misfolding and aggregation associated with a range of devastating diseases, including neuro-degeneration, diabetes and cancer. Therefore, in vivo protein folding is often reshaped co- and post-translationally through interactions with the ribosome, molecular chaperones and/or other cellular components. Owing to developments in instrumentation and methodology, solution NMR spectroscopy has emerged as the central experimental approach for the detailed characterization of the complex protein folding processes in vitro and in vivo. NMR relaxation dispersion and saturation transfer methods provide the means for a detailed characterization of protein folding kinetics and thermodynamics under native-like conditions, as well as modeling high-resolution structures of weakly populated short-lived conformational states on the protein folding energy landscape. Continuing development of isotope labeling strategies and NMR methods to probe high molecular weight protein assemblies, along with advances of in-cell NMR, have recently allowed protein folding to be studied in the context of ribosome-nascent chain complexes and molecular chaperones, and even inside living cells. Here we review solution NMR approaches to investigate the protein folding energy landscape, and discuss selected applications of NMR methodology to studying protein folding in vitro and in vivo. Together, these examples highlight a vast potential of solution NMR in providing atomistic insights into molecular mechanisms of protein folding and homeostasis in health and disease.
Collapse
Affiliation(s)
- Anastasia Zhuravleva
- Astbury Centre for Structural Molecular Biology and Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | - Dmitry M Korzhnev
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030, USA.
| |
Collapse
|
18
|
Walinda E, Morimoto D, Shirakawa M, Sugase K. Practical considerations for investigation of protein conformational dynamics by 15N R 1ρ relaxation dispersion. JOURNAL OF BIOMOLECULAR NMR 2017; 67:201-209. [PMID: 28243767 DOI: 10.1007/s10858-017-0097-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 02/16/2017] [Indexed: 06/06/2023]
Abstract
It is becoming increasingly apparent that proteins are not static entities and that their function often critically depends on accurate sampling of multiple conformational states in aqueous solution. Accordingly, the development of methods to study conformational states in proteins beyond their ground-state structure ("excited states") has crucial biophysical importance. Here we investigate experimental schemes for optimally probing chemical exchange processes in proteins on the micro- to millisecond timescale by 15N R 1ρ relaxation dispersion. The schemes use selective Hartmann-Hahn cross-polarization (CP) transfer for excitation, and derive peak integrals from 1D NMR spectra (Korzhnev et al. in J Am Chem Soc 127:713-721, 2005; Hansen et al. in J Am Chem Soc 131:3818-3819, 2009). Simulation and experiment collectively show that in such CP-based schemes care has to be taken to achieve accurate suppression of undesired off-resonance coherences, when using weak spin-lock fields. This then (i) ensures that relaxation dispersion profiles in the absence of chemical exchange are flat, and (ii) facilitates extraction of relaxation dispersion profiles in crowded regions of the spectrum. Further improvement in the quality of the experimental data is achieved by recording the free-induction decays in an interleaved manner and including a heating-compensation element. The reported considerations will particularly benefit the use of CP-based R 1ρ relaxation dispersion to analyze conformational exchange processes in larger proteins, where resonance line overlap becomes the main limiting factor.
Collapse
Affiliation(s)
- Erik Walinda
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Daichi Morimoto
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-Ku, 615-8510, Kyoto, Japan
| | - Masahiro Shirakawa
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-Ku, 615-8510, Kyoto, Japan
| | - Kenji Sugase
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-Ku, 615-8510, Kyoto, Japan.
| |
Collapse
|
19
|
Abstract
Although each type of protein fold and in some cases individual proteins within a fold classification can have very different mechanisms of folding, the underlying biophysical and biochemical principles that operate to cause a linear polypeptide chain to fold into a globular structure must be the same. In an aqueous solution, the protein takes up the thermodynamically most stable structure, but the pathway along which the polypeptide proceeds in order to reach that structure is a function of the amino acid sequence, which must be the final determining factor, not only in shaping the final folded structure, but in dictating the folding pathway. A number of groups have focused on a single protein or group of proteins, to determine in detail the factors that influence the rate and mechanism of folding in a defined system, with the hope that hypothesis-driven experiments can elucidate the underlying principles governing the folding process. Our research group has focused on the folding of the globin family of proteins, and in particular on the monomeric protein apomyoglobin. Apomyoglobin (apoMb) folds relatively slowly (∼2 s) via an ensemble of obligatory intermediates that form rapidly after the initiation of folding. The folding pathway can be dissected using rapid-mixing techniques, which can probe processes in the millisecond time range. Stopped-flow measurements detected by circular dichroism (CD) or fluorescence spectroscopy give information on the rates of folding events. Quench-flow experiments utilize the differential rates of hydrogen-deuterium exchange of amide protons protected in parts of the structure that are folded early; protection of amides can be detected by mass spectrometry or proton nuclear magnetic resonance spectroscopy (NMR). In addition, apoMb forms an intermediate at equilibrium at pH ∼ 4, which is sufficiently stable for it to be structurally characterized by solution methods such as CD, fluorescence and NMR spectroscopies, and the conformational ensembles formed in the presence of denaturing agents and low pH can be characterized as models for the unfolded states of the protein. Newer NMR techniques such as measurement of residual dipolar couplings in the various partly folded states, and relaxation dispersion measurements to probe invisible states present at low concentrations, have contributed to providing a detailed picture of the apomyoglobin folding pathway. The research summarized in this Account was aimed at characterizing and comparing the equilibrium and kinetic intermediates both structurally and dynamically, as well as delineating the complete folding pathway at a residue-specific level, in order to answer the question: "What is it about the amino acid sequence that causes each molecule in the unfolded protein ensemble to start folding, and, once started, to proceed towards the formation of the correctly folded three-dimensional structure?"
Collapse
Affiliation(s)
- H Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla California 92037, United States
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla California 92037, United States
| |
Collapse
|
20
|
Fenwick RB, Oyen D, Wright PE. Multi-probe relaxation dispersion measurements increase sensitivity to protein dynamics. Phys Chem Chem Phys 2017; 18:5789-98. [PMID: 26426424 DOI: 10.1039/c5cp04670j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion measurements are a valuable tool for the characterization of structural transitions on the micro-millisecond timescale. While the measurement of (15)N relaxation dispersion is now routine, the measurements with alternative nuclei remain limited. Here we report (15)N as well as (1)H R2 relaxation dispersion measurements of the N23PP/S148A "dynamic knockout" mutant of dihydrofolate reductase. The (1)H dispersion measurements are complementary to (15)N data as many additional residues are observed to have dispersive behavior for the (1)H nucleus. Simultaneous fitting of the dispersion profiles for the two nuclei increases the accuracy of exchange parameters determined for individual residues and clustered groups of residues. The different sensitivity of the two nuclei to changes in backbone torsional angles, ring currents, and hydrogen bonding effects provides important insights into the nature of the structural changes that take place during the exchange process. We observe clear evidence of direct and indirect hydrogen bond effects for the (15)N and (1)H chemical shift changes in the active-site, modulation of ring current shielding in the CD-loop and backbone torsional changes in a cluster of residues associated with the C-terminus. This work demonstrates the power of combined (1)H and (15)N probes for the study of backbone dynamics on the micro-millisecond timescale though the analysis of chemical shift changes.
