1
|
Parise A, Cresca S, Magistrato A. Molecular dynamics simulations for the structure-based drug design: targeting small-GTPases proteins. Expert Opin Drug Discov 2024; 19:1259-1279. [PMID: 39105536 DOI: 10.1080/17460441.2024.2387856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/30/2024] [Indexed: 08/07/2024]
Abstract
INTRODUCTION Molecular Dynamics (MD) simulations can support mechanism-based drug design. Indeed, MD simulations by capturing biomolecule motions at finite temperatures can reveal hidden binding sites, accurately predict drug-binding poses, and estimate the thermodynamics and kinetics, crucial information for drug discovery campaigns. Small-Guanosine Triphosphate Phosphohydrolases (GTPases) regulate a cascade of signaling events, that affect most cellular processes. Their deregulation is linked to several diseases, making them appealing drug targets. The broad roles of small-GTPases in cellular processes and the recent approval of a covalent KRas inhibitor as an anticancer agent renewed the interest in targeting small-GTPase with small molecules. AREA COVERED This review emphasizes the role of MD simulations in elucidating small-GTPase mechanisms, assessing the impact of cancer-related variants, and discovering novel inhibitors. EXPERT OPINION The application of MD simulations to small-GTPases exemplifies the role of MD simulations in the structure-based drug design process for challenging biomolecular targets. Furthermore, AI and machine learning-enhanced MD simulations, coupled with the upcoming power of quantum computing, are promising instruments to target elusive small-GTPases mutations and splice variants. This powerful synergy will aid in developing innovative therapeutic strategies associated to small-GTPases deregulation, which could potentially be used for personalized therapies and in a tissue-agnostic manner to treat tumors with mutations in small-GTPases.
Collapse
Affiliation(s)
- Angela Parise
- Consiglio Nazionale delle Ricerche (CNR) - Istituto Officina dei Materiali (IOM), c/o International School for Advanced Studies (SISSA), Trieste, Italy
| | - Sofia Cresca
- Consiglio Nazionale delle Ricerche (CNR) - Istituto Officina dei Materiali (IOM), c/o International School for Advanced Studies (SISSA), Trieste, Italy
| | - Alessandra Magistrato
- Consiglio Nazionale delle Ricerche (CNR) - Istituto Officina dei Materiali (IOM), c/o International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|
2
|
Shi D, Zhu X, Zhang H, Yan J, Bai C. Catalytic mechanism study of ATP-citrate lyase during citryl-CoA synthesis process. iScience 2024; 27:110605. [PMID: 39220258 PMCID: PMC11365397 DOI: 10.1016/j.isci.2024.110605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/03/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
ATP-citrate lyase (ACLY) is a critical metabolic enzyme and promising target for drug development. The structure determinations of ACLY have revealed its homotetramer states with various subunit symmetries, but catalytic mechanism of ACLY tetramer and the importance of subunit symmetry have not been clarified. Here, we constructed the free energy landscape of ACLY tetramer with arbitrary subunit symmetries and investigated energetic and conformational coupling of subunits during citryl-CoA synthesis process. The optimal conformational pathway indicates that ACLY tetramer encounters three critical conformational barriers and undergoes a loss of rigid-D2 symmetry to gain an energetic advantage. Energetic coupling of conformational changes and biochemical reactions suggests that these biological events are not independent but rather coupled with each other, showing a comparable energy barrier to the experimental data for the rate-limiting step. These findings could contribute to further research on catalytic mechanism, functional modulation, and inhibitor design of ACLY.
Collapse
Affiliation(s)
- Danfeng Shi
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, Guangdong, People's Republic of China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Xuzhou College of Industrial Technology, Xuzhou 221140, China
| | - Xiaohong Zhu
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, Guangdong, People's Republic of China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Honghui Zhang
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, Guangdong, People's Republic of China
| | - Junfang Yan
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, Guangdong, People's Republic of China
| | - Chen Bai
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, Guangdong, People's Republic of China
- Chenzhu Biotechnology Co., Ltd, Hangzhou 310005, China
| |
Collapse
|
3
|
Shi D, An K, Zhang H, Xu P, Bai C. Application of Coarse-Grained (CG) Models to Explore Conformational Pathway of Large-Scale Protein Machines. ENTROPY 2022; 24:e24050620. [PMID: 35626506 PMCID: PMC9140642 DOI: 10.3390/e24050620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/16/2022] [Accepted: 04/27/2022] [Indexed: 12/14/2022]
Abstract
Protein machines are clusters of protein assemblies that function in order to control the transfer of matter and energy in cells. For a specific protein machine, its working mechanisms are not only determined by the static crystal structures, but also related to the conformational transition dynamics and the corresponding energy profiles. With the rapid development of crystallographic techniques, the spatial scale of resolved structures is reaching up to thousands of residues, and the concomitant conformational changes become more and more complicated, posing a great challenge for computational biology research. Previously, a coarse-grained (CG) model aiming at conformational free energy evaluation was developed and showed excellent ability to reproduce the energy profiles by accurate electrostatic interaction calculations. In this study, we extended the application of the CG model to a series of large-scale protein machine systems. The spike protein trimer of SARS-CoV-2, ATP citrate lyase (ACLY) tetramer, and P4-ATPases systems were carefully studied and discussed as examples. It is indicated that the CG model is effective to depict the energy profiles of the conformational pathway between two endpoint structures, especially for large-scale systems. Both the energy change and energy barrier between endpoint structures provide reasonable mechanism explanations for the associated biological processes, including the opening of receptor binding domain (RBD) of spike protein, the phospholipid transportation of P4-ATPase, and the loop translocation of ACLY. Taken together, the CG model provides a suitable alternative in mechanistic studies related to conformational change in large-scale protein machines.
Collapse
Affiliation(s)
- Danfeng Shi
- Warshel Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China; (D.S.); (K.A.); (H.Z.); (P.X.)
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Ke An
- Warshel Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China; (D.S.); (K.A.); (H.Z.); (P.X.)
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Honghui Zhang
- Warshel Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China; (D.S.); (K.A.); (H.Z.); (P.X.)
| | - Peiyi Xu
- Warshel Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China; (D.S.); (K.A.); (H.Z.); (P.X.)
| | - Chen Bai
- Warshel Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China; (D.S.); (K.A.); (H.Z.); (P.X.)
- Correspondence:
| |
Collapse
|
4
|
Hassan A, Byju S, Whitford PC. The energetics of subunit rotation in the ribosome. Biophys Rev 2021; 13:1029-1037. [PMID: 35059025 PMCID: PMC8724491 DOI: 10.1007/s12551-021-00877-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Protein synthesis in the cell is controlled by an elaborate sequence of conformational rearrangements in the ribosome. The composition of a ribosome varies by species, though they typically contain ∼ 50-100 RNA and protein molecules. While advances in structural techniques have revolutionized our understanding of long-lived conformational states, a vast range of transiently visited configurations can not be directly observed. In these cases, computational/simulation methods can be used to understand the mechanical properties of the ribosome. Insights from these approaches can then help guide next-generation experimental measurements. In this short review, we discuss theoretical strategies that have been deployed to quantitatively describe the energetics of collective rearrangements in the ribosome. We focus on efforts to probe large-scale subunit rotation events, which involve the coordinated displacement of large numbers of atoms (tens of thousands). These investigations are revealing how the molecular structure of the ribosome encodes the mechanical properties that control large-scale dynamics.
Collapse
Affiliation(s)
- Asem Hassan
- Center for Theoretical Biological Physics, 360 Huntington Ave, Boston, 02115 MA USA
- Physics Department, Northeastern University, 360 Huntington Ave, Boston, 02115 MA USA
| | - Sandra Byju
- Center for Theoretical Biological Physics, 360 Huntington Ave, Boston, 02115 MA USA
- Physics Department, Northeastern University, 360 Huntington Ave, Boston, 02115 MA USA
| | - Paul C. Whitford
- Center for Theoretical Biological Physics, 360 Huntington Ave, Boston, 02115 MA USA
- Physics Department, Northeastern University, 360 Huntington Ave, Boston, 02115 MA USA
| |
Collapse
|
5
|
Paleskava A, Kaiumov MY, Kirillov SV, Konevega AL. Peculiarities in Activation of Hydrolytic Activity of Elongation Factors. BIOCHEMISTRY (MOSCOW) 2021; 85:1422-1433. [PMID: 33280582 DOI: 10.1134/s0006297920110103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Translational GTPases (trGTPases) belong to the family of G proteins and play key roles at all stages of protein biosynthesis on the ribosome. Unidirectional and cyclic functioning of G proteins is ensured by their ability to switch between the active and inactive states due to GTP hydrolysis accelerated by the auxiliary GTPase-activating proteins. Although trGTPases interact with the ribosomes in different conformational states, they bind to the same conserved region, which, unlike in classical GTPase-activating proteins, is represented by ribosomal RNA. The resulting catalytic sites have almost identical structure in all elongation factors suggesting a common mechanism of GTP hydrolysis. However, fine details of the activated state formation and significantly different rates of GTP hydrolysis indicate the existence of distinctive features upon GTP hydrolysis catalyzed by the different factors. Here, we present a contemporary view on the mechanism of GTPase activation and GTP hydrolysis by the elongation factors EF-Tu, EF-G, and SelB based on the analysis of structural, biochemical, and bioinformatics data.