Collapse
Affiliation(s)
- R Bryn Fenwick
- Department of Integrative Structural and Computational Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | - David Oyen
- Department of Integrative Structural and Computational Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| |
Collapse
|
21
|
NISHIMURA C. Folding of apomyoglobin: Analysis of transient intermediate structure during refolding using quick hydrogen deuterium exchange and NMR. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2017; 93:10-27. [PMID: 28077807 PMCID: PMC5406622 DOI: 10.2183/pjab.93.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/31/2016] [Indexed: 05/27/2023]
Abstract
The structures of apomyoglobin folding intermediates have been widely analyzed using physical chemistry methods including fluorescence, circular dichroism, small angle X-ray scattering, NMR, mass spectrometry, and rapid mixing. So far, at least two intermediates (on sub-millisecond- and millisecond-scales) have been demonstrated for apomyoglobin folding. The combination of pH-pulse labeling and NMR is a useful tool for analyzing the kinetic intermediates at the atomic level. Its use has revealed that the latter-phase kinetic intermediate of apomyoglobin (6 ms) was composed of helices A, B, G and H, whereas the equilibrium intermediate, called the pH 4 molten-globule intermediate, was composed mainly of helices A, G and H. The improved strategy for the analysis of the kinetic intermediate was developed to include (1) the dimethyl sulfoxide method, (2) data processing with the various labeling times, and (3) a new in-house mixer. Particularly, the rapid mixing revealed that helices A and G were significantly more protected at the earlier stage (400 µs) of the intermediate (former-phase intermediate) than the other helices. Mutation studies, where each hydrophobic residue was replaced with an alanine in helices A, B, E, F, G and H, indicated that both non-native and native-like structures exist in the latter-phase folding intermediate. The N-terminal part of helix B is a weak point in the intermediate, and the docking of helix E residues to the core of the A, B, G and H helices was interrupted by a premature helix B, resulting in the accumulation of the intermediate composed of helices A, B, G and H. The prediction-based protein engineering produced important mutants: Helix F in a P88K/A90L/S92K/A94L mutant folded in the latter-phase intermediate, although helix F in the wild type does not fold even at the native state. Furthermore, in the L11G/W14G/A70L/G73W mutant, helix A did not fold but helix E did, which is similar to what was observed in the kinetic intermediate of apoleghemoglobin. Thus, this protein engineering resulted in a changed structure for the apomyoglobin folding intermediate.
Collapse
Affiliation(s)
- Chiaki NISHIMURA
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano-ku, Tokyo, Japan
| |
Collapse
|
22
|
Peng X, Sieradzan AK, Niemi AJ. Thermal unfolding of myoglobin in the Landau-Ginzburg-Wilson approach. Phys Rev E 2016; 94:062405. [PMID: 28085346 DOI: 10.1103/physreve.94.062405] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Indexed: 11/07/2022]
Abstract
The Landau-Ginzburg-Wilson paradigm is applied to model the low-temperature crystallographic Cα backbone structure of sperm whale myoglobin. The Glauber protocol is employed to simulate its response to an increase in ambient temperature. The myoglobin is found to unfold from its native state by a succession of α-helical intermediates, fully in line with the observed folding and unfolding patterns in denaturation experiments. In particular, a molten globule intermediate is identified with experimentally correct attributes. A detailed, experimentally testable contact map is constructed to characterize the specifics of the unfolding pathway, including the formation of long-range interactions. The results reveal how the unfolding process of a protein is driven by the interplay between, and a successive melting of, its modular secondary structure components.
Collapse
Affiliation(s)
- Xubiao Peng
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Adam K Sieradzan
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Antti J Niemi
- Department of Physics and Astronomy, Uppsala University, P. O. Box 803, S-75108, Uppsala, Sweden.,Laboratoire de Mathematiques et Physique Theorique CNRS UMR 6083, Fédération Denis Poisson, Université de Tours, Parc de Grandmont, F37200, Tours, France.,Department of Physics, Beijing Institute of Technology, Haidian District, Beijing 100081, People's Republic of China
| |
Collapse
|
23
|
Abstract
It is well-established that dynamics are central to protein function; their importance is implicitly acknowledged in the principles of the Monod, Wyman and Changeux model of binding cooperativity, which was originally proposed in 1965. Nowadays the concept of protein dynamics is formulated in terms of the energy landscape theory, which can be used to understand protein folding and conformational changes in proteins. Because protein dynamics are so important, a key to understanding protein function at the molecular level is to design experiments that allow their quantitative analysis. Nuclear magnetic resonance (NMR) spectroscopy is uniquely suited for this purpose because major advances in theory, hardware, and experimental methods have made it possible to characterize protein dynamics at an unprecedented level of detail. Unique features of NMR include the ability to quantify dynamics (i) under equilibrium conditions without external perturbations, (ii) using many probes simultaneously, and (iii) over large time intervals. Here we review NMR techniques for quantifying protein dynamics on fast (ps-ns), slow (μs-ms), and very slow (s-min) time scales. These techniques are discussed with reference to some major discoveries in protein science that have been made possible by NMR spectroscopy.
Collapse
|
24
|
Mizukami T, Sakuma Y, Maki K. Statistical Mechanical Model for pH-Induced Protein Folding: Application to Apomyoglobin. J Phys Chem B 2016; 120:8970-86. [PMID: 27491483 DOI: 10.1021/acs.jpcb.6b06936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite the major role of pH in protein folding and stability, a quantitative understanding of the pH-induced protein folding mechanism remains elusive. Two conventional models, the Monod-Wyman-Changeux and Linderstrøm-Lang smeared charge models, respectively, have been used to analyze the formation/disruption of specific native structures and fluctuating non-native states. However, there are only a few models that can represent the overall kinetic events of folding/unfolding independent of the properties of relevant molecular species, which has hampered the efforts to systematically analyze pH-induced folding. Here, we constructed a statistical mechanical model that incorporates the protonation mechanism of conventional models along with a combined manual search and least-squares fitting procedure, which was used to investigate the folding of horse apomyoglobin over a wide pH range (2.2-6.7), with a time window ranging from ∼40 μs to ∼100 s, using continuous-/stopped-flow fluorescence at 8 °C. Quantitative analysis assuming a five-state sequential scheme indicated that (1) pH-induced folding/unfolding is represented by both specific binding and Coulombic interactions; (2) kinetic folding/unfolding intermediates share kinetic mechanisms with the equilibrium intermediate, indicating their equivalence; and (3) native-like properties are acquired successively during folding by intermediates and in transition states. This model could also be applied to a variety of association/dissociation processes.