Collapse
Affiliation(s)
- A Paleskava
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia
| | - M Yu Kaiumov
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia
| | - S V Kirillov
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia
| | - A L Konevega
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia.
| |
Collapse
|
6
|
A steric gate controls P/E hybrid-state formation of tRNA on the ribosome. Nat Commun 2020; 11:5706. [PMID: 33177497 PMCID: PMC7658246 DOI: 10.1038/s41467-020-19450-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022] Open
Abstract
The ribosome is a biomolecular machine that undergoes multiple large-scale structural rearrangements during protein elongation. Here, we focus on a conformational rearrangement during translocation, known as P/E hybrid-state formation. Using a model that explicitly represents all non-hydrogen atoms, we simulated more than 120 spontaneous transitions, where the tRNA molecule is displaced between the P and E sites of the large subunit. In addition to predicting a free-energy landscape that is consistent with previous experimental observations, the simulations reveal how a six-residue gate-like region can limit P/E formation, where sub-angstrom structural perturbations lead to an order-of-magnitude change in kinetics. Thus, this precisely defined set of residues represents a novel target that may be used to control functional dynamics in bacterial ribosomes. This theoretical analysis establishes a direct relationship between ribosome structure and large-scale dynamics, and it suggests how next-generation experiments may precisely dissect the energetics of hybrid formation on the ribosome. The ribosome undergoes multiple large-scale structural rearrangements during protein elongation. Here the authors present an all-atom model of the ribosome to study the energetics of P/E hybrid-state formation, an early conformational rearrangement occurring during translocation.
Collapse
|
7
|
Fenwick MK, Ealick SE. Structural basis of elongation factor 2 switching. Curr Res Struct Biol 2020; 2:25-34. [PMID: 34235467 PMCID: PMC8244253 DOI: 10.1016/j.crstbi.2020.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/07/2020] [Accepted: 02/14/2020] [Indexed: 12/13/2022] Open
Abstract
Archaebacterial and eukaryotic elongation factor 2 (EF-2) and bacterial elongation factor G (EF-G) are five domain GTPases that catalyze the ribosomal translocation of tRNA and mRNA. In the classical mechanism of activation, GTPases are switched on through GDP/GTP exchange, which is accompanied by the ordering of two flexible segments called switch I and II. However, crystal structures of EF-2 and EF-G have thus far not revealed the conformations required by the classical mechanism. Here, we describe crystal structures of Methanoperedens nitroreducens EF-2 (MnEF-2) and MnEF-2-H595N bound to GMPPCP (GppCp) and magnesium displaying previously unreported compact conformations. Domain III forms interfaces with the other four domains and the overall conformations resemble that of SNU114, the eukaryotic spliceosomal GTPase. The gamma phosphate of GMPPCP is detected through interactions with switch I and a P-loop structural element. Switch II is highly ordered whereas switch I shows a variable degree of ordering. The ordered state results in a tight interdomain arrangement of domains I-III and the formation of a portion of a predicted monovalent cation site involving the P-loop and switch I. The side chain of an essential histidine residue in switch II is placed in the inactive conformation observed for the “on” state of elongation factor EF-Tu. The compact conformations of MnEF-2 and MnEF-2-H595N suggest an “on” ribosome-free conformational state. Crystal structures of ribosome-free elongation factor 2 (EF-2) bound to GTP analog and magnesium. Compact conformation and P-loop, switch I, and switch II structures suggest “on” state. Arrangement of domains I-III similar to that of ribosome-bound EF-2/EF-G complexed with GTP analog. Switch II histidine shows inactive conformation observed for “on” state of ribosome-free EF-Tu.
Collapse
Affiliation(s)
- Michael K Fenwick
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Steven E Ealick
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
8
|
Warias M, Grubmüller H, Bock LV. tRNA Dissociation from EF-Tu after GTP Hydrolysis: Primary Steps and Antibiotic Inhibition. Biophys J 2020; 118:151-161. [PMID: 31711607 PMCID: PMC6950810 DOI: 10.1016/j.bpj.2019.10.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/25/2019] [Accepted: 10/22/2019] [Indexed: 11/25/2022] Open
Abstract
In each round of ribosomal translation, the translational GTPase elongation factor Tu (EF-Tu) delivers a transfer RNA (tRNA) to the ribosome. After successful decoding, EF-Tu hydrolyzes GTP, which triggers a conformational change that ultimately results in the release of the tRNA from EF-Tu. To identify the primary steps of these conformational changes and how they are prevented by the antibiotic kirromycin, we employed all-atom explicit-solvent molecular dynamics simulations of the full ribosome-EF-Tu complex. Our results suggest that after GTP hydrolysis and Pi release, the loss of interactions between the nucleotide and the switch 1 loop of EF-Tu allows domain D1 of EF-Tu to rotate relative to domains D2 and D3 and leads to an increased flexibility of the switch 1 loop. This rotation induces a closing of the D1-D3 interface and an opening of the D1-D2 interface. We propose that the opening of the D1-D2 interface, which binds the CCA tail of the tRNA, weakens the crucial EF-Tu-tRNA interactions, which lowers tRNA binding affinity, representing the first step of tRNA release. Kirromycin binds within the D1-D3 interface, sterically blocking its closure, but does not prevent hydrolysis. The resulting increased flexibility of switch 1 explains why it is not resolved in kirromycin-bound structures.
Collapse
Affiliation(s)
- Malte Warias
- Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Helmut Grubmüller
- Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Lars V Bock
- Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| |
Collapse
|
9
|
Fislage M, Zhang J, Brown ZP, Mandava CS, Sanyal S, Ehrenberg M, Frank J. Cryo-EM shows stages of initial codon selection on the ribosome by aa-tRNA in ternary complex with GTP and the GTPase-deficient EF-TuH84A. Nucleic Acids Res 2019; 46:5861-5874. [PMID: 29733411 PMCID: PMC6009598 DOI: 10.1093/nar/gky346] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 04/30/2018] [Indexed: 11/25/2022] Open
Abstract
The GTPase EF-Tu in ternary complex with GTP and aminoacyl-tRNA (aa-tRNA) promotes rapid and accurate delivery of cognate aa-tRNAs to the ribosomal A site. Here we used cryo-EM to study the molecular origins of the accuracy of ribosome-aided recognition of a cognate ternary complex and the accuracy-amplifying role of the monitoring bases A1492, A1493 and G530 of the 16S rRNA. We used the GTPase-deficient EF-Tu variant H84A with native GTP, rather than non-cleavable GTP analogues, to trap a near-cognate ternary complex in high-resolution ribosomal complexes of varying codon-recognition accuracy. We found that ribosome complexes trapped by GTPase-deficicent ternary complex due to the presence of EF-TuH84A or non-cleavable GTP analogues have very similar structures. We further discuss speed and accuracy of initial aa-tRNA selection in terms of conformational changes of aa-tRNA and stepwise activation of the monitoring bases at the decoding center of the ribosome.
Collapse
Affiliation(s)
- Marcus Fislage
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Jingji Zhang
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.,Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
| | - Zuben Patrick Brown
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | | | - Suparna Sanyal
- Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
| | - Måns Ehrenberg
- Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.,Department of Biological Sciences, Columbia University, New York, NY, USA
| |
Collapse
|
10
|
Calixto AR, Moreira C, Pabis A, Kötting C, Gerwert K, Rudack T, Kamerlin SCL. GTP Hydrolysis Without an Active Site Base: A Unifying Mechanism for Ras and Related GTPases. J Am Chem Soc 2019; 141:10684-10701. [PMID: 31199130 DOI: 10.1021/jacs.9b03193] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
GTP hydrolysis is a biologically crucial reaction, being involved in regulating almost all cellular processes. As a result, the enzymes that catalyze this reaction are among the most important drug targets. Despite their vital importance and decades of substantial research effort, the fundamental mechanism of enzyme-catalyzed GTP hydrolysis by GTPases remains highly controversial. Specifically, how do these regulatory proteins hydrolyze GTP without an obvious general base in the active site to activate the water molecule for nucleophilic attack? To answer this question, we perform empirical valence bond simulations of GTPase-catalyzed GTP hydrolysis, comparing solvent- and substrate-assisted pathways in three distinct GTPases, Ras, Rab, and the Gαi subunit of a heterotrimeric G-protein, both in the presence and in the absence of the corresponding GTPase activating proteins. Our results demonstrate that a general base is not needed in the active site, as the preferred mechanism for GTP hydrolysis is a conserved solvent-assisted pathway. This pathway involves the rate-limiting nucleophilic attack of a water molecule, leading to a short-lived intermediate that tautomerizes to form H2PO4- and GDP as the final products. Our fundamental biochemical insight into the enzymatic regulation of GTP hydrolysis not only resolves a decades-old mechanistic controversy but also has high relevance for drug discovery efforts. That is, revisiting the role of oncogenic mutants with respect to our mechanistic findings would pave the way for a new starting point to discover drugs for (so far) "undruggable" GTPases like Ras.