Collapse
Affiliation(s)
- Takuya Mizukami
- Graduate School of Science, Nagoya University , Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Yosuke Sakuma
- Graduate School of Science, Nagoya University , Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Kosuke Maki
- Graduate School of Science, Nagoya University , Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
25
|
Xue Y, Gracia B, Herschlag D, Russell R, Al-Hashimi HM. Visualizing the formation of an RNA folding intermediate through a fast highly modular secondary structure switch. Nat Commun 2016; 7:ncomms11768. [PMID: 27292179 PMCID: PMC4909931 DOI: 10.1038/ncomms11768] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 04/26/2016] [Indexed: 12/28/2022] Open
Abstract
Intermediates play important roles in RNA folding but can be difficult to characterize when short-lived or not significantly populated. By combining (15)N relaxation dispersion NMR with chemical probing, we visualized a fast (kex=k1+k-1≈423 s(-1)) secondary structural switch directed towards a low-populated (∼3%) partially folded intermediate in tertiary folding of the P5abc subdomain of the 'Tetrahymena' group I intron ribozyme. The secondary structure switch changes the base-pairing register across the P5c hairpin, creating a native-like structure, and occurs at rates of more than two orders of magnitude faster than tertiary folding. The switch occurs robustly in the absence of tertiary interactions, Mg(2+) or even when the hairpin is excised from the three-way junction. Fast, highly modular secondary structural switches may be quite common during RNA tertiary folding where they may help smoothen the folding landscape by allowing folding to proceed efficiently via additional pathways.
Collapse
Affiliation(s)
- Yi Xue
- Department of Biochemistry, Duke Center for RNA Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Brant Gracia
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Daniel Herschlag
- Department of Biochemistry, Beckman Center, Stanford University, Stanford, California 94305, USA.,Department of Chemistry, Stanford University, Stanford, California 94305, USA.,Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA.,Chemistry, Engineering, and Medicine for Human Health (ChEM-H) Institute, Stanford University, Stanford, California 94305, USA
| | - Rick Russell
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Hashim M Al-Hashimi
- Department of Biochemistry, Duke Center for RNA Biology, Duke University Medical Center, Durham, North Carolina 27710, USA.,Department of Chemistry, Duke University, Durham, Stanford, North Carolina 27710, USA
| |
Collapse
|
26
|
Konuma T, Harada E, Sugase K. Extracting protein dynamics information from overlapped NMR signals using relaxation dispersion difference NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2015; 63:367-373. [PMID: 26476958 DOI: 10.1007/s10858-015-9995-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 10/14/2015] [Indexed: 06/05/2023]
Abstract
Protein dynamics plays important roles in many biological events, such as ligand binding and enzyme reactions. NMR is mostly used for investigating such protein dynamics in a site-specific manner. Recently, NMR has been actively applied to large proteins and intrinsically disordered proteins, which are attractive research targets. However, signal overlap, which is often observed for such proteins, hampers accurate analysis of NMR data. In this study, we have developed a new methodology called relaxation dispersion difference that can extract conformational exchange parameters from overlapped NMR signals measured using relaxation dispersion spectroscopy. In relaxation dispersion measurements, the signal intensities of fluctuating residues vary according to the Carr-Purcell-Meiboon-Gill pulsing interval, whereas those of non-fluctuating residues are constant. Therefore, subtraction of each relaxation dispersion spectrum from that with the highest signal intensities, measured at the shortest pulsing interval, leaves only the signals of the fluctuating residues. This is the principle of the relaxation dispersion difference method. This new method enabled us to extract exchange parameters from overlapped signals of heme oxygenase-1, which is a relatively large protein. The results indicate that the structural flexibility of a kink in the heme-binding site is important for efficient heme binding. Relaxation dispersion difference requires neither selectively labeled samples nor modification of pulse programs; thus it will have wide applications in protein dynamics analysis.
Collapse
Affiliation(s)
- Tsuyoshi Konuma
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka, 618-8503, Japan
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Erisa Harada
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka, 618-8503, Japan
| | - Kenji Sugase
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka, 618-8503, Japan.
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-Ku, Kyoto, 615-8510, Japan.
| |
Collapse
|
27
|
Evidence for close side-chain packing in an early protein folding intermediate previously assumed to be a molten globule. Proc Natl Acad Sci U S A 2014; 111:14746-51. [PMID: 25258414 DOI: 10.1073/pnas.1410630111] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The molten globule, a conformational ensemble with significant secondary structure but only loosely packed tertiary structure, has been suggested to be a ubiquitous intermediate in protein folding. However, it is difficult to assess the tertiary packing of transiently populated species to evaluate this hypothesis. Escherichia coli RNase H is known to populate an intermediate before the rate-limiting barrier to folding that has long been thought to be a molten globule. We investigated this hypothesis by making mimics of the intermediate that are the ground-state conformation at equilibrium, using two approaches: a truncation to generate a fragment mimic of the intermediate, and selective destabilization of the native state using point mutations. Spectroscopic characterization and the response of the mimics to further mutation are consistent with studies on the transient kinetic intermediate, indicating that they model the early intermediate. Both mimics fold cooperatively and exhibit NMR spectra indicative of a closely packed conformation, in contrast to the hypothesis of molten tertiary packing. This result is important for understanding the nature of the subsequent rate-limiting barrier to folding and has implications for the assumption that many other proteins populate molten globule folding intermediates.
Collapse
|
28
|
Aoto PC, Nishimura C, Dyson HJ, Wright PE. Probing the non-native H helix translocation in apomyoglobin folding intermediates. Biochemistry 2014; 53:3767-80. [PMID: 24857522 PMCID: PMC4067146 DOI: 10.1021/bi500478m] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Apomyoglobin folds via sequential
helical intermediates that are
formed by rapid collapse of the A, B, G, and H helix regions. An equilibrium
molten globule with a similar structure is formed near pH 4. Previous
studies suggested that the folding intermediates are kinetically trapped
states in which folding is impeded by non-native packing of the G
and H helices. Fluorescence spectra of mutant proteins in which cysteine
residues were introduced at several positions in the G and H helices
show differential quenching of W14 fluorescence, providing direct
evidence of translocation of the H helix relative to helices A and
G in both the kinetic and equilibrium intermediates. Förster
resonance energy transfer measurements show that a 5-({2-[(acetyl)amino]ethyl}amino)naphthalene-1-sulfonic
acid acceptor coupled to K140C (helix H) is closer to Trp14 (helix
A) in the equilibrium molten globule than in the native state, by
a distance that is consistent with sliding of the H helix in an N-terminal
direction by approximately one helical turn. Formation of an S108C–L135C
disulfide prevents H helix translocation in the equilibrium molten
globule by locking the G and H helices into their native register.