Collapse
Affiliation(s)
- Ana R Calixto
- Department of Chemistry-BMC , Uppsala University , Box 576, S-751 23 Uppsala , Sweden
| | - Cátia Moreira
- Department of Chemistry-BMC , Uppsala University , Box 576, S-751 23 Uppsala , Sweden
| | - Anna Pabis
- Department of Cell and Molecular Biology , Uppsala University , BMC Box 596, S-751 24 , Uppsala , Sweden
| | - Carsten Kötting
- Department of Biophysics , Ruhr University Bochum , 44801 Bochum , Germany
| | - Klaus Gerwert
- Department of Biophysics , Ruhr University Bochum , 44801 Bochum , Germany
| | - Till Rudack
- Department of Biophysics , Ruhr University Bochum , 44801 Bochum , Germany
| | - Shina C L Kamerlin
- Department of Chemistry-BMC , Uppsala University , Box 576, S-751 23 Uppsala , Sweden
| |
Collapse
|
11
|
Studying ribosome dynamics with simplified models. Methods 2019; 162-163:128-140. [DOI: 10.1016/j.ymeth.2019.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 12/24/2022] Open
|
12
|
Sanbonmatsu KY. Large-scale simulations of nucleoprotein complexes: ribosomes, nucleosomes, chromatin, chromosomes and CRISPR. Curr Opin Struct Biol 2019; 55:104-113. [PMID: 31125796 DOI: 10.1016/j.sbi.2019.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/01/2019] [Indexed: 12/11/2022]
Abstract
Recent advances in biotechnology such as Hi-C, CRISPR/Cas9 and ribosome display have placed nucleoprotein complexes at center stage. Understanding the structural dynamics of these complexes aids in optimizing protocols and interpreting data for these new technologies. The integration of simulation and experiment has helped advance mechanistic understanding of these systems. Coarse-grained simulations, reduced-description models, and explicit solvent molecular dynamics simulations yield useful complementary perspectives on nucleoprotein complex structural dynamics. When combined with Hi-C, cryo-EM, and single molecule measurements, these simulations integrate disparate forms of experimental data into a coherent mechanism.
Collapse
|
13
|
How Ricin Damages the Ribosome. Toxins (Basel) 2019; 11:toxins11050241. [PMID: 31035546 PMCID: PMC6562825 DOI: 10.3390/toxins11050241] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 12/20/2022] Open
Abstract
Ricin belongs to the group of ribosome-inactivating proteins (RIPs), i.e., toxins that have evolved to provide particular species with an advantage over other competitors in nature. Ricin possesses RNA N-glycosidase activity enabling the toxin to eliminate a single adenine base from the sarcin-ricin RNA loop (SRL), which is a highly conserved structure present on the large ribosomal subunit in all species from the three domains of life. The SRL belongs to the GTPase associated center (GAC), i.e., a ribosomal element involved in conferring unidirectional trajectory for the translational apparatus at the expense of GTP hydrolysis by translational GTPases (trGTPases). The SRL represents a critical element in the GAC, being the main triggering factor of GTP hydrolysis by trGTPases. Enzymatic removal of a single adenine base at the tip of SRL by ricin blocks GTP hydrolysis and, at the same time, impedes functioning of the translational machinery. Here, we discuss the consequences of SRL depurination by ricin for ribosomal performance, with emphasis on the mechanistic model overview of the SRL modus operandi.
Collapse
|
14
|
Kürkçüoğlu Ö. Exploring allosteric communication in multiple states of the bacterial ribosome using residue network analysis. Turk J Biol 2018; 42:392-404. [PMID: 30930623 PMCID: PMC6438126 DOI: 10.3906/biy-1802-77] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Antibiotic resistance is one of the most important problems of our era and hence the discovery of new effective therapeutics is urgent. At this point, studying the allosteric communication pathways in the bacterial ribosome and revealing allosteric sites/residues is critical for designing new inhibitors or repurposing readily approved drugs for this enormous machine. To shed light onto molecular details of the allosteric mechanisms, here we construct residue networks of the bacterial ribosomal complex at four different states of translation by using an effective description of the intermolecular interactions. Centrality analysis of these networks highlights the functional roles of structural components and critical residues on the ribosomal complex. High betweenness scores reveal pathways of residues connecting numerous sites on the structure. Interestingly, these pathways assemble highly conserved residues, drug binding sites, and known allosterically linked regions on the same structure. This study proposes a new residue-level model to test how distant sites on the molecular machine may be linked through hub residues that are critically located on the contact topology to inherently form communication pathways. Findings also indicate intersubunit bridges B1b, B3, B5, B7, and B8 as critical targets to design novel antibiotics.
Collapse
Affiliation(s)
- Özge Kürkçüoğlu
- Department of Chemical Engineering, Faculty of Chemical-Metallurgical Engineering, İstanbul Technical University , İstanbul , Turkey
| |
Collapse
|
15
|
Abstract
This review summarizes our current understanding of translation in prokaryotes, focusing on the mechanistic and structural aspects of each phase of translation: initiation, elongation, termination, and ribosome recycling. The assembly of the initiation complex provides multiple checkpoints for messenger RNA (mRNA) and start-site selection. Correct codon-anticodon interaction during the decoding phase of elongation results in major conformational changes of the small ribosomal subunit and shapes the reaction pathway of guanosine triphosphate (GTP) hydrolysis. The ribosome orchestrates proton transfer during peptide bond formation, but requires the help of elongation factor P (EF-P) when two or more consecutive Pro residues are to be incorporated. Understanding the choreography of transfer RNA (tRNA) and mRNA movements during translocation helps to place the available structures of translocation intermediates onto the time axis of the reaction pathway. The nascent protein begins to fold cotranslationally, in the constrained space of the polypeptide exit tunnel of the ribosome. When a stop codon is reached at the end of the coding sequence, the ribosome, assisted by termination factors, hydrolyzes the ester bond of the peptidyl-tRNA, thereby releasing the nascent protein. Following termination, the ribosome is dissociated into subunits and recycled into another round of initiation. At each step of translation, the ribosome undergoes dynamic fluctuations between different conformation states. The aim of this article is to show the link between ribosome structure, dynamics, and function.
Collapse
Affiliation(s)
- Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Goettingen 37077, Germany
| |
Collapse
|
16
|
Abstract
Many cellular processes are controlled by GTPases, and gaining quantitative understanding of the activation of such processes has been a major challenge. In particular, it is crucial to obtain reliable free-energy surfaces for the relevant reaction paths both in solution and in GTPases active sites. Here, we revisit the energetics of the activation of EF-G and EF-Tu by the ribosome and explore the nature of the catalysis of the GTPase reaction. The comparison of EF-Tu to EF-G allows us to explore the impact of possible problems with the available structure of EF-Tu. Additionally, mutational effects are used for a careful validation of the emerging conclusions. It is found that the reaction may proceed by both a two-water mechanism and a one-water (GTP as a base) mechanism. However, in both cases, the activation involves a structural allosteric effect, which is likely to be a general-activation mechanism for all GTPases.
Collapse
|
17
|
Barrozo A, Liao Q, Esguerra M, Marloie G, Florián J, Williams NH, Kamerlin SCL. Computer simulations of the catalytic mechanism of wild-type and mutant β-phosphoglucomutase. Org Biomol Chem 2018; 16:2060-2073. [DOI: 10.1039/c8ob00312b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
β-Phosphoglucomutase (β-PGM) has served as an important model system for understanding biological phosphoryl transfer.
Collapse
Affiliation(s)
- Alexandre Barrozo
- Science for Life Laboratory
- Department of Cell and Molecular Biology
- Uppsala University
- S-75124 Uppsala
- Sweden
| | - Qinghua Liao
- Science for Life Laboratory
- Department of Cell and Molecular Biology
- Uppsala University
- S-75124 Uppsala
- Sweden
| | - Mauricio Esguerra
- Science for Life Laboratory
- Department of Cell and Molecular Biology
- Uppsala University
- S-75124 Uppsala
- Sweden
| | - Gaël Marloie
- Science for Life Laboratory
- Department of Cell and Molecular Biology
- Uppsala University
- S-75124 Uppsala
- Sweden
| | - Jan Florián
- Department of Chemistry and Biochemistry
- Loyola University Chicago
- Chicago
- USA
| | | | | |
Collapse
|
18
|
Rodnina MV, Fischer N, Maracci C, Stark H. Ribosome dynamics during decoding. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0182. [PMID: 28138068 PMCID: PMC5311926 DOI: 10.1098/rstb.2016.0182] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2016] [Indexed: 11/24/2022] Open
Abstract
Elongation factors Tu (EF-Tu) and SelB are translational GTPases that deliver aminoacyl-tRNAs (aa-tRNAs) to the ribosome. In each canonical round of translation elongation, aa-tRNAs, assisted by EF-Tu, decode mRNA codons and insert the respective amino acid into the growing peptide chain. Stop codons usually lead to translation termination; however, in special cases UGA codons are recoded to selenocysteine (Sec) with the help of SelB. Recruitment of EF-Tu and SelB together with their respective aa-tRNAs to the ribosome is a multistep process. In this review, we summarize recent progress in understanding the role of ribosome dynamics in aa-tRNA selection. We describe the path to correct codon recognition by canonical elongator aa-tRNA and Sec-tRNASec and discuss the local and global rearrangements of the ribosome in response to correct and incorrect aa-tRNAs. We present the mechanisms of GTPase activation and GTP hydrolysis of EF-Tu and SelB and summarize what is known about the accommodation of aa-tRNA on the ribosome after its release from the elongation factor. We show how ribosome dynamics ensures high selectivity for the cognate aa-tRNA and suggest that conformational fluctuations, induced fit and kinetic discrimination play major roles in maintaining the speed and fidelity of translation. This article is part of the themed issue ‘Perspectives on the ribosome’.