By enforcing nativelike packing of the A, G, and H helices, the disulfide
resolves local energetic frustration and facilitates transient docking
of the E helix region onto the hydrophobic core but has only a small
effect on the refolding rate. The apomyoglobin folding landscape is
highly rugged, with several energetic bottlenecks that frustrate folding;
relief of any one of the major identified bottlenecks is insufficient
to speed progression to the transition state.
Collapse
Affiliation(s)
- Phillip C Aoto
- Department of Molecular Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | | | |
Collapse
|
29
|
Jennaro TS, Beaty MR, Kurt-Yilmaz N, Luskin BL, Cavagnero S. Burial of nonpolar surface area and thermodynamic stabilization of globins as a function of chain elongation. Proteins 2014; 82:2318-31. [DOI: 10.1002/prot.24590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/11/2014] [Accepted: 04/12/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Theodore S. Jennaro
- Department of Chemistry; University of Wisconsin-Madison; Madison Wisconsin 53706
| | - Matthew R. Beaty
- Department of Chemistry; University of Wisconsin-Madison; Madison Wisconsin 53706
| | - Neşe Kurt-Yilmaz
- Department of Chemistry; University of Wisconsin-Madison; Madison Wisconsin 53706
| | - Benjamin L. Luskin
- Department of Chemistry; University of Wisconsin-Madison; Madison Wisconsin 53706
| | - Silvia Cavagnero
- Department of Chemistry; University of Wisconsin-Madison; Madison Wisconsin 53706
| |
Collapse
|
30
|
Hansen AL, Kay LE. Measurement of histidine pKa values and tautomer populations in invisible protein states. Proc Natl Acad Sci U S A 2014; 111:E1705-12. [PMID: 24733918 PMCID: PMC4035968 DOI: 10.1073/pnas.1400577111] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The histidine imidazole side chain plays a critical role in protein function and stability. Its importance for catalysis is underscored by the fact that histidines are localized to active sites in ∼ 50% of all enzymes. NMR spectroscopy has become an important tool for studies of histidine side chains through the measurement of site-specific pK(a)s and tautomer populations. To date, such studies have been confined to observable protein ground states; however, a complete understanding of the role of histidine electrostatics in protein function and stability requires that similar investigations be extended to rare, transiently formed conformers that populate the energy landscape, yet are often "invisible" in standard NMR spectra. Here we present NMR experiments and a simple strategy for studies of such conformationally excited states based on measurement of histidine (13)Cγ, (13)Cδ2 chemical shifts and (1)Hε-(13)Cε one-bond scalar couplings. The methodology is first validated and then used to obtain pKa values and tautomer distributions for histidine residues of an invisible on-pathway folding intermediate of the colicin E7 immunity protein. Our results imply that the side chains of H40 and H47 are exposed in the intermediate state and undergo significant conformational rearrangements during folding to the native structure. Further, the pKa values explain the pH-dependent stability differences between native and intermediate states over the pH range 5.5-6.5 and they suggest that imidazole deprotonation is not a barrier to the folding of this protein.
Collapse
Affiliation(s)
- Alexandar L. Hansen
- Departments of Molecular Genetics, Biochemistry, and Chemistry, University of Toronto, Toronto, ON, Canada M5S 1A8; and
| | - Lewis E. Kay
- Departments of Molecular Genetics, Biochemistry, and Chemistry, University of Toronto, Toronto, ON, Canada M5S 1A8; and
- Molecular Structure and Function Program, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
| |
Collapse
|
31
|
Palmer AG. Chemical exchange in biomacromolecules: past, present, and future. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 241:3-17. [PMID: 24656076 PMCID: PMC4049312 DOI: 10.1016/j.jmr.2014.01.008] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/09/2014] [Accepted: 01/10/2014] [Indexed: 05/08/2023]
Abstract
The perspective reviews quantitative investigations of chemical exchange phenomena in proteins and other biological macromolecules using NMR spectroscopy, particularly relaxation dispersion methods. The emphasis is on techniques and applications that quantify the populations, interconversion kinetics, and structural features of sparsely populated conformational states in equilibrium with a highly populated ground state. Applications to folding, molecular recognition, catalysis, and allostery by proteins and nucleic acids are highlighted.
Collapse
Affiliation(s)
- Arthur G Palmer
- Department of Biochemistry and Molecular Biophysics, Columbia University, 630 West 168th Street, New York, NY 10032, United States.
| |
Collapse
|
32
|
Guilvout I, Chami M, Disconzi E, Bayan N, Pugsley AP, Huysmans GHM. Independent domain assembly in a trapped folding intermediate of multimeric outer membrane secretins. Structure 2014; 22:582-9. [PMID: 24657091 DOI: 10.1016/j.str.2014.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/27/2014] [Accepted: 02/11/2014] [Indexed: 11/28/2022]
Abstract
The outer membrane portal of the Klebsiella oxytoca type II secretion system, PulD, is a prototype of a family of proteins, the secretins, which are essential components of many bacterial secretion and pilus assembly machines. PulD is a homododecamer with a periplasmic vestibule and an outer chamber on either side of a membrane-spanning region that is poorly resolved by electron microscopy. Membrane insertion involves the formation of a dodecameric membrane-embedded intermediate. Here, we describe an amino acid substitution in PulD that blocks its assembly at this intermediate "prepore" stage. Electron microscopy indicated that the prepore has an apparently normal periplasmic vestibule but a poorly organized outer chamber. A peptide loop around this amino acid appears to be important for the formation/stability of the fully folded complex. A similar assembly intermediate results from creation of the same amino acid substitution in the Pseudomonas aeruginosa secretin XcpQ.
Collapse
Affiliation(s)
- Ingrid Guilvout
- Molecular Genetics Unit, Departments of Microbiology and of Structural Biology and Chemistry, Institut Pasteur, rue du Dr. Roux, 75724 Paris Cedex 15, France; CNRS ERL3526, rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Mohamed Chami
- C-CINA Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, 4058 Basel, Switzerland
| | - Elena Disconzi
- Molecular Genetics Unit, Departments of Microbiology and of Structural Biology and Chemistry, Institut Pasteur, rue du Dr. Roux, 75724 Paris Cedex 15, France; CNRS ERL3526, rue du Dr. Roux, 75724 Paris Cedex 15, France; Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Université de Paris-Sud, 91405 Orsay, France; CNRS UMR 8619, 91405 Orsay, France
| | - Nicolas Bayan
- Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Université de Paris-Sud, 91405 Orsay, France; CNRS UMR 8619, 91405 Orsay, France
| | - Anthony P Pugsley
- Molecular Genetics Unit, Departments of Microbiology and of Structural Biology and Chemistry, Institut Pasteur, rue du Dr. Roux, 75724 Paris Cedex 15, France; CNRS ERL3526, rue du Dr. Roux, 75724 Paris Cedex 15, France.
| | - Gerard H M Huysmans
- Molecular Genetics Unit, Departments of Microbiology and of Structural Biology and Chemistry, Institut Pasteur, rue du Dr. Roux, 75724 Paris Cedex 15, France; CNRS ERL3526, rue du Dr. Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
33
|
Mapping protein conformational heterogeneity under pressure with site-directed spin labeling and double electron-electron resonance. Proc Natl Acad Sci U S A 2014; 111:E1201-10. [PMID: 24707053 DOI: 10.1073/pnas.1403179111] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The dominance of a single native state for most proteins under ambient conditions belies the functional importance of higher-energy conformational states (excited states), which often are too sparsely populated to allow spectroscopic investigation. Application of high hydrostatic pressure increases the population of excited states for study, but structural characterization is not trivial because of the multiplicity of states in the ensemble and rapid (microsecond to millisecond) exchange between them. Site-directed spin labeling in combination with double electron-electron resonance (DEER) provides long-range (20-80 Å) distance distributions with angstrom-level resolution and thus is ideally suited to resolve conformational heterogeneity in an excited state populated under high pressure. DEER currently is performed at cryogenic temperatures. Therefore, a method was developed for rapidly freezing spin-labeled proteins under pressure to kinetically trap the high-pressure conformational ensemble for subsequent DEER data collection at atmospheric pressure. The methodology was evaluated using seven doubly-labeled mutants of myoglobin designed to monitor selected interhelical distances. For holomyoglobin, the distance distributions are narrow and relatively insensitive to pressure. In apomyoglobin, on the other hand, the distributions reveal a striking conformational heterogeneity involving specific helices in the pressure range of 0-3 kbar, where a molten globule state is formed. The data directly reveal the amplitude of helical fluctuations, information unique to the DEER method that complements previous rate determinations. Comparison of the distance distributions for pressure- and pH-populated molten globules shows them to be remarkably similar despite a lower helical content in the latter.
Collapse
|
34
|
Wang S, Horimoto Y, Dee DR, Yada RY. Understanding the mechanism of prosegment-catalyzed folding by solution NMR spectroscopy. J Biol Chem 2014; 289:697-707. [PMID: 24265313 DOI: 10.1074/jbc.m113.505891] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multidomain protein folding is often more complex than a two-state process, which leads to the spontaneous folding of the native state. Pepsin, a zymogen-derived enzyme, without its prosegment (PS), is irreversibly denatured and folds to a thermodynamically stable, non-native conformation, termed refolded pepsin, which is separated from native pepsin by a large activation barrier. While it is known that PS binds refolded pepsin and catalyzes its conversion to the native form, little structural details are known regarding this conversion. In this study, solution NMR was used to elucidate the PS-catalyzed folding mechanism by examining the key equilibrium states, e.g. native and refolded pepsin, both in the free and PS-bound states, and pepsinogen, the zymogen form of pepsin. Refolded pepsin was found to be partially structured and lacked the correct domain-domain structure and active-site cleft formed in the native state. Analysis of chemical shift data revealed that upon PS binding refolded pepsin folds into a state more similar to that of pepsinogen than to native pepsin. Comparison of pepsin folding by wild-type and mutant PSs, including a double mutant PS, indicated that hydrophobic interactions between residues of prosegment and refolded pepsin lower the folding activation barrier. A mechanism is proposed for the binding of PS to refolded pepsin and how the formation of the native structure is mediated.
Collapse
|
35
|
Circular dichroism and site-directed spin labeling reveal structural and dynamical features of high-pressure states of myoglobin. Proc Natl Acad Sci U S A 2013; 110:E4714-22. [PMID: 24248390 DOI: 10.1073/pnas.1320124110] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Excited states of proteins may play important roles in function, yet are difficult to study spectroscopically because of their sparse population. High hydrostatic pressure increases the equilibrium population of excited states, enabling their characterization [Akasaka K (2003) Biochemistry 42:10875-85]. High-pressure site-directed spin-labeling EPR (SDSL-EPR) was developed recently to map the site-specific structure and dynamics of excited states populated by pressure. To monitor global secondary structure content by circular dichroism (CD) at high pressure, a modified optical cell using a custom MgF2 window with a reduced aperture is introduced. Here, a combination of SDSL-EPR and CD is used to map reversible structural transitions in holomyoglobin and apomyoglobin (apoMb) as a function of applied pressure up to 2 kbar. CD shows that the high-pressure excited state of apoMb at pH 6 has helical content identical to that of native apoMb, but reversible changes reflecting the appearance of a conformational ensemble are observed by SDSL-EPR, suggesting a helical topology that fluctuates slowly on the EPR time scale. Although the high-pressure state of apoMb at pH 6 has been referred to as a molten globule, the data presented here reveal significant differences from the well-characterized pH 4.1 molten globule of apoMb. Pressure-populated states of both holomyoglobin and apoMb at pH 4.1 have significantly less helical structure, and for the latter, that may correspond to a transient folding intermediate.
Collapse
|
36
|
Conformational selection and adaptation to ligand binding in T4 lysozyme cavity mutants. Proc Natl Acad Sci U S A 2013; 110:E4306-15. [PMID: 24167295 DOI: 10.1073/pnas.1318754110] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The studies presented here explore the relationship between protein packing and molecular flexibility using ligand-binding cavity mutants of T4 lysozyme. Although previously reported crystal structures of the mutants investigated show single conformations that are similar to the WT protein, site-directed spin labeling in solution reveals additional conformational substates in equilibrium exchange with a WT-like population. Remarkably, binding of ligands, including the general anesthetic halothane shifts the population to the WT-like state, consistent with a conformational selection model of ligand binding, but structural adaptation to the ligand is also apparent in one mutant. Distance mapping with double electron-electron resonance spectroscopy and the absence of ligand binding suggest that the new substates induced by the cavity-creating mutations represent alternate packing modes in which the protein fills or partially fills the cavity with side chains, including the spin label in one case; external ligands compete with the side chains for the cavity space, stabilizing the WT conformation. The results have implications for mechanisms of anesthesia, the response of proteins to hydrostatic pressure, and protein engineering.