Collapse
Affiliation(s)
- Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| | - Niels Fischer
- Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| | - Cristina Maracci
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| | - Holger Stark
- Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| |
Collapse
|
19
|
Lai J, Ghaemi Z, Luthey-Schulten Z. The Conformational Change in Elongation Factor Tu Involves Separation of Its Domains. Biochemistry 2017; 56:5972-5979. [PMID: 29045140 DOI: 10.1021/acs.biochem.7b00591] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Elongation factor Tu (EF-Tu) is a highly conserved GTPase that is responsible for supplying the aminoacylated tRNA to the ribosome. Upon binding to the ribosome, EF-Tu undergoes GTP hydrolysis, which drives a major conformational change, triggering the release of aminoacylated tRNA to the ribosome. Using a combination of molecular simulation techniques, we studied the transition between the pre- and post-hydrolysis structures through two distinct pathways. We show that the transition free energy is minimal along a non-intuitive pathway that involves "separation" of the GTP binding domain (domain 1) from the OB folds (domains 2 and 3), followed by domain 1 rotation, and, eventually, locking the EF-Tu conformation in the post-hydrolysis state. The domain separation also leads to a slight extension of the linker connecting domain 1 to domain 2. Using docking tools and correlation-based analysis, we identified and characterized the EF-Tu conformations that release the tRNA. These calculations suggest that EF-Tu can release the tRNA before the domains separate and after domain 1 rotates by 25°. We also examined the EF-Tu conformations in the context of the ribosome. Given the high degrees of sequence similarity with other translational GTPases, we predict a similar separation mechanism is followed.
Collapse
Affiliation(s)
- Jonathan Lai
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Zhaleh Ghaemi
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Zaida Luthey-Schulten
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.,Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.,Beckman Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.,Carl Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|
20
|
Barrozo A, Blaha-Nelson D, Williams NH, Kamerlin SCL. The effect of magnesium ions on triphosphate hydrolysis. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2016-1125] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AbstractThe role of metal ions in catalyzing phosphate ester hydrolysis has been the subject of much debate, both in terms of whether they change the transition state structure or mechanistic pathway. Understanding the impact of metal ions on these biologically critical reactions is central to improving our understanding of the role of metal ions in the numerous enzymes that facilitate them. In the present study, we have performed density functional theory studies of the mechanisms of methyl triphosphate and acetyl phosphate hydrolysis in aqueous solution to explore the competition between solvent- and substrate-assisted pathways, and examined the impact of Mg2+ on the energetics and transition state geometries. In both cases, we observe a clear preference for a more dissociative solvent-assisted transition state, which is not significantly changed by coordination of Mg2+. The effect of Mg2+ on the transition state geometries for the two pathways is minimal. While our calculations cannot rule out a substrate-assisted pathway as a possible solution for biological phosphate hydrolysis, they demonstrate that a significantly higher energy barrier needs to be overcome in the enzymatic reaction for this to be an energetically viable reaction pathway.
Collapse
Affiliation(s)
- Alexandre Barrozo
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089-1062, USA
| | - David Blaha-Nelson
- Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, S-751 24 Uppsala, Sweden
| | | | - Shina C. L. Kamerlin
- Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, S-751 24 Uppsala, Sweden
| |
Collapse
|
21
|
Carter CW. High-Dimensional Mutant and Modular Thermodynamic Cycles, Molecular Switching, and Free Energy Transduction. Annu Rev Biophys 2017; 46:433-453. [PMID: 28375734 DOI: 10.1146/annurev-biophys-070816-033811] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Understanding how distinct parts of proteins produce coordinated behavior has driven and continues to drive advances in protein science and enzymology. However, despite consensus about the conceptual basis for allostery, the idiosyncratic nature of allosteric mechanisms resists general approaches. Computational methods can identify conformational transition states from structural changes, revealing common switching mechanisms that impose multistate behavior. Thermodynamic cycles use factorial perturbations to measure coupling energies between side chains in molecular switches that mediate shear during domain motion. Such cycles have now been complemented by modular cycles that measure energetic coupling between separable domains. For one model system, energetic coupling between domains has been shown to be quantitatively equivalent to that between dynamic side chains. Linkages between domain motion, switching residues, and catalysis make nucleoside triphosphate hydrolysis conditional on domain movement, confirming an essential yet neglected aspect of free energy transduction and suggesting the potential generality of these studies.
Collapse
Affiliation(s)
- Charles W Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514;
| |
Collapse
|
22
|
Lu X, Ovchinnikov V, Demapan D, Roston D, Cui Q. Regulation and Plasticity of Catalysis in Enzymes: Insights from Analysis of Mechanochemical Coupling in Myosin. Biochemistry 2017; 56:1482-1497. [PMID: 28225609 DOI: 10.1021/acs.biochem.7b00016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The mechanism of ATP hydrolysis in the myosin motor domain is analyzed using a combination of DFTB3/CHARMM simulations and enhanced sampling techniques. The motor domain is modeled in the pre-powerstroke state, in the post-rigor state, and as a hybrid based on the post-rigor state with a closed nucleotide-binding pocket. The ATP hydrolysis activity is found to depend on the positioning of nearby water molecules, and a network of polar residues facilitates proton transfer and charge redistribution during hydrolysis. Comparison of the observed hydrolysis pathways and the corresponding free energy profiles leads to detailed models for the mechanism of ATP hydrolysis in the pre-powerstroke state and proposes factors that regulate the hydrolysis activity in different conformational states. In the pre-powerstroke state, the scissile Pγ-O3β bond breaks early in the reaction. Proton transfer from the lytic water to the γ-phosphate through active site residues is an important part of the kinetic bottleneck; several hydrolysis pathways that feature distinct proton transfer routes are found to have similar free energy barriers, suggesting a significant degree of plasticity in the hydrolysis mechanism. Comparison of hydrolysis in the pre-powerstroke state and the closed post-rigor model suggests that optimization of residues beyond the active site for electrostatic stabilization and preorganization is likely important to enzyme design.
Collapse
Affiliation(s)
- Xiya Lu
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Victor Ovchinnikov
- Department of Chemistry and Chemical Biology, Harvard University , 12 Oxford Street, Boston, Massachusetts 02138, United States
| | - Darren Demapan
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Daniel Roston
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Qiang Cui
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
23
|
Maracci C, Rodnina MV. Review: Translational GTPases. Biopolymers 2017; 105:463-75. [PMID: 26971860 PMCID: PMC5084732 DOI: 10.1002/bip.22832] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 01/26/2023]
Abstract
Translational GTPases (trGTPases) play key roles in facilitating protein synthesis on the ribosome. Despite the high degree of evolutionary conservation in the sequences of their GTP-binding domains, the rates of GTP hydrolysis and nucleotide exchange vary broadly between different trGTPases. EF-Tu, one of the best-characterized model G proteins, evolved an exceptionally rapid and tightly regulated GTPase activity, which ensures rapid and accurate incorporation of amino acids into the nascent chain. Other trGTPases instead use the energy of GTP hydrolysis to promote movement or to ensure the forward commitment of translation reactions. Recent data suggest the GTPase mechanism of EF-Tu and provide an insight in the catalysis of GTP hydrolysis by its unusual activator, the ribosome. Here we summarize these advances in understanding the functional cycle and the regulation of trGTPases, stimulated by the elucidation of their structures on the ribosome and the progress in dissecting the reaction mechanism of GTPases. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 463-475, 2016.
Collapse
Affiliation(s)
- Cristina Maracci
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Goettingen, 37077, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Goettingen, 37077, Germany
| |
Collapse
|
24
|
Tripathi R, Glaves R, Marx D. The GTPase hGBP1 converts GTP to GMP in two steps via proton shuttle mechanisms. Chem Sci 2017; 8:371-380. [PMID: 28451182 PMCID: PMC5365056 DOI: 10.1039/c6sc02045c] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/21/2016] [Indexed: 11/21/2022] Open
Abstract
GTPases play a crucial role in the regulation of many biological processes by catalyzing the hydrolysis of GTP into GDP. The focus of this work is on the dynamin-related large GTPase human guanine nucleotide binding protein-1 (hGBP1) which is able to hydrolyze GTP even to GMP. Here, we studied the largely unknown mechanisms of both GTP and GDP hydrolysis steps utilizing accelerated ab initio QM/MM metadynamics simulations to compute multi-dimensional free energy landscapes. We find an indirect substrate-assisted catalysis (SAC) mechanism for GTP hydrolysis involving transfer of a proton from the water nucleophile to a nonbridging phosphoryl oxygen via a proton relay pathway where the rate-determining first step is concerted-dissociative nature. A "composite base" consisting of Ser73, Glu99, a bridging water molecule, and GTP was found to activate the nucleophilic water, thus disclosing the complex nature of the general base in hGBP1. A nearly two-fold reduction in the free energy barrier was obtained for GTP hydrolysis in the enzyme in comparison to bulk solvent. The subsequent GDP hydrolysis in hGBP1 was also found to follow a water-mediated proton shuttle mechanism. It is expected that the proton shuttle mechanisms unravelled for hGBP1 apply to many classes of GTPases/ATPases that possess an optimally-arranged hydrogen bonding network, which connects the catalytic water to a proton acceptor.
Collapse
Affiliation(s)
- Ravi Tripathi
- Lehrstuhl für Theoretische Chemie , Ruhr-Universität Bochum , 44780 Bochum , Germany .
| | - Rachel Glaves
- Lehrstuhl für Theoretische Chemie , Ruhr-Universität Bochum , 44780 Bochum , Germany .