Collapse
|
37
|
Roche J, Dellarole M, Caro JA, Norberto DR, Garcia AE, Garcia-Moreno B, Roumestand C, Royer CA. Effect of Internal Cavities on Folding Rates and Routes Revealed by Real-Time Pressure-Jump NMR Spectroscopy. J Am Chem Soc 2013; 135:14610-8. [DOI: 10.1021/ja406682e] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Julien Roche
- Centre de Biochimie
Structurale, INSERM U554, CNRS UMR 5048, Universités de Montpellier, France
| | - Mariano Dellarole
- Centre de Biochimie
Structurale, INSERM U554, CNRS UMR 5048, Universités de Montpellier, France
| | - José A. Caro
- Department
of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Douglas R. Norberto
- Department
of Biochemistry, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Angel E. Garcia
- Department
of Physics and Applied Physics and Center for Biotechnology and Interdisciplinary
Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Bertrand Garcia-Moreno
- Department
of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Christian Roumestand
- Centre de Biochimie
Structurale, INSERM U554, CNRS UMR 5048, Universités de Montpellier, France
| | - Catherine A. Royer
- Centre de Biochimie
Structurale, INSERM U554, CNRS UMR 5048, Universités de Montpellier, France
| |
Collapse
|
38
|
Burke KS, Parul D, Reddish MJ, Dyer RB. A simple three-dimensional-focusing, continuous-flow mixer for the study of fast protein dynamics. LAB ON A CHIP 2013; 13:2912-21. [PMID: 23760106 PMCID: PMC3733270 DOI: 10.1039/c3lc50497b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We present a simple, yet flexible microfluidic mixer with a demonstrated mixing time as short as 80 μs that is widely accessible because it is made of commercially available parts. To simplify the study of fast protein dynamics, we have developed an inexpensive continuous-flow microfluidic mixer, requiring no specialized equipment or techniques. The mixer uses three-dimensional, hydrodynamic focusing of a protein sample stream by a surrounding sheath solution to achieve rapid diffusional mixing between the sample and sheath. Mixing initiates the reaction of interest. Reactions can be spatially observed by fluorescence or absorbance spectroscopy. We characterized the pixel-to-time calibration and diffusional mixing experimentally. We achieved a mixing time as short as 80 μs. We studied the kinetics of horse apomyoglobin (apoMb) unfolding from the intermediate (I) state to its completely unfolded (U) state, induced by a pH jump from the initial pH of 4.5 in the sample stream to a final pH of 2.0 in the sheath solution. The reaction time was probed using the fluorescence of 1-anilinonaphthalene-8-sulfonate (1,8-ANS) bound to the folded protein. We observed unfolding of apoMb within 760 μs, without populating additional intermediate states under these conditions. We also studied the reaction kinetics of the conversion of pyruvate to lactate catalyzed by lactate dehydrogenase using the intrinsic tryptophan emission of the enzyme. We observe sub-millisecond kinetics that we attribute to Michaelis complex formation and loop domain closure. These results demonstrate the utility of the three-dimensional focusing mixer for biophysical studies of protein dynamics.
Collapse
Affiliation(s)
- Kelly S. Burke
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91106
| | | | - Michael J. Reddish
- Emory University, 1515 Dickey Drive, Atlanta, GA 30322, United States of America
| | - R. Brian Dyer
- Emory University, 1515 Dickey Drive, Atlanta, GA 30322, United States of America
| |
Collapse
|
39
|
Sugase K, Konuma T, Lansing JC, Wright PE. Fast and accurate fitting of relaxation dispersion data using the flexible software package GLOVE. JOURNAL OF BIOMOLECULAR NMR 2013; 56:275-83. [PMID: 23754491 PMCID: PMC3735449 DOI: 10.1007/s10858-013-9747-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 05/21/2013] [Indexed: 05/03/2023]
Abstract
Relaxation dispersion spectroscopy is one of the most widely used techniques for the analysis of protein dynamics. To obtain a detailed understanding of the protein function from the view point of dynamics, it is essential to fit relaxation dispersion data accurately. The grid search method is commonly used for relaxation dispersion curve fits, but it does not always find the global minimum that provides the best-fit parameter set. Also, the fitting quality does not always improve with increase of the grid size although the computational time becomes longer. This is because relaxation dispersion curve fitting suffers from a local minimum problem, which is a general problem in non-linear least squares curve fitting. Therefore, in order to fit relaxation dispersion data rapidly and accurately, we developed a new fitting program called GLOVE that minimizes global and local parameters alternately, and incorporates a Monte-Carlo minimization method that enables fitting parameters to pass through local minima with low computational cost. GLOVE also implements a random search method, which sets up initial parameter values randomly within user-defined ranges. We demonstrate here that the combined use of the three methods can find the global minimum more rapidly and more accurately than grid search alone.
Collapse
Affiliation(s)
- Kenji Sugase
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| | - Tsuyoshi Konuma
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| | - Jonathan C. Lansing
- Momenta Pharmaceuticals, Inc., 675 West Kendall Street, Cambridge, MA 02142, USA
| | - Peter E. Wright
- Department of Molecular Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550, North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
40
|
Whitney DS, Peterson FC, Kovrigin EL, Volkman BF. Allosteric activation of the Par-6 PDZ via a partial unfolding transition. J Am Chem Soc 2013; 135:9377-83. [PMID: 23705660 PMCID: PMC3736553 DOI: 10.1021/ja400092a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proteins exist in a delicate balance between the native and unfolded states, where thermodynamic stability may be sacrificed to attain the flexibility required for efficient catalysis, binding, or allosteric control. Partition-defective 6 (Par-6) regulates the Par polarity complex by transmitting a GTPase signal through the Cdc42/Rac interaction binding PSD-95/Dlg/ZO-1 (CRIB-PDZ) module that alters PDZ ligand binding. Allosteric activation of the PDZ is achieved by local rearrangement of the L164 and K165 side chains to stabilize the interdomain CRIB:PDZ interface and reposition a conserved element of the ligand binding pocket. However, microsecond to millisecond dynamics measurements revealed that L164/K165 exchange requires a larger rearrangement than expected. The margin of thermodynamic stability for the PDZ domain is modest (∼3 kcal/mol) and further reduced by transient interactions with the disordered CRIB domain. Measurements of local structural stability revealed that tertiary contacts within the PDZ are disrupted by a partial unfolding transition that enables interconversion of the L/K switch. The unexpected participation of partial PDZ unfolding in the allosteric mechanism of Par-6 suggests that native-state unfolding may be essential for the function of other marginally stable proteins.
Collapse
Affiliation(s)
- Dustin S Whitney
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | | | | | | |
Collapse
|
41
|
Mezzenga R, Fischer P. The self-assembly, aggregation and phase transitions of food protein systems in one, two and three dimensions. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2013; 76:046601. [PMID: 23455715 DOI: 10.1088/0034-4885/76/4/046601] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The aggregation of proteins is of fundamental relevance in a number of daily phenomena, as important and diverse as blood coagulation, medical diseases, or cooking an egg in the kitchen. Colloidal food systems, in particular, are examples that have great significance for protein aggregation, not only for their importance and implications, which touches on everyday life, but also because they allow the limits of the colloidal science analogy to be tested in a much broader window of conditions, such as pH, ionic strength, concentration and temperature. Thus, studying the aggregation and self-assembly of proteins in foods challenges our understanding of these complex systems from both the molecular and statistical physics perspectives. Last but not least, food offers a unique playground to study the aggregation of proteins in three, two and one dimensions, that is to say, in the bulk, at air/water and oil/water interfaces and in protein fibrillation phenomena. In this review we will tackle this very ambitious task in order to discuss the current understanding of protein aggregation in the framework of foods, which is possibly one of the broadest contexts, yet is of tremendous daily relevance.
Collapse
Affiliation(s)
- Raffaele Mezzenga
- ETH Zurich, Food and Soft Materials Science, Department of Health Science and Technology, Institute of Food, Nutrition and Health, Schmelzbergstrasse 9, LFO E23, 8092 Zürich, Switzerland.
| | | |
Collapse
|
42
|
Sathyamoorthy B, Singarapu KK, Garcia AE, Szyperski T. Protein conformational space populated in solution probed with aromatic residual dipolar (13) C-(1) H couplings. Chembiochem 2013; 14:684-8. [PMID: 23494854 DOI: 10.1002/cbic.201300016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Indexed: 02/02/2023]
Abstract
The use of aromatic (13) C-(1) H residual dipolar couplings (RDCs) to probe the conformational space populated in solution is demonstrated for the protein BPTI. RDCs allow one to assess accuracy of atomic resolution structures and potentially to characterize low-populated subspaces corresponding to "excited states" in conformationally labile systems. They also allow one to assess sampling accuracy of molecular dynamics simulations.
Collapse
Affiliation(s)
- Bharathwaj Sathyamoorthy
- Department of Chemistry, State University of New York at Buffalo, North Campus, Buffalo, NY 14260, USA
| | | | | | | |
Collapse
|
43
|
NMR as a tool to identify and characterize protein folding intermediates. Arch Biochem Biophys 2013; 531:90-9. [DOI: 10.1016/j.abb.2012.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/03/2012] [Accepted: 09/04/2012] [Indexed: 11/20/2022]
|
44
|
Jaremko M, Jaremko Ł, Kim HY, Cho MK, Schwieters CD, Giller K, Becker S, Zweckstetter M. Cold denaturation of a protein dimer monitored at atomic resolution. Nat Chem Biol 2013; 9:264-70. [PMID: 23396077 DOI: 10.1038/nchembio.1181] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 01/15/2013] [Indexed: 11/09/2022]
Abstract
Protein folding and unfolding are crucial for a range of biological phenomena and human diseases. Defining the structural properties of the involved transient species is therefore of prime interest. Using a combination of cold denaturation with NMR spectroscopy, we reveal detailed insight into the unfolding of the homodimeric repressor protein CylR2. Seven three-dimensional structures of CylR2 at temperatures from 25 °C to -16 °C reveal a progressive dissociation of the dimeric protein into a native-like monomeric intermediate followed by transition into a highly dynamic, partially folded state. The core of the partially folded state seems critical for biological function and misfolding.
Collapse
Affiliation(s)
- Mariusz Jaremko
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Bhattacharyya S, Varadarajan R. Packing in molten globules and native states. Curr Opin Struct Biol 2012; 23:11-21. [PMID: 23270864 DOI: 10.1016/j.sbi.2012.10.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 10/31/2012] [Indexed: 11/26/2022]
Abstract
Close packing of hydrophobic residues in the protein interior is an important determinant of protein stability. Cavities introduced by large to small substitutions are known to destabilize proteins. Conversely, native states of proteins and protein fragments can be stabilized by filling in existing cavities. Molten globules (MGs) were initially used to describe a state of protein which has well-defined secondary structure but little or no tertiary packing. Subsequent studies have shown that MGs do have some degree of native-like topology and specific packing. Wet molten globules (WMGs) with hydrated cores and considerably decreased packing relative to the native state have been studied extensively. Recently there has been renewed interest in identification and characterization of dry molten globules (DMGs). These are slightly expanded forms of the native state which show increased conformational flexibility, native-like main-chain hydrogen bonding and dry interiors. The generality of occurrence of DMGs during protein unfolding and the extent and nature of packing in DMGs remain to be elucidated. Packing interactions in native proteins and MGs can be probed through mutations. Next generation sequencing technologies make it possible to determine relative populations of mutants in a large pool. When this is coupled to phenotypic screens or cell-surface display, it becomes possible to rapidly examine large panels of single-site or multi-site mutants. From such studies, residue specific contributions to protein stability and function can be estimated in a highly parallelized fashion. This complements conventional biophysical methods for characterization of packing in native states and molten globules.
Collapse
|
46
|
Guanidine-HCl dependent structural unfolding of M-crystallin: fluctuating native state like topologies and intermolecular association. PLoS One 2012; 7:e42948. [PMID: 23284604 PMCID: PMC3524170 DOI: 10.1371/journal.pone.0042948] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 07/16/2012] [Indexed: 11/19/2022] Open
Abstract
Numerous experimental techniques and computational studies, proposed in recent times, have revolutionized the understanding of protein-folding paradigm. The complete understanding of protein folding and intermediates are of medical relevance, as the aggregation of misfolding proteins underlies various diseases, including some neurodegenerative disorders. Here, we describe the unfolding of M-crystallin, a βγ-crystallin homologue protein from archaea, from its native state to its denatured state using multidimensional NMR and other biophysical techniques. The protein, which was earlier characterized to be a predominantly β-sheet protein in its native state, shows different structural propensities (α and β), under different denaturing conditions. In 2 M GdmCl, the protein starts showing two distinct sets of peaks, with one arising from a partially unfolded state and the other from a completely folded state. The native secondary structural elements start disappearing as the denaturant concentration approaches 4 M. Subsequently, the protein is completely unfolded when the denaturant concentration is 6 M. The (15)N relaxation data (T(1)/T(2)), heteronuclear (1)H-(15)N Overhauser effects (nOes), NOESY data, and other biophysical data taken together indicate that the protein shows a consistent, gradual change in its structural and motional preferences with increasing GdmCl concentration.