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie , Ruhr-Universität Bochum , 44780 Bochum , Germany .
| |
Collapse
|
25
|
Fischer N, Neumann P, Bock LV, Maracci C, Wang Z, Paleskava A, Konevega AL, Schröder GF, Grubmüller H, Ficner R, Rodnina MV, Stark H. The pathway to GTPase activation of elongation factor SelB on the ribosome. Nature 2016; 540:80-85. [PMID: 27842381 DOI: 10.1038/nature20560] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/24/2016] [Indexed: 01/29/2023]
Abstract
In all domains of life, selenocysteine (Sec) is delivered to the ribosome by selenocysteine-specific tRNA (tRNASec) with the help of a specialized translation factor, SelB in bacteria. Sec-tRNASec recodes a UGA stop codon next to a downstream mRNA stem-loop. Here we present the structures of six intermediates on the pathway of UGA recoding in Escherichia coli by single-particle cryo-electron microscopy. The structures explain the specificity of Sec-tRNASec binding by SelB and show large-scale rearrangements of Sec-tRNASec. Upon initial binding of SelB-Sec-tRNASec to the ribosome and codon reading, the 30S subunit adopts an open conformation with Sec-tRNASec covering the sarcin-ricin loop (SRL) on the 50S subunit. Subsequent codon recognition results in a local closure of the decoding site, which moves Sec-tRNASec away from the SRL and triggers a global closure of the 30S subunit shoulder domain. As a consequence, SelB docks on the SRL, activating the GTPase of SelB. These results reveal how codon recognition triggers GTPase activation in translational GTPases.
Collapse
Affiliation(s)
- Niels Fischer
- Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Piotr Neumann
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, GZMB, Georg-August University Göttingen, Justus-von Liebig Weg 11, 37077 Göttingen, Germany
| | - Lars V Bock
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Cristina Maracci
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Zhe Wang
- Institute of Complex Systems (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Alena Paleskava
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Andrey L Konevega
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Gunnar F Schröder
- Institute of Complex Systems (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany.,Physics Department, Heinrich-Heine Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Helmut Grubmüller
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, GZMB, Georg-August University Göttingen, Justus-von Liebig Weg 11, 37077 Göttingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Holger Stark
- Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
26
|
Murray J, Savva CG, Shin BS, Dever TE, Ramakrishnan V, Fernández IS. Structural characterization of ribosome recruitment and translocation by type IV IRES. eLife 2016; 5. [PMID: 27159451 PMCID: PMC4861600 DOI: 10.7554/elife.13567] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 04/04/2016] [Indexed: 12/20/2022] Open
Abstract
Viral mRNA sequences with a type IV IRES are able to initiate translation without any host initiation factors. Initial recruitment of the small ribosomal subunit as well as two translocation steps before the first peptidyl transfer are essential for the initiation of translation by these mRNAs. Using electron cryomicroscopy (cryo-EM) we have structurally characterized at high resolution how the Cricket Paralysis Virus Internal Ribosomal Entry Site (CrPV-IRES) binds the small ribosomal subunit (40S) and the translocation intermediate stabilized by elongation factor 2 (eEF2). The CrPV-IRES restricts the otherwise flexible 40S head to a conformation compatible with binding the large ribosomal subunit (60S). Once the 60S is recruited, the binary CrPV-IRES/80S complex oscillates between canonical and rotated states (Fernández et al., 2014; Koh et al., 2014), as seen for pre-translocation complexes with tRNAs. Elongation factor eEF2 with a GTP analog stabilizes the ribosome-IRES complex in a rotated state with an extra ~3 degrees of rotation. Key residues in domain IV of eEF2 interact with pseudoknot I (PKI) of the CrPV-IRES stabilizing it in a conformation reminiscent of a hybrid tRNA state. The structure explains how diphthamide, a eukaryotic and archaeal specific post-translational modification of a histidine residue of eEF2, is involved in translocation. DOI:http://dx.doi.org/10.7554/eLife.13567.001
Collapse
Affiliation(s)
- Jason Murray
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom.,Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | | | - Byung-Sik Shin
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Thomas E Dever
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - V Ramakrishnan
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | |
Collapse
|
27
|
Katava M, Kalimeri M, Stirnemann G, Sterpone F. Stability and Function at High Temperature. What Makes a Thermophilic GTPase Different from Its Mesophilic Homologue. J Phys Chem B 2016; 120:2721-30. [DOI: 10.1021/acs.jpcb.6b00306] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Marina Katava
- CNRS (UPR9080),
Institut de Biologie Physico-Chimique, Université de Paris
Sorbonne Cité et Paris Science et Lettres, Univ. Paris Diderot,
Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Maria Kalimeri
- Department
of Physics, Tampere University of Technology, Tampere, Finland
| | - Guillaume Stirnemann
- CNRS (UPR9080),
Institut de Biologie Physico-Chimique, Université de Paris
Sorbonne Cité et Paris Science et Lettres, Univ. Paris Diderot,
Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Fabio Sterpone
- CNRS (UPR9080),
Institut de Biologie Physico-Chimique, Université de Paris
Sorbonne Cité et Paris Science et Lettres, Univ. Paris Diderot,
Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, 75005, Paris, France
| |
Collapse
|
28
|
Åqvist J, Kamerlin SCL. Conserved Motifs in Different Classes of GTPases Dictate their Specific Modes of Catalysis. ACS Catal 2016. [DOI: 10.1021/acscatal.5b02491] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Johan Åqvist
- Department
of Cell and Molecular
Biology Uppsala University, BMC Box 596, S-751 24 Uppsala, Sweden
| | - Shina C. L. Kamerlin
- Department
of Cell and Molecular
Biology Uppsala University, BMC Box 596, S-751 24 Uppsala, Sweden
| |
Collapse
|
29
|
Nguyen K, Whitford PC. Steric interactions lead to collective tilting motion in the ribosome during mRNA-tRNA translocation. Nat Commun 2016; 7:10586. [PMID: 26838673 PMCID: PMC4742886 DOI: 10.1038/ncomms10586] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 12/31/2015] [Indexed: 12/01/2022] Open
Abstract
Translocation of mRNA and tRNA through the ribosome is associated with large-scale rearrangements of the head domain in the 30S ribosomal subunit. To elucidate the relationship between 30S head dynamics and mRNA–tRNA displacement, we apply molecular dynamics simulations using an all-atom structure-based model. Here we provide a statistical analysis of 250 spontaneous transitions between the A/P–P/E and P/P–E/E ensembles. Consistent with structural studies, the ribosome samples a chimeric ap/P–pe/E intermediate, where the 30S head is rotated ∼18°. It then transiently populates a previously unreported intermediate ensemble, which is characterized by a ∼10° tilt of the head. To identify the origins of head tilting, we analyse 781 additional simulations in which specific steric features are perturbed. These calculations show that head tilting may be attributed to specific steric interactions between tRNA and the 30S subunit (PE loop and protein S13). Taken together, this study demonstrates how molecular structure can give rise to large-scale collective rearrangements. During protein elongation, the translocation of mRNA and tRNA molecules across the 30S ribosomal subunit is associated with large-scale motions of the 30S head domain. Here the authors carry out MD simulations to probe the associated steric interactions and identify novel tilting motions during the late stages of translocation.
Collapse
Affiliation(s)
- Kien Nguyen
- Department of Physics, Northeastern University, Dana Research Center 111, 360 Huntington Avenue, Boston, Massachusetts 02115, USA
| | - Paul C Whitford
- Department of Physics, Northeastern University, Dana Research Center 111, 360 Huntington Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
30
|
Acosta-Silva C, Bertran J, Branchadell V, Oliva A. Theoretical Insights on the Mechanism of the GTP Hydrolysis Catalyzed by the Elongation Factor Tu (EF-Tu). J Phys Chem B 2015; 120:89-101. [PMID: 26653849 DOI: 10.1021/acs.jpcb.5b10145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The purpose of this work is to have a better understanding of the mechanism of GTP hydrolysis catalyzed by the elongation factor Tu. Two main aspects are being discussed in the literature: the associative or dissociative character of the process and the nature of nucleophile activation. The calculations of the QM subsystem have been done by means of the M06-2X density functional and the split valence triple-ζ 6-311+G(d,p) basis set. The environmental effect has been introduced through the continuum SMD method. We have studied three models of increasing complexity in order to analyze the different factors that intervene in the catalytic action. The results obtained in this paper confirm that the protonated His84 plays a fundamental role in the catalytic mechanism, but we have also found that the crystallographic sodium ion has a notable effect in the catalysis. So, our work has permitted a new insight, complementary to those obtained with QM/MM calculations, into this very complex process.
Collapse
Affiliation(s)
- Carles Acosta-Silva
- Departament de Química, Universitat Autònoma de Barcelona , 08193 Bellaterra, Spain
| | - Joan Bertran
- Departament de Química, Universitat Autònoma de Barcelona , 08193 Bellaterra, Spain
| | - Vicenç Branchadell
- Departament de Química, Universitat Autònoma de Barcelona , 08193 Bellaterra, Spain
| | - Antoni Oliva
- Departament de Química, Universitat Autònoma de Barcelona , 08193 Bellaterra, Spain
| |
Collapse
|
31
|
Åqvist J, Kamerlin SCL. Exceptionally large entropy contributions enable the high rates of GTP hydrolysis on the ribosome. Sci Rep 2015; 5:15817. [PMID: 26497916 PMCID: PMC4620562 DOI: 10.1038/srep15817] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/06/2015] [Indexed: 11/09/2022] Open
Abstract
Protein synthesis on the ribosome involves hydrolysis of GTP in several key steps of the mRNA translation cycle. These steps are catalyzed by the translational GTPases of which elongation factor Tu (EF-Tu) is the fastest GTPase known. Here, we use extensive computer simulations to explore the origin of its remarkably high catalytic rate on the ribosome and show that it is made possible by a very large positive activation entropy. This entropy term (TΔS(‡)) amounts to more than 7 kcal/mol at 25 °C. It is further found to be characteristic of the reaction mechanism utilized by the translational, but not other, GTPases and it enables these enzymes to attain hydrolysis rates exceeding 500 s(-1). This entropy driven mechanism likely reflects the very high selection pressure on the speed of protein synthesis, which drives the rate of each individual GTPase towards maximal turnover rate of the whole translation cycle.