Collapse
|
47
|
Qadeer A, Rabbani G, Zaidi N, Ahmad E, Khan JM, Khan RH. 1-Anilino-8-naphthalene sulfonate (ANS) is not a desirable probe for determining the molten globule state of chymopapain. PLoS One 2012; 7:e50633. [PMID: 23209794 PMCID: PMC3510187 DOI: 10.1371/journal.pone.0050633] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 10/23/2012] [Indexed: 01/22/2023] Open
Abstract
The molten globule (MG) state of proteins is widely detected through binding with 1-anilino-8-naphthalene sulphonate (ANS), a fluorescent dye. This strategy is based upon the assumption that when in molten globule state, the exposed hydrophobic clusters of protein are readily bound by the nonpolar anilino-naphthalene moiety of ANS molecules which then produce brilliant fluorescence. In this work, we explored the acid-induced unfolding pathway of chymopapain, a cysteine proteases from Carica papaya, by monitoring the conformational changes over a pH range 1.0–7.4 by circular dichroism, intrinsic fluorescence, ANS binding, acrylamide quenching, isothermal titration calorimetry (ITC) and dynamic light scattering (DLS). The spectroscopic measurements showed that although maximum ANS fluorescence intensity was observed at pH 1.0, however protein exhibited ∼80% loss of secondary structure which does not comply with the characteristics of a typical MG-state. In contrast at pH 1.5, chymopapain retains substantial amount of secondary structure, disrupted side chain interactions, increased hydrodynamic radii and nearly 30-fold increase in ANS fluorescence with respect to the native state, indicating that MG-state exists at pH 1.5 and not at pH 1.0. ITC measurements revealed that ANS molecules bound to chymopapain via hydrophobic interaction were more at pH 1.5 than at pH 1.0. However, a large number of ANS molecules were also involved in electrostatic interaction with protein at pH 1.0 which, together with hydrophobically interacted molecules, may be responsible for maximum ANS fluorescence. We conclude that maximum ANS-fluorescence alone may not be the criteria for determining the MG of chymopapain. Hence a comprehensive structural analysis of the intermediate is essentially required.
Collapse
Affiliation(s)
- Atiyatul Qadeer
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Gulam Rabbani
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Nida Zaidi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Ejaz Ahmad
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Javed M. Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Rizwan H. Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
- * E-mail:
| |
Collapse
|
48
|
Chen K, Piszczek G, Carter C, Tjandra N. The maturational refolding of the β-hairpin motif of equine infectious anemia virus capsid protein extends its helix α1 at capsid assembly locus. J Biol Chem 2012. [PMID: 23184932 PMCID: PMC3548464 DOI: 10.1074/jbc.m112.425140] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A retroviral capsid (CA) protein consists of two helical domains, CAN and CAC, which drive hexamer and dimer formations, respectively, to form a capsid lattice. The N-terminal 13 residues of CA refold to a β-hairpin motif upon processing from its precursor polyprotein Gag. The β-hairpin is essential for correct CA assembly but unexpectedly it is not within any CA oligomeric interfaces. To understand the β-hairpin function we studied the full-length CA protein from equine infectious anemia virus (EIAV), a lentivirus sharing the same cone-shaped capsid core as HIV-1. Solution NMR spectroscopy is perfectly suited to study EIAV-CA that dimerizes weaker than HIV-1-CA. Comparison between the wild-type (wt) EIAV-CA and a variant lacking the β-hairpin structure demonstrated that folding of the β-hairpin specifically extended the N terminus of helix α1 from Tyr20 to Pro17. This coil to helix transition involves the conserved sequence of Thr16-Pro17-Arg18 (Ser16-Pro17-Arg18 in HIV-1-CA). The extended region of helix α1 constituted an expanded EIAV-CAN oligomeric interface and overlapped with the HIV-1-CA hexamer-core residue Arg18, helical in structure and pivotal in assembly. Therefore we propose the function of the maturational refolding of the β-hairpin in CA assembly is to extend helix α1 at the N terminus to enhance the CAN oligomerization along the capsid assembly core interface. In addition, NMR resonance line broadening indicated the presence of micro-millisecond exchange kinetics due to the EIAV-CAN domain oligomerization, independent to the faster EIAV-CAC domain dimerization.
Collapse
Affiliation(s)
- Kang Chen
- Laboratory of Molecular Biophysics, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
49
|
Abstract
The visualization of RNA conformational changes has provided fundamental insights into how regulatory RNAs carry out their biological functions. The RNA structural transitions that have been characterized to date involve long-lived species that can be captured by structure characterization techniques. Here, we report the Nuclear Magnetic Resonance visualization of RNA transitions towards invisible ‘excited states’ (ES), which exist in too little abundance (2–13%) and for too short periods of time (45–250 μs) to allow structural characterization by conventional techniques. Transitions towards ESs result in localized rearrangements in base-pairing that alter building block elements of RNA architecture, including helix-junction-helix motifs and apical loops. The ES can inhibit function by sequestering residues involved in recognition and signaling or promote ATP-independent strand exchange. Thus, RNAs do not adopt a single conformation, but rather exist in rapid equilibrium with alternative ESs, which can be stabilized by cellular cues to affect functional outcomes.
Collapse
|
50
|
López CJ, Oga S, Hubbell WL. Mapping molecular flexibility of proteins with site-directed spin labeling: a case study of myoglobin. Biochemistry 2012; 51:6568-83. [PMID: 22809279 DOI: 10.1021/bi3005686] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Site-directed spin labeling (SDSL) has potential for mapping protein flexibility under physiological conditions. The purpose of the present study was to explore this potential using 38 singly spin-labeled mutants of myoglobin distributed throughout the sequence. Correlation of the EPR spectra with protein structure provides new evidence that the site-dependent variation in line shape, and hence motion of the spin label, is due largely to differences in mobility of the helical backbone in the ns time range. Fluctuations between conformational substates, typically in the μs-ms time range, are slow on the EPR time scale, and the spectra provide a snapshot of conformational equilibria frozen in time as revealed by multiple components in the spectra. A recent study showed that osmolyte perturbation can positively identify conformational exchange as the origin of multicomponent spectra (López et al. (2009), Protein Sci. 18, 1637). In the present study, this new strategy is employed in combination with line shape analysis and pulsed-EPR interspin distance measurements to investigate the conformation and flexibility of myoglobin in three folded and partially folded states. The regions identified to be in conformational exchange in the three forms agree remarkably well with those assigned by NMR, but the faster time scale of EPR allows characterization of localized states not detected in NMR. Collectively, the results suggest that SDSL-EPR and osmolyte perturbation provide a facile means for mapping the amplitude of fast backbone fluctuations and for detecting sequences in slow conformational exchange in folded and partially folded protein sequences.
Collapse
Affiliation(s)
- Carlos J López
- Department of Chemistry and Biochemistry, Jules Stein Eye Institute, University of California, Los Angeles, CA 90095-7008, USA
| | | | | |
Collapse
|