Collapse
Affiliation(s)
- Johan Åqvist
- Dept. of Cell &Molecular Biology, Uppsala University, Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden
| | - Shina C L Kamerlin
- Dept. of Cell &Molecular Biology, Uppsala University, Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden
| |
Collapse
|
32
|
Barrozo A, Duarte F, Bauer P, Carvalho ATP, Kamerlin SCL. Cooperative Electrostatic Interactions Drive Functional Evolution in the Alkaline Phosphatase Superfamily. J Am Chem Soc 2015; 137:9061-76. [PMID: 26091851 PMCID: PMC4513756 DOI: 10.1021/jacs.5b03945] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It is becoming widely accepted that catalytic promiscuity, i.e., the ability of a single enzyme to catalyze the turnover of multiple, chemically distinct substrates, plays a key role in the evolution of new enzyme functions. In this context, the members of the alkaline phosphatase superfamily have been extensively studied as model systems in order to understand the phenomenon of enzyme multifunctionality. In the present work, we model the selectivity of two multiply promiscuous members of this superfamily, namely the phosphonate monoester hydrolases from Burkholderia caryophylli and Rhizobium leguminosarum. We have performed extensive simulations of the enzymatic reaction of both wild-type enzymes and several experimentally characterized mutants. Our computational models are in agreement with key experimental observables, such as the observed activities of the wild-type enzymes, qualitative interpretations of experimental pH-rate profiles, and activity trends among several active site mutants. In all cases the substrates of interest bind to the enzyme in similar conformations, with largely unperturbed transition states from their corresponding analogues in aqueous solution. Examination of transition-state geometries and the contribution of individual residues to the calculated activation barriers suggest that the broad promiscuity of these enzymes arises from cooperative electrostatic interactions in the active site, allowing each enzyme to adapt to the electrostatic needs of different substrates. By comparing the structural and electrostatic features of several alkaline phosphatases, we suggest that this phenomenon is a generalized feature driving selectivity and promiscuity within this superfamily and can be in turn used for artificial enzyme design.
Collapse
Affiliation(s)
- Alexandre Barrozo
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, SE-751 24, Uppsala, Sweden
| | - Fernanda Duarte
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, SE-751 24, Uppsala, Sweden
| | - Paul Bauer
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, SE-751 24, Uppsala, Sweden
| | - Alexandra T P Carvalho
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, SE-751 24, Uppsala, Sweden
| | - Shina C L Kamerlin
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, SE-751 24, Uppsala, Sweden
| |
Collapse
|
33
|
Kirmizialtin S, Loerke J, Behrmann E, Spahn CMT, Sanbonmatsu KY. Using Molecular Simulation to Model High-Resolution Cryo-EM Reconstructions. Methods Enzymol 2015; 558:497-514. [PMID: 26068751 DOI: 10.1016/bs.mie.2015.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
An explosion of new data from high-resolution cryo-electron microscopy (cryo-EM) studies has produced a large number of data sets for many species of ribosomes in various functional states over the past few years. While many methods exist to produce structural models for lower resolution cryo-EM reconstructions, high-resolution reconstructions are often modeled using crystallographic techniques and extensive manual intervention. Here, we present an automated fitting technique for high-resolution cryo-EM data sets that produces all-atom models highly consistent with the EM density. Using a molecular dynamics approach, atomic positions are optimized with a potential that includes the cross-correlation coefficient between the structural model and the cryo-EM electron density, as well as a biasing potential preserving the stereochemistry and secondary structure of the biomolecule. Specifically, we use a hybrid structure-based/ab initio molecular dynamics potential to extend molecular dynamics fitting. In addition, we find that simulated annealing integration, as opposed to straightforward molecular dynamics integration, significantly improves performance. We obtain atomistic models of the human ribosome consistent with high-resolution cryo-EM reconstructions of the human ribosome. Automated methods such as these have the potential to produce atomistic models for a large number of ribosome complexes simultaneously that can be subsequently refined manually.
Collapse
Affiliation(s)
- Serdal Kirmizialtin
- Department of Chemistry, New York University, Abu Dhabi, United Arab Emirates; New Mexico Consortium, Los Alamos, New Mexico, USA; Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Justus Loerke
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Elmar Behrmann
- Structural Dynamics of Proteins, Center of Advanced European Studies and Research (CAESAR), Bonn, Germany
| | - Christian M T Spahn
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Karissa Y Sanbonmatsu
- New Mexico Consortium, Los Alamos, New Mexico, USA; Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA.
| |
Collapse
|
34
|
Role of a ribosomal RNA phosphate oxygen during the EF-G-triggered GTP hydrolysis. Proc Natl Acad Sci U S A 2015; 112:E2561-8. [PMID: 25941362 DOI: 10.1073/pnas.1505231112] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Elongation factor-catalyzed GTP hydrolysis is a key reaction during the ribosomal elongation cycle. Recent crystal structures of G proteins, such as elongation factor G (EF-G) bound to the ribosome, as well as many biochemical studies, provide evidence that the direct interaction of translational GTPases (trGTPases) with the sarcin-ricin loop (SRL) of ribosomal RNA (rRNA) is pivotal for hydrolysis. However, the precise mechanism remains elusive and is intensively debated. Based on the close proximity of the phosphate oxygen of A2662 of the SRL to the supposedly catalytic histidine of EF-G (His87), we probed this interaction by an atomic mutagenesis approach. We individually replaced either of the two nonbridging phosphate oxygens at A2662 with a methyl group by the introduction of a methylphosphonate instead of the natural phosphate in fully functional, reconstituted bacterial ribosomes. Our major finding was that only one of the two resulting diastereomers, the SP methylphosphonate, was compatible with efficient GTPase activation on EF-G. The same trend was observed for a second trGTPase, namely EF4 (LepA). In addition, we provide evidence that the negative charge of the A2662 phosphate group must be retained for uncompromised activity in GTP hydrolysis. In summary, our data strongly corroborate that the nonbridging proSP phosphate oxygen at the A2662 of the SRL is critically involved in the activation of GTP hydrolysis. A mechanistic scenario is supported in which positioning of the catalytically active, protonated His87 through electrostatic interactions with the A2662 phosphate group and H-bond networks are key features of ribosome-triggered activation of trGTPases.
Collapse
|
35
|
Structural Insights into tRNA Dynamics on the Ribosome. Int J Mol Sci 2015; 16:9866-95. [PMID: 25941930 PMCID: PMC4463622 DOI: 10.3390/ijms16059866] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 11/17/2022] Open
Abstract
High-resolution structures at different stages, as well as biochemical, single molecule and computational approaches have highlighted the elasticity of tRNA molecules when bound to the ribosome. It is well acknowledged that the inherent structural flexibility of the tRNA lies at the heart of the protein synthesis process. Here, we review the recent advances and describe considerations that the conformational changes of the tRNA molecules offer about the mechanisms grounded in translation.
Collapse
|
36
|
Carvalho ATP, Szeler K, Vavitsas K, Åqvist J, Kamerlin SCL. Modeling the mechanisms of biological GTP hydrolysis. Arch Biochem Biophys 2015; 582:80-90. [PMID: 25731854 DOI: 10.1016/j.abb.2015.02.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/19/2015] [Accepted: 02/21/2015] [Indexed: 01/11/2023]
Abstract
Enzymes that hydrolyze GTP are currently in the spotlight, due to their molecular switch mechanism that controls many cellular processes. One of the best-known classes of these enzymes are small GTPases such as members of the Ras superfamily, which catalyze the hydrolysis of the γ-phosphate bond in GTP. In addition, the availability of an increasing number of crystal structures of translational GTPases such as EF-Tu and EF-G have made it possible to probe the molecular details of GTP hydrolysis on the ribosome. However, despite a wealth of biochemical, structural and computational data, the way in which GTP hydrolysis is activated and regulated is still a controversial topic and well-designed simulations can play an important role in resolving and rationalizing the experimental data. In this review, we discuss the contributions of computational biology to our understanding of GTP hydrolysis on the ribosome and in small GTPases.
Collapse
Affiliation(s)
- Alexandra T P Carvalho
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, SE-751 24 Uppsala, Sweden
| | - Klaudia Szeler
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, SE-751 24 Uppsala, Sweden
| | - Konstantinos Vavitsas
- Copenhagen Plant Science Centre (CPSC), Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Johan Åqvist
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, SE-751 24 Uppsala, Sweden
| | - Shina C L Kamerlin
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, SE-751 24 Uppsala, Sweden.
| |
Collapse
|
37
|
Dubiez E, Aleksandrov A, Lazennec-Schurdevin C, Mechulam Y, Schmitt E. Identification of a second GTP-bound magnesium ion in archaeal initiation factor 2. Nucleic Acids Res 2015; 43:2946-57. [PMID: 25690901 PMCID: PMC4357699 DOI: 10.1093/nar/gkv053] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Eukaryotic and archaeal translation initiation processes involve a heterotrimeric GTPase e/aIF2 crucial for accuracy of start codon selection. In eukaryotes, the GTPase activity of eIF2 is assisted by a GTPase-activating protein (GAP), eIF5. In archaea, orthologs of eIF5 are not found and aIF2 GTPase activity is thought to be non-assisted. However, no in vitro GTPase activity of the archaeal factor has been reported to date. Here, we show that aIF2 significantly hydrolyses GTP in vitro. Within aIF2γ, H97, corresponding to the catalytic histidine found in other translational GTPases, and D19, from the GKT loop, both participate in this activity. Several high-resolution crystal structures were determined to get insight into GTP hydrolysis by aIF2γ. In particular, a crystal structure of the H97A mutant was obtained in the presence of non-hydrolyzed GTP. This structure reveals the presence of a second magnesium ion bound to GTP and D19. Quantum chemical/molecular mechanical simulations support the idea that the second magnesium ion may assist GTP hydrolysis by helping to neutralize the developing negative charge in the transition state. These results are discussed in light of the absence of an identified GAP in archaea to assist GTP hydrolysis on aIF2.
Collapse
Affiliation(s)
- Etienne Dubiez
- Laboratoire de Biochimie, Unité Mixte de Recherche 7654, Ecole Polytechnique, Centre National de la Recherche Scientifique, F-91128 Palaiseau cedex, France
| | - Alexey Aleksandrov
- Laboratoire de Biochimie, Unité Mixte de Recherche 7654, Ecole Polytechnique, Centre National de la Recherche Scientifique, F-91128 Palaiseau cedex, France
| | - Christine Lazennec-Schurdevin
- Laboratoire de Biochimie, Unité Mixte de Recherche 7654, Ecole Polytechnique, Centre National de la Recherche Scientifique, F-91128 Palaiseau cedex, France
| | - Yves Mechulam
- Laboratoire de Biochimie, Unité Mixte de Recherche 7654, Ecole Polytechnique, Centre National de la Recherche Scientifique, F-91128 Palaiseau cedex, France
| | - Emmanuelle Schmitt
- Laboratoire de Biochimie, Unité Mixte de Recherche 7654, Ecole Polytechnique, Centre National de la Recherche Scientifique, F-91128 Palaiseau cedex, France
| |
Collapse
|
38
|
Åqvist J, Kamerlin SCL. The conformation of a catalytic loop is central to GTPase activity on the ribosome. Biochemistry 2014; 54:546-56. [PMID: 25515218 DOI: 10.1021/bi501373g] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The translational GTPases hydrolyze GTP on the ribosome at several stages of the protein synthesis cycle. Because of the strong conservation of their catalytic center, these enzymes are expected to operate through a universal hydrolysis mechanism, in which a critical histidine residue together with the sarcin-ricin loop of the large ribosomal subunit is necessary for GTPase activation. Here we examine different possible pathways for GTP hydrolysis by EF-Tu through extensive computer simulations. We show that a conformational change of the peptide plane preceding this histidine has a decisive effect on the energetics of the reaction. This transition was predicted earlier by us and has recently been confirmed experimentally. It is found to promote early proton transfer from water to the γ-phosphate group of GTP, followed by nucleophilic attack by hydroxide ion. The calculated reaction energetics is in good agreement with available kinetic data, for both wild-type and mutant versions of EF-Tu, and indicates that the latter may enforce a change in mechanism toward more concerted pathways.
Collapse
Affiliation(s)
- Johan Åqvist
- Department of Cell & Molecular Biology, Uppsala University, Biomedical Center , Box 596, SE-751 24 Uppsala, Sweden
| | | |
Collapse
|
39
|
Duarte F, Åqvist J, Williams NH, Kamerlin SCL. Resolving apparent conflicts between theoretical and experimental models of phosphate monoester hydrolysis. J Am Chem Soc 2014; 137:1081-93. [PMID: 25423607 PMCID: PMC4311964 DOI: 10.1021/ja5082712] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
Understanding
phosphoryl and sulfuryl transfer is central to many
biochemical processes. However, despite decades of experimental and
computational studies, a consensus concerning the precise mechanistic
details of these reactions has yet to be reached. In this work we
perform a detailed comparative theoretical study of the hydrolysis
of p-nitrophenyl phosphate, methyl phosphate and p-nitrophenyl sulfate, all of which have served as key model
systems for understanding phosphoryl and sulfuryl transfer reactions,
respectively. We demonstrate the existence of energetically similar
but mechanistically distinct possibilities for phosphate monoester
hydrolysis. The calculated kinetic isotope effects for p-nitrophenyl phosphate provide a means to discriminate between substrate-
and solvent-assisted pathways of phosphate monoester hydrolysis, and
show that the solvent-assisted pathway dominates in solution. This
preferred mechanism for p-nitrophenyl phosphate hydrolysis
is difficult to find computationally due to the limitations of compressing
multiple bonding changes onto a 2-dimensional energy surface. This
problem is compounded by the need to include implicit solvation to
at least microsolvate the system and stabilize the highly charged
species. In contrast, methyl phosphate hydrolysis shows a preference
for a substrate-assisted mechanism. For p-nitrophenyl
sulfate hydrolysis there is only one viable reaction pathway, which
is similar to the solvent-assisted pathway for phosphate hydrolysis,
and the substrate-assisted pathway is not accessible. Overall, our
results provide a unifying mechanistic framework that is consistent
with the experimentally measured kinetic isotope effects and reconciles
the discrepancies between theoretical and experimental models for
these biochemically ubiquitous classes of reaction.
Collapse
Affiliation(s)
- Fernanda Duarte
- Department of Cell and Molecular Biology (ICM), Uppsala University , SE-751 24 Uppsala, Sweden
| | | | | | | |
Collapse
|
40
|
Maracci C, Peske F, Dannies E, Pohl C, Rodnina MV. Ribosome-induced tuning of GTP hydrolysis by a translational GTPase. Proc Natl Acad Sci U S A 2014; 111:14418-23. [PMID: 25246550 PMCID: PMC4210003 DOI: 10.1073/pnas.1412676111] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
GTP hydrolysis by elongation factor Tu (EF-Tu), a translational GTPase that delivers aminoacyl-tRNAs to the ribosome, plays a crucial role in decoding and translational fidelity. The basic reaction mechanism and the way the ribosome contributes to catalysis are a matter of debate. Here we use mutational analysis in combination with measurements of rate/pH profiles, kinetic solvent isotope effects, and ion dependence of GTP hydrolysis by EF-Tu off and on the ribosome to dissect the reaction mechanism. Our data suggest that--contrary to current models--the reaction in free EF-Tu follows a pathway that does not involve the critical residue H84 in the switch II region. Binding to the ribosome without a cognate codon in the A site has little effect on the GTPase mechanism. In contrast, upon cognate codon recognition, the ribosome induces a rearrangement of EF-Tu that renders GTP hydrolysis sensitive to mutations of Asp21 and His84 and insensitive to K(+) ions. We suggest that Asp21 and His84 provide a network of interactions that stabilize the positions of the γ-phosphate and the nucleophilic water, respectively, and thus play an indirect catalytic role in the GTPase mechanism on the ribosome.
Collapse
Affiliation(s)
- Cristina Maracci
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Frank Peske
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Ev Dannies
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Corinna Pohl
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| |
Collapse
|
41
|
Kuhle B, Ficner R. A monovalent cation acts as structural and catalytic cofactor in translational GTPases. EMBO J 2014; 33:2547-63. [PMID: 25225612 DOI: 10.15252/embj.201488517] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Translational GTPases are universally conserved GTP hydrolyzing enzymes, critical for fidelity and speed of ribosomal protein biosynthesis. Despite their central roles, the mechanisms of GTP-dependent conformational switching and GTP hydrolysis that govern the function of trGTPases remain poorly understood. Here, we provide biochemical and high-resolution structural evidence that eIF5B and aEF1A/EF-Tu bound to GTP or GTPγS coordinate a monovalent cation (M(+)) in their active site. Our data reveal that M(+) ions form constitutive components of the catalytic machinery in trGTPases acting as structural cofactor to stabilize the GTP-bound "on" state. Additionally, the M(+) ion provides a positive charge into the active site analogous to the arginine-finger in the Ras-RasGAP system indicating a similar role as catalytic element that stabilizes the transition state of the hydrolysis reaction. In sequence and structure, the coordination shell for the M(+) ion is, with exception of eIF2γ, highly conserved among trGTPases from bacteria to human. We therefore propose a universal mechanism of M(+)-dependent conformational switching and GTP hydrolysis among trGTPases with important consequences for the interpretation of available biochemical and structural data.
Collapse
Affiliation(s)
- Bernhard Kuhle
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik Göttinger Zentrum für Molekulare Biowissenschaften Georg-August-Universität Göttingen, Göttingen, Germany
| | - Ralf Ficner
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik Göttinger Zentrum für Molekulare Biowissenschaften Georg-August-Universität Göttingen, Göttingen, Germany
| |
Collapse
|
42
|
Sanbonmatsu KY. Flipping through the Genetic Code: New Developments in Discrimination between Cognate and Near-Cognate tRNAs and the Effect of Antibiotics. J Mol Biol 2014; 426:3197-3200. [DOI: 10.1016/j.jmb.2014.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
43
|
Quantitative exploration of the molecular origin of the activation of GTPase. Proc Natl Acad Sci U S A 2013; 110:20509-14. [PMID: 24282301 DOI: 10.1073/pnas.1319854110] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
GTPases play a major role in cellular processes, and gaining quantitative understanding of their activation demands reliable free energy surfaces of the relevant mechanistic paths in solution, as well as the interpolation of this information to GTPases. Recently, we generated ab initio quantum mechanical/molecular mechanical free energy surfaces for the hydrolysis of phosphate monoesters in solution, establishing quantitatively that the barrier for the reactions with a proton transfer (PT) step from a single attacking water (1 W) is higher than the one where the PT is assisted by a second water (2 W). The implication of this finding on the activation of GTPases is quantified here, by using the ab initio solution surfaces to calibrate empirical valence bond surfaces and then exploring the origin of the activation effect. It is found that, although the 2 W PT path is a new element, this step is not rate determining, and the catalytic effect is actually due to the electrostatic stabilization of the pre-PT transition state and the subsequent plateau. Thus, the electrostatic catalytic effect found in our previous studies of the Ras GTPase activating protein (RasGAP) and the elongation factor-Tu (EF-Tu) with a 1 W mechanism is still valid for the 2 W path. Furthermore, as found before, the corresponding activation appears to involve a major allosteric effect. Overall, we believe that our finding is general to both GTPases and ATPases. In addition to the biologically relevant finding, we also provide a critical discussion of the requirements from reliable surfaces for enzymatic reactions.
Collapse
|
44
|
|
45
|
Kalimeri M, Rahaman O, Melchionna S, Sterpone F. How conformational flexibility stabilizes the hyperthermophilic elongation factor G-domain. J Phys Chem B 2013; 117:13775-85. [PMID: 24087838 DOI: 10.1021/jp407078z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Proteins from thermophilic organisms are stable and functional well above ambient temperature. Understanding the molecular mechanism underlying such a resistance is of crucial interest for many technological applications. For some time, thermal stability has been assumed to correlate with high mechanical rigidity of the protein matrix. In this work we address this common belief by carefully studying a pair of homologous G-domain proteins, with their melting temperatures differing by 40 K. To probe the thermal-stability content of the two proteins we use extensive simulations covering the microsecond time range and employ several different indicators to assess the salient features of the conformational landscape and the role of internal fluctuations at ambient condition. At the atomistic level, while the magnitude of fluctuations is comparable, the distribution of flexible and rigid stretches of amino-acids is more regular in the thermophilic protein causing a cage-like correlation of amplitudes along the sequence. This caging effect is suggested to favor stability at high T by confining the mechanical excitations. Moreover, it is found that the thermophilic protein, when folded, visits a higher number of conformational substates than the mesophilic homologue. The entropy associated with the occupation of the different substates and the thermal resilience of the protein intrinsic compressibility provide a qualitative insight on the thermal stability of the thermophilic protein as compared to its mesophilic homologue. Our findings potentially open the route to new strategies in the design of thermostable proteins.
Collapse
Affiliation(s)
- Maria Kalimeri
- Laboratoire de Biochimie Théorique, IBPC, CNRS, UPR9080, Université Paris Diderot , Sorbonne Paris Cité, France
| | | | | | | |
Collapse
|
46
|
Energetics of activation of GTP hydrolysis on the ribosome. Nat Commun 2013; 4:1733. [PMID: 23591900 DOI: 10.1038/ncomms2741] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 03/13/2013] [Indexed: 11/09/2022] Open
Abstract
Several of the steps in protein synthesis on the ribosome utilize hydrolysis of guanosine triphosphate (GTP) as the driving force. This reaction is catalyzed by translation factors that become activated upon binding to the ribosome. The recently determined crystal structure of an elongation factor-Tu ternary complex bound to the ribosome allows the energetics of GTP activation to be explored by computer simulations. A central problem regards the role of the universally conserved histidine, which has been proposed to act as a general base for guanosine triphosphate hydrolysis. Here we report a detailed energetic and structural analysis of different possible protonation states that could be involved in activation of the reaction. We show that the histidine cannot act as a general base, but must be protonated and in its active conformation to promote GTP hydrolysis. We further show that the sarcin-ricin loop of the ribosome spontaneously drives the histidine into the correct conformation for GTP activation.
Collapse
|
47
|
Aleksandrov A, Field M. Mechanism of activation of elongation factor Tu by ribosome: catalytic histidine activates GTP by protonation. RNA (NEW YORK, N.Y.) 2013; 19:1218-1225. [PMID: 23864225 PMCID: PMC3753929 DOI: 10.1261/rna.040097.113] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 05/30/2013] [Indexed: 06/02/2023]
Abstract
Elongation factor Tu (EF-Tu) is central to prokaryotic protein synthesis as it has the role of delivering amino-acylated tRNAs to the ribosome. Release of EF-Tu, after correct binding of the EF-Tu:aa-tRNA complex to the ribosome, is initiated by GTP hydrolysis. This reaction, whose mechanism is uncertain, is catalyzed by EF-Tu, but requires activation by the ribosome. There have been a number of mechanistic proposals, including those spurred by a recent X-ray crystallographic analysis of a ribosome:EF-Tu:aa-tRNA:GTP-analog complex. In this work, we have investigated these and alternative hypotheses, using high-level quantum chemical/molecular mechanical simulations for the wild-type protein and its His85Gln mutant. For both proteins, we find previously unsuggested mechanisms as being preferred, in which residue 85, either His or Gln, directly assists in the reaction. Analysis shows that the RNA has a minor catalytic effect in the wild-type reaction, but plays a significant role in the mutant by greatly stabilizing the reaction's transition state. Given the similarity between EF-Tu and other members of the translational G-protein family, it is likely that these mechanisms of ribosome-activated GTP hydrolysis are pertinent to all of these proteins.
Collapse
Affiliation(s)
- Alexey Aleksandrov
- Laboratoire de Biochimie (CNRS UMR7654), Department of Biology, Ecole Polytechnique, 91128 Palaiseau, France
| | - Martin Field
- Dynamo/DYNAMOP, Institut de Biologie Structurale Jean-Pierre Ebel (CEA, CNRS UMR5075, Université, Joseph Fourier – Grenoble I), 38027 Grenoble, France
| |
Collapse
|
48
|
Tourigny DS, Fernández IS, Kelley AC, Ramakrishnan V. Elongation factor G bound to the ribosome in an intermediate state of translocation. Science 2013; 340:1235490. [PMID: 23812720 PMCID: PMC3836249 DOI: 10.1126/science.1235490] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A key step of translation by the ribosome is translocation, which involves the movement of messenger RNA (mRNA) and transfer RNA (tRNA) with respect to the ribosome. This allows a new round of protein chain elongation by placing the next mRNA codon in the A site of the 30S subunit. Translocation proceeds through an intermediate state in which the acceptor ends of the tRNAs have moved with respect to the 50S subunit but not the 30S subunit, to form hybrid states. The guanosine triphosphatase (GTPase) elongation factor G (EF-G) catalyzes the subsequent movement of mRNA and tRNA with respect to the 30S subunit. Here, we present a crystal structure at 3 angstrom resolution of the Thermus thermophilus ribosome with a tRNA in the hybrid P/E state bound to EF-G with a GTP analog. The structure provides insights into structural changes that facilitate translocation and suggests a common GTPase mechanism for EF-G and elongation factor Tu.
Collapse
Affiliation(s)
| | | | - Ann C. Kelley
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | |
Collapse
|
49
|
Affiliation(s)
| | - V. Ramakrishnan
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; ,
| |
Collapse
|
50
|
Plotnikov NV, Prasad BR, Chakrabarty S, Chu ZT, Warshel A. Quantifying the mechanism of phosphate monoester hydrolysis in aqueous solution by evaluating the relevant ab initio QM/MM free-energy surfaces. J Phys Chem B 2013; 117:12807-19. [PMID: 23601038 DOI: 10.1021/jp4020146] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Understanding the nature of the free-energy surfaces for phosphate hydrolysis is a prerequisite for understanding the corresponding key chemical reactions in biology. Here, the challenge has been to move to careful ab initio QM/MM (QM(ai)/MM) free-energy calculations, where obtaining converging results is very demanding and computationally expensive. This work describes such calculations, focusing on the free-energy surface for the hydrolysis of phosphate monoesters, paying special attention to the comparison between the one water (1W) and two water (2W) paths for the proton-transfer (PT) step. This issue has been explored before by energy minimization with implicit solvent models and by nonsystematic QM/MM energy minimization, as well as by nonsystematic free-energy mapping. However, no study has provided the needed reliable 2D (3D) surfaces that are necessary for reaching concrete conclusions. Here we report a systematic evaluation of the 2D (3D) free-energy maps for several relevant systems, comparing the results of QM(ai)/MM and QM(ai)/implicit solvent surfaces, and provide an advanced description of the relevant energetics. It is found that the 1W path for the hydrolysis of the methyl diphosphate (MDP) trianion is 6-9 kcal/mol higher than that the 2W path. This difference becomes slightly larger in the presence of the Mg(2+) ion because this ion reduces the pKa of the conjugated acid form of the phosphate oxygen that accepts the proton. Interestingly, the BLYP approach (which has been used extensively in some studies) gives a much smaller difference between the 1W and 2W activation barriers. At any rate, it is worth pointing out that the 2W transition state for the PT is not much higher that the common plateau that serves as the starting point of both the 1W and 2W PT paths. Thus, the calculated catalytic effects of proteins based on the 2W PT mechanistic model are not expected to be different from the catalytic effects predicted using the 1W PT mechanistic model, which was calibrated on the observed barrier in solution and in which the TS charge distribution was similar to the that of the plateau (as was done in all of our previous EVB studies).
Collapse
Affiliation(s)
- Nikolay V Plotnikov
- Department of Chemistry, University of Southern California , SGM 418, 3620 McClintock Avenue, Los Angeles, California 90089, United States
| | | | | | | | | |
Collapse
|